[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5040359B2 - Zoom lens and optical apparatus having the same - Google Patents

Zoom lens and optical apparatus having the same Download PDF

Info

Publication number
JP5040359B2
JP5040359B2 JP2007047440A JP2007047440A JP5040359B2 JP 5040359 B2 JP5040359 B2 JP 5040359B2 JP 2007047440 A JP2007047440 A JP 2007047440A JP 2007047440 A JP2007047440 A JP 2007047440A JP 5040359 B2 JP5040359 B2 JP 5040359B2
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
group
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007047440A
Other languages
Japanese (ja)
Other versions
JP2008209754A (en
Inventor
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007047440A priority Critical patent/JP5040359B2/en
Priority to PCT/JP2008/052588 priority patent/WO2008105249A1/en
Publication of JP2008209754A publication Critical patent/JP2008209754A/en
Priority to US12/545,846 priority patent/US7940472B2/en
Application granted granted Critical
Publication of JP5040359B2 publication Critical patent/JP5040359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、ズームレンズと、これを有する光学装置に関する。   The present invention relates to a zoom lens and an optical device having the same.

従来、電子スチルカメラなどに用いられるズームレンズが提案されている(例えば、特許文献1、2参照)。
特開2001−42213号公報 特開2006−189913号公報
Conventionally, zoom lenses used in electronic still cameras have been proposed (see, for example, Patent Documents 1 and 2).
JP 2001-42213 A JP 2006-189913 A

従来のズームレンズは、望遠端状態における望遠比が大きく全長が長く、望遠撮影領域での色収差が大きいと言う問題があった。   The conventional zoom lens has a problem that the telephoto ratio in the telephoto end state is large and the total length is long, and the chromatic aberration in the telephoto imaging region is large.

上記課題を解決するため、本発明は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、前記第3レンズ群は、物体側から順に、前記第3レンズ群の第1正レンズと、前記第3レンズ群の負レンズと、前記第3レンズ群の第2正レンズとにより実質的に3個のレンズで構成され、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙が減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、広角端状態の焦点距離をFw、前記第3レンズ群の総厚をD30、前記第3レンズ群の第1正レンズと前記第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたとき、以下の条件を満足する事を特徴とするズームレンズを提供する。
0.700<D30×N3/Fw<1.435
N3<1.500
70.00<ν3
In order to solve the above problems, the present invention includes, in order from the object side, a plurality of lenses including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group. The third lens group includes, in order from the object side, a first positive lens of the third lens group, a negative lens of the third lens group, and a second positive lens of the third lens group. Are substantially composed of three lenses, and when changing magnification from the wide-angle end state to the telephoto end state, a gap between the first lens group and the second lens group is increased, and the second lens group and the second lens group The gap of the third lens group decreases, and the lens group closest to the image plane among the plurality of lens groups moves along the optical axis along a locus convex toward the object side, and the focal length in the wide-angle end state is Fw, The total thickness of the third lens group is D30, the first positive lens of the third lens group and the third lens group. 2 average refractive index of the positive lens N3, when the average Abbe number and .nu.3, provides a zoom lens which satisfies the following conditions.
0.700 <D30 × N3 / Fw <1.435
N3 <1.500
70.00 <ν3

また、本発明は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、前記第3レンズ群は、物体側から順に、前記第3レンズ群の第1正レンズと、前記第3レンズ群の負レンズと、前記第3レンズ群の第2正レンズとにより実質的に3個のレンズで構成され、広角端状態の焦点距離をFw、前記第3レンズ群の総厚をD30、前記第3レンズ群の第1正レンズと前記第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたとき、以下の条件を満足するズームレンズの変倍方法であって、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙が減少し、前記複数のレンズ群のうち最も像面側のレンズ群を物体側に凸の軌跡にて光軸に沿って移動させることで、広角端状態から望遠端状態への変倍を行うことを特徴とするズームレンズの変倍方法を提供する。
0.700<D30×N3/Fw<1.435
N3<1.500
70.00<ν3
In addition, the present invention includes a plurality of lens groups including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group in order from the object side. the third lens group includes, in order from the object side, the a first positive lens of the third lens group, a negative lens of the third lens group, substantially by the second positive lens of the third lens group It is composed of three lenses, the focal length of the wide-angle end state Fw, of the third lens on the total thickness of the group D30, a second positive lens of the first positive lens and the third lens group of the third lens group When the average refractive index is N3 and the average Abbe number is ν3 , the zoom lens zooming method satisfies the following conditions. The gap between the first lens group and the second lens group increases, and the first lens group increases. The gap between the two lens groups and the third lens group is reduced, and the most image plane of the plurality of lens groups Group a by moving along the optical axis at a convex locus toward the object side of the lens, to provide a method for zooming the zoom lens and performs zooming from the wide-angle end state to the telephoto end state.
0.700 <D30 × N3 / Fw <1.435
N3 <1.500
70.00 <ν3

また、本発明は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、前記第3レンズ群は、物体側から順に、前記第3レンズ群の第1正レンズと、前記第3レンズ群の負レンズと、前記第3レンズ群の第2正レンズとにより実質的に3個のレンズで構成され広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙が減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、広角端状態の焦点距離をFw、前記第3レンズ群の総厚をD30、前記第3レンズ群の第1正レンズと前記第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたとき、以下の条件を満足する事を特徴とするズームレンズの像ブレ補正方法であって、前記第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事を特徴とするズームレンズの像ブレ補正方法を提供する。
0.700<D30×N3/Fw<1.435
N3<1.500
70.00<ν3
In addition, the present invention includes a plurality of lens groups including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group in order from the object side. the third lens group includes, in order from the object side, the a first positive lens of the third lens group, a negative lens of the third lens group, substantially by the second positive lens of the third lens group The lens is composed of three lenses, and when changing the magnification from the wide-angle end state to the telephoto end state, the gap between the first lens group and the second lens group increases, and the second lens group and the third lens group The gap decreases, the lens group closest to the image plane among the plurality of lens groups moves along the optical axis along a locus convex toward the object side, the focal length in the wide-angle end state is Fw, and the third lens group Is the average of the first positive lens of the third lens group and the second positive lens of the third lens group. Oriritsu the N3, when the average Abbe number was .nu.3, a image blur correcting method of the zoom lens satisfies the following condition, with respect to the optical axis at least a portion of the third lens group An image blur correction method for a zoom lens, characterized in that image blur correction is performed by moving in the vertical direction.
0.700 <D30 × N3 / Fw <1.435
N3 <1.500
70.00 <ν3

また、本発明は、前記ズームレンズを有することを特徴とする光学装置を提供する。   The present invention also provides an optical device having the zoom lens.

本発明によれば、望遠撮影領域での色収差が良好に補正された、小型で優れた光学性能を有するズームレンズと、これを有する光学装置を提供することができる。   According to the present invention, it is possible to provide a small zoom lens having excellent optical performance, in which chromatic aberration in the telephoto imaging region is corrected, and an optical apparatus having the zoom lens.

本発明の実施の形態にかかるズームレンズについて説明する。   A zoom lens according to an embodiment of the present invention will be described.

実施の形態にかかるズームレンズは、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有する構成である。   The zoom lens according to the embodiment includes, in order from the object side, a plurality of lens groups including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group, and a fourth lens group. It is the structure which has.

上記レンズ構成を光学的見地で説明すれば、第1レンズ群は第1集光レンズ群、第2レンズ群は変倍レンズ群、第3レンズ群は結像レンズ群、最も像面側のレンズ群はフィールドレンズ群である。   To explain the above lens configuration from an optical point of view, the first lens group is a first condenser lens group, the second lens group is a variable power lens group, the third lens group is an imaging lens group, and the lens on the most image plane side. The group is a field lens group.

第1レンズ群と第2レンズ群は、変倍に際して光線入射高や光線入射角度が大きく変化するので、変倍時における球面収差や像面湾曲の変動に大きく寄与する。   The first lens group and the second lens group greatly change the incident light height and the incident angle at the time of zooming, and thus greatly contribute to variations in spherical aberration and curvature of field during zooming.

第3レンズ群は、第3レンズ群中又は近傍に開口絞りを有する構成が好ましく、変倍に際して光線入射高や光線入射角度の変化は少ないので変倍に対する各種収差変動の寄与は少ない。しかしながら、第1レンズ群で集光した光束を更に集光する事で結像するので、強い屈折力にしなければならず曲率半径が小さいレンズ構成となる。これにより、高次の球面収差が大きく発生する傾向にある。   The third lens group preferably has an aperture stop in or near the third lens group. Since the change of the light incident height and the light incident angle is small during zooming, the contribution of various aberration fluctuations to zooming is small. However, since the image is formed by further collecting the light beam condensed by the first lens group, the lens structure must have a small radius of curvature with a strong refractive power. As a result, high-order spherical aberration tends to occur greatly.

最も像面側のレンズ群は、各像高に対する入射光束径が小さいので球面収差よりも像面湾曲の変動に大きく寄与する。また、シェーディングに代表される固体撮像素子と撮影光学系とのマッチングを取るために射出瞳を結像面よりも物体側に遠くする働きも有する。   Since the lens group closest to the image plane has a small incident beam diameter with respect to each image height, it contributes more to fluctuations in field curvature than spherical aberration. In addition, in order to match a solid-state image pickup device represented by shading with a photographing optical system, the exit pupil is further moved away from the image plane on the object side.

また、全長を小さくしたまま収差を良好に補正する為に、第3レンズ群は、物体側から順に、第3レンズ群の第1正レンズと、第3レンズ群の負レンズと、第3レンズ群の第2正レンズを有し、広角端状態の焦点距離をFw、第3レンズ群の総厚をD30、第3レンズ群の第1正レンズと第3レンズ群の第2正レンズ群の平均屈折率をN3としたとき、以下の条件式(1)を満足する事が望ましい。
(1) 0.700<D30×N3/Fw<1.435
In order to satisfactorily correct aberrations while keeping the overall length small, the third lens group includes, in order from the object side, a first positive lens of the third lens group, a negative lens of the third lens group, and a third lens. The second positive lens of the lens group, the focal length in the wide-angle end state is Fw, the total thickness of the third lens group is D30, the first positive lens of the third lens group and the second positive lens group of the third lens group When the average refractive index is N3, it is desirable that the following conditional expression (1) is satisfied.
(1) 0.700 <D30 × N3 / Fw <1.435

条件式(1)の下限値を下まわると、高次の球面収差が大きく発生するので好ましくない。条件式(1)の上限値を上回ると、第2レンズ群と第3レンズ群との空気間隔が望遠端状態で小さくなってしまう。これを回避する為に第2レンズ群の後側主点位置をより像面側とする必要があり、変倍による像面湾曲の変動が大きくなり好ましくない。   If the lower limit value of conditional expression (1) is not reached, high-order spherical aberration is greatly generated, which is not preferable. If the upper limit value of conditional expression (1) is exceeded, the air gap between the second lens group and the third lens group becomes small in the telephoto end state. In order to avoid this, it is necessary to set the rear principal point position of the second lens group closer to the image plane side, which is not preferable because the variation in field curvature due to zooming becomes large.

なお、実施の形態の効果を確実にするために、条件式(1)の下限値を0.800にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(1)の上限値を1.430にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (1) to 0.800. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (1) to 1.430.

また、実施の形態にかかるズームレンズは、第3レンズ群は正屈折力を有し、第4レンズ群は正屈折力を有することが望ましい。このような構成にすることにより、諸収差を良好に補正し、高い結像性能を達成することが可能になる。   In the zoom lens according to the embodiment, it is preferable that the third lens group has a positive refractive power and the fourth lens group has a positive refractive power. By adopting such a configuration, it becomes possible to correct various aberrations and achieve high imaging performance.

また、実施の形態にかかるズームレンズは、撮影物体が無限遠における広角焦点距離から望遠焦点距離への変倍に際して、第1レンズ群と第2レンズ群の間隙が増大し、第2レンズ群と第3レンズ群の間隙が減少し、複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動させる事が望ましい。   In the zoom lens according to the embodiment, the gap between the first lens group and the second lens group is increased when the object to be photographed is changed from the wide-angle focal length to the telephoto focal length at infinity. It is desirable that the gap of the third lens group is reduced and the lens group closest to the image plane among the plurality of lens groups is moved along the optical axis along a locus convex toward the object side.

第1レンズ群を変倍時に固定とすれば、偏芯による結像面の平坦性劣化が発生しづらくなるので好ましい。   If the first lens group is fixed at the time of zooming, it is difficult to cause deterioration of flatness of the image plane due to decentering, which is preferable.

また、実施の形態にかかるズームレンズは、広角端状態から望遠端状態への変倍に際して、前記第3レンズ群は固定されていることが望ましい。このように、第3レンズ群を変倍時に固定とすれば、第3レンズ群を防振レンズ群とした場合、第3レンズ群用の変倍駆動機構を必要としないので、防振用駆動機構を前記駆動機構から独立したとした構成と出来る配置となる。また、光学系の外径寸法も小さく出来る。   In the zoom lens according to the embodiment, it is desirable that the third lens group is fixed when zooming from the wide-angle end state to the telephoto end state. As described above, if the third lens group is fixed at the time of zooming, when the third lens group is set as an anti-vibration lens group, a zooming drive mechanism for the third lens group is not required. The arrangement is such that the mechanism is independent of the drive mechanism. In addition, the outer diameter of the optical system can be reduced.

また、実施の形態にかかるズームレンズは、第3レンズ群の焦点距離をF3とすると、以下の条件を満足することが望ましい。
(2) 1.00<F3/Fw<3.40
In the zoom lens according to the embodiment, it is preferable that the following condition is satisfied when the focal length of the third lens unit is F3.
(2) 1.00 <F3 / Fw <3.40

条件式(2)は、諸収差を良好に補正しつつ小型化を達成するための規定である。条件式(2)を満足することで、球面収差や像面湾曲等の収差を良好に補正し、ズームレンズ全長を短く保つことができ、ズームレンズの小型化を達成することができる。   Conditional expression (2) is a rule for achieving miniaturization while satisfactorily correcting various aberrations. By satisfying conditional expression (2), it is possible to satisfactorily correct aberrations such as spherical aberration and field curvature, to keep the entire length of the zoom lens short, and to achieve miniaturization of the zoom lens.

条件式(2)の下限値を下まわると、高次の球面収差が大きく発生するので好ましくない。条件式(2)の上限値を上回ると、全光学系の全長を短く保つ為に第4レンズ群の焦点距離を短くせざるを得なくなり、これにより像面湾曲が大きくなり好ましくない。   If the lower limit value of conditional expression (2) is not reached, high-order spherical aberration is greatly generated, which is not preferable. If the upper limit value of conditional expression (2) is exceeded, the focal length of the fourth lens group must be shortened in order to keep the entire length of the entire optical system short, which is not preferable because the field curvature becomes large.

なお、実施の形態の効果を確実にするために、条件式(2)の下限値を1.50にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(2)の上限値を3.00にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.50. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to 3.00.

なお、以降の記載において、「レンズ成分」は、「レンズ」を示す。
また、実施の形態にかかるズームレンズは、複数のレンズ群のうち最も像面側のレンズ群は、1つの正レンズ成分を有することが望ましい。このような構成により、良好なる色収差を小型なレンズ系のままに実現することが可能となる。
In the following description, “lens component” indicates “lens”.
In the zoom lens according to the embodiment, it is desirable that the lens group closest to the image plane among the plurality of lens groups has one positive lens component. With such a configuration, it is possible to achieve good chromatic aberration with a small lens system.

また、実施の形態にかかるズームレンズは、複数のレンズ群のうち最も像面側のレンズ群の焦点距離をFe、前記正レンズ成分の屈折率をNeとしたとき、以下の条件式(3)を満足する事が望ましい。
(3) 0.10<D30×Ne/Fe<0.50
In the zoom lens according to the embodiment, when the focal length of the lens unit closest to the image plane among the plurality of lens units is Fe and the refractive index of the positive lens component is Ne, the following conditional expression (3) It is desirable to satisfy
(3) 0.10 <D30 × Ne / Fe <0.50

条件式(3)は、収差を良好に補正するための規定である。条件式(3)を満足することにより、倍率色収差や像面湾曲収差等を良好に補正し、高い結像性能を達成することができる。   Conditional expression (3) is a rule for correcting aberrations satisfactorily. By satisfying conditional expression (3), it is possible to satisfactorily correct lateral chromatic aberration, curvature of field aberration, and the like and achieve high imaging performance.

条件式(3)の下限値を下まわると、倍率色収差が大きくなり好ましくない。条件式(3)の上限値を上回ると、変倍による像面湾曲の変動が大きくなり好ましくない。   If the lower limit of conditional expression (3) is not reached, the lateral chromatic aberration becomes large, which is not preferable. Exceeding the upper limit value of conditional expression (3) is not preferable because the variation in field curvature due to zooming becomes large.

なお、実施の形態の効果を確実にするために、条件式(3)の下限値を0.15にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(3)の上限値を0.52にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.15. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.52.

また、実施の形態にかかるズームレンズでは、第3レンズ群の第1正レンズは物体側面に凸形状を有し、第3レンズ群の負レンズは像側面の曲率半径の絶対値が物体側面の曲率半径の絶対値より小さく、第3レンズ群の第2正レンズは像側面の曲率半径の絶対値が物体側面の曲率半径の絶対値より小さく、第3レンズ群のレンズ面のいずれかが非球面を有することが望ましい。   In the zoom lens according to the embodiment, the first positive lens of the third lens group has a convex shape on the object side surface, and the negative lens of the third lens group has an absolute value of the curvature radius of the image side surface of the object side surface. The absolute value of the curvature radius is smaller than the absolute value of the curvature radius of the second lens in the third lens group, and the absolute value of the curvature radius of the image side surface is smaller than the absolute value of the curvature radius of the object side surface. It is desirable to have a spherical surface.

このような構成により、諸収差を良好に補正し、高い結像性能を有する小型のズームレンズを達成することができる。   With such a configuration, it is possible to achieve a small zoom lens that satisfactorily corrects various aberrations and has high imaging performance.

また、実施の形態にかかるズームレンズは、第3レンズ群の各レンズは、全て空気を介在して配置されていることが望ましい。   In the zoom lens according to the embodiment, it is preferable that all the lenses in the third lens group are arranged with air interposed therebetween.

このような構成により、更に、諸収差を良好に補正することができ、高い結像性能を有する小型のズームレンズを達成することができる。   With such a configuration, various aberrations can be corrected satisfactorily, and a small zoom lens having high imaging performance can be achieved.

また、実施の形態にかかるズームレンズは、第3レンズ群の負レンズの焦点距離をF32としたとき、以下の条件式(4)を満足する事が望ましい。
(4) −2.00<F3/F32<−0.98
In the zoom lens according to the embodiment, it is preferable that the following conditional expression (4) is satisfied when the focal length of the negative lens of the third lens group is F32.
(4) -2.00 <F3 / F32 <-0.98

条件式(4)は、諸収差を良好に補正するための規定である。条件式(4)を満足することで、球面収差やコマ収差等を良好に補正し、高い結像性能を達成することができる。   Conditional expression (4) is a rule for favorably correcting various aberrations. By satisfying conditional expression (4), it is possible to satisfactorily correct spherical aberration, coma, and the like and achieve high imaging performance.

条件式(4)の下限値を下まわると、球面収差が大きく発生するので好ましくない。条件式(4)の上限値を上回ると、コマ収差が大きくなり好ましくない。   If the lower limit of conditional expression (4) is not reached, spherical aberration is greatly generated, which is not preferable. Exceeding the upper limit of conditional expression (4) is not preferable because coma becomes large.

なお、実施の形態の効果を確実にするために、条件式(4)の下限値を−1.80にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(4)の上限値を−1.03にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to −1.80. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (4) to −1.03.

実施の形態にかかるズームレンズは、上記の構成により全長を小さく維持したまま良好なる単色収差が得られている。しかしながら、第3レンズ群は、光学系全体のバックフォーカスを短くする為に強い屈折力を有しているので、色収差が発生し易い傾向にある。これを回避する為には第3レンズ群の正レンズに低分散ガラスを使用する事が好ましい。但し、低分散ガラスは小さい屈折率となる傾向にあるので、所定の屈折力を得る為にレンズ面の曲率半径を小さくする必要があり、このため球面収差が大きく発生する。   In the zoom lens according to the embodiment, a favorable monochromatic aberration is obtained while maintaining the entire length small by the above configuration. However, since the third lens group has a strong refractive power to shorten the back focus of the entire optical system, chromatic aberration tends to occur. In order to avoid this, it is preferable to use a low dispersion glass for the positive lens of the third lens group. However, since the low dispersion glass tends to have a small refractive index, it is necessary to reduce the radius of curvature of the lens surface in order to obtain a predetermined refractive power, which causes large spherical aberration.

そこで、実施の形態にかかるズームレンズは、第3レンズ群の第1正レンズの物体側面に非球面を有し、第3レンズ群の第1正レンズと第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたとき、以下の条件式(5)、(6)を満足する事が望ましい。
(5) N3<1.500
(6) 70.00<ν3
このように、第3レンズ群の第1正レンズの物体側面に非球面を形成することで、球面収差補正を良好に補正することができる。
Therefore, the zoom lens according to the embodiment has an aspheric surface on the object side surface of the first positive lens of the third lens group, and includes the first positive lens of the third lens group and the second positive lens of the third lens group. When the average refractive index is N3 and the average Abbe number is ν3, it is desirable that the following conditional expressions (5) and (6) are satisfied.
(5) N3 <1.500
(6) 70.00 <ν3
Thus, by forming an aspheric surface on the object side surface of the first positive lens of the third lens group, it is possible to satisfactorily correct spherical aberration correction.

また、条件式(5)、(6)を満足することで、変倍時の軸上色収差を良好に補正することが可能になる。条件式(5)、(6)をはずれると、変倍による軸上色収差の変動が大きくなり好ましくない。   Further, by satisfying conditional expressions (5) and (6), it is possible to satisfactorily correct the axial chromatic aberration during zooming. If the conditional expressions (5) and (6) are not satisfied, the variation of longitudinal chromatic aberration due to zooming becomes large, which is not preferable.

なお、実施の形態の効果を確実にするために、条件式(5)の上限値を1.495にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(6)の下限値を75.00にすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (5) to 1.495. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (6) to 75.00.

また、実施の形態にかかるズームレンズは、複数のレンズ群の最も像面側の正レンズ成分は、像側面に非球面を有し、正レンズ成分の屈折率をNe、正レンズ成分のアッベ数をνeとしたとき、以下の条件(7)、(8)を満足する事が望ましい。
(7) Ne<1.550
(8) 75.00<νe
In the zoom lens according to the embodiment, the most positive lens component on the image plane side of the plurality of lens groups has an aspheric surface on the image side surface, the refractive index of the positive lens component is Ne, and the Abbe number of the positive lens component. Is preferably νe, the following conditions (7) and (8) are preferably satisfied.
(7) Ne <1.550
(8) 75.00 <νe

条件式(7)及び(8)は、色収差等を良好に補正するための規定である。条件式(7)及び(8)を満足することで、倍率色収差等の収差を良好に補正し、高い結像性能を達成することができる。   Conditional expressions (7) and (8) are rules for satisfactorily correcting chromatic aberration and the like. By satisfying conditional expressions (7) and (8), it is possible to satisfactorily correct aberrations such as lateral chromatic aberration and achieve high imaging performance.

条件式(7)、(8)の範囲からはずれると、倍率色収差の変倍による変動が大きくなり、好ましくない。なお、実施の形態の効果を確実にするために、条件式(7)の上限値を1.500にすることが好ましい。また、実施の形態の効果を確実にするために、条件式(8)の下限値を80.00にすることが好ましい。   A deviation from the range of conditional expressions (7) and (8) is not preferable because a variation due to magnification chromatic aberration becomes large. In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (7) to 1.500. In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (8) to 80.00.

また、良好なる色収差を小型なレンズ系のままに実現するには、最も像面側のレンズ群を1つの正レンズ成分で構成し、球面収差補正を目的として正レンズ成分の像側面を非球面形状とする事が好ましい。   In order to achieve good chromatic aberration with a compact lens system, the lens group closest to the image plane is composed of one positive lens component, and the image side surface of the positive lens component is aspherical for the purpose of correcting spherical aberration. The shape is preferable.

また、実施の形態にかかるズームレンズは、第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事が望ましい。   In the zoom lens according to the embodiment, it is desirable to perform image blur correction by moving at least a part of the third lens group in a direction perpendicular to the optical axis.

第3レンズ群は、変倍に際して光線入射高や光線入射角度の変化が少ないので防振補正を行う為の収差補正が効率的に行うことができる。また、変倍時と合焦時に固定である第3レンズ群をブレ補正レンズ群とすれば、第3レンズ群は、合焦用駆動機構から独立した防振用駆動機構とすることができる。また、両駆動系をそれぞれ独立して配置するため光学系の外径寸法も小さくすることができる。   Since the third lens group has little change in light incident height and light incident angle during zooming, aberration correction for performing image stabilization correction can be performed efficiently. Further, if the third lens group that is fixed at the time of zooming and focusing is used as a blur correction lens group, the third lens group can be an anti-vibration driving mechanism that is independent from the focusing driving mechanism. Further, since both drive systems are arranged independently, the outer diameter of the optical system can be reduced.

(実施例)
以下、実施の形態にかかるズームレンズの各実施例について図面を参照しつつ説明する。
(Example)
Examples of the zoom lens according to the embodiment will be described below with reference to the drawings.

第1実施例から第7実施例にかかるズームレンズは、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りと、正屈折力を有する第3レンズ群G3と、視野絞りと、正屈折力を有する第4レンズ群G4と、光学的ローパス・フィルターOLPFと、像面Iに配置される固体撮像素子のカバーガラスCGとから構成されている。   The zoom lens according to the first to seventh examples includes, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop, and positive refraction. A third lens group G3 having power, a field stop, a fourth lens group G4 having positive refracting power, an optical low-pass filter OLPF, and a cover glass CG of a solid-state imaging device disposed on the image plane I It is configured.

第1レンズ群G1は、物体側より順に、物体側に凸形状の負メニスカスレンズL11と凸形状の正メニスカスレンズL12との接合レンズと、物体側面の曲率半径が像側面曲率半径の絶対値の1/6より小さい正レンズL13から構成されている。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive meniscus lens L12 having a convex shape, and the curvature radius of the object side surface is an absolute value of the curvature radius of the image side surface. The positive lens L13 is smaller than 1/6.

第2レンズ群G2は、物体側から順に、像側面が凹形状の負レンズL21と、像側面が凹形状の負レンズL22と、物体側面が凸形状の正メニスカスレンズL23から構成されている。   The second lens group G2 includes, in order from the object side, a negative lens L21 having a concave image side surface, a negative lens L22 having a concave image side surface, and a positive meniscus lens L23 having a convex object side surface.

第3レンズ群G3は、物体側から順に、物体側面が凸形状の正レンズL31と、像側面が凹形状の負レンズL32と、像側面が凸形状の正レンズL33から構成されている。   The third lens group G3 includes, in order from the object side, a positive lens L31 having a convex object side surface, a negative lens L32 having a concave image side surface, and a positive lens L33 having a convex image side surface.

第4レンズ群G4は、物体側から順に、物体側が凸形状の負メニスカスレンズL41と両凸形状の正レンズL42との接合レンズから構成されている。   The fourth lens group G4 includes, in order from the object side, a cemented lens of a negative meniscus lens L41 having a convex shape on the object side and a positive lens L42 having a biconvex shape.

正メニスカスレンズL13の物体側面と、像側面が凹形状の負レンズL21の像側面と、物体側面が凸形状の正レンズL31の物体側面と、両凸形状の正レンズL42の像側面が非球面形状に構成されている。   The object side surface of the positive meniscus lens L13, the image side surface of the negative lens L21 having a concave image side surface, the object side surface of the positive lens L31 having a convex object side surface, and the image side surface of the biconvex positive lens L42 are aspherical surfaces. It is configured in shape.

広角焦点距離Wから望遠焦点距離Tへの変倍の際、第1レンズ群G1は固定され、第2レンズ群G2は像面I側に移動し、第3レンズ群G3は固定され、第4レンズ群G4は物体側に凸形状の軌跡で光軸に沿って移動する。   When zooming from the wide-angle focal length W to the telephoto focal length T, the first lens group G1 is fixed, the second lens group G2 is moved to the image plane I side, the third lens group G3 is fixed, and the fourth lens group G3 is fixed. The lens group G4 moves along the optical axis along a locus convex toward the object side.

撮影物体が有限距離における合焦に際して、第4レンズ群G4は光軸に沿って移動する。また、実施の形態の固体撮像素子中心から対角への対角長IHは、3.75mmである。   When the photographic object is focused at a finite distance, the fourth lens group G4 moves along the optical axis. Further, the diagonal length IH from the center of the solid-state imaging device of the embodiment to the diagonal is 3.75 mm.

(第1実施例)
図1は、第1実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。なお、以下の説明に使用するレンズを示す符号は広角端状態Tにのみ記載し、他の状態については記載を省略する。他の実施例についても同様とする。
(First embodiment)
FIG. 1 is a diagram illustrating a lens configuration of a zoom lens according to a first example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. In addition, the code | symbol which shows the lens used for the following description is described only in the wide-angle end state T, and description is abbreviate | omitted about another state. The same applies to other embodiments.

また、第1実施例にかかるズームレンズでは、第3レンズ群G3は、光軸に対して垂直方向に移動する事によりブレ補正を行う構成である。   In the zoom lens according to the first example, the third lens group G3 is configured to perform blur correction by moving in the direction perpendicular to the optical axis.

次の表1に、第1実施例のズームレンズの諸元表の値を揚げる。表において、(全体諸元)中のfは焦点距離、Bfはバックフォーカス、FNOはFナンバーをそれぞれ表す。   Table 1 below lists the values in the specification table of the zoom lens of the first embodiment. In the table, “f” in (overall specifications) represents the focal length, “Bf” represents the back focus, and “FNO” represents the F number.

また(レンズ諸元)中の、第1カラムは物体側からのレンズ面番号、第2カラムrはレンズ面の曲率半径、第3カラムdはレンズ面間隔、第4カラムνdはd線(波長λ=587.6nm)に対する媒質のアッベ数、第5カラムNdはd線(波長λ=587.6nm)に対する媒質の屈折率をそれぞれ表す。なお、r=0.0000は平面を表す。   Also, in (lens specifications), the first column is the lens surface number from the object side, the second column r is the radius of curvature of the lens surface, the third column d is the lens surface interval, and the fourth column νd is the d line (wavelength). The Abbe number of the medium with respect to λ = 587.6 nm and the fifth column Nd represent the refractive index of the medium with respect to the d-line (wavelength λ = 587.6 nm). Note that r = 0.0000 represents a plane.

また、(非球面係数)には、以下の式で非球面を表現した場合の非球面係数を示す。非球面は、光軸に垂直な方向の高さをy、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐定数をK、n次の非球面係数をCnとしたとき、以下の数式で表される。なお、非球面データ欄の「E-n」(nは整数)は「×10-n」を示す。
X(y)=y2/[r・{1+(1−K・y2/r21/2}]
+C4・y4+C6・y6+C8・y8+C10・y10
Further, (Aspheric coefficient) indicates an aspheric coefficient when the aspheric surface is expressed by the following expression. The aspherical surface has a height in the direction perpendicular to the optical axis as y, and a distance (sag amount) along the optical axis from the tangent plane of each aspherical surface at the height y to each aspherical surface as X (y), When the radius of curvature (paraxial radius of curvature) of the reference spherical surface is r, the conic constant is K, and the nth-order aspherical coefficient is Cn, the following equation is used. “En” (n is an integer) in the aspherical data column indicates “× 10 −n ”.
X (y) = y 2 / [r · {1+ (1−K · y 2 / r 2 ) 1/2 }]
+ C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10

また、(合焦時における可変間隙)には、無限遠合焦時と至近距離合焦時の広角端状態、中間焦点距離状態、望遠端状態の各状態での焦点距離f、倍率βにおける可変間隔の値を示す。D0は、物体から最も物体側のレンズ面までの距離をBfはバックフォーカスを、TLはズームレンズの全長の値をそれぞれ示す。また、(防振補正時の防振レンズ群移動量と像面移動量)には、無限遠合焦時と至近距離合焦時のレンズ移動量に対する像面移動量をそれぞれ表す。また、(条件式対応値)には、それぞれの条件式に対応する値を示す。   Further, (variable gap at the time of focusing) is variable in the focal length f and magnification β in each of the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing at infinity and focusing on the close range. Indicates the interval value. D0 represents the distance from the object to the lens surface closest to the object, Bf represents the back focus, and TL represents the total length of the zoom lens. Further, (vibration lens group movement amount and image plane movement amount at the time of image stabilization correction) represents the image plane movement amount with respect to the lens movement amount at the time of focusing on infinity and focusing on a close range. Further, (value corresponding to the conditional expression) indicates a value corresponding to each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。なお、以下の全実施例において、本実施例と同様の符号を用い説明を省略する。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. In all the following embodiments, the same reference numerals as those in this embodiment are used, and the description thereof is omitted.

(表1)
(全体諸元)
F=6.50〜30.00〜61.00
FNO=3.8 〜 4.1 〜 3.7

(レンズ諸元)
r d νd Nd
1) 25.9603 1.4000 17.98 1.945950
2) 21.0289 6.1000 82.56 1.497820
3) 327.6951 0.1000
4) 17.2279 4.7000 82.56 1.497820
5) 129.9432 (d5=可変)

6)-2681.7744 1.0000 40.19 1.850490
7) 4.9916 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.1696 0.9000
10) 11.6255 1.6000 17.98 1.945950
11) 92.2561 (d11=可変)

12> 開口絞り 0.5000
13) 5.3318 2.1000 64.06 1.516330
14) 41.8200 0.1000
15) 12.6924 1.0000 42.72 1.834810
16) 5.7137 0.8000
17) -114.0651 2.0000 91.20 1.456000
18) -12.1743 0.0000
19) 視野絞り (d19=可変)

20) 9.2880 1.0000 25.46 2.000690
21) 6.4169 3.5000 91.20 1.456000
22) -19.3341 (d22=可変)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 :0.4808 5.42353E-06 3.74245E-09 0.00000E+00
7 :0.2537 3.70121E-04 8.82513E-06 6.13778E-10
13 :0.1321 1.00826E-04 1.60307E-05 -9.89080E-07
12 :1.0000 -8.66901E-05 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦時 至近距離合焦時
F、β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.40831 5.37266 2.34483 15.40831 5.37266 2.34483
d 20 5.02154 1.42306 8.06457 4.74165 0.21801 1.66443
d 22 6.51775 10.11623 3.47472 6.79764 11.32128 9.87486
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20914
TL 64.65693 64.65693 64.65693 64.65693 64.65693 64.65693

(防振補正時の防振レンズ群移動量と像面移動量)
無限遠合焦時 至近距離合焦時
F、β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
レンズ ±0.124 ±0.248 ±0.383 ±0.123 ±0.239 ±0.355
像面 ±0.118 ±0.253 ±0.361 ±0.118 ±0.253 ±0.361

(条件式対応値)
(1) D30×N3/Fw = 1.371
(2) F3/Fw = 2.923
(3) D30×Ne/Fe = 0.421
(4) F3/F32 =−1.427
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.46
(8) νe =91.20
(Table 1)
(Overall specifications)
F = 6.50-30.00-61.00
FNO = 3.8 to 4.1 to 3.7

(Lens specifications)
rd νd Nd
1) 25.9603 1.4000 17.98 1.945950
2) 21.0289 6.1000 82.56 1.497820
3) 327.6951 0.1000
4) 17.2279 4.7000 82.56 1.497820
5) 129.9432 (d5 = variable)

6) -2681.7744 1.0000 40.19 1.850490
7) 4.9916 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.1696 0.9000
10) 11.6255 1.6000 17.98 1.945950
11) 92.2561 (d11 = variable)

12> Aperture stop 0.5000
13) 5.3318 2.1000 64.06 1.516330
14) 41.8200 0.1000
15) 12.6924 1.0000 42.72 1.834810
16) 5.7137 0.8000
17) -114.0651 2.0000 91.20 1.456000
18) -12.1743 0.0000
19) Field stop (d19 = variable)

20) 9.2880 1.0000 25.46 2.000690
21) 6.4169 3.5000 91.20 1.456000
22) -19.3341 (d22 = variable)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.4808 5.42353E-06 3.74245E-09 0.00000E + 00
7: 0.2537 3.70121E-04 8.82513E-06 6.13778E-10
13: 0.1321 1.00826E-04 1.60307E-05 -9.89080E-07
12: 1.000 -8.66901E-05 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Focusing at infinity Focusing at close range
F, β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.40831 5.37266 2.34483 15.40831 5.37266 2.34483
d 20 5.02154 1.42306 8.06457 4.74165 0.21801 1.66443
d 22 6.51775 10.11623 3.47472 6.79764 11.32128 9.87486
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20914
TL 64.65693 64.65693 64.65693 64.65693 64.65693 64.65693

(Moving amount of image stabilization lens and amount of image plane movement during image stabilization)
Focusing at infinity Focusing at close range
F, β 6.50000 30.00000 61.00000 -0.04000 -0.04000 -0.10000
Lens ± 0.124 ± 0.248 ± 0.383 ± 0.123 ± 0.239 ± 0.355
Image plane ± 0.118 ± 0.253 ± 0.361 ± 0.118 ± 0.253 ± 0.361

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.371
(2) F3 / Fw = 2.923
(3) D30 × Ne / Fe = 0.421
(4) F3 / F32 = -1.427
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.46
(8) νe = 91.20

図2は、第1実施例のズームレンズの無限遠状態における諸収差図および防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図3は、第1実施例のズームレンズの至近撮影距離合焦状態における諸収差図および防振補正時の横収差図であり、(a)は、Rw=205mm、(b)はRm=749mm、(c)はRt=538mmの各収差図をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the zoom lens according to the first example at infinity and lateral aberrations during image stabilization. FIG. 2A is a wide-angle end state, FIG. 2B is an intermediate focal length state, and FIG. ) Shows respective aberration diagrams in the telephoto end state. FIGS. 3A and 3B are graphs showing various aberrations of the zoom lens according to the first example when the close-up shooting distance is in focus, and lateral aberrations during image stabilization. FIG. 3A shows Rw = 205 mm, and FIG. 3B shows Rm = 749 mm. , (C) shows aberration diagrams of Rt = 538 mm.

各収差図において、Yは像高を、NAは開口数を、Dはd線(λ=587.6nm)を、Gはg線(λ=435.6nm)を、Cはc線(λ=656.3nm)を、Fはf線(λ=486.1nm)をそれぞれ示している。なお、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。また、倍率色収差を示す収差図はd線を基準として示されている。なお。以下の全実施例の収差図において、本実施例と同様の符号を用い説明を省略する。   In each aberration diagram, Y is the image height, NA is the numerical aperture, D is the d-line (λ = 587.6 nm), G is the g-line (λ = 435.6 nm), and C is the c-line (λ = 656.3 nm) and F represents the f-line (λ = 486.1 nm). In the aberration diagram showing astigmatism, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. An aberration diagram showing lateral chromatic aberration is shown with reference to the d-line. Note that. In the aberration diagrams of all the following examples, the same reference numerals as in this example are used, and the description thereof is omitted.

各収差図から、第1実施例にかかるズームレンズは、広角端状態から望遠端状態及びそれぞれの状態における防振補正時に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, the zoom lens according to the first example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state and during image stabilization correction in each state. I understand that.

(第2実施例)
図4は、第2実施例にかかるズームレンズのレンズ構成を示す図である。次の表2に第2実施例のズームレンズの諸元表の値を揚げる。
(Second embodiment)
FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to the second example. Table 2 below shows the values in the specification table of the zoom lens of the second embodiment.

(表2)
(全体諸元)
F=6.55〜30.00〜61.00
FNO=3.6 〜 3.8 〜 3.7

(レンズ諸元)
r d νd Nd
1) 25.7235 1.4000 20.88 1.922860
2) 20.6571 5.9000 90.22 1.456500
3) 212.5954 0.1000
4) 17.1979 5.3000 90.91 1.454570
5) 321.2332 (d5=可変)

6) -50.6548 1.0000 40.10 1.851350
7) 4.2633 2.2000
8) -92.4310 1.0000 40.77 1.883000
9) 23.5051 0.6000
10) 11.8678 1.5000 17.98 1.945950
11) 55.8154 (d11=可変)

12> 開口絞り 0.3000
13) 5.5193 2.1000 63.97 1.514280
14) -37.8518 0.9000
15) 49.7862 1.0000 42.72 1.834810
16) 6.0285 0.5000
17) 12.6257 1.8000 91.20 1.456000
18) -11.7685 0.0000
19) 視野絞り (d19=可変)

20) 9.8698 1.0000 25.46 2.000690
21) 6.7108 2.6000 91.30 1.455590
22) -51.2524 (d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.64840E-06 0.00000E+00 0.00000E+00
7 : -0.8591 1.93500E-03 -2.58040E-05 0.00000E+00
13 : 0.5519 -3.03330E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -2.56430E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02022 12.17260 15.26469 1.02022 12.17260 15.26469
d 11 15.97509 4.82271 1.73062 15.97509 4.82271 1.73062
d 19 8.08567 2.30237 9.98218 7.63484 0.80981 1.26412
d 22 3.99302 9.77632 2.09651 4.44385 11.26888 10.81457
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.54589 62.54589 62.54589 62.54589 62.54589 62.54589

(条件式対応値)
(1) D30×N3/Fw = 1.428
(2) F3/Fw = 2.185
(3) D30×Ne/Fe = 0.297
(4) F3/F32 =−1.724
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.46
(8) νe =91.20
(Table 2)
(Overall specifications)
F = 6.55-30.00-61.00
FNO = 3.6 to 3.8 to 3.7

(Lens specifications)
rd νd Nd
1) 25.7235 1.4000 20.88 1.922860
2) 20.6571 5.9000 90.22 1.456500
3) 212.5954 0.1000
4) 17.1979 5.3000 90.91 1.454570
5) 321.2332 (d5 = variable)

6) -50.6548 1.0000 40.10 1.851350
7) 4.2633 2.2000
8) -92.4310 1.0000 40.77 1.883000
9) 23.5051 0.6000
10) 11.8678 1.5000 17.98 1.945950
11) 55.8154 (d11 = variable)

12> Aperture stop 0.3000
13) 5.5193 2.1000 63.97 1.514280
14) -37.8518 0.9000
15) 49.7862 1.0000 42.72 1.834810
16) 6.0285 0.5000
17) 12.6257 1.8000 91.20 1.456000
18) -11.7685 0.0000
19) Field stop (d19 = variable)

20) 9.8698 1.0000 25.46 2.000690
21) 6.7108 2.6000 91.30 1.455590
22) -51.2524 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.64840E-06 0.00000E + 00 0.00000E + 00
7: -0.8591 1.93500E-03 -2.58040E-05 0.00000E + 00
13: 0.5519 -3.03330E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -2.56430E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02022 12.17260 15.26469 1.02022 12.17260 15.26469
d 11 15.97509 4.82271 1.73062 15.97509 4.82271 1.73062
d 19 8.08567 2.30237 9.98218 7.63484 0.80981 1.26412
d 22 3.99302 9.77632 2.09651 4.44385 11.26888 10.81457
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.54589 62.54589 62.54589 62.54589 62.54589 62.54589

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.428
(2) F3 / Fw = 2.185
(3) D30 × Ne / Fe = 0.297
(4) F3 / F32 = -1.724
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.46
(8) νe = 91.20

図5は、第2実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図6は、第2実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。   FIGS. 5A and 5B are graphs showing various aberrations of the zoom lens according to the second example in an infinite state. FIG. 5A is an aberration diagram in the wide-angle end state, FIG. 5B is an intermediate focal length state, and FIG. Respectively. FIGS. 6A and 6B are graphs showing various aberrations of the zoom lens according to the second embodiment in the close-up shooting distance focus state. FIG. 6A shows Rw = 204 mm, FIG. 6B shows Rm = 737 mm, and FIG. 6C shows Rt = 515 mm. Each aberration diagram is shown.

各収差図から、第2実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the second example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図7は、第3実施例にかかるズームレンズのレンズ構成を示す図である。次の表3に第3実施例のズームレンズの諸元表の値を揚げる。
(Third embodiment)
FIG. 7 is a diagram illustrating a lens configuration of a zoom lens according to the third example. Table 3 below lists the values in the specification table of the zoom lens of the third embodiment.

(表3)
(全体諸元)
F=6.50〜30.00〜61.00
FNO=3.7 〜 4.0 〜 3.8

(レンズ諸元)
r d νd Nd
1) 25.9116 1.4000 17.98 1.945950
2) 21.0025 6.1000 82.56 1.497820
3) 347.3024 0.1000
4) 17.1452 4.7000 82.56 1.497820
5) 120.0854 (d5=可変)

6) 1316.3968 1.0000 40.19 1.850490
7) 4.8440 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.8322 0.9000
10) 11.4204 1.6000 17.98 1.945950
11) 74.3334 (d11=可変)

12> 開口絞り 0.5000
13) 5.0459 2.1000 64.06 1.516330
14) -15.9483 0.1000
15) 25.7688 1.0000 42.72 1.834810
16) 5.4774 0.7000
17) 61.0443 2.0000 91.20 1.456000
18) -15.0266 0.0000
19) 視野絞り (d19=可変)

20) 10.2508 1.0000 25.46 2.000690
21) 6.8801 3.0000 91.20 1.456000
22) -26.6761 (d22=可変)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.4287 6.72320E-06 8.65870E-09 0.00000E+00
7 : 0.6444 1.19890E-05 4.36360E-06 -1.60260E-07
13 : 0.1247 -2.33820E-04 9.48600E-06 -9.89080E-07
22 : 1.0000 -1.49710E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦時 至近距離合焦時
F,β 6.50000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.4928 676.3819 451.3168
d 5 0.90000 11.04804 13.87679 0.90000 11.04804 13.87679
d 11 15.23960 5.09156 2.26281 15.23960 5.09156 2.26281
d 19 5.79062 1.55117 9.48020 5.42736 0.18034 1.32246
d 22 6.49556 10.73501 2.80598 6.85882 12.10584 10.96372
Bf 1.30180 1.30180 1.30180 1.30180 1.30180 1.30180
TL 61.72758 61.72758 61.72758 61.72758 61.72758 61.72758

(条件式対応値)
(1) D30×N3/Fw = 1.348
(2) F3/Fw = 2.283
(3) D30×Ne/Fe = 0.325
(4) F3/F32 =−1.741
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.46
(8) νe =91.20
(Table 3)
(Overall specifications)
F = 6.50-30.00-61.00
FNO = 3.7 to 4.0 to 3.8

(Lens specifications)
rd νd Nd
1) 25.9116 1.4000 17.98 1.945950
2) 21.0025 6.1000 82.56 1.497820
3) 347.3024 0.1000
4) 17.1452 4.7000 82.56 1.497820
5) 120.0854 (d5 = variable)

6) 1316.3968 1.0000 40.19 1.850490
7) 4.8440 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.8322 0.9000
10) 11.4204 1.6000 17.98 1.945950
11) 74.3334 (d11 = variable)

12> Aperture stop 0.5000
13) 5.0459 2.1000 64.06 1.516330
14) -15.9483 0.1000
15) 25.7688 1.0000 42.72 1.834810
16) 5.4774 0.7000
17) 61.0443 2.0000 91.20 1.456000
18) -15.0266 0.0000
19) Field stop (d19 = variable)

20) 10.2508 1.0000 25.46 2.000690
21) 6.8801 3.0000 91.20 1.456000
22) -26.6761 (d22 = variable)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.4287 6.72320E-06 8.65870E-09 0.00000E + 00
7: 0.6444 1.19890E-05 4.36360E-06 -1.60260E-07
13: 0.1247 -2.33820E-04 9.48600E-06 -9.89080E-07
22: 1.0000 -1.49710E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Focusing at infinity Focusing at close range
F, β 6.50000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.4928 676.3819 451.3168
d 5 0.90000 11.04804 13.87679 0.90000 11.04804 13.87679
d 11 15.23960 5.09156 2.26281 15.23960 5.09156 2.26281
d 19 5.79062 1.55117 9.48020 5.42736 0.18034 1.32246
d 22 6.49556 10.73501 2.80598 6.85882 12.10584 10.96372
Bf 1.30180 1.30180 1.30180 1.30180 1.30180 1.30180
TL 61.72758 61.72758 61.72758 61.72758 61.72758 61.72758

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.348
(2) F3 / Fw = 2.283
(3) D30 × Ne / Fe = 0.325
(4) F3 / F32 = −1.741
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.46
(8) νe = 91.20

図8は、第3実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図9は、第3実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=202mm、(b)はRm=738mm、(c)はRt=513mmの各収差図をそれぞれ示す。   FIGS. 8A and 8B are graphs showing various aberrations of the zoom lens according to the third example in the infinite state. FIG. 8A illustrates aberrations in the wide-angle end state, FIG. 8B illustrates the intermediate focal length state, and FIG. Respectively. FIGS. 9A and 9B are graphs showing various aberrations of the zoom lens according to the third example when the close-up shooting distance is in focus. FIG. 9A shows Rw = 202 mm, FIG. 9B shows Rm = 738 mm, and FIG. 9C shows Rt = 513 mm. Each aberration diagram is shown.

各収差図から、第3実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the third example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第4実施例)
図10は、第4実施例にかかるズームレンズのレンズ構成を示す図である。次の表4に第4実施例のズームレンズの諸元表の値を揚げる。
(Fourth embodiment)
FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to the fourth example. Table 4 below shows the values in the specification table of the zoom lens of the fourth embodiment.

(表4)
(全体諸元)
F=6.55〜30.00〜61.00
FNO=3.5 〜 3.5 〜 3.7

(レンズ諸元)
r d νd Nd
1) 24.5909 1.4000 20.88 1.922860
2) 19.4777 5.2000 82.56 1.497820
3) 115.1591 0.1000
4) 18.4332 5.0000 82.56 1.497820
5) 195.1358 (d5=可変)

6) -80.2684 1.0000 40.10 1.851350
7) 4.3262 2.2000
8) 89.2950 1.0000 40.77 1.883000
9) 15.1775 0.6000
10) 10.0334 1.5000 17.98 1.945950
11) 28.1713 (d11=可変)

12> 開口絞り 0.3000
13) 5.6537 2.1000 63.97 1.514280
14) -23.6916 0.9000
15) -327.0168 1.0000 42.72 1.834810
16) 6.2930 0.4000
17) 10.6945 1.8000 91.20 1.456000
18) -8.9087 0.0000
19) 視野絞り (d19=可変)

20) 13.0182 1.0000 25.46 2.000690
21) 8.7558 2.6000 91.30 1.455590
22) -37.1642 (d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 2.43110E-06 0.00000E+00 0.00000E+00
7 : -0.8038 1.87930E-03 -1.33170E-05 0.00000E+00
13 : 0.5707 -4.07580E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -3.32860E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.5720 667.7010 426.1274
d 5 1.02020 12.36308 15.22189 1.02020 12.36308 15.22189
d 11 15.63505 4.29217 1.43336 15.63505 4.29217 1.43336
d 19 10.13097 3.05373 12.83541 9.46632 1.30190 1.39860
d 22 3.47935 10.55659 0.77491 4.14400 12.30842 12.21172
Bf 0.15320 0.15320 0.15320 0.15320 0.15320 0.15320
TL 60.41878 60.41878 60.41878 60.41878 60.41878 60.41878

(条件式対応値)
(1) D30×N3/Fw = 1.406
(2) F3/Fw = 1.985
(3) D30×Ne/Fe = 0.257
(4) F3/F32 =−1.760
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.46
(8) νe =91.20
(Table 4)
(Overall specifications)
F = 6.55-30.00-61.00
FNO = 3.5 to 3.5 to 3.7

(Lens specifications)
rd νd Nd
1) 24.5909 1.4000 20.88 1.922860
2) 19.4777 5.2000 82.56 1.497820
3) 115.1591 0.1000
4) 18.4332 5.0000 82.56 1.497820
5) 195.1358 (d5 = variable)

6) -80.2684 1.0000 40.10 1.851350
7) 4.3262 2.2000
8) 89.2950 1.0000 40.77 1.883000
9) 15.1775 0.6000
10) 10.0334 1.5000 17.98 1.945950
11) 28.1713 (d11 = variable)

12> Aperture stop 0.3000
13) 5.6537 2.1000 63.97 1.514280
14) -23.6916 0.9000
15) -327.0168 1.0000 42.72 1.834810
16) 6.2930 0.4000
17) 10.6945 1.8000 91.20 1.456000
18) -8.9087 0.0000
19) Field stop (d19 = variable)

20) 13.0182 1.0000 25.46 2.000690
21) 8.7558 2.6000 91.30 1.455590
22) -37.1642 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 2.43110E-06 0.00000E + 00 0.00000E + 00
7: -0.8038 1.87930E-03 -1.33170E-05 0.00000E + 00
13: 0.5707 -4.07580E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -3.32860E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.5720 667.7010 426.1274
d 5 1.02020 12.36308 15.22189 1.02020 12.36308 15.22189
d 11 15.63505 4.29217 1.43336 15.63505 4.29217 1.43336
d 19 10.13097 3.05373 12.83541 9.46632 1.30190 1.39860
d 22 3.47935 10.55659 0.77491 4.14400 12.30842 12.21172
Bf 0.15320 0.15320 0.15320 0.15320 0.15320 0.15320
TL 60.41878 60.41878 60.41878 60.41878 60.41878 60.41878

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.406
(2) F3 / Fw = 1.985
(3) D30 × Ne / Fe = 0.257
(4) F3 / F32 = -1.760
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.46
(8) νe = 91.20

図11は、第4実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図12は、第4実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=201mm、(b)はRm=728mm、(c)はRt=487mmの各収差図をそれぞれ示す。   FIGS. 11A and 11B are graphs showing various aberrations of the zoom lens according to the fourth example in the infinite state. FIG. 11A illustrates aberrations in the wide-angle end state, FIG. 11B illustrates the intermediate focal length state, and FIG. Respectively. FIGS. 12A and 12B are graphs showing various aberrations of the zoom lens according to the fourth example in the close-up shooting distance focus state. FIG. 12A shows Rw = 201 mm, FIG. 12B shows Rm = 728 mm, and FIG. 12C shows Rt = 487 mm. Each aberration diagram is shown.

各収差図から、第4実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the fourth example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第5実施例)
図13は、第5実施例にかかるズームレンズのレンズ構成を示す図である。次の表5に第5実施例のズームレンズの諸元表の値を揚げる。
(5th Example)
FIG. 13 is a diagram illustrating a lens configuration of a zoom lens according to a fifth example. Table 5 below shows the values in the specification table of the zoom lens of the fifth embodiment.

(表5)
(全体諸元)
F=6.55〜30.00〜60.10
FNO=3.5 〜 3.6 〜 3.6

(レンズ諸元)
r d νd Nd
1) 26.2824 1.4000 20.88 1.922860
2) 21.0438 5.9000 90.22 1.456500
3) 228.8413 0.1000
4) 17.1969 5.3000 90.91 1.454570
5) 384.2679(d5=可変)

6) -48.0949 1.0000 40.10 1.851350
7) 4.3298 2.2000
8) 67.2370 1.0000 40.77 1.883000
9) 14.7215 0.6000
10) 10.4892 1.5000 17.98 1.945950
11) 35.3651(d11=可変)

12> 開口絞り 0.3000
13) 5.3545 2.1000 63.97 1.514280
14) 20.6091 0.9000
15) 22.0033 1.0000 42.72 1.834810
16) 6.1272 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) 視野絞り(d19=可変)

20) 9.9547 1.0000 25.46 2.000690
21) 6.7749 2.6000 91.30 1.455590
22) -50.2288(d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.76710E-06 0.00000E+00 0.00000E+00
7 : -0.7125 1.62070E-03 -2.29890E-05 0.00000E+00
13 : 0.6618 -3.30480E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -2.73180E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.30818 4.15580 1.06371 15.30818 4.15580 1.06371
d 19 8.76585 2.98255 10.66236 8.31502 1.48999 1.94430
d 22 4.01583 9.79913 2.11932 4.46666 11.29169 10.83738
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.48195 62.48195 62.48195 62.48195 62.48195 62.48195

(条件式対応値)
(1) D30×N3/Fw = 1.406
(2) F3/Fw = 2.185
(3) D30×Ne/Fe = 0.292
(4) F3/F32 =−1.367
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.46
(8) νe =91.20
(Table 5)
(Overall specifications)
F = 6.55-30.00-60.10
FNO = 3.5 to 3.6 to 3.6

(Lens specifications)
rd νd Nd
1) 26.2824 1.4000 20.88 1.922860
2) 21.0438 5.9000 90.22 1.456500
3) 228.8413 0.1000
4) 17.1969 5.3000 90.91 1.454570
5) 384.2679 (d5 = variable)

6) -48.0949 1.0000 40.10 1.851350
7) 4.3298 2.2000
8) 67.2370 1.0000 40.77 1.883000
9) 14.7215 0.6000
10) 10.4892 1.5000 17.98 1.945950
11) 35.3651 (d11 = variable)

12> Aperture stop 0.3000
13) 5.3545 2.1000 63.97 1.514280
14) 20.6091 0.9000
15) 22.0033 1.0000 42.72 1.834810
16) 6.1272 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) Field stop (d19 = variable)

20) 9.9547 1.0000 25.46 2.000690
21) 6.7749 2.6000 91.30 1.455590
22) -50.2288 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.76710E-06 0.00000E + 00 0.00000E + 00
7: -0.7125 1.62070E-03 -2.29890E-05 0.00000E + 00
13: 0.6618 -3.30480E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -2.73180E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.30818 4.15580 1.06371 15.30818 4.15580 1.06371
d 19 8.76585 2.98255 10.66236 8.31502 1.48999 1.94430
d 22 4.01583 9.79913 2.11932 4.46666 11.29169 10.83738
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.48195 62.48195 62.48195 62.48195 62.48195 62.48195

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.406
(2) F3 / Fw = 2.185
(3) D30 × Ne / Fe = 0.292
(4) F3 / F32 = -1.367
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.46
(8) νe = 91.20

図14は、第5実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図15は、第5実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。   FIGS. 14A and 14B are graphs showing various aberrations of the zoom lens according to the fifth example in the infinite state. FIG. 14A is an aberration diagram in the wide-angle end state, FIG. 14B is the intermediate focal length state, and FIG. Respectively. FIGS. 15A and 15B are graphs showing various aberrations of the zoom lens of the fifth example when the close-up shooting distance is in focus. FIG. 15A shows Rw = 204 mm, FIG. 15B shows Rm = 737 mm, and FIG. 15C shows Rt = 515 mm. Each aberration diagram is shown.

各収差図から、第5実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to Example 5 has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第6実施例)
図16は、第6実施例にかかるズームレンズのレンズ構成を示す図である。次の表6に第6実施例のズームレンズの諸元表の値を揚げる。
(Sixth embodiment)
FIG. 16 is a diagram illustrating a lens configuration of a zoom lens according to the sixth example. Table 6 below shows the values in the specification table of the zoom lens of the sixth embodiment.

(表6)
(全体諸)
F=6.50〜30.00〜61.00
FNO=3.5 〜 3.8 〜 3.4

(レンズ諸元)
r d νd Nd
1) 25.9678 1.4000 17.98 1.945950
2) 21.0210 6.1000 82.56 1.497820
3) 339.3220 0.1000
4) 17.2833 4.7000 82.56 1.497820
5) 132.3282(d5=可変)

6)-1236.7392 1.0000 40.19 1.850490
7) 5.0328 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.0291 0.9000
10) 11.6547 1.6000 17.98 1.945950
11) 96.0997(d11=可変)

12> 開口絞り 0.5000
13) 4.8302 1.8000 70.45 1.487490
14) 11.7906 0.1000
15) 9.0250 1.0000 42.72 1.834810
16) 5.3685 0.8000
17) -83.9696 1.7000 82.56 1.497820
18) -10.6798 0.0000
19) 視野絞り(d19=可変)

20) 9.8440 1.0000 25.46 2.000690
21) 6.4780 3.5000 82.56 1.497820
22) -21.7650(d22=可変)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.4504 6.12900E-06 4.75680E-09 0.00000E+00
7 : 0.2496 3.63880E-04 7.00120E-06 -1.36530E-08
13 : 0.1671 1.54140E-04 2.28490E-05 -9.89080E-07
22 : 1.0000 -1.16660E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.13311 5.09746 2.06963 15.13311 5.09746 2.06963
d 19 5.66087 2.06239 8.70390 5.38098 0.85734 2.30376
d 22 6.59264 10.19112 3.54961 6.87253 11.39617 9.94975
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20934
TL 64.49596 64.49596 64.49596 64.49596 64.49596 64.49596

(条件式対応値)
(1) D30×N3/Fw = 1.240
(2) F3/Fw = 2.923
(3) D30×Ne/Fe = 0.390
(4) F3/F32 =−1.048
(5) N3 = 1.493
(6) ν3 =76.51
(7) Ne = 1.50
(8) νe =82.56
(Table 6)
(Overall)
F = 6.50-30.00-61.00
FNO = 3.5 to 3.8 to 3.4

(Lens specifications)
rd νd Nd
1) 25.9678 1.4000 17.98 1.945950
2) 21.0210 6.1000 82.56 1.497820
3) 339.3220 0.1000
4) 17.2833 4.7000 82.56 1.497820
5) 132.3282 (d5 = variable)

6) -1236.7392 1.0000 40.19 1.850490
7) 5.0328 2.2000
8) -38.8019 1.0000 40.77 1.883000
9) 11.0291 0.9000
10) 11.6547 1.6000 17.98 1.945950
11) 96.0997 (d11 = variable)

12> Aperture stop 0.5000
13) 4.8302 1.8000 70.45 1.487490
14) 11.7906 0.1000
15) 9.0250 1.0000 42.72 1.834810
16) 5.3685 0.8000
17) -83.9696 1.7000 82.56 1.497820
18) -10.6798 0.0000
19) Field stop (d19 = variable)

20) 9.8440 1.0000 25.46 2.000690
21) 6.4780 3.5000 82.56 1.497820
22) -21.7650 (d22 = variable)

23) 0.0000 1.6000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.4504 6.12900E-06 4.75680E-09 0.00000E + 00
7: 0.2496 3.63880E-04 7.00120E-06 -1.36530E-08
13: 0.1671 1.54140E-04 2.28490E-05 -9.89080E-07
22: 1.0000 -1.16660E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.9181 683.8795 473.4833
d 5 0.90000 10.93565 13.96348 0.90000 10.93565 13.96348
d 11 15.13311 5.09746 2.06963 15.13311 5.09746 2.06963
d 19 5.66087 2.06239 8.70390 5.38098 0.85734 2.30376
d 22 6.59264 10.19112 3.54961 6.87253 11.39617 9.94975
Bf 4.20934 4.20934 4.20934 4.20934 4.20934 4.20934
TL 64.49596 64.49596 64.49596 64.49596 64.49596 64.49596

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.240
(2) F3 / Fw = 2.923
(3) D30 × Ne / Fe = 0.390
(4) F3 / F32 = −1.048
(5) N3 = 1.493
(6) ν3 = 76.51
(7) Ne = 1.50
(8) νe = 82.56

図17は、第6実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図18は、第6実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=205mm、(b)はRm=748mm、(c)はRt=538mmの各収差図をそれぞれ示す。   FIGS. 17A and 17B are graphs showing various aberrations of the zoom lens according to the sixth example in the infinity state. FIG. 17A illustrates aberrations in the wide-angle end state, FIG. 17B illustrates the intermediate focal length state, and FIG. Respectively. 18A and 18B are graphs showing various aberrations of the zoom lens according to the sixth example in the close-up shooting distance state. FIG. 18A shows Rw = 205 mm, FIG. 18B shows Rm = 748 mm, and FIG. 18C shows Rt = 538 mm. Each aberration diagram is shown.

各収差図から、第6実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to Example 6 has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第7実施例)
図19は、第7実施例にかかるズームレンズのレンズ構成を示す図である。次の表7に第7実施例のズームレンズの諸元表の値を揚げる。
(Seventh embodiment)
FIG. 19 is a diagram illustrating a lens configuration of a zoom lens according to the seventh example. Table 7 below shows the values in the specification table of the zoom lens of the seventh embodiment.

(表7)
(全体諸)
F=6.55〜30.00〜60.10
FNO=3.5 〜 3.8 〜 3.5

(レンズ諸元)
r d νd Nd
1) 23.8479 1.4000 25.46 2.000690
2) 18.7624 5.9000 95.25 1.433852
3) 167.9070 0.1000
4) 16.8888 5.3000 90.91 1.454570
5)-5137.1460(d5=可変)

6) -46.5253 1.0000 40.10 1.851350
7) 4.2808 2.2000
8) 21.5453 1.0000 46.58 1.804000
9) 10.8456 0.6000
10) 9.0254 1.5000 17.98 1.945950
11) 20.1834(d11=可変)

12> 開口絞り 0.3000
13) 5.4471 2.1000 63.97 1.514280
14) 20.0657 0.9000
15) 21.6048 1.0000 42.72 1.834810
16) 6.2337 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) 視野絞り(d19=可変)

20) 9.4629 1.0000 25.46 2.000690
21) 6.5553 2.6000 95.25 1.433852
22) -46.2338(d22=可変)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.36290E-06 0.00000E+00 0.00000E+00
7 : -0.4928 1.29050E-03 -1.76320E-05 0.00000E+00
13 : 0.6368 -2.96970E-04 0.00000E+00 0.00000E+00
22 :-99.0000 -3.01210E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.43955 4.28717 1.19508 15.43955 4.28717 1.19508
d 19 8.90776 3.12446 10.80427 8.45693 1.63190 2.08621
d 22 3.92934 9.71264 2.03283 4.38017 11.20520 10.75089
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.66873 62.66873 62.66873 62.66873 62.66873 62.66873

(条件式対応値)
(1) D30×N3/Fw = 1.428
(2) F3/Fw = 2.185
(3) D30×Ne/Fe = 0.292
(4) F3/F32 =−1.323
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.43
(8) νe =95.25
(Table 7)
(Overall)
F = 6.55-30.00-60.10
FNO = 3.5 to 3.8 to 3.5

(Lens specifications)
rd νd Nd
1) 23.8479 1.4000 25.46 2.000690
2) 18.7624 5.9000 95.25 1.433852
3) 167.9070 0.1000
4) 16.8888 5.3000 90.91 1.454570
5) -5137.1460 (d5 = variable)

6) -46.5253 1.0000 40.10 1.851350
7) 4.2808 2.2000
8) 21.5453 1.0000 46.58 1.804000
9) 10.8456 0.6000
10) 9.0254 1.5000 17.98 1.945950
11) 20.1834 (d11 = variable)

12> Aperture stop 0.3000
13) 5.4471 2.1000 63.97 1.514280
14) 20.0657 0.9000
15) 21.6048 1.0000 42.72 1.834810
16) 6.2337 0.4000
17) 10.2439 1.8000 91.20 1.456000
18) -9.5325 0.0000
19) Field stop (d19 = variable)

20) 9.4629 1.0000 25.46 2.000690
21) 6.5553 2.6000 95.25 1.433852
22) -46.2338 (d22 = variable)

23) 0.0000 0.9000 70.51 1.544370
24) 0.0000 0.5000
25) 0.0000 0.5000 64.12 1.516800
26) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.36290E-06 0.00000E + 00 0.00000E + 00
7: -0.4928 1.29050E-03 -1.76320E-05 0.00000E + 00
13: 0.6368 -2.96970E-04 0.00000E + 00 0.00000E + 00
22: -99.0000 -3.01210E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 141.5092 674.0564 452.9397
d 5 1.02020 12.17258 15.26467 1.02020 12.17258 15.26467
d 11 15.43955 4.28717 1.19508 15.43955 4.28717 1.19508
d 19 8.90776 3.12446 10.80427 8.45693 1.63190 2.08621
d 22 3.92934 9.71264 2.03283 4.38017 11.20520 10.75089
Bf 2.37189 2.37189 2.37189 2.37189 2.37189 2.37189
TL 62.66873 62.66873 62.66873 62.66873 62.66873 62.66873

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.428
(2) F3 / Fw = 2.185
(3) D30 × Ne / Fe = 0.292
(4) F3 / F32 = -1.323
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.43
(8) νe = 95.25

図20は、第7実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図21は、第7実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=516mmの各収差図をそれぞれ示す。   20A and 20B are graphs showing various aberrations of the zoom lens according to the seventh example in the infinity state. FIG. 20A is an aberration diagram in the wide-angle end state, FIG. 20B is the intermediate focal length state, and FIG. Respectively. FIGS. 21A and 21B are graphs showing various aberrations of the zoom lens according to the seventh example when the close-up shooting distance is in focus. FIG. 21A shows Rw = 204 mm, FIG. 21B shows Rm = 737 mm, and FIG. 21C shows Rt = 516 mm. Each aberration diagram is shown.

各収差図から、第7実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to the seventh example has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第8実施例)
図22は、第8実施例にかかるズームレンズのレンズ構成を示す図である。
(Eighth embodiment)
FIG. 22 is a diagram illustrating a lens configuration of a zoom lens according to the eighth example.

第8実施例にかかるズームレンズは、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りと、正屈折力を有する第3レンズ群G3と、視野絞りと、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、光学的ローパス・フィルターOLPFと、像面Iに配置される固体撮像素子のカバーガラスCGとから構成されている。   The zoom lens according to the eighth example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop, and a third lens having a positive refractive power. A lens group G3, a field stop, a fourth lens group G4 having positive refracting power, a fifth lens group G5 having positive refracting power, an optical low-pass filter OLPF, and a solid-state image pickup arranged on the image plane I It is comprised from the cover glass CG of an element.

第1レンズ群G1は、物体側より順に、物体側に凸形状の負メニスカスレンズL11と凸形状の正メニスカスレンズL12との接合レンズと、物体側面の曲率半径が像側面曲率半径の絶対値の1/6より小さい正レンズL13から構成されている。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive meniscus lens L12 having a convex shape, and the curvature radius of the object side surface is an absolute value of the curvature radius of the image side surface. The positive lens L13 is smaller than 1/6.

第2レンズ群G2は、物体側から順に、像側面が凹形状の負レンズL21と、像側面が凹形状の負レンズL22と、物体側面が凸形状の正メニスカスレンズL23から構成されている。   The second lens group G2 includes, in order from the object side, a negative lens L21 having a concave image side surface, a negative lens L22 having a concave image side surface, and a positive meniscus lens L23 having a convex object side surface.

第3レンズ群G3は、物体側から順に、物体側面が凸形状の正レンズL31と、像側面が凹形状の負レンズL32と、像側面が凸形状の正レンズL33から構成されている。   The third lens group G3 includes, in order from the object side, a positive lens L31 having a convex object side surface, a negative lens L32 having a concave image side surface, and a positive lens L33 having a convex image side surface.

第4レンズ群G4は、物体側面が凸形状の正レンズL41から構成されている。   The fourth lens group G4 includes a positive lens L41 having a convex object side surface.

第5レンズ群G5は、物体側から順に、物体側が凸形状の負メニスカスレンズL51と両凸形状の正レンズL52との接合レンズから構成されている。   The fifth lens group G5 includes, in order from the object side, a cemented lens of a negative meniscus lens L51 having a convex shape on the object side and a positive lens L52 having a biconvex shape.

正メニスカスレンズL13の物体側面と、像側面が凹形状の負レンズL21の像側面と、物体側面が凸形状の正レンズL31の物体側面と、物体側面が凸形状の正レンズL41の物体側面と、両凸形状の正レンズL52の像側面が非球面形状に構成されている。   The object side surface of the positive meniscus lens L13, the image side surface of the negative lens L21 having a concave image side surface, the object side surface of the positive lens L31 having a convex object side surface, and the object side surface of the positive lens L41 having a convex object side surface The image side surface of the biconvex positive lens L52 is formed in an aspherical shape.

広角焦点距離Wから望遠焦点距離Tへの変倍の際、第1レンズ群G1は固定され、第2レンズ群G2は像面I側に移動し、第3レンズ群G3は固定され、第4レンズ群G4は物体側に移動し、第5レンズ群G5は物体側に凸形状の軌跡で光軸に沿って移動する。   When zooming from the wide-angle focal length W to the telephoto focal length T, the first lens group G1 is fixed, the second lens group G2 is moved to the image plane I side, the third lens group G3 is fixed, and the fourth lens group G3 is fixed. The lens group G4 moves to the object side, and the fifth lens group G5 moves along the optical axis along a locus convex to the object side.

撮影物体が有限距離における合焦に際して、第5レンズ群G5は光軸にそって移動する。また、第8実施の形態の固体撮像素子中心から対角への対角長IHは、3.75mmである。   When the photographic object is focused at a finite distance, the fifth lens group G5 moves along the optical axis. In addition, the diagonal length IH from the center of the solid-state imaging device of the eighth embodiment to the diagonal is 3.75 mm.

次の表8に第8実施例のズームレンズの諸元表の値を揚げる。
(表8)
(全体諸元)
F=6.55〜30.00〜61.00
FNO=3.9 〜 4.0 〜 4.0

(レンズ諸元)
r d νd Nd
1) 25.9550 1.4000 20.88 1.922860
2) 20.8100 5.9000 90.22 1.456500
3) 222.0859 0.1000
4) 17.1799 5.3000 90.91 1.454570
5) 331.1581(d5=可変)

6) -55.2024 1.0000 40.10 1.851350
7) 4.0941 2.5000
8) -52.5834 1.0000 40.77 1.883000
9) 36.3122 0.1000
10) 10.8248 1.5000 17.98 1.945950
11) 42.0827(d11=可変)

12> 開口絞り 0.3000
13) 5.3590 2.1000 63.97 1.514280
14) -18.4083 0.9000
15) -105.1597 1.0000 42.72 1.834810
16) 6.1759 0.5000
17) 14.0411 1.8000 91.20 1.456000
18) -12.8987 0.0000
19) 視野絞り(d19=可変)

20) 7.6567 1.0000 82.56 1.497820
21) 7.8294(d21=可変)

22) 9.4449 1.0000 25.46 2.000690
23) 6.5133 2.6000 91.30 1.455590
24) -46.4002(d24=可変)

25) 0.0000 0.9000 70.51 1.544370
26) 0.0000 0.5000
27) 0.0000 0.5000 64.12 1.516800
28) 0.0000 Bf

(非球面係数)
面 : K C 4 C 6 C 8
4 : 0.5000 3.64110E-06 0.00000E+00 0.00000E+00
7 : -0.8224 2.14650E-03 -2.55770E-05 0.00000E+00
13 : 0.3073 -1.33760E-04 0.00000E+00 0.00000E+00
20 : 0.4401 0.00000E+00 0.00000E+00 0.00000E+00
24 :-99.0000 -3.15800E-04 0.00000E+00 0.00000E+00

(合焦時における可変間隔)
無限遠合焦状態 至近距離合焦状態
F,β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.7636 667.4376 435.3158
d 5 0.74690 12.21974 15.17127 0.65678 12.21974 15.17127
d 11 17.63827 6.16543 3.21390 17.72839 6.16543 3.21390
d 19 1.99764 0.85035 0.55520 2.00665 0.85035 0.55520
d 21 7.68233 2.90191 10.59213 7.26838 1.41864 1.84668
d 24 2.87011 8.79782 1.40275 3.27505 10.28109 10.14820
Bf 2.04158 2.04158 2.04158 2.04158 2.04158 2.04158
TL 64.87683 64.87683 64.87683 64.87683 64.87683 64.87683

(条件式対応値)
(1) D30×N3/Fw = 1.428
(2) F3/Fw = 2.359
(3) D30×Ne/Fe = 0.326
(4) F3/F32 =−2.220
(5) N3 = 1.485
(6) ν3 =77.59
(7) Ne = 1.46
(8) νe =91.20
Table 8 below shows the values in the specification table of the zoom lens of the eighth embodiment.
(Table 8)
(Overall specifications)
F = 6.55-30.00-61.00
FNO = 3.9 to 4.0 to 4.0

(Lens specifications)
rd νd Nd
1) 25.9550 1.4000 20.88 1.922860
2) 20.8100 5.9000 90.22 1.456500
3) 222.0859 0.1000
4) 17.1799 5.3000 90.91 1.454570
5) 331.1581 (d5 = variable)

6) -55.2024 1.0000 40.10 1.851350
7) 4.0941 2.5000
8) -52.5834 1.0000 40.77 1.883000
9) 36.3122 0.1000
10) 10.8248 1.5000 17.98 1.945950
11) 42.0827 (d11 = variable)

12> Aperture stop 0.3000
13) 5.3590 2.1000 63.97 1.514280
14) -18.4083 0.9000
15) -105.1597 1.0000 42.72 1.834810
16) 6.1759 0.5000
17) 14.0411 1.8000 91.20 1.456000
18) -12.8987 0.0000
19) Field stop (d19 = variable)

20) 7.6567 1.0000 82.56 1.497820
21) 7.8294 (d21 = variable)

22) 9.4449 1.0000 25.46 2.000690
23) 6.5133 2.6000 91.30 1.455590
24) -46.4002 (d24 = variable)

25) 0.0000 0.9000 70.51 1.544370
26) 0.0000 0.5000
27) 0.0000 0.5000 64.12 1.516800
28) 0.0000 Bf

(Aspheric coefficient)
Surface: KC 4 C 6 C 8
4: 0.5000 3.64110E-06 0.00000E + 00 0.00000E + 00
7: -0.8224 2.14650E-03 -2.55770E-05 0.00000E + 00
13: 0.3073 -1.33760E-04 0.00000E + 00 0.00000E + 00
20: 0.4401 0.00000E + 00 0.00000E + 00 0.00000E + 00
24: -99.0000 -3.15800E-04 0.00000E + 00 0.00000E + 00

(Variable interval during focusing)
Infinite focus state Close focus state
F, β 6.55000 30.00000 60.10000 -0.04000 -0.04000 -0.10000
D0 ∞ ∞ ∞ 140.7636 667.4376 435.3158
d 5 0.74690 12.21974 15.17127 0.65678 12.21974 15.17127
d 11 17.63827 6.16543 3.21390 17.72839 6.16543 3.21390
d 19 1.99764 0.85035 0.55520 2.00665 0.85035 0.55520
d 21 7.68233 2.90191 10.59213 7.26838 1.41864 1.84668
d 24 2.87011 8.79782 1.40275 3.27505 10.28109 10.14820
Bf 2.04158 2.04158 2.04158 2.04158 2.04158 2.04158
TL 64.87683 64.87683 64.87683 64.87683 64.87683 64.87683

(Values for conditional expressions)
(1) D30 × N3 / Fw = 1.428
(2) F3 / Fw = 2.359
(3) D30 × Ne / Fe = 0.326
(4) F3 / F32 = −2.220
(5) N3 = 1.485
(6) ν3 = 77.59
(7) Ne = 1.46
(8) νe = 91.20

図23は、第8実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。図24は、第8実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=206mm、(b)はRm=732mm、(c)はRt=500mmの各収差図をそれぞれ示す。   FIGS. 23A and 23B are graphs showing various aberrations of the zoom lens according to the eighth example in the infinity state. FIG. 23A is an aberration diagram in the wide-angle end state, FIG. 23B is the intermediate focal length state, and FIG. Respectively. FIGS. 24A and 24B are graphs showing various aberrations of the zoom lens according to the eighth example when the close-up shooting distance is in focus. FIG. 24A shows Rw = 206 mm, FIG. 24B shows Rm = 732 mm, and FIG. 24C shows Rt = 500 mm. Each aberration diagram is shown.

各収差図から、第8実施例にかかるズームレンズは、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像特性を有していることがわかる。   From each aberration diagram, it can be seen that the zoom lens according to Example 8 has excellent imaging characteristics with various aberrations corrected well from the wide-angle end state to the telephoto end state.

以下、実施の形態にかかるズームレンズを有するカメラについて説明する。   A camera having a zoom lens according to an embodiment will be described below.

図25は、実施の形態にかかるズームレンズを搭載する電子スチルカメラを示し、(a)は正面図を、(b)は背面図をそれぞれ示す。図26は、図25(a)のA−A’線に沿った断面図を示している。   FIG. 25 shows an electronic still camera equipped with the zoom lens according to the embodiment, where (a) shows a front view and (b) shows a rear view. FIG. 26 is a cross-sectional view taken along the line A-A ′ of FIG.

図25、図26において、電子スチルカメラ1(以後、単にカメラと記す)は、不図示の電源釦を押すと撮影レンズ2の不図示のシャッタが開放され撮影レンズ2で不図示の被写体からの光が集光され、像面Iに配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、カメラ1の背後に配置された液晶モニター3に表示される。撮影者は、液晶モニター3を見ながら被写体像の構図を決めた後、レリーズ釦4を押し下げ被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。この際、カメラ1に内蔵された不図示の角速度センサーにより手ぶれ等によって発生するカメラ1のブレが検出され、撮影レンズ2に配設された防振レンズG3が不図示の防振機構により撮影レンズ2の光軸に対して垂直方向にシフトされ、カメラ1のぶれによって生じる像面I上の像ぶれを補正する。   In FIGS. 25 and 26, when the electronic still camera 1 (hereinafter simply referred to as a camera) presses a power button (not shown), a shutter (not shown) of the photographing lens 2 is opened, and the photographing lens 2 removes an object from a subject (not shown). The light is condensed and imaged on an image sensor C (for example, CCD or CMOS) disposed on the image plane I. The subject image formed on the image sensor C is displayed on the liquid crystal monitor 3 disposed behind the camera 1. The photographer determines the composition of the subject image while looking at the liquid crystal monitor 3, and then presses the release button 4 to photograph the subject image with the image sensor C, and records and saves it in a memory (not shown). At this time, blurring of the camera 1 caused by camera shake or the like is detected by an angular velocity sensor (not shown) built in the camera 1, and the image stabilization lens G3 disposed on the photographing lens 2 is taken by the image stabilization lens (not shown). 2 is shifted in the direction perpendicular to the optical axis 2 to correct image blur on the image plane I caused by camera shake.

撮影レンズ2は、後述する実施の形態にかかるズームレンズで構成されている。また、カメラ1には、被写体が暗い場合に補助光を発光する補助光発光部5、撮影レンズ2であるズームレンズを広角端状態(W)から望遠端状態(T)に変倍する際のワイド(W)ーテレ(T)釦6、およびカメラ1の種々の条件設定等に使用するファンクション釦7等が配置されている。   The taking lens 2 is composed of a zoom lens according to an embodiment described later. The camera 1 also includes an auxiliary light emitting unit 5 that emits auxiliary light when the subject is dark, and a zoom lens that is the photographing lens 2 when zooming from the wide-angle end state (W) to the telephoto end state (T). A wide (W) -tele (T) button 6 and a function button 7 used for setting various conditions of the camera 1 are arranged.

このようにして、実施の形態にかかるズームレンズを内蔵するカメラ1が構成されている。   Thus, the camera 1 including the zoom lens according to the embodiment is configured.

以上説明したように、本実施の形態によれば、望遠端半画角が3.0度以下、変倍比略10倍以上、望遠端Fnoが5以下で諸収差を良好に補正し、優れた結像性能を有する小型のズームレンズを達成することができる。   As described above, according to the present embodiment, the telephoto end half angle of view is 3.0 degrees or less, the zoom ratio is approximately 10 times or more, and the telephoto end Fno is 5 or less. A small zoom lens having excellent imaging performance can be achieved.

なお、上記実施例では、第1レンズ群と第3レンズ群を変倍の際に固定しているが、本願の意図する所は、この変倍方式のみに限らない。例えば、第1レンズ群の変倍機構を偏芯が少ない構成とするなら、第1レンズ群を物体側へ移動し、第2レンズ群を像側へ移動し、第3レンズ群を固定し、複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動するようにしても良い。   In the above embodiment, the first lens unit and the third lens unit are fixed at the time of zooming. However, the intention of the present application is not limited to this zooming method. For example, if the zooming mechanism of the first lens group has a configuration with little eccentricity, the first lens group is moved to the object side, the second lens group is moved to the image side, and the third lens group is fixed. Of the plurality of lens groups, the lens group closest to the image plane may move along the optical axis along a locus convex toward the object side.

また、第3レンズ群の防振補正機構と変倍機構が共存可能とするなら、第1レンズ群を固定し、第2レンズ群を像側へ移動し、第3レンズ群を物体側へ移動し、最も像面側のレンズ群を物体側に凸形状の移動としても良い。   Also, if the image stabilization correction mechanism and the zooming mechanism of the third lens group can coexist, the first lens group is fixed, the second lens group is moved to the image side, and the third lens group is moved to the object side. The lens group closest to the image plane may be moved convexly toward the object side.

また、第1レンズ群の変倍機構を偏芯が少ない構成とし、かつ、第3レンズ群を防振補正機構と変倍機構が共存可能とするなら、第1レンズ群を物体側へ移動し、第2レンズ群を像側へ移動し、第3レンズ群を物体側へ移動し、最も像面側のレンズ群を物体側に凸形状の移動としても良い。   Further, if the zooming mechanism of the first lens unit has a configuration with little decentering and the third lens unit can coexist with the image stabilization mechanism and the zooming mechanism, the first lens unit is moved to the object side. The second lens group may be moved toward the image side, the third lens group may be moved toward the object side, and the lens group closest to the image plane may be moved convexly toward the object side.

また、第1実施例において、第3レンズ群G3全体を光軸に対して垂直方向に偏芯する事により所謂手ブレによる像揺れを補正しているが、他実施例で行っても良い。また、第3レンズ群G3全体だけでは無く、上記設計例の任意のレンズもしくはレンズ群を光軸に対して垂直方向に駆動する事により補正しても良い。また、コスト低減の為に、第4レンズ群を凸レンズ1枚構成としても良い。   In the first embodiment, the entire third lens group G3 is decentered in the direction perpendicular to the optical axis to correct image shake caused by so-called camera shake, but may be performed in other embodiments. Further, the correction may be performed by driving not only the entire third lens group G3 but also any lens or lens group of the above-described design example in a direction perpendicular to the optical axis. Further, the fourth lens group may have a single convex lens configuration for cost reduction.

また、各実施例の近距離合焦は最も像面側のレンズ群である第4レンズ群又は第5レンズ群で行っていあるが、第1レンズ群の変倍機構と近距離合焦機構が共存可能であれば、第1レンズ群全体、もしくは一部で行ってもかまわない。   Further, the short distance focusing in each embodiment is performed by the fourth lens group or the fifth lens group which is the lens group closest to the image plane side, but the zooming mechanism and the short distance focusing mechanism of the first lens group are different. As long as the coexistence is possible, the entire first lens unit or a part thereof may be used.

また、実施例では、4群又は5群構成を示したが、3群或いは6群等の他の群構成にも適用可能である。   Further, in the embodiment, the 4-group or 5-group configuration is shown, but the present invention can also be applied to other group configurations such as a 3-group or 6-group configuration.

また、レンズ面を非球面としても構わない。また、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。   The lens surface may be an aspherical surface. The aspherical surface may be any of an aspherical surface by grinding, a glass mold aspherical surface in which a glass is formed into an aspherical shape, or a composite aspherical surface in which a resin is formed in an aspherical shape on the glass surface.

また、開口絞りは第3レンズ群近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop is preferably disposed in the vicinity of the third lens group, but the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.

また、各レンズ面には、広い波長城で高い透過率を有する反射防止膜が施されれば、フレアやゴーストを軽減し高いコントラストの高い光学性能を達成できる。   Further, if each lens surface is provided with an antireflection film having a high transmittance at a wide wavelength range, flare and ghost can be reduced and high optical performance with high contrast can be achieved.

尚、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明がこれに限定されるものでないことは言うまでもない。   In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present invention is not limited to this.

第1実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。1 is a diagram illustrating a lens configuration of a zoom lens according to a first example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第1実施例のズームレンズの無限遠状態における諸収差図および防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 4 is a diagram illustrating various aberrations in the infinity state of the zoom lens according to the first embodiment and a lateral aberration diagram during image stabilization, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end. Each aberration diagram in the state is shown. 第1実施例のズームレンズの至近撮影距離合焦状態における諸収差図および防振補正時の横収差図であり、(a)は、Rw=205mm、(b)はRm=749mm、(c)はRt=538mmの各収差図をそれぞれ示す。FIG. 5A is a diagram illustrating various aberrations of the zoom lens according to the first example when the close-up shooting distance is in focus, and a lateral aberration diagram during image stabilization. FIG. 7A illustrates Rw = 205 mm, FIG. 7B illustrates Rm = 749 mm, and FIG. Shows aberration diagrams of Rt = 538 mm. 第2実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 4 is a diagram illustrating a lens configuration of a zoom lens according to a second example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第2実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 4A is a diagram illustrating various aberrations of the zoom lens according to the second example in an infinite state. FIG. 4A illustrates each aberration diagram in a wide-angle end state, FIG. 5B illustrates an intermediate focal length state, and FIG. 第2実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。FIG. 7A is a diagram illustrating various aberrations of the zoom lens according to the second example when the close-up shooting distance is in focus. FIG. 7A illustrates each aberration diagram of Rw = 204 mm, FIG. 7B illustrates Rm = 737 mm, and FIG. Each is shown. 第3実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 3, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第3実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the third example in an infinite state. FIG. 10A illustrates aberration diagrams in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第3実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=202mm、(b)はRm=738mm、(c)はRt=513mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the third example when the close-up shooting distance is in focus, where FIG. 10A illustrates each aberration diagram of Rw = 202 mm, FIG. 7B illustrates Rm = 738 mm, and FIG. Each is shown. 第4実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to a fourth example, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第4実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fourth example in an infinite state. FIG. 10A illustrates aberration diagrams in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第4実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=201mm、(b)はRm=728mm、(c)はRt=487mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fourth example when the close-up shooting distance is in focus. FIG. 9A illustrates each aberration diagram of Rw = 201 mm, FIG. 7B illustrates Rm = 728 mm, and FIG. Each is shown. 第5実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 5, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第5実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fifth example in an infinite state. FIG. 10A illustrates aberration diagrams in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第5実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=515mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the fifth example when the close-up shooting distance is in focus, in which FIG. 9A illustrates each aberration diagram of Rw = 204 mm, FIG. 7B illustrates Rm = 737 mm, and FIG. Each is shown. 第6実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 6, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第6実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the sixth example in an infinite state, where FIG. 10A illustrates each aberration diagram in a wide-angle end state, FIG. 10B illustrates an intermediate focal length state, and FIG. 第6実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=205mm、(b)はRm=748mm、(c)はRt=538mmの各収差図をそれぞれ示す。FIG. 10A is a diagram illustrating various aberrations of the zoom lens according to the sixth example when the close-up shooting distance is in focus, where FIG. 10A illustrates each aberration diagram of Rw = 205 mm, FIG. 7B illustrates Rm = 748 mm, and FIG. 7C illustrates Rt = 538 mm. Each is shown. 第7実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 7, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第7実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the seventh example in an infinite state, where FIG. 9A illustrates aberration diagrams in a wide-angle end state, FIG. 9B illustrates an intermediate focal length state, and FIG. 第7実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=204mm、(b)はRm=737mm、(c)はRt=516mmの各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the seventh example when the close-up shooting distance is in focus. FIG. 9A illustrates aberration diagrams of Rw = 204 mm, FIG. 7B illustrates Rm = 737 mm, and FIG. Each is shown. 第8実施例にかかるズームレンズのレンズ構成を示す図であり、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態をそれぞれ示している。FIG. 10 is a diagram illustrating a lens configuration of a zoom lens according to Example 8, where W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. 第8実施例のズームレンズの無限遠状態における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態の各収差図をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to the eighth example in the infinite state, where FIG. 10A illustrates each aberration diagram in the wide-angle end state, FIG. 10B illustrates the intermediate focal length state, and FIG. 第8実施例のズームレンズの至近撮影距離合焦状態における諸収差図であり、(a)は、Rw=206mm、(b)はRm=732mm、(c)はRt=500mmの各収差図をそれぞれ示す。FIG. 10A is a diagram illustrating various aberrations of the zoom lens according to the eighth example when the close-up shooting distance is in focus. FIG. 10A illustrates each aberration diagram of Rw = 206 mm, FIG. 9B illustrates Rm = 732 mm, and FIG. Each is shown. 実施の形態にかかるズームレンズを搭載する電子スチルカメラを示し、(a)は正面図を、(b)は背面図をそれぞれ示す。1 shows an electronic still camera equipped with a zoom lens according to an embodiment, where (a) shows a front view and (b) shows a rear view. 図25(a)のA−A’線に沿った断面図を示している。FIG. 26 is a cross-sectional view taken along the line A-A ′ of FIG.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
I 像面
1 電子スチルカメラ
2 撮像レンズ(ズームレンズ)
L31 第3レンズ群の第1正レンズ
L32 第3レンズ群の負レンズ
L33 第3レンズ群の第2正レンズ
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group I Image surface 1 Electronic still camera 2 Imaging lens (zoom lens)
L31 First positive lens of the third lens group L32 Negative lens of the third lens group L33 Second positive lens of the third lens group

Claims (15)

物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、
前記第3レンズ群は、物体側から順に、前記第3レンズ群の第1正レンズと、前記第3レンズ群の負レンズと、前記第3レンズ群の第2正レンズとにより実質的に3個のレンズで構成され
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙が減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、
広角端状態の焦点距離をFw、前記第3レンズ群の総厚をD30、前記第3レンズ群の第1正レンズと前記第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたとき、以下の条件を満足する事を特徴とするズームレンズ。
0.700<D30×N3/Fw<1.435
N3<1.500
70.00<ν3
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, a third lens group, and a plurality of lens groups including a fourth lens group,
The third lens group is, in order from the object side, substantially 3 by a first positive lens of the third lens group, a negative lens of the third lens group, and a second positive lens of the third lens group. Consisting of a single lens ,
During zooming from the wide-angle end state to the telephoto end state, the gap between the first lens group and the second lens group increases, the gap between the second lens group and the third lens group decreases, The lens group closest to the image plane in the lens group moves along the optical axis along a locus convex toward the object side,
The focal length in the wide-angle end state is Fw, the total thickness of the third lens group is D30, the average refractive index of the first positive lens of the third lens group and the second positive lens of the third lens group is N3 , and the average Abbe A zoom lens characterized by satisfying the following conditions when the number is ν3 .
0.700 <D30 × N3 / Fw <1.435
N3 <1.500
70.00 <ν3
前記第3レンズ群は正屈折力を有し、
前記第4レンズ群は正屈折力を有することを特徴とする請求項1に記載のズームレンズ。
The third lens group has positive refractive power;
The zoom lens according to claim 1, wherein the fourth lens group has a positive refractive power.
広角端状態から望遠端状態への変倍に際して、前記第3レンズ群は固定されていることを特徴とする請求項1または2に記載のズームレンズ。 Upon zooming from the wide-angle end state to the telephoto end state, the zoom lens according to claim 1 or 2, wherein the third lens group is characterized in that it is fixed. 前記第3レンズ群の焦点距離をF3としたとき、以下の条件を満足する事を特徴とする請求項1からのいずれか一項に記載のズームレンズ。
1.00<F3/Fw<3.40
4. The zoom lens according to claim 1, wherein the following condition is satisfied when a focal length of the third lens group is F <b> 3. 5 .
1.00 <F3 / Fw <3.40
前記複数のレンズ群のうち最も像面側のレンズ群は、1つの正レンズを有することを特徴とする請求項1からのいずれか一項に記載のズームレンズ。 Wherein the plurality most image side lens group among the lens groups, the zoom lens according to claim 1, any one of 4, characterized in that it comprises a single positive lens. 前記複数のレンズ群のうち最も像面側のレンズ群の焦点距離をFe、前記正レンズの屈折率をNeとしたとき、以下の条件を満足する事を特徴とする請求項に記載のズームレンズ。
0.10<D30×Ne/Fe<0.50
Most the focal length of the image side lens group Fe among the plurality of lens groups, wherein, when the refractive index of the positive lens and the Ne, according to claim 5, characterized in that the following condition is satisfied Zoom lens.
0.10 <D30 × Ne / Fe <0.50
前記複数のレンズ群のうち最も像面側のレンズ群において、前記正レンズは、像側面に非球面を有し、
前記正レンズの屈折率をNe、前記正レンズのアッベ数をνeとしたとき、以下の条件を満足する事を特徴とする、請求項5または6に記載のズームレンズ。
Ne<1.550
75.00<νe
In the most image side lens group among the plurality of lens groups, the positive lens has an aspheric surface on the image side surface,
Wherein the refractive index of the positive lens Ne, the positive lens Abbe number's when the νe and characterized in that it satisfies the following conditions, the zoom lens according to claim 5 or 6.
Ne <1.550
75.00 <νe
前記第3レンズ群の第1正レンズは、物体側面に凸形状を有し、
前記第3レンズ群の負レンズは、像側面の曲率半径の絶対値が物体側面の曲率半径の絶対値より小さく、
前記第3レンズ群の第2正レンズは、像側面の曲率半径の絶対値が物体側面の曲率半径の絶対値より小さく、
前記第3レンズ群のレンズ面のいずれかが非球面を有することを特徴とする請求項1から7のいずれか一項に記載のズームレンズ。
The first positive lens of the third lens group has a convex shape on the object side surface,
In the negative lens of the third lens group, the absolute value of the curvature radius of the image side surface is smaller than the absolute value of the curvature radius of the object side surface,
In the second positive lens of the third lens group, the absolute value of the curvature radius of the image side surface is smaller than the absolute value of the curvature radius of the object side surface,
8. The zoom lens according to claim 1, wherein any one of the lens surfaces of the third lens group has an aspherical surface. 9.
前記第3レンズ群の各レンズは、全て空気を介在して配置されていることを特徴とする請求項1から8のいずれか一項に記載のズームレンズ。   9. The zoom lens according to claim 1, wherein all the lenses of the third lens group are disposed with air interposed therebetween. 前記第3レンズ群の負レンズの焦点距離をF32としたとき、以下の条件を満足する事を特徴とする請求項1から9のいずれか一項に記載のズームレンズ。
−2.00<F3/F32<−0.98
10. The zoom lens according to claim 1, wherein the following condition is satisfied when a focal length of the negative lens of the third lens group is F <b> 32.
−2.00 <F3 / F32 <−0.98
記第3レンズ群の第1正レンズの物体側面に非球面を有する事を特徴とする請求項1から10のいずれか一項に記載のズームレンズ。 Before SL zoom lens according to claim 1, any one of 10, characterized in that it has an aspherical surface on the object side surface of the first positive lens of the third lens group. 前記第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事を特徴とする請求項1から11のいずれか一項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 11, characterized in that performing the image blur correction by moving vertically at least a portion of the third lens group with respect to the optical axis. 物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、
前記第3レンズ群は、物体側から順に、前記第3レンズ群の第1正レンズと、前記第3レンズ群の負レンズと、前記第3レンズ群の第2正レンズとにより実質的に3個のレンズで構成され
広角端状態の焦点距離をFw、前記第3レンズ群の総厚をD30、前記第3レンズ群の第1正レンズと前記第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたとき、以下の条件を満足するズームレンズの変倍方法であって、
前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙が減少し、前記複数のレンズ群のうち最も像面側のレンズ群を物体側に凸の軌跡にて光軸に沿って移動させることで、広角端状態から望遠端状態への変倍を行うことを特徴とするズームレンズの変倍方法。
0.700<D30×N3/Fw<1.435
N3<1.500
70.00<ν3
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, a third lens group, and a plurality of lens groups including a fourth lens group,
The third lens group is, in order from the object side, substantially 3 by a first positive lens of the third lens group, a negative lens of the third lens group, and a second positive lens of the third lens group. Consisting of a single lens ,
The focal length in the wide-angle end state is Fw, the total thickness of the third lens group is D30, the average refractive index of the first positive lens of the third lens group and the second positive lens of the third lens group is N3 , and the average Abbe A zoom lens zooming method that satisfies the following conditions when the number is ν3 ,
The gap between the first lens group and the second lens group is increased, the gap between the second lens group and the third lens group is decreased, and the lens group closest to the image plane among the plurality of lens groups is defined as an object. A zoom lens zooming method characterized in that zooming from the wide-angle end state to the telephoto end state is performed by moving the lens along the optical axis along a locus convex toward the side.
0.700 <D30 × N3 / Fw <1.435
N3 <1.500
70.00 <ν3
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、第3レンズ群と、第4レンズ群を含む複数のレンズ群を有し、
前記第3レンズ群は、物体側から順に、前記第3レンズ群の第1正レンズと、前記第3レンズ群の負レンズと、前記第3レンズ群の第2正レンズとにより実質的に3個のレンズで構成され
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群の間隙が増大し、前記第2レンズ群と前記第3レンズ群の間隙が減少し、前記複数のレンズ群のうち最も像面側のレンズ群が物体側に凸の軌跡にて光軸に沿って移動し、
広角端状態の焦点距離をFw、前記第3レンズ群の総厚をD30、前記第3レンズ群の第1正レンズと前記第3レンズ群の第2正レンズの平均屈折率をN3、平均アッベ数をν3としたときとしたとき、以下の条件を満足する事を特徴とするズームレンズの像ブレ補正方法であって、
前記第3レンズ群の少なくとも一部を光軸に対して垂直方向に移動する事により像ブレ補正を行う事を特徴とするズームレンズの像ブレ補正方法。
0.700<D30×N3/Fw<1.435
N3<1.500
70.00<ν3
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, a third lens group, and a plurality of lens groups including a fourth lens group,
The third lens group is, in order from the object side, substantially 3 by a first positive lens of the third lens group, a negative lens of the third lens group, and a second positive lens of the third lens group. Consisting of a single lens ,
During zooming from the wide-angle end state to the telephoto end state, the gap between the first lens group and the second lens group increases, the gap between the second lens group and the third lens group decreases, The lens group closest to the image plane in the lens group moves along the optical axis along a locus convex toward the object side,
The focal length in the wide-angle end state is Fw, the total thickness of the third lens group is D30, the average refractive index of the first positive lens of the third lens group and the second positive lens of the third lens group is N3 , and the average Abbe An image blur correction method of a zoom lens characterized by satisfying the following condition when the number is ν3 ,
An image blur correction method for a zoom lens, wherein image blur correction is performed by moving at least a part of the third lens group in a direction perpendicular to the optical axis.
0.700 <D30 × N3 / Fw <1.435
N3 <1.500
70.00 <ν3
請求項1から請求項12のいずれか一項に記載のズームレンズを有することを特徴とする光学装置。 An optical apparatus comprising the zoom lens according to any one of claims 1 to 12 .
JP2007047440A 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same Expired - Fee Related JP5040359B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007047440A JP5040359B2 (en) 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same
PCT/JP2008/052588 WO2008105249A1 (en) 2007-02-27 2008-02-08 Zoom lens and optical device with the same
US12/545,846 US7940472B2 (en) 2007-02-27 2009-08-23 Zoom lens and optical apparatus equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047440A JP5040359B2 (en) 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same

Publications (2)

Publication Number Publication Date
JP2008209754A JP2008209754A (en) 2008-09-11
JP5040359B2 true JP5040359B2 (en) 2012-10-03

Family

ID=39786098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047440A Expired - Fee Related JP5040359B2 (en) 2007-02-27 2007-02-27 Zoom lens and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP5040359B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065150B2 (en) * 2008-05-16 2012-10-31 富士フイルム株式会社 Zoom lens and imaging device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039613A (en) * 1983-08-12 1985-03-01 Minolta Camera Co Ltd Zoom lens system of high variable magnification including wide angle range
JP2623836B2 (en) * 1989-06-09 1997-06-25 キヤノン株式会社 Rear focus zoom lens
JPH0414007A (en) * 1990-05-08 1992-01-20 Canon Inc Rear focus type zoom lens
JPH0312620A (en) * 1989-06-09 1991-01-21 Canon Inc Rear focus type zoom lens
JP2744328B2 (en) * 1990-05-08 1998-04-28 キヤノン株式会社 Rear focus zoom lens
JP2560839B2 (en) * 1989-06-09 1996-12-04 キヤノン株式会社 Rear focus type zoom lens
JP3091250B2 (en) * 1991-04-05 2000-09-25 オリンパス光学工業株式会社 Zoom lens
JP3619178B2 (en) * 2001-09-28 2005-02-09 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4479150B2 (en) * 2002-12-27 2010-06-09 株式会社ニコン Variable focal length lens system
JP4371757B2 (en) * 2003-09-30 2009-11-25 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2005148437A (en) * 2003-11-17 2005-06-09 Fujinon Corp Variable power optical system
JP2006323051A (en) * 2005-05-18 2006-11-30 Konica Minolta Photo Imaging Inc Variable power optical system
JP4845492B2 (en) * 2005-11-29 2011-12-28 キヤノン株式会社 Zoom optical system

Also Published As

Publication number Publication date
JP2008209754A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5082499B2 (en) Zoom lens and optical apparatus having the same
JP5407119B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5126496B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5245320B2 (en) Zoom lens, optical instrument using the same, and imaging method
JP4876755B2 (en) High magnification zoom lens and optical apparatus having the same
JP5309553B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP2009009104A (en) Zoom lens and optical apparatus
WO2014192750A1 (en) Variable magnification optical system, imaging device, and method for manufacturing variable magnification optical system
JP5594607B2 (en) Zoom lens and imaging device
JP2014026074A (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5648900B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2008015433A (en) Zoom lens and optical apparatus having the same
JP2007219318A (en) Zoom lens and optical equipment equipped with the same
JP2007292795A (en) Vibration-proof lens and optical device equipped therewith
JP5040360B2 (en) Zoom lens and optical apparatus having the same
JP5765533B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
JP5040358B2 (en) Zoom lens and optical apparatus having the same
JP6205858B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP5040359B2 (en) Zoom lens and optical apparatus having the same
JP5386868B2 (en) Zoom lens, optical equipment
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5092449B2 (en) Zoom lens and optical apparatus having the same
JP5115871B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP6205855B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees