[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5050313B2 - Battery and battery manufacturing method - Google Patents

Battery and battery manufacturing method Download PDF

Info

Publication number
JP5050313B2
JP5050313B2 JP2004360744A JP2004360744A JP5050313B2 JP 5050313 B2 JP5050313 B2 JP 5050313B2 JP 2004360744 A JP2004360744 A JP 2004360744A JP 2004360744 A JP2004360744 A JP 2004360744A JP 5050313 B2 JP5050313 B2 JP 5050313B2
Authority
JP
Japan
Prior art keywords
battery
plate
current collector
collector plate
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004360744A
Other languages
Japanese (ja)
Other versions
JP2006172780A (en
Inventor
真治 浜田
豊彦 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004360744A priority Critical patent/JP5050313B2/en
Publication of JP2006172780A publication Critical patent/JP2006172780A/en
Application granted granted Critical
Publication of JP5050313B2 publication Critical patent/JP5050313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、複数の正極板と複数の負極板とがセパレータを介して積層された電池要素を有する電池及びその製造方法に関し、特に、一方の極性の極板のリード部がそれぞれ所定方向に延出し、その端部がそれぞれ集電板に接合した電池及びその製造方法に関する。   The present invention relates to a battery having a battery element in which a plurality of positive plates and a plurality of negative plates are stacked via a separator, and a method for manufacturing the same, and in particular, a lead portion of one polarity plate extends in a predetermined direction. The present invention relates to a battery in which each end is bonded to a current collector plate and a method for manufacturing the same.

従来より、複数の正極板と複数の負極板とがセパレータを介して積層された電池要素を有し、一方の極板(正極板または負極板)のリード部が所定方向に延出して、その端部がそれぞれ集電板(正極集電板または負極集電板)に接合された電池が知られている。例えば、特許文献1にその一例が開示されている。
特許文献1の電池では、集電板のうち極板側の面に、ロウ材の合金パウダーをバインダーでスラリー状としたものを所要量塗着し、リフローして、この極板側の面にロウ材を付けておく。そして、この集電板の極板側の面に一方の極板のリード部を圧接した状態で、外側から電子ビームを照射してロウ材を溶融させ、集電板と極板のリード部とをロウ材を介して接合することで、集電板と一方の極板とを接合している(特許文献1の図10,図11及びその説明箇所等参照)。
Conventionally, it has a battery element in which a plurality of positive plates and a plurality of negative plates are laminated via a separator, and a lead portion of one of the plates (positive plate or negative plate) extends in a predetermined direction, A battery is known in which end portions are each joined to a current collector plate (a positive electrode current collector plate or a negative electrode current collector plate). For example, Patent Document 1 discloses an example thereof.
In the battery of Patent Document 1, a required amount of brazing alloy powder made into a slurry with a binder is applied to the surface of the current collector plate on the electrode plate side, and reflowed to the surface on the electrode plate side. Put the brazing material. Then, in a state where the lead portion of one electrode plate is in pressure contact with the surface on the electrode plate side of this current collector plate, the brazing material is melted by irradiating an electron beam from the outside, and the current collector plate and the lead portion of the electrode plate The current collector plate and one of the electrode plates are joined by joining them through a brazing material (see FIGS. 10 and 11 of Patent Document 1 and the description thereof).

特開2001−93505号公報JP 2001-93505 A

特許文献1の電池では、集電板と一方の極性の極板との接続信頼性は十分に高い。しかしながら、一旦ロウ材を集電板へリフローするため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが高く、その結果、電池のコスト高を招いている。   In the battery of Patent Document 1, the connection reliability between the current collector plate and one polarity electrode plate is sufficiently high. However, once the brazing material is reflowed to the current collector plate, the cost of the brazing material itself and the manufacturing cost associated with the reflowing of the brazing material are high, resulting in high battery costs.

本発明は、かかる現状に鑑みてなされたものであって、集電板と発電要素の極板との接続信頼性を確保しながらも、従来より低コスト化できる電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and provides a battery and a method of manufacturing the same that can reduce the cost of the battery while ensuring the connection reliability between the current collector plate and the electrode plate of the power generation element. For the purpose.

その解決手段は、複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出してなる発電要素と、前記一方の極性の極板のうち、前記リード部の端部がそれぞれ接合してなる集電板と、を備える電池であって、前記リード部の前記端部はいずれも、自身の周りに、前記端部とは逆側の前記集電板の外側から照射された電子ビームまたはレーザにより溶融された、前記集電板をなす金属によるフィレットを形成した状態で、それぞれ前記集電板に接合されてなる電池である。 The solution includes a power generation element in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators, and the lead portions of one polarity electrode plate all extend in a predetermined direction; of plate of polarity, a battery and a respectively bonded formed by the current collector plate is an end portion of the lead portion, both the ends of the lead portions, about its said end In the state in which the metal fillet made of the current collector plate melted by the electron beam or laser irradiated from the outside of the current collector plate opposite to the part is joined to the current collector plate, respectively. It is a battery.

本発明によれば、極板のリード部の端部がいずれも、自身の周りに集電板をなす金属によるフィレットを形成した状態で、それぞれ集電板に接合されている。このような電池では、フィレットにより極板(リード部)と集電板とが確実に接合しているので、これらの接続信頼性が高い。しかも、そのフィレットは、集電板をなす金属によって形成されているため、従来のようにロウ材を必要としない。このため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価な電池とすることができる。 According to the present invention, each end of the lead portion of the electrode plate is joined to the current collector plate in a state where a metal fillet forming the current collector plate is formed around itself. In such a battery, since the electrode plate (lead part) and the current collector plate are reliably joined by the fillet, the connection reliability thereof is high. Moreover, since the fillet is formed of a metal that forms a current collector plate, a brazing material is not required as in the prior art. For this reason, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not applied, and an inexpensive battery can be obtained.

ここで、「発電要素」は、複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出しているものであれば、その形態等は特に限定されない。
また、本発明では、正極板及び負極板のうち、少なくとも一方の極性の極板について本発明が適用されていればよく、負極板についてのみでも、正極板についてのみでも、或いは、正極板及び負極板の双方について本発明を適用してもよい。
「集電板」は、リード部の端部がそれぞれ接合してなるものであればよく、その形態等は特に限定されない。
Here, the “power generation element” is a structure in which a plurality of positive plates and a plurality of negative plates are alternately stacked via separators, and the lead portions of one polar plate extend in a predetermined direction. If there is, the form and the like are not particularly limited.
In the present invention, the present invention may be applied to at least one of the positive electrode plate and the negative electrode plate, and only the negative electrode plate, only the positive electrode plate, or the positive electrode plate and the negative electrode plate. The present invention may be applied to both the plates.
The “current collector plate” is not particularly limited as long as the end portions of the lead portions are joined to each other.

なお、本発明の、リード部の端部がいずれも自身の周りに集電板をなす金属によるフィレットを形成した状態で集電板に接合された電池は、後述するように、リード部の端部に1対1で対応する凹溝を内側に有する集電板を利用することにより形成できる。しかし、製造された電池において上記のようにフィレットが形成されていればよく、これ以外の方法によって製造されたものも本発明に含まれることは言うまでもない。 Incidentally, the present invention, the battery whose ends are joined to the current collector plate in a state of forming a fillet by the metal forming the collector plate around both its lead portion, as described later, the end of the lead portion the corresponding groove can be formed by utilizing a current collector plate having inwardly in a one-to-one to the section. However, it is sufficient that the fillet is formed as described above in the manufactured battery, and it goes without saying that the battery manufactured by any other method is also included in the present invention.

