[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4939831B2 - Stereo microscope - Google Patents

Stereo microscope Download PDF

Info

Publication number
JP4939831B2
JP4939831B2 JP2006119287A JP2006119287A JP4939831B2 JP 4939831 B2 JP4939831 B2 JP 4939831B2 JP 2006119287 A JP2006119287 A JP 2006119287A JP 2006119287 A JP2006119287 A JP 2006119287A JP 4939831 B2 JP4939831 B2 JP 4939831B2
Authority
JP
Japan
Prior art keywords
objective lens
focal length
lens
objective
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006119287A
Other languages
Japanese (ja)
Other versions
JP2007292935A5 (en
JP2007292935A (en
Inventor
健一 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006119287A priority Critical patent/JP4939831B2/en
Publication of JP2007292935A publication Critical patent/JP2007292935A/en
Publication of JP2007292935A5 publication Critical patent/JP2007292935A5/ja
Application granted granted Critical
Publication of JP4939831B2 publication Critical patent/JP4939831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、標本を立体的に観察することができる実体顕微鏡において、対応する倍率範囲が低倍から高倍まで幅広く、作業性が良い実体顕微鏡に関する。   The present invention relates to a stereomicroscope capable of observing a specimen three-dimensionally and having a wide workable range of magnification from low to high magnification and good workability.

従来、製造業や生物実験などの現場で実体顕微鏡が広く利用されている。図12は、単対物型双眼実体顕微鏡が備える光学系の一般的な構成を示す図である。この図に示すように、実体顕微鏡は、ガラスプレート21上に載置された標本SP’の上部に対物レンズ22、ズーム鏡体23、鏡筒24を備える。ズーム鏡体23は、ズーム変倍可能な2つの変倍光学系23L,23Rを有し、鏡筒24は、変倍光学系23L,23Rの各々に対応して、標本SP’の標本像を結像する結像光学系24L,24Rを有する。結像光学系24L,24Rは、それぞれ結像レンズ24La,24Ra、プリズム24Lb,24Rbおよび接眼レンズ24Lc,24Rcを用いて構成されている。   Conventionally, stereomicroscopes have been widely used in manufacturing and biological experiments. FIG. 12 is a diagram illustrating a general configuration of an optical system included in the single-objective binocular stereomicroscope. As shown in this figure, the stereomicroscope includes an objective lens 22, a zoom lens body 23, and a lens barrel 24 above the specimen SP ′ placed on the glass plate 21. The zoom lens body 23 has two zooming optical systems 23L and 23R capable of zooming zooming, and the lens barrel 24 displays a specimen image of the specimen SP ′ corresponding to each of the zooming optical systems 23L and 23R. It has imaging optical systems 24L and 24R for imaging. The imaging optical systems 24L and 24R are configured using imaging lenses 24La and 24Ra, prisms 24Lb and 24Rb, and eyepiece lenses 24Lc and 24Rc, respectively.

変倍光学系23L,23Rは、標本SP’が異なる方向に発した光を、対物レンズ22を介して各々受光する。結像レンズ24La,24Raは、それぞれ変倍光学系23L,23Rが射出した光を受光して標本像を結像する。プリズム24Lb,24Rbは、結像レンズ24La,24Raが結像する倒立像としての標本像を各々正立像に変換する。正立像に変換された各標本像は、接眼レンズ24Lc,24Rcを介して観察される。
特開平10−26729 特開2004−54259
The variable magnification optical systems 23L and 23R receive light emitted from the specimen SP ′ in different directions via the objective lens 22, respectively. The imaging lenses 24La and 24Ra receive the light emitted from the variable magnification optical systems 23L and 23R, respectively, and form sample images. The prisms 24Lb and 24Rb respectively convert sample images as inverted images formed by the imaging lenses 24La and 24Ra into erect images. Each sample image converted into an erect image is observed through the eyepieces 24Lc and 24Rc.
JP 10-26729 JP 2004-54259 A

ところで、近年マウスや線虫やゼブラフィッシュ、メダカ、ショウジョウバエなどの実験動物を観察する場合が非常に多くなっている。これらの実験動物においてGFP等の蛍光タンパクを発現させて観察する場合も多くなっている。この場合は、実験動物の全体をチェックや多くの固体から蛍光で光る固体をピックアップする低倍率の観察と実験動物の細胞レベルでの蛍光チェックを行うための高倍率の観察の両方が必要となる。
またこれら実験生物は生きたまま観察する場合が多く、実験生物が動くため低倍率から高倍率の切替は瞬時に行わないと観察していた個体を見失う場合がある。
By the way, in recent years, cases of observing experimental animals such as mice, nematodes, zebrafish, medaka, and Drosophila are increasing. In these experimental animals, there are many cases where fluorescent proteins such as GFP are expressed and observed. In this case, both the low-magnification observation to check the whole laboratory animal and pick up the solid that fluoresces from many solids and the high-magnification observation to check the fluorescence at the cell level of the experimental animal are required. .
In addition, these experimental organisms are often observed alive, and the experimental organisms may move, so there is a case where an individual who has been observed may be lost if switching from low magnification to high magnification is not performed instantaneously.

実体顕微鏡の蛍光観察は目視観察により実験動物の蛍光をチェックするため、明るい蛍光像が得られた方が効率良く標本を選別することが可能となる。このため、例えば図2に示した実体顕微鏡において、より明るく標本を観察できるように、対物レンズ2および変倍光学系3aのレンズ径で決まる開口数(NA)を大きくする必要がある。焦点距離の短い対物レンズを使用すればNAを大きくすることができるため、複数の倍率の対物レンズを用意すれば、低倍率から高倍率まで高いNAで観察することが可能となる。   In the fluorescence observation of the stereomicroscope, the fluorescence of the experimental animal is checked by visual observation. Therefore, it is possible to select the specimen more efficiently if a bright fluorescence image is obtained. Therefore, for example, in the stereomicroscope shown in FIG. 2, it is necessary to increase the numerical aperture (NA) determined by the lens diameters of the objective lens 2 and the variable magnification optical system 3a so that the specimen can be observed more brightly. If an objective lens having a short focal length is used, the NA can be increased. Therefore, if an objective lens having a plurality of magnifications is prepared, observation can be performed with a high NA from a low magnification to a high magnification.

特開平10−26729には同焦の等しい倍率の異なった対物レンズが開示されている。異なった倍率の対物レンズにて同焦距離が同じならば、レボルバ等で対物レンズを切り替えたときに焦点を合わせなおすことが不要となり作業性が格段に向上する。しかし、特開平10−26729に開示されている同焦距離の等しい対物レンズの倍率は1×対物レンズと0.5×対物レンズであり、細胞レベルでの蛍光チェックで必要な1×を超える倍率の対物レンズの同焦距離対物レンズについてはなんら開示されていない。   Japanese Patent Laid-Open No. 10-26729 discloses different objective lenses having the same magnification and the same magnification. If the focal length is the same for objective lenses with different magnifications, it is not necessary to refocus when the objective lens is switched by a revolver or the like, and the workability is greatly improved. However, the magnification of the objective lens with the same focal distance disclosed in JP-A-10-26729 is 1 × objective lens and 0.5 × objective lens, and the magnification exceeding 1 × necessary for the fluorescence check at the cell level. There is no disclosure of a confocal distance objective lens.

特開2004−54259では高倍率をもち、口径食なしで観察される実体顕微鏡対物レンズが開示されている。しかし、特開2004−54259では対物レンズ間の同焦距離には何も触れられていない。

本発明は、上記に鑑みてなされたものであって、低倍から高倍までを複数の対物レンズで同焦距離が同じで作業性がよく明るい像観察が可能な実体顕微鏡を提供することを目的とする。
Japanese Patent Application Laid-Open No. 2004-54259 discloses a stereomicroscope objective lens that has a high magnification and is observed without vignetting. However, Japanese Patent Laid-Open No. 2004-54259 does not mention anything about the focal distance between the objective lenses.

The present invention has been made in view of the above, and an object of the present invention is to provide a stereomicroscope capable of observing a bright image with good operability and the same focal length with a plurality of objective lenses from low magnification to high magnification. And

上述した課題を解決し、目的を達成するために、物体からの光をアフォーカル光束に変換する対物レンズと、その対物レンズを射出した光を受けて左右の像を形成する2つのズーム観察光学系を備えた単対物型双眼実体顕微鏡において、少なくとも2本の対物レンズを装着できる対物レンズ切替機構を備え、
少なくとも2本の対物レンズの同焦距離が一定であり、
以下の条件(1)、(2)、(3)を満たし、同焦距離が一定で最も焦点距離が短い対物レンズの最先端部のレンズの径が以下の条件(5)を満たすことを特徴とする実体顕微鏡。
(1) fa/fb≧2
(2) 1.4<|L/fav|<2.2
(3) D/fb≧0.6
(5)R<1.9×sin(α+θ)×WD
ここでfaは同焦距離が一定の対物レンズのうち最も焦点距離が長い対物レンズの焦点距離、fbは同焦距離が一定の対物レンズのうち最も焦点距離が短い対物レンズの焦点距離を示す。Lは同焦距離、favはfaとfbの平均焦点距離、Dは該ズーム観察光学系の最も対物レンズ側のレンズの有効径を示し、Rは前記最先端部のレンズ半径、WDは前記最も焦点距離の短い対物レンズの作動距離である。
θ、αは以下の式で表される。
(6) θ=sin-1(NA/n)
(7) α=sin-1(l/(2×fb))
lは変倍光学系の光軸間距離であり、NAは前記最も焦点距離の短い対物レンズのNAである。nは対物レンズと標本の間の媒質の屈折率を示す。
In order to solve the above-described problems and achieve the object, an objective lens that converts light from an object into an afocal beam and two zoom observation optics that receive the light emitted from the objective lens and form left and right images In a single-objective binocular stereomicroscope equipped with a system, an objective lens switching mechanism capable of mounting at least two objective lenses is provided,
The focal distance of at least two objective lenses is constant,
The following conditions (1), that satisfy (2), (3) meets, parfocal distance the diameter of the distal end portion of the lens on the most short focal length objective lens at a constant is less than the condition (5) A feature stereo microscope.
(1) fa / fb ≧ 2
(2) 1.4 <| L / fav | <2.2
(3) D / fb ≧ 0.6
(5) R <1.9 × sin (α + θ) × WD
Here, fa represents the focal length of the objective lens having the longest focal length among the objective lenses having the constant focal length, and fb represents the focal length of the objective lens having the shortest focal length among the objective lenses having the constant focal length. L is parfocal distance, Retweeted average focal length of fa and fb, D will indicate the effective diameter of the most objective side lens of the zoom observation optical system, R represents the lens radius of the cutting edge portion, WD is the This is the working distance of the objective lens with the shortest focal length.
θ and α are expressed by the following equations.
(6) θ = sin −1 (NA / n)
(7) α = sin −1 (l / (2 × fb))
l is the distance between the optical axes of the variable magnification optical system, and NA is the NA of the objective lens with the shortest focal length. n represents the refractive index of the medium between the objective lens and the sample.

また、請求項2にかかる実体顕微鏡は、上記の発明において、請求項1記載の実体顕微鏡において以下の条件式を満たすことを特徴とする実体顕微鏡
(4) fa/fb≧2.5
A stereomicroscope according to claim 2 is characterized in that, in the above invention, the stereomicroscope according to claim 1 satisfies the following conditional expression: (4) fa / fb ≧ 2.5

本発明にかかる実体顕微鏡によれば、低倍率から高倍率まで幅広い倍率領域で対物レンズの同焦距離が一定で、作業性の良い観察が可能となる。   According to the stereomicroscope according to the present invention, it is possible to perform observation with good workability with a constant focal distance of the objective lens in a wide magnification range from low magnification to high magnification.

以下、添付図面を参照して、本発明にかかる実体顕微鏡の好適な実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。さらに、参照する図面には、本発明にかかる実体顕微鏡に対して便宜的に設定したXY座標系を適宜付して示している。 Preferred embodiments of a stereomicroscope according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals. Furthermore, in the drawings to be referred to, an XY coordinate system set for convenience with respect to the stereomicroscope according to the present invention is appropriately attached and shown.

(実施の形態)
まず、本発明の実施の形態にかかる実体顕微鏡について説明する。図1は、本実施の形態にかかる実体顕微鏡の要部構成を示す図である。図1に示すように、本実施の形態の実体顕微鏡は、内部に照明光学系を有する照明架台1上に、2本の低倍対物レンズ2、高倍対物レンズ11と、2本の対物レンズを切替可能なレボルバ9と、変倍ユニットとしてのズーム鏡体3と、焦準機構4と、鏡筒ユニットとしての双眼実体鏡筒5と、双眼の接眼レンズ6とを備える。
(Embodiment)
First, a stereomicroscope according to an embodiment of the present invention will be described. FIG. 1 is a diagram illustrating a main configuration of a stereomicroscope according to the present embodiment. As shown in FIG. 1, the stereomicroscope of the present embodiment includes two low-magnification objective lenses 2, a high-magnification objective lens 11, and two objective lenses on an illumination base 1 having an illumination optical system inside. A switchable revolver 9, a zoom lens body 3 as a zoom unit, a focusing mechanism 4, a binocular body lens barrel 5 as a lens barrel unit, and a binocular eyepiece 6 are provided.

ズーム鏡体3は、焦準機構4を介して照明架台1上に設けられ、底部に対物レンズ2が取り付けられるとともに、上部に双眼実体鏡筒5および接眼レンズ6が搭載されている。また、ズーム鏡体3は、内部に2つの変倍光学系が設けられており、この変倍光学系は、ズーム鏡体3の側面部に突設されたズームハンドル3hの回動操作に連動し、ズーム変倍される。   The zoom lens body 3 is provided on the illumination base 1 via the focusing mechanism 4, the objective lens 2 is attached to the bottom, and the binocular stereo barrel 5 and the eyepiece 6 are mounted on the top. In addition, the zoom lens body 3 is provided with two variable power optical systems, and the variable power optical system is interlocked with the rotation operation of the zoom handle 3h protruding from the side surface of the zoom lens body 3. And zoomed.

焦準機構4は、照明架台1上に突設された支持部7に固定される固定部4aと、固定部4aに対して上下動自在に取り付けられる可動部4bとを用いて構成されている。固定部4aと可動部4bとは図示しないラック・ピニオンによって係合され、可動部4bは、その側面部に突設された焦準ハンドル4cの回動操作に連動し、固定部4aに対して上下動する。これによって、焦準機構4は、可動部4bに取り付けられたズーム鏡体3とともに対物レンズ2、双眼実体鏡筒5および接眼レンズ6を昇降移動させ、標本SPに対する焦点合わせを行う。   The focusing mechanism 4 is configured by using a fixed portion 4a fixed to a support portion 7 protruding on the illumination base 1 and a movable portion 4b attached to the fixed portion 4a so as to be movable up and down. . The fixed portion 4a and the movable portion 4b are engaged by a rack and pinion (not shown), and the movable portion 4b is interlocked with the turning operation of the focusing handle 4c projecting from the side surface thereof, and is fixed to the fixed portion 4a. Move up and down. As a result, the focusing mechanism 4 moves the objective lens 2, the binocular stereo barrel 5 and the eyepiece lens 6 together with the zoom lens body 3 attached to the movable portion 4b to perform focusing on the specimen SP.

標本SPは、照明架台1の上面部に嵌設されたガラスプレート8上に載置され、対物レンズ2の光軸OA近傍に配置されるとともに、照明架台1の内部に設けられた図示しない照明光学系を用いて透過照明される。照明された標本SPは、対物レンズ2、ズーム鏡体3、双眼実体鏡筒5および接眼レンズ6を介して観察される。   The specimen SP is placed on the glass plate 8 fitted on the upper surface portion of the illumination base 1 and is arranged in the vicinity of the optical axis OA of the objective lens 2 and is provided in the illumination base 1 and is not shown. Transmission illumination is performed using an optical system. The illuminated specimen SP is observed through the objective lens 2, the zoom lens body 3, the binocular stereo barrel 5 and the eyepiece lens 6.

つづいて、本実施の形態の実体顕微鏡が内部に備える光学系について説明する。図2は、ズーム鏡体3および双眼実体鏡筒5が内部に備える光学系の要部構成を示す図である。   Next, an optical system provided in the stereomicroscope of the present embodiment will be described. FIG. 2 is a diagram illustrating a configuration of a main part of an optical system provided in the zoom lens body 3 and the binocular stereo barrel 5.

ズーム鏡体3は、図2に示すように、ズーム変倍可能な2つのアフォーカル変倍光学系3L,3Rを備える。変倍光学系3L,3Rは、ともにレンズ3a〜3cを用いて構成されており、それぞれ入射された平行光束を異なる光束径の平行光束に変換して射出する。変倍光学系3L,3Rは、対物レンズ2の光軸OAに対して対称にX軸方向に並設されており、各光軸OL1,OR1間の光軸間距離L1は、標本SPの観察に適した立体視が可能な値として、例えば32mmに設定される。 As shown in FIG. 2, the zoom lens body 3 includes two afocal variable magnification optical systems 3L and 3R capable of zoom variable magnification. The variable magnification optical systems 3L and 3R are both configured using lenses 3a to 3c, and each incident parallel light beam is converted into a parallel light beam having a different light beam diameter and emitted. The variable magnification optical systems 3L and 3R are arranged in parallel in the X-axis direction symmetrically with respect to the optical axis OA of the objective lens 2, and the distance L1 between the optical axes OL1 and OR1 is the observation of the specimen SP. For example, the value is set at 32 mm as a value suitable for stereoscopic viewing.

実体顕微鏡では変倍光学系の倍率が最大時時にNAが最大となり、そのときのNAは以下の式で表される。
(8) NA=D/(2×f)
ここでDは該ズーム変倍の最も対物レンズ側のレンズの有効径で、図2では3aの有効径に相当する。fは対物レンズの焦点距離を示す。(6)式の通り、明るい像観察をするために大きなNAを確保する場合は、ズーム変倍光学系のレンズ径を大きくするか対物レンズの焦点距離を短くする必要がある。しかし、ズーム変倍光学系のレンズ径を大きくしすぎると対物レンズの径も大きくなり標本への作業性が悪くなるため、Dを大きくするのは制限がある。このため、変倍範囲を広くして、作業性がよく明るい像観察を行うためにはDをある程度大きくしつつ、複数の焦点距離の対物レンズを切り替えるのが望ましい。
In a stereomicroscope, the NA is maximized when the magnification of the zoom optical system is maximum, and the NA at that time is expressed by the following equation.
(8) NA = D / (2 × f)
Here, D is the effective diameter of the lens closest to the objective lens for zoom magnification, and corresponds to the effective diameter of 3a in FIG. f indicates the focal length of the objective lens. As shown in equation (6), in order to secure a large NA for bright image observation, it is necessary to increase the lens diameter of the zoom variable power optical system or shorten the focal length of the objective lens. However, if the lens diameter of the zoom variable-power optical system is made too large, the diameter of the objective lens becomes large and the workability on the specimen deteriorates, so there is a limit to increasing D. Therefore, in order to widen the zooming range and perform bright image observation with good workability, it is desirable to switch the objective lens having a plurality of focal lengths while increasing D to some extent.

本実施の形態では以下の倍率の対物レンズが使用可能であり、それぞれ同焦が同じとなっているので、レボルバに取り付けて倍率変換したときにピントを合わせなおす必要がない。高倍率の対物レンズは作動距離が短いため、標本の操作性が悪くなる傾向がある。このため、高倍対物レンズ11は先端部がテーパ状になっており、標本の作業性を向上させている。実施の形態では1×対物レンズの焦点距離を100mmとしている。各対物レンズの同焦距離は180mmであり、変倍レンズの先玉のレンズ径はΦ31.25で設計を行っている。

表1.実施の形態の対物レンズ

Figure 0004939831
In the present embodiment, objective lenses having the following magnifications can be used, and the same in-focus state is the same, so there is no need to refocus when attached to a revolver and converted in magnification. Since the high-power objective lens has a short working distance, the operability of the sample tends to deteriorate. For this reason, the high-magnification objective lens 11 has a tapered tip, which improves the workability of the specimen. In the embodiment, the focal length of the 1 × objective lens is 100 mm. The focal length of each objective lens is 180 mm, and the lens diameter of the front lens of the variable power lens is designed to be Φ31.25.

Table 1. Objective lens of embodiment
Figure 0004939831

本実施の形態の対物レンズのレンズデータを以下に示す。それぞれ標本面からの追跡データである。またレンズの外観図を図3〜6に、それぞれのズーム最高倍率時の横球面収差図を図7〜10に示す。収差図中の実線は587.56nm、点線は656.27nm、1点鎖線は486.13nm、破線は435.84nmの波長の収差を表す。

表2.0.5×対物レンズのレンズデータ

Figure 0004939831
表3.1×対物レンズのレンズデータ
Figure 0004939831
表4.1.6×対物レンズのレンズデータ
Figure 0004939831
表5.2×対物レンズのデータ
Figure 0004939831
本実施の形態では0.5×対物レンズと1×対物レンズ、1.6×対物レンズと2×対物レンズの同焦がすべて揃っているため、標本全体の観察から細胞レベルまでの高倍率観察まで対物レンズの倍率を切替えたときのピント合わせが必要なく、作業性の良い観察が可能となる。 Lens data of the objective lens according to the present embodiment is shown below. Each is tracking data from the specimen surface. 3 to 6 are external views of the lens, and FIGS. 7 to 10 are lateral spherical aberration diagrams at the respective zoom maximum magnifications. In the aberration diagrams, a solid line represents 587.56 nm, a dotted line represents 656.27 nm, a one-dot chain line represents 486.13 nm, and a broken line represents an aberration having a wavelength of 435.84 nm.

Table 2. Lens data of 0.5 × objective lens
Figure 0004939831
Table 3.1 Lens data of objective lens
Figure 0004939831
Table 4. Lens data of 1.6 × objective lens
Figure 0004939831
Table 5.2 x Objective lens data
Figure 0004939831
In this embodiment, the 0.5 × objective lens and 1 × objective lens, and the 1.6 × objective lens and 2 × objective lens are all in focus. It is not necessary to focus when the magnification of the objective lens is switched, and observation with good workability is possible.

本実施の形態の対物レンズは以下の条件式を満たす。
(1) fa/fb≧2
(2) 1.4<|L/fav|<2.2
(3) D/fb≧0.6
(1)式は、例えば0.5×対物レンズと1×対物レンズを使用した場合は 2となり、0.5×対物レンズと2×対物レンズを使用した場合は4となる。この条件式を下回ると対物レンズの切替時の倍率の差が少なくなり、低倍から高倍までの広い範囲への対応ができなくなる。
(1)式は範囲が広いと対物レンズの切替時の変換倍率差が大きくなるため、以下の(4)式を満たすのが望ましい。
(4)fa/fb≧2.5

(2)式は、L=180、favは0.5×対物レンズと2×対物レンズの平均焦点距離なので125となり、1.44となる。この条件式の下限を下回ると焦点距離に対して同焦が短くなり、焦点距離が長い低倍率対物レンズにおいて同焦を合わせるのが困難になる。上限を上回ると対物レンズの作動距離の確保や低倍対物レンズ設計では有利だが、対物レンズ自体が長くなることによる接眼レンズの位置が机上面よりも高くなりすぎて作業性が悪くなる。
また、同様な理由で以下の条件式を満たすことが望ましい。
(2’) 1.3<|L/fav|<1.7
(3)式は明るい観察ができる条件であり、本実施の形態ではD=31.25mm、fbは2×対物レンズの焦点距離50mmとなり0.625となる。これの下限を下回ると対物レンズのNAを大きくできなくなり、対物レンズの倍率を切替る効果が少なくなってしまう。


また、本実施の形態の2×対物レンズは以下の条件式を満たす。
(5) R<1.9×sin(α+θ)×WD
ここでRは該最先端部のレンズ半径、αは対物レンズの内向角、θは対物レンズのNAで決まる光線取り込み角度で以下の式で表される。
(6) θ=sin-1(NA/n)
NAは対物レンズのNAであり、nは対物レンズと標本面の間の媒質の屈折率であり、実体顕微鏡では通常1である。本実施の形態ではNAが0.3であるため、θは17.46度となる。
内向角αは以下の式で表される。
(9) α=sin-1(/(2×fob))
は光軸間距離であり、本実施の形態では32、fobは対物レンズの焦点距離であり、本実施の形態では2×対物レンズの焦点距離で50であり、αは18.66度となる。このため、本実施の形態では(5)式の左辺は21.43となり、Rは25.5mmとなっている。

表6.本実施の形態の2×対物レンズのデータ

Figure 0004939831
(5)式は同焦距離が等しい対物レンズのうち最も高倍率の対物レンズの先端部を細くして作業性を向上させるための条件である。高倍率の対物レンズは作動距離が短くなるため、標本の作業性や標本の視認性が悪くなる。実体顕微鏡では最も標本側のレンズの径はズーム変倍光学系を最低倍率にしたときの光線径にて決まる。(5)式の範囲に入ると、ズームレンズの最低倍率の光線径よりも先端部のレンズの径が小さくなり、ズーム最低倍率で視野がけられることとなる。しかし、本実施の形態は同焦距離が一致した低倍率の対物レンズを切替可能なため、低倍率観察は例えば0.5×対物レンズで観察し、高倍率での観察は2×対物レンズで観察するようにすれば問題ない。
2×対物レンズの先端部の断面図を図11に示す。図11の先端部の接合レンズ25はそれより像側の単レンズ26に比べ外径を小さくして先端部が細くなるようにしている。また対物レンズ先端部にはテーパー状のカバー27が取り付けられており、カバー27により先端部の凹凸がなく標本面への作業性を向上させる。 The objective lens according to the present embodiment satisfies the following conditional expression.
(1) fa / fb ≧ 2
(2) 1.4 <| L / fav | <2.2
(3) D / fb ≧ 0.6
The formula (1) is, for example, 2 when 0.5 × objective lens and 1 × objective lens are used, and 4 when 0.5 × objective lens and 2 × objective lens are used. Below this conditional expression, the difference in magnification at the time of switching of the objective lens decreases, and it becomes impossible to deal with a wide range from low magnification to high magnification.
If the range of the expression (1) is wide, the difference in conversion magnification at the time of switching of the objective lens becomes large, so it is desirable to satisfy the following expression (4).
(4) fa / fb ≧ 2.5

In the formula (2), L = 180, and fav is an average focal length of 0.5 × objective lens and 2 × objective lens, which is 125, which is 1.44. If the lower limit of this conditional expression is not reached, confocality becomes shorter with respect to the focal length, and it becomes difficult to achieve the same focal point in a low-magnification objective lens having a long focal length. Exceeding the upper limit is advantageous in securing the working distance of the objective lens and designing a low-magnification objective lens, but the position of the eyepiece due to the length of the objective lens itself becomes too higher than the desk surface, resulting in poor workability.
For the same reason, it is desirable to satisfy the following conditional expression.
(2 ′) 1.3 <| L / fav | <1.7
Equation (3) is a condition that enables bright observation. In the present embodiment, D = 31.25 mm, and fb is 2 × the focal length of the objective lens is 50 mm, which is 0.625. Below this lower limit, the NA of the objective lens cannot be increased, and the effect of switching the magnification of the objective lens is reduced.


Further, the 2 × objective lens of the present embodiment satisfies the following conditional expression.
(5) R <1.9 × sin (α + θ) × WD
Here, R is the lens radius of the foremost part, α is the inward angle of the objective lens, and θ is the light beam capture angle determined by the NA of the objective lens, and is expressed by the following equation.
(6) θ = sin −1 (NA / n)
NA is the NA of the objective lens, n is the refractive index of the medium between the objective lens and the sample surface, and is usually 1 in a stereomicroscope. In this embodiment, since NA is 0.3, θ is 17.46 degrees.
The inward angle α is expressed by the following formula.
(9) α = sin −1 ( l / (2 × fob))
l is the distance between the optical axes, 32 in the present embodiment, fob is the focal length of the objective lens, 50 in the present embodiment is 2 × the focal length of the objective lens, and α is 18.66 degrees. Become. For this reason, in this Embodiment, the left side of (5) Formula is 21.43 and R is 25.5 mm.

Table 6. 2 × objective lens data of this embodiment
Figure 0004939831
Expression (5) is a condition for improving workability by narrowing the tip of the objective lens with the highest magnification among objective lenses having the same focal distance. Since the high-power objective lens has a short working distance, the workability of the specimen and the visibility of the specimen deteriorate. In the stereomicroscope, the diameter of the lens on the most specimen side is determined by the light beam diameter when the zoom magnification optical system is set to the minimum magnification. When entering the range of the expression (5), the diameter of the lens at the tip is smaller than the diameter of the light beam at the minimum magnification of the zoom lens, and the field of view can be set at the minimum zoom magnification. However, since the low magnification objective lens having the same focal distance can be switched in this embodiment, the low magnification observation is performed with, for example, a 0.5 × objective lens, and the high magnification observation is performed with a 2 × objective lens. There is no problem if you observe.
A cross-sectional view of the tip of the 2 × objective lens is shown in FIG. The cemented lens 25 at the distal end in FIG. 11 has a smaller outer diameter than the single lens 26 on the image side so that the distal end is thinner. Further, a tapered cover 27 is attached to the distal end portion of the objective lens, and the cover 27 has no irregularities on the distal end portion and improves workability on the specimen surface.

(付記1)
付記1記載の実体顕微鏡において、同焦距離が一定な対物レンズが3種類以上あることを特徴とする実体顕微鏡
(付記2)
付記1記載の実体顕微鏡において、以下の条件を満たすことを特徴とする実体顕微鏡
(2’’) 1.3<|L/fav|<1.7
(付記3)
付記3記載の実体顕微鏡において、該最も焦点距離が短い対物レンズの先端部が標本側が細く像側が太いテーパ−部が設けられていることを特徴とする実体顕微鏡。
(Appendix 1)
The stereomicroscope according to appendix 1, characterized in that there are three or more types of objective lenses having a constant focal distance (appendix 2)
The stereomicroscope according to appendix 1, wherein a stereomicroscope characterized by satisfying the following conditions: (2 ″) 1.3 <| L / fav | <1.7
(Appendix 3)
The stereomicroscope according to appendix 3, wherein a tip portion of the objective lens having the shortest focal length is provided with a tapered portion with a thin specimen side and a thick image side.

本発明の実施の形態にかかる実体顕微鏡の構成を示す図である。It is a figure which shows the structure of the stereomicroscope concerning embodiment of this invention. 図1に示した実体顕微鏡が備える光学系の構成を示す図である。It is a figure which shows the structure of the optical system with which the stereomicroscope shown in FIG. 1 is provided. 本発明の実施の形態の0.5×対物レンズの断面図である。It is sectional drawing of the 0.5 * objective lens of embodiment of this invention. 本発明の実施の形態の1×対物レンズの断面図である。It is sectional drawing of the 1 * objective lens of embodiment of this invention. 本発明の実施の形態の1.6×対物レンズの断面図である。It is sectional drawing of the 1.6 * objective lens of embodiment of this invention. 本発明の実施の形態の2×対物レンズの断面図である。It is sectional drawing of the 2 * objective lens of embodiment of this invention. 0.5×対物レンズのズーム最高倍率時の縦球面収差図である。FIG. 5 is a longitudinal spherical aberration diagram at the maximum zoom magnification of 0.5 × objective lens. 1×対物レンズのズーム最高倍率時の縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the zoom of the 1 × objective lens is at the maximum magnification. 1.6×対物レンズのズーム最高倍率時の縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram at the time of 1.6 × objective lens zoom maximum magnification. 2×対物レンズのズーム最高倍率時の縦球面収差図である。FIG. 3 is a longitudinal spherical aberration diagram of the 2 × objective lens at the maximum zoom magnification. 2×対物レンズの先端部の断面図である。It is sectional drawing of the front-end | tip part of 2x objective lens. 実体顕微鏡の構成を示す図である。It is a figure which shows the structure of a stereomicroscope.

符号の説明Explanation of symbols

1 照明架台
2,11 対物レンズ
3 ズーム鏡体
3L,3R 変倍光学系
3a〜3c レンズ
3h ズームハンドル
4 焦準機構
4a 固定部
4b 可動部 4c 焦準ハンドル
5 双眼実体鏡筒
5La,5Ra 結像レンズ
6 接眼レンズ
7 支持部
8 ガラスプレート
21 ガラスプレート
23 ズーム鏡体
24 鏡筒
24L,24R 結像光学系
24La,24Ra 結像レンズ
24Lb,24Rb プリズム
24Lc,24Rc 接眼レンズ
L 光軸間距離
OA,OL1,OL2,OR1, 光軸
SP,SP’ 標本
25 2×対物レンズ先端部レンズ
26 2×対物レンズの単レンズ
27 2×対物レンズのカバー
DESCRIPTION OF SYMBOLS 1 Illumination stand 2,11 Objective lens 3 Zoom lens body 3L, 3R Variable magnification optical system 3a-3c Lens 3h Zoom handle 4 Focusing mechanism 4a Fixed part 4b Movable part 4c Focusing handle 5 Binocular stereo barrel 5La, 5Ra Imaging Lens 6 Eyepiece 7 Support unit 8 Glass plate 21 Glass plate 23 Zoom lens body 24 Lens barrel 24L, 24R Imaging optical system 24La, 24Ra Imaging lens 24Lb, 24Rb Prism 24Lc, 24Rc Eyepiece lens L Optical axis distance OA, OL1 , OL2, OR1, optical axis SP, SP ′ sample 25 2 × objective lens tip lens 26 2 × single lens of objective lens 27 2 × objective lens cover

Claims (4)

物体からの光をアフォーカル光束に変換する対物レンズと、その対物レンズを射出した光を受けて左右の像を形成する2つのズーム観察光学系を備えた単対物型双眼実体顕微鏡において、少なくとも2本の対物レンズを装着できる対物レンズ切替機構を備え、
少なくとも2本の対物レンズの同焦距離が一定であり、
以下の条件(1)、(2)、(3)を満たし、同焦距離が一定で最も焦点距離が短い対物レンズの最先端部のレンズの径が以下の条件(5)を満たすことを特徴とする実体顕微鏡。
(1) fa/fb≧2
(2) 1.4<|L/fav|<2.2
(3) D/fb≧0.6
(5)R<1.9×sin(α+θ)×WD
ここでfaは同焦距離が一定の対物レンズのうち最も焦点距離が長い対物レンズの焦点距離、fbは同焦距離が一定の対物レンズのうち最も焦点距離が短い対物レンズの焦点距離を示す。Lは同焦距離、favはfaとfbの平均焦点距離、Dは該ズーム観察光学系の最も対物レンズ側のレンズの有効径を示し、Rは前記最先端部のレンズ半径、WDは前記最も焦点距離の短い対物レンズの作動距離である。
θ、αは以下の式で表される。
(6) θ=sin-1(NA/n)
(7) α=sin-1(l/(2×fb))
lは変倍光学系の光軸間距離であり、NAは前記最も焦点距離の短い対物レンズのNAである。nは対物レンズと標本の間の媒質の屈折率を示す。
In a single objective binocular stereomicroscope having an objective lens that converts light from an object into an afocal beam and two zoom observation optical systems that receive the light emitted from the objective lens and form left and right images, at least 2 It has an objective lens switching mechanism that can be equipped with two objective lenses,
The focal distance of at least two objective lenses is constant,
The following conditions (1), that satisfy (2), (3) meets, parfocal distance the diameter of the distal end portion of the lens on the most short focal length objective lens at a constant is less than the condition (5) A feature stereo microscope.
(1) fa / fb ≧ 2
(2) 1.4 <| L / fav | <2.2
(3) D / fb ≧ 0.6
(5) R <1.9 × sin (α + θ) × WD
Here, fa represents the focal length of the objective lens having the longest focal length among the objective lenses having the constant focal length, and fb represents the focal length of the objective lens having the shortest focal length among the objective lenses having the constant focal length. L is parfocal distance, Retweeted average focal length of fa and fb, D will indicate the effective diameter of the most objective side lens of the zoom observation optical system, R represents the lens radius of the cutting edge portion, WD is the This is the working distance of the objective lens with the shortest focal length.
θ and α are expressed by the following equations.
(6) θ = sin −1 (NA / n)
(7) α = sin −1 (l / (2 × fb))
l is the distance between the optical axes of the variable magnification optical system, and NA is the NA of the objective lens with the shortest focal length. n represents the refractive index of the medium between the objective lens and the sample.
請求項1記載の実体顕微鏡において以下の条件式を満たすことを特徴とする実体顕微鏡
・ fa/fb≧2.5
The stereomicroscope according to claim 1, wherein the following conditional expression is satisfied .
・ Fa / fb ≧ 2.5
請求項1記載の実体顕微鏡において、同焦距離が一定な対物レンズが3種類以上あることを特徴とする実体顕微鏡。 2. The stereomicroscope according to claim 1, wherein there are three or more types of objective lenses having a constant focal distance. 請求項1記載の実体顕微鏡において、前記最も焦点距離が短い対物レンズの先端部が標本側が細く像側が太いテーパ−部が設けられていることを特徴とする実体顕微鏡。 2. The stereomicroscope according to claim 1, wherein a tip portion of the objective lens having the shortest focal length is provided with a tapered portion with a thin specimen side and a thick image side.
JP2006119287A 2006-04-24 2006-04-24 Stereo microscope Active JP4939831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119287A JP4939831B2 (en) 2006-04-24 2006-04-24 Stereo microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119287A JP4939831B2 (en) 2006-04-24 2006-04-24 Stereo microscope

Publications (3)

Publication Number Publication Date
JP2007292935A JP2007292935A (en) 2007-11-08
JP2007292935A5 JP2007292935A5 (en) 2009-06-18
JP4939831B2 true JP4939831B2 (en) 2012-05-30

Family

ID=38763630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119287A Active JP4939831B2 (en) 2006-04-24 2006-04-24 Stereo microscope

Country Status (1)

Country Link
JP (1) JP4939831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387960B2 (en) * 2009-06-15 2014-01-15 株式会社ニコン Objective lens for parallel stereo microscope
JP2012103503A (en) * 2010-11-10 2012-05-31 Nikon Corp Object lens for parallel system entity substance microscope
CN104730048B (en) * 2015-01-07 2017-07-07 鲁东大学 A kind of copper-base graphite alkene objective table mechanical control system for carrying fluorescent samples
US10254105B2 (en) * 2016-12-05 2019-04-09 Quality Vision International, Inc. Exchangeable lens module system for probes of optical measuring machines
KR20180076742A (en) * 2016-12-28 2018-07-06 삼성전기주식회사 Optical system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889849B2 (en) * 1996-05-08 2007-03-07 オリンパス株式会社 Microscope objective lens and single objective binocular stereomicroscope system
JP2000284184A (en) * 1999-01-28 2000-10-13 Nikon Corp Parallel system stereoscopic microscope and objective lens
DE10225194B4 (en) * 2002-06-06 2004-08-05 Leica Microsystems (Schweiz) Ag Lens changer and stereo microscope
DE10225192B4 (en) * 2002-06-06 2004-09-09 Leica Microsystems (Schweiz) Ag Objective for stereomicroscopes of the telescope type and stereomicroscope with such an objective

Also Published As

Publication number Publication date
JP2007292935A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5066350B2 (en) Greenough-type stereomicroscope
JP5536995B2 (en) Microscope objective lens and laser scanning microscope system
JP5240483B2 (en) Microscope equipment
JP2007065651A (en) Stereomicroscope
JP2002031758A (en) Microscope
JP5105882B2 (en) Stereo microscope
WO2016084494A1 (en) Objective optical system
JP4939831B2 (en) Stereo microscope
JP2006113486A (en) Immersion system microscope objective
US7476873B2 (en) Microscope system
JP2013235246A (en) Liquid immersion microscope objective lens and microscope including the same
JP4528497B2 (en) Objective lens for telescopic stereo microscope
JP5277178B2 (en) Telescope optics
JP5993250B2 (en) Immersion microscope objective lens and microscope using the same
US8482862B2 (en) Variable power optical system for stereomicroscope
US9195040B2 (en) Immersion microscope objective and microscope using the same
US9285576B2 (en) Stereoscopic microscope
JP3039388B2 (en) Microscope equipped with a first objective lens for extremely low magnification
JP2007310264A (en) Zoom microscope
JP2007292935A5 (en)
JP2012212096A (en) Microscopic optical system
JP2017111423A (en) Zoom objective lens
JP4742355B2 (en) Immersion microscope objective lens
JP2007133071A (en) Microscope objective lens of liquid immersion system
US7643216B2 (en) Microscope objective

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4939831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250