また、他の解決手段は、複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出してなる発電要素と、前記一方の極性の極板のうち、前記リード部の端部がそれぞれ接合してなる集電板と、を備える電池であって、各々の前記リード部の前記端部を、これらに1対1で対応する凹溝を内側に有する前記集電板の前記凹溝にそれぞれ挿入し、前記端部とは逆側の前記集電板の外側から電子ビームまたはレーザを照射して、前記集電板のうち前記凹溝をなす部分を溶融させて、前記リード部の前記端部と前記集電板とをそれぞれ接合してなる電池である。 Another solution is a power generation element in which a plurality of positive plates and a plurality of negative plates are alternately stacked via separators, and the lead portions of one polar plate extend in a predetermined direction. And a current collector plate formed by joining the end portions of the lead portions of the one polar plate, wherein the end portions of the lead portions are paired with each other . 1 is inserted into each of the concave grooves of the current collector plate having a corresponding concave groove on the inside, and irradiated with an electron beam or a laser from the outside of the current collector plate opposite to the end portion. The battery is formed by melting a portion of the plate forming the concave groove and joining the end portion of the lead portion and the current collector plate, respectively .

本発明の電池は、リード部の端部を、これらに1対1で対応する凹溝を内側に有する集電板の凹溝にそれぞれ挿入し、端部とは逆側の集電板の外側から電子ビームまたはレーザを照射して、集電板のうち凹溝をなす部分(凹溝の内壁部分)を溶融させて、リード部の端部と集電板とをそれぞれ接合したものである。このような電池は、リード部の端部が、自身の周りに集電板をなす金属によるフィレットを形成した状態で、それぞれ集電板に接合されている。従って、極板と集電板と接合強度が高く、接続信頼性が高い。しかも、従来のようにロウ材を使用していないため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価な電池とすることができる。 Cell of the present invention, the end of the lead portion, inserting them into the groove of the current collecting plate having a corresponding groove on the inside in these one-to-one, outside the opposite side of the current collector plate to the end portion Are irradiated with an electron beam or a laser to melt a portion of the current collector plate that forms a concave groove (inner wall portion of the concave groove), and the end portion of the lead portion and the current collector plate are joined to each other. In such a battery, the end portion of the lead portion is joined to the current collector plate in a state where a metal fillet forming the current collector plate is formed around the lead portion. Therefore, the bonding strength between the electrode plate and the current collector plate is high, and the connection reliability is high. Moreover, since no brazing material is used as in the prior art, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not incurred, and an inexpensive battery can be obtained.

更に、上記の電池であって、断面が略V字状をなし、この略V字状断面において、同一の深さにおける左右2本の接線がなす角の最小値が30度以上90度以下である前記凹溝を有する前記集電板に対し、前記リード部の前記端部を接合してなる電池とすると良い。   Furthermore, in the battery described above, the cross section is substantially V-shaped, and in this substantially V-shaped cross section, the minimum value of the angle formed by the two left and right tangents at the same depth is not less than 30 degrees and not more than 90 degrees. It is preferable that the battery is formed by joining the end portion of the lead portion to the current collector plate having the concave groove.

凹溝が断面略V字状をなす場合、凹溝断面の角度が狭すぎると、製造時に極板のリード部の端部を凹溝内に深く挿入しにくくなるため、極板のリード部と集電板とを接合しにくい。一方、この凹溝断面の角度が広すぎると、製造時に集電板の凹溝をなす部分を溶融させたときに、その溶融した金属が極板のリード部の端部に十分に接触せず、フィレットが形成されにくいため、この場合も、極板のリード部と集電板とを接合しにくい。従って、凹溝断面の角度が狭すぎても広すぎても、極板と集電板との接続信頼性が低下するおそれがある。
これに対し、本発明では、断面略V字状をなす凹溝断面の角度を30度以上90度以下としている。このような凹溝の集電板を用いることで、極板のリード部の端部をより確実に凹溝内に挿入できると共に、集電板の凹溝をなす部分を溶融させたときにより確実に端部の周りにフィレットを形成できるため、極板のリード部と集電板とを確実に接合できるようになる。従って、一方の極性の極板と集電板との接続信頼性が高い電池とすることができる。
When the groove has a substantially V-shaped cross section, if the angle of the cross section of the groove is too narrow, it becomes difficult to insert the end of the lead portion of the electrode plate deeply into the groove during manufacturing. Difficult to join the current collector plate. On the other hand, if the angle of the cross section of the groove is too wide, when the portion forming the groove of the current collector plate is melted during manufacture, the molten metal does not sufficiently contact the end of the lead portion of the electrode plate. In this case, it is difficult to join the lead portion of the electrode plate and the current collector plate because the fillet is hardly formed. Therefore, even if the angle of the cross section of the groove is too narrow or too wide, the connection reliability between the electrode plate and the current collector plate may be reduced.
In contrast, in the present invention, the angle of the cross section of the groove having a substantially V-shaped cross section is set to 30 degrees or more and 90 degrees or less. By using the current collector plate with such a concave groove, the end of the lead portion of the electrode plate can be inserted into the concave groove more reliably, and more reliably when the portion of the current collector plate forming the concave groove is melted. In addition, since the fillet can be formed around the end portion, the lead portion of the electrode plate and the current collector plate can be reliably joined. Therefore, a battery with high connection reliability between the electrode plate of one polarity and the current collector plate can be obtained.

なお、本発明における凹溝断面の角度とは、上記のように、同一の深さにおける左右2本の接線がなす角の最小値を言う。例えば、凹溝断面が完全なV字状である場合や、凹溝底部や凹溝開口部が曲線をなし凹溝中間部が直線状をなす場合は、その直線部分のなす角度が、凹溝断面の角度となる。一方、凹溝断面が全体に曲線状である場合には、その変曲点における左右2本の接線同士のなす角度が凹溝断面の角度となる。   In addition, the angle of the groove cross section in the present invention refers to the minimum value of the angle formed by the two left and right tangents at the same depth as described above. For example, when the cross section of the groove is completely V-shaped, or when the groove bottom and groove opening are curved and the groove middle is straight, the angle formed by the straight line portion is the groove The angle of the cross section. On the other hand, when the cross section of the concave groove is curved as a whole, the angle formed by the two left and right tangents at the inflection point is the angle of the cross section of the concave groove.

更に、上記のいずれかに記載の電池であって、深さが0.1mm以上である前記凹溝を有する前記集電板に対し、前記リード部の前記端部を接合してなる電池とすると良い。   Furthermore, when the battery according to any one of the above is formed by joining the end portion of the lead portion to the current collector plate having the concave groove having a depth of 0.1 mm or more. good.

凹溝の深さが浅いと、極板のリード部の端部を凹溝に深く挿入できず、極板のリード部と集電板とを確実に接合させにくいため、これらの接続信頼性が低下するおそれがある。
これに対し、本発明では、凹溝の深さを0.1mm以上と深くしているので、極板のリード部の端部を十分深く凹溝内に挿入できるため、極板のリード部と集電板とをより確実に接合できるようになる。従って、一方の極性の極板と集電板との接続信頼性が高い電池とすることができる。
If the depth of the groove is shallow, the end of the lead part of the electrode plate cannot be inserted deeply into the groove, and it is difficult to reliably join the lead part of the electrode plate and the current collector plate. May decrease.
On the other hand, in the present invention, since the depth of the groove is as deep as 0.1 mm or more, the end portion of the lead portion of the electrode plate can be inserted deeply into the groove, It becomes possible to join the current collector plate more reliably. Therefore, a battery with high connection reliability between the electrode plate of one polarity and the current collector plate can be obtained.

更に、上記のいずれかに記載の電池であって、前記発電要素を収容する容器本体部材、及び、この容器本体部材を封口する封口部材を有する電池容器を備え、前記封口部材は、前記集電板を兼ねた集電封口部材である電池とすると良い。   The battery according to any one of the above, further comprising: a container body member that houses the power generation element; and a battery container having a sealing member that seals the container body member, wherein the sealing member includes the current collector. A battery that is a current collecting and sealing member that also serves as a plate is preferable.

本発明によれば、電池容器の封口部材が集電板を兼用しているので、従来の密閉型電池に存在した一方の極性についての集電板を無くすことができる。その結果、発電要素の収容スペースを大きく確保できる。また、集電板と封口部材を兼用することで、一方の極性の極板と集電封口部材との間の電池導通路を短くし、そこでの電気抵抗を小さくできる。このため、電池の出力を向上させることができる。更に、集電板を無くした分だけ、電池を安価にできる。   According to the present invention, since the sealing member of the battery container also serves as the current collector plate, the current collector plate for one polarity existing in the conventional sealed battery can be eliminated. As a result, a large storage space for the power generation element can be secured. Further, by using both the current collector plate and the sealing member, the battery conduction path between the electrode plate of one polarity and the current collector sealing member can be shortened, and the electrical resistance there can be reduced. For this reason, the output of a battery can be improved. Furthermore, the battery can be made cheaper as much as the current collector plate is eliminated.

また、他の解決手段は、複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出してなる発電要素と、前記一方の極性の極板のうち、前記リード部の端部がそれぞれ接合してなる集電板と、を備える電池の製造方法であって、各々の前記リード部の前記端部に1対1で対応する凹溝を内側に有する前記集電板に対し、前記リード部の前記端部を対応する前記凹溝にそれぞれ挿入する端部挿入工程と、前記リード部の前記端部を前記凹溝に挿入した状態で、前記端部とは逆側の前記集電板の外側から電子ビームまたはレーザを照射し、前記集電板のうち前記凹溝をなす部分を溶融させて、前記リード部の前記端部をそれぞれ前記集電板に接合する溶接工程と、を備える電池の製造方法である。 Another solution is a power generation element in which a plurality of positive plates and a plurality of negative plates are alternately stacked via separators, and the lead portions of one polar plate extend in a predetermined direction. And a current collector plate formed by joining the end portions of the lead portions of the one polarity electrode plate, and a pair of the end portions of the lead portions . 1 for inserting the end of the lead portion into the corresponding groove, and inserting the end portion of the lead portion into the concave portion. In the state of being inserted into the groove, the lead portion is irradiated with an electron beam or a laser from the outside of the current collector plate opposite to the end portion to melt a portion of the current collector plate forming the concave groove. And a welding step for joining the end portions of the current plate to the current collector plate, respectively. It is a manufacturing method.

本発明によれば、一方の極性の極板についてのリード部の端部を、これらに1対1で対応する凹溝を内側に有する集電板の凹溝に挿入し、電子ビーム等を照射して集電板のうち凹溝をなす部分(凹溝の内壁部分)を溶融させ、一方の極性の極板のリード部を集電板に接合する。このような方法で電池を製造すれば、リード部の端部が、自身の周りに集電板をなす金属によるフィレットを形成した状態で、それぞれ集電板に接合される。従って、一方の極性の極板のリード部と集電板と接合強度が高く、これらの接続信頼性が高い電池を製造できる。更に、従来のようにロウ材を使用していないため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価に電池を製造できる。 According to the present invention, the end of the lead portion of the electrode plate of one polarity, inserted in the concave groove of the collector plate with a corresponding groove on the inside in these one-to-one, irradiated with an electron beam or the like Then, the portion of the current collector plate that forms the concave groove (the inner wall portion of the concave groove) is melted, and the lead portion of the electrode plate of one polarity is joined to the current collector plate. If the battery is manufactured by such a method, the end portions of the lead portions are joined to the current collector plates in a state where metal fillets forming the current collector plates are formed around the lead portions. Therefore, the lead portion of one polarity electrode plate and the current collector plate have high bonding strength, and a battery having high connection reliability can be manufactured. Further, since the brazing material is not used as in the prior art, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not applied, and the battery can be manufactured at low cost.

更に、上記の電池の製造方法であって、前記凹溝は、プレス加工により形成されてなる電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the concave groove may be a battery manufacturing method formed by pressing.

本発明によれば、凹溝がプレス加工により形成された集電板を利用して電池を製造する。プレス加工により凹溝を形成した集電板は安価であるので、これを利用すれば安価な電池を製造できる。   According to the present invention, the battery is manufactured using the current collector plate in which the concave grooves are formed by press working. Since the current collector plate in which the concave grooves are formed by press working is inexpensive, if this is used, an inexpensive battery can be manufactured.

上記のいずれかに記載の電池の製造方法であって、前記凹溝は、断面が略V字状をなし、この略V字状断面において、同一の深さにおける左右2本の接線がなす角の最小値が、30度以上90度以下である電池の製造方法とすると良い。   The method for manufacturing a battery according to any one of the above, wherein the concave groove has a substantially V-shaped cross section, and an angle formed by two left and right tangents at the same depth in the substantially V-shaped cross section. It is preferable that the battery has a minimum value of 30 degrees or more and 90 degrees or less.

本発明によれば、断面略V字状をなす凹溝断面の角度が30度以上90度以下の集電板を利用して電池を製造する。凹溝断面の角度を30度以上とすることで、端部挿入工程において極板のリード部の端部を凹溝内に確実に挿入しやすくなるため、溶接工程において極板のリード部と集電板とをより確実に接合できる。また、凹溝断面の角度を90度以下とすることで、溶接工程において集電板の凹溝をなす部分を溶融させたときに、その溶融した金属が極板のリード部の端部に接触しやすく、端部の周りにフィレットを確実に形成できるため、極板のリード部と集電板とをより確実に接合できる。従って、一方の極性の極板と集電板との接続信頼性が高い電池を製造できる。   According to the present invention, a battery is manufactured by using a current collector plate having an angle of a cross section of a groove having a substantially V-shaped cross section of 30 degrees or more and 90 degrees or less. By setting the angle of the cross section of the groove to 30 degrees or more, it becomes easier to reliably insert the end of the lead portion of the electrode plate into the groove in the end insertion step. The electric plate can be more reliably joined. Also, by setting the angle of the cross section of the groove to 90 degrees or less, when the portion forming the groove of the current collector plate is melted in the welding process, the molten metal contacts the end of the lead portion of the electrode plate. Since the fillet can be reliably formed around the end portion, the lead portion of the electrode plate and the current collector plate can be more reliably joined. Therefore, a battery with high connection reliability between the electrode plate of one polarity and the current collector plate can be manufactured.

更に、上記のいずれかに記載の電池の製造方法であって、前記凹溝は、深さが0.1mm以上である電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method according to any one of the above, it is preferable that the concave groove has a depth of 0.1 mm or more.

本発明によれば、凹溝の深さが0.1mm以上の集電板を利用して電池を製造する。凹溝の深さを0.1mm以上と深くすることで、端部挿入工程において極板のリード部の端部を十分深く凹溝内に挿入できるため、溶接工程において極板のリード部と集電板とをより確実に接合できる。従って、一方の極性の極板と集電板との接続信頼性が高い電池を製造できる。   According to the present invention, a battery is manufactured using a current collector plate having a groove depth of 0.1 mm or more. By increasing the depth of the concave groove to 0.1 mm or more, the end of the lead portion of the electrode plate can be inserted deeply into the concave groove in the end portion insertion process. The electric plate can be more reliably joined. Therefore, a battery with high connection reliability between the electrode plate of one polarity and the current collector plate can be manufactured.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に本実施形態に係る密閉型電池(電池)100を第1側面部111c側から見た図を示す。また、図2に密閉型電池100を集電封口部材115の外側面115a側から見た図を示す。また、図3に密閉側電池100を第3側面部111e側から見た図を示す。また、図4に密閉型電池100を上面部111a側から見た図を示す。また、図5に密閉型電池100の断面図を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a view of a sealed battery (battery) 100 according to the present embodiment as viewed from the first side surface portion 111c side. FIG. 2 is a view of the sealed battery 100 as viewed from the outer surface 115 a side of the current collecting and sealing member 115. FIG. 3 shows a view of the sealed battery 100 as seen from the third side surface portion 111e side. FIG. 4 shows a view of the sealed battery 100 as seen from the upper surface portion 111a side. FIG. 5 shows a cross-sectional view of the sealed battery 100.

この密閉型電池100は、電気自動車やハイブリッドカーの電源として用いられる、例えばニッケル水素蓄電池やリチウムイオン電池などの二次電池であり、略直方体形状の角型電池である。密閉型電池100は、直方体形状をなす電池容器110と、電池容器110の内部に収容された発電要素120と、同じく電池容器110の内部に固設された正極集電板130と、電池容器110に固設された外部正極端子140等から構成され、容器内部には電解液が注入されている(図1〜図5参照)。   The sealed battery 100 is a secondary battery such as a nickel metal hydride storage battery or a lithium ion battery, which is used as a power source for an electric vehicle or a hybrid car, and is a rectangular battery having a substantially rectangular parallelepiped shape. The sealed battery 100 includes a battery container 110 having a rectangular parallelepiped shape, a power generation element 120 accommodated in the battery container 110, a positive current collector 130 fixed in the battery container 110, and a battery container 110. The external positive electrode terminal 140 and the like are fixed to the container, and an electrolytic solution is injected into the container (see FIGS. 1 to 5).

このうち、発電要素120(図5参照)は、正極活物質層121sを有する複数の正極板121と、負極活物質層123sを有する複数の負極板123とが、セパレータ125を介して交互に積層されることにより構成されている。負極板123のうち、負極活物質層123sが形成されていない負極リード部123rは、いずれも所定方向(図5中、左側)に延出している。一方、正極板121のうち、正極活物質層121sが形成されていない正極リード部121rは、いずれも負極リード部123rとは反対方向(図5中、右側)に延出している。 Among them, the power generation element 120 (see FIG. 5) includes a plurality of positive plates 121 having positive electrode active material layers 121 s and a plurality of negative plates 123 having negative electrode active material layers 123 s stacked alternately via separators 125. Is configured. Of the negative electrode plate 123, the negative electrode lead portion 123r in which the negative electrode active material layer 123s is not formed extends in a predetermined direction (left side in FIG. 5). On the other hand, in the positive electrode plate 121, the positive electrode lead part 121r in which the positive electrode active material layer 121s is not formed extends in the opposite direction to the negative electrode lead part 123r (right side in FIG. 5).

電池容器110は、導電材(ニッケルメッキ鋼板)からなる深い有底角筒状の容器本体部材111と、同じく導電材(ニッケルメッキ鋼板)からなり、容器本体部材111を封口する集電封口部材115とから構成されている。
なお、電池容器110のうち、集電板封口部材115は、集電板を兼ねているため導電材からなる必要があるが、それ以外の部分は、導電材で形成されていても絶縁材で形成されていてもよい。電池容器110に金属を利用する場合、電解液に対する耐性(耐アルカリ性)や強度、電気的安定性等を考慮して適宜選択すればよく、利用可能な金属としては、例えば、アルミニウムやアルミニウム合金、ニッケルメッキを施した炭素鋼、ニッケルを多く含むオーステナイト系ステンレスなどが挙げられる。また、電池容器110に樹脂を利用する場合も、電解液に対する耐性(耐アルカリ性)や強度などを考慮して適宜選択すればよく、例えば、利用可能な樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、変性ポリフェニレンエーテルとポリスチレンの共重合体、ABS樹脂、アクリロニトリルスチレン樹脂、ポリアミド、塩化ビニル樹脂、塩化ビニリデン樹脂、メタクリル樹脂、及び、これらのポリマーブレンドまたはポリマーアロイが挙げられる。
The battery container 110 includes a deep bottomed rectangular tube-shaped container body member 111 made of a conductive material (nickel-plated steel plate), and a current collecting sealing member 115 that is also made of a conductive material (nickel-plated steel plate) and seals the container body member 111. It consists of and.
In addition, in the battery container 110, the current collector sealing member 115 also serves as a current collector and needs to be made of a conductive material. However, other portions are made of a conductive material but are made of an insulating material. It may be formed. When a metal is used for the battery container 110, it may be appropriately selected in view of resistance (alkali resistance), strength, electrical stability, etc. to the electrolyte. Examples of usable metals include aluminum and aluminum alloys, Examples thereof include carbon steel subjected to nickel plating and austenitic stainless steel containing a large amount of nickel. Also, when using a resin for the battery container 110, it may be appropriately selected in view of resistance (alkali resistance) or strength to the electrolytic solution. For example, usable resins include polypropylene, polyethylene, polystyrene, and modified resins. Examples thereof include a copolymer of polyphenylene ether and polystyrene, ABS resin, acrylonitrile styrene resin, polyamide, vinyl chloride resin, vinylidene chloride resin, methacrylic resin, and polymer blends or polymer alloys thereof.

容器本体部材111(図1〜図5参照)は、平板状で長方形状の上面部111aと、これに平行で上面部111aと同形状な下面部111bと、上面部111aの長辺と下面部111bの長辺とを結ぶ平板状の2つの側面部(第1側面部111c及び第2側面部111d)と、上面部111aの短辺と下面部111bの短辺とを結ぶ平板状の側面部(第3側面部111e)とからなる。上面部111aには、その略中央に貫通穴が形成され、安全弁113が固設されている。また、第3側面部111eには、縦方向に所定の間隔をあけて2つの貫通穴が形成され、後述する外部正極端子140がそれぞれ固設されている。   The container main body member 111 (see FIGS. 1 to 5) includes a flat and rectangular upper surface portion 111a, a lower surface portion 111b parallel to the upper surface portion 111a and having the same shape as the upper surface portion 111a, and a long side and a lower surface portion of the upper surface portion 111a. Two flat side surfaces (first side surface portion 111c and second side surface portion 111d) that connect the long side of 111b, and a flat side surface portion that connects the short side of the upper surface portion 111a and the short side of the lower surface portion 111b (Third side surface portion 111e). A through hole is formed in the upper surface portion 111a at substantially the center thereof, and a safety valve 113 is fixedly provided. In addition, two through holes are formed in the third side surface portion 111e at predetermined intervals in the vertical direction, and external positive electrode terminals 140 described later are respectively fixed.

集電封口部材115は、平板状をなし、負極集電板も兼ねている。なお、図6に単体状態の集電封口部材115を内側面115b側から見た図を示す。また、図7に図6のA−A断面の一部を示す。更に、図8に図7に相当する部分に負極板123の負極リード部123rを接合した状態を示す。
集電封口部材115には、その内側面115bから外側面115a側に突出する平面視矩形状の外側凸部117が、縦方向に所定の間隔をあけて4カ所に形成されている。また、集電封口部材115には、その外側面115a側から内側面115b側に突出する平面視長円形状の内側凸部119が、各々の外側凸部117の上側と下側にそれぞれ形成されている。
なお、容器本体部材111と集電封口部材115とは、容器本体部材111を集電封口部材115で蓋をした状態で、全周にわたってレーザ溶接することにより接合されている。
The current collecting sealing member 115 has a flat plate shape and also serves as a negative electrode current collecting plate. In addition, the figure which looked at the current collection sealing member 115 of the single-piece | unit state from the inner surface 115b side in FIG. 6 is shown. FIG. 7 shows a part of the AA cross section of FIG. Further, FIG. 8 shows a state where the negative electrode lead portion 123r of the negative electrode plate 123 is joined to the portion corresponding to FIG.
The current collecting and sealing member 115 is formed with four outer convex portions 117 having a rectangular shape in plan view protruding from the inner side surface 115b toward the outer side surface 115a at predetermined intervals in the vertical direction. Further, the current collecting and sealing member 115 is formed with inner convex portions 119 each having an oval shape in a plan view projecting from the outer surface 115 a side to the inner surface 115 b side on the upper side and the lower side of each outer convex portion 117. ing.
In addition, the container main body member 111 and the current collecting sealing member 115 are joined by laser welding over the entire circumference in a state where the container main body member 111 is covered with the current collecting sealing member 115.

前述した発電要素120のうち、負極板123の負極リード部123rは、いずれもこの集電封口部材115の内側面115bに電子ビーム溶接により直接接合されている(図5及び図8参照)。具体的には、負極リード部123rの端部123rtが、自身の周りに集電封口部材115をなす金属(鋼板成分)によるフィレット115fを形成した状態で、それぞれ集電封口部材115に接合されている。   Of the power generation element 120 described above, the negative electrode lead portion 123r of the negative electrode plate 123 is directly joined to the inner side surface 115b of the current collecting sealing member 115 by electron beam welding (see FIGS. 5 and 8). Specifically, the end portion 123rt of the negative electrode lead portion 123r is joined to the current collecting sealing member 115 in a state where a fillet 115f made of metal (steel plate component) forming the current collecting sealing member 115 is formed around itself. Yes.

このように接合された負極板123と集電封口部材115とは、接合強度が高く、接続信頼性が高い。更に、従来のようにロウ材を使用していないため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価な密閉型電池100とすることができる。
また、本実施形態のように、負極板123の負極リード部123rを集電封口部材115に直接接合することで、集電封口部材115が負極集電板を兼用しているので、負極集電板を無くすことができる。その結果、発電要素120の収容スペースを大きく確保できる。また、この兼用により発電要素120(負極板123)と集電封口部材115との間の電池導通路を短くし、そこでの電気抵抗を小さくできる。このため、密閉型電池100の出力を向上させることができる。更に、負極集電板を無くした分だけ、密閉型電池100を小型で安価にできる。
The negative electrode plate 123 and the current collecting and sealing member 115 thus bonded have high bonding strength and high connection reliability. Further, since the brazing material is not used as in the prior art, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not applied, and the inexpensive sealed battery 100 can be obtained.
Further, as in this embodiment, by directly joining the negative electrode lead portion 123r of the negative electrode plate 123 to the current collecting and sealing member 115, the current collecting and sealing member 115 also serves as the negative electrode current collecting plate. The board can be eliminated. As a result, a large accommodation space for the power generation element 120 can be secured. In addition, the battery conduction path between the power generation element 120 (the negative electrode plate 123) and the current collecting and sealing member 115 can be shortened and the electrical resistance can be reduced. For this reason, the output of the sealed battery 100 can be improved. Further, the sealed battery 100 can be reduced in size and cost by the amount that the negative electrode current collector plate is eliminated.

正極集電板130(図5参照)は、導電材(ニッケルメッキ鋼板)からなり、平板状をなす。正極集電板130には、内側面130b側(図5中、左側)に突出する幅方向(図5中、紙面に垂直な方向)に長い平面視長円形状の内側凸部131が8カ所に形成されている。   The positive electrode current collector plate 130 (see FIG. 5) is made of a conductive material (nickel plated steel plate) and has a flat plate shape. The positive electrode current collector plate has eight oval inner convex portions 131 that are oblong in plan view and are long in the width direction (the direction perpendicular to the paper surface in FIG. 5) protruding toward the inner side surface 130b (left side in FIG. 5). Is formed.

前述した発電要素120のうち、正極板121の正極リード部121rは、いずれもこの正極集電板130の内側面130bに電子ビーム溶接により接合されている(図5参照)。具体的には、前述の負極リード部123rと同様(図8参照)、正極リード部121rの端部が、自身の周りに正極集電板130をなす金属によるフィレットを形成した状態で、それぞれ正極集電板130に接合されている。
このように接合された正極板121と正極集電板130も、負極板123と集電封口部材115と同様、接合強度が高く、接続信頼性が高い。更に、従来のようにロウ材を使用していないため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価な密閉型電池100とすることができる。
Of the power generation element 120 described above, the positive electrode lead portion 121r of the positive electrode plate 121 is joined to the inner side surface 130b of the positive electrode current collector plate 130 by electron beam welding (see FIG. 5). Specifically, in the same manner as the above-described negative electrode lead portion 123r (see FIG. 8), each end of the positive electrode lead portion 121r is formed with a metal fillet that forms the positive electrode current collector plate 130 around itself. It is joined to the current collector plate 130.
The positive electrode plate 121 and the positive electrode current collector plate 130 thus bonded also have high bonding strength and high connection reliability, like the negative electrode plate 123 and the current collector sealing member 115. Further, since the brazing material is not used as in the prior art, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not applied, and the inexpensive sealed battery 100 can be obtained.

外部正極端子140(図5参照)は、一端(図5中、左側)が閉じた中空筒状なす極柱部141と、極柱部141の他端(図5中、右側)から径方向外側に延出する鍔部143とからなる。極柱部141は、電池容器110(容器本体部材111)の貫通穴に、電池容器110と極柱部141との間に電気絶縁性を有するシール部材145を介挿した状態で、上記一端側が電池内部に位置し、上記他端側が電池外部に位置するように挿入されている。そして、極柱部141の上記一端側は、径方向外側(図5中、上下方向)に膨出して圧縮変形部141hを形成し、電池容器本体111の第3側面部111eの内側面との間に、上記シール部材145の一部を挟み込んでシール部材145を圧縮している。また、鍔部143も、電池容器本体111の第3側面部111eの外側面との間に、上記シール部材145の一部を挟み込んでシール部材145を圧縮している。
この外部正極端子140は、正極集電板130の外側面130a(図5中、右側)に圧縮変形部141hを当接した状態で、レーザ溶接により正極集電板130と接合している。
The external positive electrode terminal 140 (see FIG. 5) includes a hollow cylindrical pole post 141 whose one end (left side in FIG. 5) is closed, and a radially outer side from the other end (right side in FIG. 5) of the pole post 141. And a collar portion 143 extending to the bottom. The pole column 141 is inserted in a through hole of the battery container 110 (container body member 111) with a sealing member 145 having electrical insulation between the battery container 110 and the pole column 141, and the one end side is It is located inside the battery and is inserted so that the other end side is located outside the battery. The one end side of the pole post 141 swells radially outward (in the vertical direction in FIG. 5) to form a compression deformed portion 141 h, and the inner side surface of the third side face 111 e of the battery container body 111. A part of the seal member 145 is sandwiched between them to compress the seal member 145. In addition, the flange portion 143 also compresses the seal member 145 by sandwiching a part of the seal member 145 between the outer side surface of the third side surface portion 111e of the battery container body 111.
The external positive electrode terminal 140 is joined to the positive electrode current collector plate 130 by laser welding in a state where the outer surface 130a (right side in FIG. 5) of the positive electrode current collector plate 130 is in contact with the compression deformation portion 141h.

以上で説明した密閉型電池100は次のようにして製造する。即ち、公知の手法により発電要素120を作成する。
また、集電封口部材115を作成する。本実施形態で利用する集電封口部材115は、図6に示したように、内側凸部119の頂面119nに、それぞれ図6中、上下方向に延びる凹溝119mが、負極板123と同じ数だけ形成されている。図7に示したように、凹溝119mは、断面が略V字状をなす。より詳細には、断面のうち、凹溝底部119mpは角が丸くなるように曲線をなし、また、凹溝開口部119mqは外側に向かって広がる曲線をなし、一方、凹溝中間部119mrは直線をなしている。そして、凹溝中間部119mrの直線部分において、そのなす角αが30度以上90度以下(本実施形態では45度)とされている。また、凹溝119mの深さDは0.1mm以上(本実施形態では0.3mm)とされている。このような凹溝119mはプレス加工によって形成する。
The sealed battery 100 described above is manufactured as follows. That is, the power generation element 120 is created by a known method.
Moreover, the current collection sealing member 115 is created. As shown in FIG. 6, the current collecting and sealing member 115 used in this embodiment has a groove 119 m extending in the vertical direction in FIG. The number is formed. As shown in FIG. 7, the groove 119m has a substantially V-shaped cross section. More specifically, in the cross section, the groove bottom 119mp is curved so that the corners are rounded, and the groove opening 119mq is curved outward, while the groove middle 119mr is a straight line. I am doing. And, in the straight line portion of the concave groove middle portion 119 mr, the angle α formed is set to 30 degrees or more and 90 degrees or less (45 degrees in the present embodiment). Further, the depth D of the concave groove 119m is 0.1 mm or more (0.3 mm in this embodiment). Such a concave groove 119m is formed by press working.

また一方で、正極集電板130を作成する。この正極集電板130も、集電封口部材115の凹溝119mと同様に、内側凸部131の頂面に、それぞれ図5中、上下方向に延びる凹溝(図示しない)が、正極板121と同じ数だけ形成されている。これらの凹溝は、集電封口部材115の凹溝119mと同様の形態をなす(図6及び図7参照)。即ち、断面が略V字状であり、断面のうち、凹溝底部は角が丸くなるように曲線をなし、また、凹溝開口部は外側に向かって広がる曲線をなし、一方、凹溝中間部は直線をなしている。そして、凹溝中間部の直線部分において、そのなす角が30度以上90度以下(本実施形態では45度)とされている。また、凹溝の深さは0.1mm以上(本実施形態では0.3mm)とされている。このような凹溝もプレス加工によって形成する。   On the other hand, the positive electrode current collector plate 130 is prepared. Similarly to the concave groove 119m of the current collector sealing member 115, the positive electrode current collecting plate 130 also has a concave groove (not shown) extending in the vertical direction in FIG. The same number is formed. These concave grooves have the same form as the concave grooves 119m of the current collecting and sealing member 115 (see FIGS. 6 and 7). That is, the cross section is substantially V-shaped, and in the cross section, the bottom of the concave groove is curved so that the corners are rounded, and the concave groove opening is curved outwardly, whereas the middle of the concave groove The part is straight. The angle formed by the straight portion of the middle portion of the groove is 30 degrees or more and 90 degrees or less (45 degrees in the present embodiment). Further, the depth of the groove is 0.1 mm or more (0.3 mm in this embodiment). Such a concave groove is also formed by pressing.

次に、発電要素120の負極リード部123rの端部123rtを、集電封口部材115の内側凸部119のうち対応する凹溝119mにそれぞれ挿入する(端部挿入工程)。
その後、端部123rtを凹溝119mに挿入した状態で、集電封口部材115の外側面115a側から内側凸部119に向けて電子ビームを照射し、集電封口部材115のうち凹溝119mをなす部分(凹溝119の内壁部分115h)を一旦溶融させて、負極リード部123rの端部123rtをそれぞれ集電封口部材115に接合する(溶接工程)。このとき、端部123rtの周りには、封口集電板115をなす金属(鋼板成分)によるフィレット115fがそれぞれ形成され、負極リード部123rが集電封口部材115に強固に接合される。なお、電子ビームの代わりにレーザを照射して溶接工程を行うこともできる。
Next, the end portion 123rt of the negative electrode lead portion 123r of the power generation element 120 is inserted into the corresponding concave groove 119m in the inner convex portion 119 of the current collecting and sealing member 115 (end portion inserting step).
Thereafter, with the end 123rt inserted in the concave groove 119m, an electron beam is irradiated from the outer surface 115a side of the current collecting sealing member 115 toward the inner convex portion 119, and the concave groove 119m of the current collecting sealing member 115 is formed. The formed portion (the inner wall portion 115h of the concave groove 119) is once melted, and the end portion 123rt of the negative electrode lead portion 123r is joined to the current collecting sealing member 115 (welding process). At this time, fillets 115f made of metal (steel plate component) forming the sealing current collecting plate 115 are formed around the end 123rt, and the negative electrode lead portion 123r is firmly joined to the current collecting sealing member 115. Note that the welding process may be performed by irradiating a laser instead of the electron beam.

このようにして接合された負極板123と集電封口部材115とは、接合強度が高く、接続信頼性が高い。更に、従来のようにロウ材を使用していないため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価に密閉型電池100を製造できる。
更に、本実施形態では、前述したように断面略V字状をなす凹溝119mの断面の角度を30度以上90度以下(具体的には45度)としているので、負極リード部123rの端部123rtをより確実に凹溝119m内に挿入できる。更にこれにより、集電封口部材115の凹溝119mをなす部分を溶融させて負極リード部123rの端部123rtと集電封口部材115とを確実に接合できる。また、凹溝119mの深さを0.1mm以上(具体的には0.3mm)としているので、負極リード部123rの端部123rtを十分に深く凹溝119m内に挿入できるため、負極リード部123rの端部123rtと集電封口部材115とをより確実に接合できる。従って、負極板123と集電封口部材115との接続信頼性を向上させることができる。
The negative electrode plate 123 and the current collecting and sealing member 115 bonded in this way have high bonding strength and high connection reliability. Furthermore, since no brazing material is used as in the prior art, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not incurred, and the sealed battery 100 can be manufactured at low cost.
Furthermore, in the present embodiment, as described above, the angle of the cross section of the concave groove 119m having a substantially V-shaped cross section is set to 30 degrees or more and 90 degrees or less (specifically 45 degrees). The portion 123rt can be more reliably inserted into the concave groove 119m. This further melts the portion forming the concave groove 119m of the current collecting and sealing member 115, so that the end 123rt of the negative electrode lead portion 123r and the current collecting and sealing member 115 can be reliably joined. Further, since the depth of the concave groove 119m is 0.1 mm or more (specifically 0.3 mm), the end 123rt of the negative electrode lead portion 123r can be inserted deeply into the concave groove 119m. The end 123rt of 123r and the current collecting and sealing member 115 can be more reliably joined. Therefore, the connection reliability between the negative electrode plate 123 and the current collecting and sealing member 115 can be improved.

次に、正極側についても、上記の負極側と同様に、端部挿入工程と溶接工程を行う。
即ち、まず、発電要素120の正極リード部121rの端部を正極集電板130の内側凸部131のうち対応する凹溝(図示しない)にそれぞれ挿入する(端部挿入工程)。
その後、正極リード部121rの端部を正極集電板130の凹溝に挿入した状態で、正極集電板130の外側面130a側から内側凸部131に向けて電子ビームを照射し、正極集電板130のうち凹溝をなす部分(凹溝の内壁部分)を一旦溶融させて、正極リード部121rの端部をそれぞれ正極集電板130に接合する(溶接工程)。このとき、正極リード部121rの端部の周りに正極集電板130をなす金属によるフィレットがそれぞれ形成され、正極リード部123rが正極集電板130に強固に接合される。なお、ここでも電子ビームの代わりにレーザを照射して溶接工程を行うこともできる。
Next, the end portion insertion step and the welding step are performed on the positive electrode side as well as the negative electrode side.
That is, first, the end portion of the positive electrode lead portion 121r of the power generation element 120 is inserted into the corresponding concave groove (not shown) of the inner convex portion 131 of the positive electrode current collector plate 130 (end portion insertion step).
Thereafter, with the end portion of the positive electrode lead portion 121r being inserted into the concave groove of the positive electrode current collector plate 130, an electron beam is irradiated from the outer surface 130a side of the positive electrode current collector plate 130 toward the inner convex portion 131, so A portion of the electric plate 130 forming a concave groove (inner wall portion of the concave groove) is once melted, and the end portions of the positive electrode lead portion 121r are respectively joined to the positive electrode current collector plate 130 (welding process). At this time, metal fillets forming the positive current collector plate 130 are formed around the ends of the positive electrode lead portion 121r, and the positive electrode lead portion 123r is firmly bonded to the positive electrode current collector plate 130. Here, the welding process can also be performed by irradiating a laser instead of the electron beam.

この正極側についても、正極板121と正極集電板130とは、接合強度が高く、接続信頼性が高い。更に、従来のようにロウ材を使用していないため、ロウ材自体のコストやロウ材のリフローに伴う製造コストが掛からず、安価に密閉型電池100を製造できる。
更に、前述したように断面略V字状をなす凹溝の断面の角度を30度以上90度以下(具体的には45度)としているので、正極リード部121rの端部をより確実に凹溝内に挿入できる。更にこれにより正極集電板130の凹溝をなす部分を溶融させて正極リード部121rの端部と正極集電板130とを確実に接合できる。また、凹溝の深さを0.1mm以上(具体的には0.3mm)としているので、正極リード部121rの端部を十分に深く凹溝内に挿入できるため、正極リード部123rの端部と正極集電板130とをより確実に接合できる。従って、正極板121と正極集電板130との接続信頼性を向上させることができる。
Also on the positive electrode side, the positive electrode plate 121 and the positive electrode current collector plate 130 have high bonding strength and high connection reliability. Furthermore, since no brazing material is used as in the prior art, the cost of the brazing material itself and the manufacturing cost associated with the reflow of the brazing material are not incurred, and the sealed battery 100 can be manufactured at low cost.
Furthermore, as described above, the angle of the cross section of the groove having a substantially V-shaped cross section is set to 30 degrees or more and 90 degrees or less (specifically 45 degrees), so that the end of the positive electrode lead portion 121r is more reliably recessed. Can be inserted into the groove. In addition, the portion forming the concave groove of the positive electrode current collector plate 130 is melted, and the end portion of the positive electrode lead portion 121r and the positive electrode current collector plate 130 can be reliably bonded. Further, since the depth of the groove is 0.1 mm or more (specifically 0.3 mm), the end of the positive electrode lead portion 121r can be inserted deeply into the groove, so that the end of the positive electrode lead portion 123r can be inserted. And the positive electrode current collector plate 130 can be more reliably joined. Therefore, the connection reliability between the positive electrode plate 121 and the positive electrode current collector plate 130 can be improved.

またこれとは別に、容器本体部材111に外部正極端子140を固着する。即ち、容器本体部材111の貫通穴にシール部材145を装着すると共に、鍔部143と断面U字状の極柱部141を有する外部正極端子140の極柱部141を外側から挿入し、この極柱部141の筒内に流体圧をかけて、極柱部141の一端側を径方向外側に膨出させ、更に軸方向に圧縮変形させて圧縮変形部141hを形成しておく。   Separately, the external positive electrode terminal 140 is fixed to the container body member 111. That is, the seal member 145 is mounted in the through hole of the container body member 111, and the pole portion 141 of the external positive terminal 140 having the flange portion 143 and the pole column portion 141 having a U-shaped cross section is inserted from the outside. A fluid pressure is applied to the cylinder of the column 141 to bulge one end side of the pole column 141 outward in the radial direction, and further compressively deform in the axial direction to form a compression deformed portion 141h.

次に、発電要素120と集電封口部材115と正極集電板130とからなる接合体のうち、正極集電板130及び発電要素120を、容器本体部材111内に挿入し、集電封口部材115で容器本体部材111に蓋をする。そして、外部からレーザを照射して、集電封口部材115と容器本体部材111とを接合し、容器本体部材111を封口する。
次に、外部正極端子140の外側からその極柱部141の凹みに向けてレーザを照射し、極柱部141の圧縮変形部141hと正極集電板130とを接合する。
その後、容器本体部材111の形成された貫通穴(注入口)から電解液を注入し、その注入口を閉鎖するように安全弁113を取り付ければ、上記密閉型電池100が完成する。
Next, among the joined body composed of the power generation element 120, the current collecting and sealing member 115, and the positive current collecting plate 130, the positive current collecting plate 130 and the power generating element 120 are inserted into the container main body member 111, and the current collecting and sealing member At 115, the container body member 111 is covered. Then, the laser is irradiated from the outside, the current collecting sealing member 115 and the container main body member 111 are joined, and the container main body member 111 is sealed.
Next, a laser is irradiated from the outside of the external positive electrode terminal 140 toward the dent of the pole column portion 141 to join the compression deformation portion 141 h of the pole column portion 141 and the positive electrode current collector plate 130.
Then, if the electrolyte solution is injected from the through hole (injection port) in which the container body member 111 is formed, and the safety valve 113 is attached so as to close the injection port, the sealed battery 100 is completed.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、上記実施形態では、正極板121と正極集電板130との接合、及び、負極板123と集電封口部材115との接合に本発明を適用しているが、正極板121または負極板123のいずれか一方にのみ本発明を適用してもよい。
また、上記実施形態では、封口部材115が負極集電板も兼ねているが、別途負極集電板を設け、その負極集電板に本発明を適用してもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. .
For example, in the above embodiment, the present invention is applied to the bonding of the positive electrode plate 121 and the positive electrode current collector plate 130 and the bonding of the negative electrode plate 123 and the current collecting sealing member 115. The present invention may be applied to only one of 123.
In the above embodiment, the sealing member 115 also serves as the negative electrode current collector plate. However, a separate negative electrode current collector plate may be provided, and the present invention may be applied to the negative electrode current collector plate.

実施形態に係る密閉型電池を第1側面部側から平面図である。It is a top view from the 1st side part side of the sealed battery which concerns on embodiment. 実施形態に係る密閉型電池を集電封口部材の外側面側から見た平面図である。It is the top view which looked at the sealed type battery which concerns on embodiment from the outer surface side of the current collection sealing member. 実施形態に係る密閉型電池を第3側面部側から見た平面図である。It is the top view which looked at the sealed battery which concerns on embodiment from the 3rd side part part side. 実施形態に係る密閉型電池を上面部側から見た平面図である。It is the top view which looked at the sealed battery which concerns on embodiment from the upper surface part side. 実施形態に係る密閉型電池の断面図である。It is sectional drawing of the sealed battery which concerns on embodiment. 実施形態に係る密閉型電池を構成する集電封口部材を内側面側から見た平面図である。It is the top view which looked at the current collection sealing member which comprises the sealed battery which concerns on embodiment from the inner surface side. 実施形態に係る密閉型電池を構成する集電封口部材のうち、図6のA−A断面を一部を示す断面図である。It is sectional drawing which shows a part of AA cross section of FIG. 6 among the current collection sealing members which comprise the sealed battery which concerns on embodiment. 実施形態に係る密閉型電池のうち、電池を構成した状態における図7に相当する部分の断面図である。It is sectional drawing of the part corresponded in FIG. 7 in the state which comprised the battery among the sealed batteries which concern on embodiment.

符号の説明Explanation of symbols

100 密閉型電池(電池)
110 電池容器
111 容器本体部材
115 集電封口部材
115f フィレット
119 (集電封口部材の)内側凸部
119m (内側凸部の)凹溝
121 正極板
121r 正極リード部
123 負極板
123r 負極リード部
123rt (負極リード部の)端部
125 セパレータ
130 正極集電板
131 (正極集電板の)内側凸部
100 Sealed battery (battery)
110 Battery container 111 Container main body member 115 Current collecting seal member 115f Fillet 119 Inner convex portion 119m (of the current collecting seal member) Groove groove 121 Positive electrode plate 121r Positive electrode lead portion 123 Negative electrode plate 123r Negative electrode lead portion 123rt ( End 125 of negative electrode lead part Separator 130 Positive electrode current collector 131 Inner convex part (of positive electrode current collector)

Claims (9)

複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出してなる発電要素と、
前記一方の極性の極板のうち、前記リード部の端部がそれぞれ接合してなる集電板と、
を備える電池であって、
前記リード部の前記端部はいずれも、自身の周りに、前記端部とは逆側の前記集電板の外側から照射された電子ビームまたはレーザにより溶融された、前記集電板をなす金属によるフィレットを形成した状態で、それぞれ前記集電板に接合されてなる
電池。
A plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators, and a power generation element in which the lead portions of one polarity electrode plate all extend in a predetermined direction,
A current collecting plate formed by joining the end portions of the lead portions of the one polar electrode plate,
A battery comprising:
Both the ends of the lead portions, around itself and said end portion is melted by an electron beam or laser irradiated from the outside of the opposite side of the collector plate, a metal forming the collector plate A battery formed by joining the current collector plate in a state where a fillet is formed.
複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出してなる発電要素と、
前記一方の極性の極板のうち、前記リード部の端部がそれぞれ接合してなる集電板と、
を備える電池であって、
各々の前記リード部の前記端部を、これらに1対1で対応する凹溝を内側に有する前記集電板の前記凹溝にそれぞれ挿入し、前記端部とは逆側の前記集電板の外側から電子ビームまたはレーザを照射して、前記集電板のうち前記凹溝をなす部分を溶融させて、前記リード部の前記端部と前記集電板とをそれぞれ接合してなる
電池。
A plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators, and a power generation element in which the lead portions of one polarity electrode plate all extend in a predetermined direction,
A current collecting plate formed by joining the end portions of the lead portions of the one polar electrode plate,
A battery comprising:
The end portions of the respective lead portions are respectively inserted into the concave grooves of the current collector plate having concave grooves corresponding to the one-to-one correspondence on the inside, and the current collector plate on the side opposite to the end portions. from the outside by irradiating an electron beam or a laser, to melt a portion forming the groove of the collector plate, formed by joining the said end of the lead portion and the collector plate respectively battery.
請求項2に記載の電池であって、
断面が略V字状をなし、この略V字状断面において、同一の深さにおける左右2本の接線がなす角の最小値が30度以上90度以下である前記凹溝を有する前記集電板に対し、前記リード部の前記端部を接合してなる
電池。
The battery according to claim 2,
The current collector having the concave groove in which the cross section is substantially V-shaped, and the minimum value of the angle formed by the two left and right tangents at the same depth is 30 degrees or more and 90 degrees or less A battery formed by joining the end of the lead portion to a plate.
請求項2または請求項3のいずれか一項に記載の電池であって、
深さが0.1mm以上である前記凹溝を有する前記集電板に対し、前記リード部の前記端部を接合してなる
電池。
A battery according to any one of claims 2 or 3,
A battery formed by joining the end portion of the lead portion to the current collector plate having the concave groove having a depth of 0.1 mm or more.
請求項1〜請求項4のいずれか一項に記載の電池であって、
前記発電要素を収容する容器本体部材、及び、この容器本体部材を封口する封口部材を有する電池容器を備え、
前記封口部材は、前記集電板を兼ねた集電封口部材である
電池。
It is a battery as described in any one of Claims 1-4, Comprising:
A container body member that houses the power generation element, and a battery container having a sealing member that seals the container body member,
The battery, wherein the sealing member is a current collecting and sealing member that also serves as the current collecting plate.
複数の正極板と複数の負極板とがセパレータを介して交互に積層され、一方の極性の極板のリード部がいずれも所定方向に延出してなる発電要素と、
前記一方の極性の極板のうち、前記リード部の端部がそれぞれ接合してなる集電板と、
を備える電池の製造方法であって、
各々の前記リード部の前記端部に1対1で対応する凹溝を内側に有する前記集電板に対し、前記リード部の前記端部を対応する前記凹溝にそれぞれ挿入する端部挿入工程と、
前記リード部の前記端部を前記凹溝に挿入した状態で、前記端部とは逆側の前記集電板の外側から電子ビームまたはレーザを照射し、前記集電板のうち前記凹溝をなす部分を溶融させて、前記リード部の前記端部をそれぞれ前記集電板に接合する溶接工程と、
を備える電池の製造方法。
A plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators, and a power generation element in which the lead portions of one polarity electrode plate all extend in a predetermined direction,
A current collecting plate formed by joining the end portions of the lead portions of the one polar electrode plate,
A battery manufacturing method comprising:
End insertion step of inserting the end of the lead part into the corresponding groove, respectively, with respect to the current collecting plate having the concave part corresponding to the end of the lead part on a one-to-one basis When,
With the end portion of the lead portion inserted into the concave groove, an electron beam or a laser is irradiated from the outside of the current collector plate opposite to the end portion, and the concave groove of the current collector plate is A welding step of melting a portion to be formed and joining the end portions of the lead portions to the current collector plates, respectively;
A method for manufacturing a battery comprising:
請求項6に記載の電池の製造方法であって、
前記凹溝は、プレス加工により形成されてなる
電池の製造方法。
It is a manufacturing method of the battery of Claim 6, Comprising:
The method for manufacturing a battery in which the concave groove is formed by press working.
請求項6または請求項7に記載の電池の製造方法であって、
前記凹溝は、断面が略V字状をなし、この略V字状断面において、同一の深さにおける左右2本の接線がなす角の最小値が、30度以上90度以下である
電池の製造方法。
A method for producing a battery according to claim 6 or 7,
The concave groove has a substantially V-shaped cross section, and in this substantially V-shaped cross section, the minimum value of the angle formed by the two left and right tangents at the same depth is not less than 30 degrees and not more than 90 degrees. Production method.
請求項6〜請求項8のいずれか一項に記載の電池の製造方法であって、
前記凹溝は、深さが0.1mm以上である
電池の製造方法。
It is a manufacturing method of the battery as described in any one of Claims 6-8,
The method for manufacturing a battery, wherein the groove has a depth of 0.1 mm or more.
JP2004360744A 2004-12-14 2004-12-14 Battery and battery manufacturing method Expired - Fee Related JP5050313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360744A JP5050313B2 (en) 2004-12-14 2004-12-14 Battery and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360744A JP5050313B2 (en) 2004-12-14 2004-12-14 Battery and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2006172780A JP2006172780A (en) 2006-06-29
JP5050313B2 true JP5050313B2 (en) 2012-10-17

Family

ID=36673309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360744A Expired - Fee Related JP5050313B2 (en) 2004-12-14 2004-12-14 Battery and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5050313B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057954B1 (en) 2006-09-20 2011-08-18 파나소닉 주식회사 Secondary Battery and Manufacturing Method of Secondary Battery
US20100104945A1 (en) 2007-03-15 2010-04-29 Klyomi Kozuki Secondary battery and method for manufacturing secondary battery
JPWO2009153914A1 (en) * 2008-06-17 2011-11-24 パナソニック株式会社 Battery and manufacturing method thereof
CN117043979A (en) 2021-03-31 2023-11-10 松下知识产权经营株式会社 Electrode for secondary battery, and method for manufacturing electrode for secondary battery
CN117099222A (en) 2021-03-31 2023-11-21 松下知识产权经营株式会社 Electrode for secondary battery, and method for manufacturing electrode for secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804702B2 (en) * 1997-03-18 2006-08-02 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
JP2001148239A (en) * 1999-11-22 2001-05-29 Toyota Motor Corp Square type battery
JP4504600B2 (en) * 2000-11-30 2010-07-14 パナソニック株式会社 Square sealed battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006172780A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4876444B2 (en) Battery and battery manufacturing method
JP6093874B2 (en) Prismatic secondary battery
JP5326125B2 (en) Nonaqueous electrolyte secondary battery
JP6427462B2 (en) Square secondary battery
JP5211086B2 (en) Secondary battery
TWI466356B (en) Battery and its manufacturing method
JP5840207B2 (en) Secondary battery
JP5651557B2 (en) Single cells and batteries
JP6427460B2 (en) Square secondary battery
KR100662165B1 (en) Angular enclosed battery
JP6729137B2 (en) Secondary battery, manufacturing method thereof, and assembled battery using the same
EP1993161B1 (en) Battery, and battery manufacturing method
JP6192992B2 (en) Prismatic secondary battery
JP5017824B2 (en) Sealed battery and battery pack
JP4640340B2 (en) Sealed battery and method for manufacturing sealed battery
JP2014010910A (en) Square battery and manufacturing method therefor
JP5050313B2 (en) Battery and battery manufacturing method
JP2011204405A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20170060447A (en) A secondary battery
JP2010118374A (en) Capacitor
JP6108545B2 (en) Square secondary battery and battery pack
JP2017134910A (en) Method of manufacturing secondary battery
JP2024142972A (en) Electricity storage device and method for manufacturing the same
KR20240144309A (en) Batteries for energy storage
JP4610395B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5050313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees