JP4938182B2 - Non-aqueous secondary battery - Google Patents
Non-aqueous secondary battery Download PDFInfo
- Publication number
- JP4938182B2 JP4938182B2 JP2001172054A JP2001172054A JP4938182B2 JP 4938182 B2 JP4938182 B2 JP 4938182B2 JP 2001172054 A JP2001172054 A JP 2001172054A JP 2001172054 A JP2001172054 A JP 2001172054A JP 4938182 B2 JP4938182 B2 JP 4938182B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水二次電池に関し、さらに詳しくは、高温貯蔵後あるいは充放電サイクル後のインピーダンス特性に優れた非水二次電池に関するものである。
【0002】
【従来の技術】
電子機器の小型化、携帯電話の普及に伴い、高エネルギー密度を有する二次電池への要求がますます高まっている。現在、この要求に応える高容量二次電池としては、正極活物質としてリチウム含有複酸化物であるLiCoO2、LiNiO2あるいはLiMn2O4などを用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池が商品化されている。このリチウムイオン二次電池は平均駆動電圧が3.6Vと高く、従来のニッケル−カドミウム電池やニッケル水素電池の平均駆動電圧の約3倍である。また、負極活物質として炭素系材料を用い、充放電に関与する移動体が軽金属であるリチウムであることから、軽量化も期待できる。今後、携帯情報末端機器の需要拡大により、高容量かつ軽量であるリチウムイオン二次電池の搭載はますます増加することが予測される。
【0003】
リチウムイオン二次電池は、従来のリチウム金属を負極とする非水二次電池とは異なり、上記活物質を結着剤などとともに溶液中に分散させたペーストとし、このペーストを用いて正極集電体、負極集電体ともに集電体の両面にそれぞれ活物質を含有する塗膜を形成し、正負極を作製する。そして、それらの帯状の電極はセパレータを介して渦巻状に巻回して電極体を形成し、電池缶に挿入して電池が構成されている。
【0004】
正極に使用されているリチウム含有複酸化物は電子伝導性に劣るため、カーボンブラック等の炭素材料系導電助剤を添加することにより電子伝導性を確保している(リチウムイオン二次電池第二版、芳尾真幸/小沢昭弥編 日刊工業新聞社)。
【0005】
【発明が解決しようとする課題】
リチウム二次電池の高容量化の進展に伴い、正極活物質の高比表面積化および導電助剤量の低減化が図られている。しかし、正極活物質の比表面積が増大するに伴い、活物質と導電助剤との接触面積が増加するため、導電助剤量を増加させないと電池のインピーダンスが高くなる。また、従来からの正極活物質、導電助剤および結合剤の混合・分散では、導電助剤量の低減は難しく、特に高温貯蔵後やサイクル後のインピーダンスの上昇を抑制することはできなかった。
【0006】
本発明の目的は、高温貯蔵後や充放電サイクル後のインピーダンス特性に優れた非水二次電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、これらの課題を解決するために様々な検討を行った結果、正極活物質の表面をシラン化合物および導電助剤で被覆することにより、従来の正極活物質と導電助剤とを混合して用いたリチウムイオン二次電池の電池特性に比べて、放電容量が向上するとともに、大幅なインピーダンス特性の改善が可能になるという知見を得た。
【0008】
【発明の実施の形態】
正極活物質の表面をシラン化合物および導電助剤で被覆する方法としては、例えば、活物質の表面をアルコキシシランなどのシラン化合物で被覆し、これに導電助剤を付着させ、さらに熱処理を行うなどの方法が考えられる。
【0009】
アルコキシシランによる被覆処理は、アルコキシランを水あるいはアルコールに添加したアルコキシシラン溶液を用いて行うことができる。具体的には、分散機などにより正極活物質とアルコキシシラン溶液とを混合攪拌する方法や、アルコキシシラン溶液を噴霧して正極活物質に被覆させる方法があげられるが、特に限定されることはない。
【0010】
上記アルコキシシランの被覆後に、さらに導電助剤を均一に付着させる。具体的には、ボールミルやニーダーなどの分散機を用いて、アルコキシシランで被覆された正極活物質と導電助剤を混合する方法が好ましいが、特に限定されることはない。
【0011】
導電助剤を付着した後は、熱処理を行うことで正極活物質と導電助剤との接着を安定化させ、正極活物質の表面に、アルコキシシランを熱処理して形成される化合物と導電助剤とを密着させた正極活物質を得ることができる。
【0012】
本発明の正極活物質では、活物質表面に導電助剤が均一に付着するため、導電性が大幅に向上し、従来に比べて導電助剤の添加量を大幅に低減することができる。従って、従来よりも導電助剤の添加量を低減しながら、インピーダンス特性に優れた非水二次電池を提供することが可能になる。
【0013】
本発明で用いる正極活物質の体積抵抗率を測定したところ、未処理の正極活物質に比べて低い数値を示すとともに、この活物質を使用したリチウムイオン二次電池では、優れたインピーダンス特性が示された。これは、導電助剤が、アルコキシシランを熱処理して形成される化合物とともに正極活物質の表面を均一に、強い結合で被覆しているため、電子伝導性が優れていることによるものと推察される。さらに、塗膜中では、正極活物質同士の接触面積が減少し、活物質と導電助剤あるいは導電助剤同士の接触面積が大きく増加することにより、優れた導電パスが形成されたためであると考えられる。また、充放電の繰り返しや貯蔵試験など過酷な条件下においても、前記の導電パスは安定に存在することができるので、優れたインピーダンス特性が維持される。
【0014】
上記アルコキシシランとしては、式(1)で表記される化合物が好ましく用いられる。
【0015】
Xa−Si−R4-a 式(1)
(式中Xは、−C6H5、−(CH3)2CHCH2、−CmCH2m+1のいずれかであり、Rは−OCH3、−OC2H5、−OC3H7であり、a:0〜3の整数、m:1〜12の整数である。)
【0016】
具体的には、メチルトリエトキシシラン、ジメチルジエトキシシラン、テトラエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、メチルトリメトキシシラン、テトラメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン、メチルトリブトキシシラン、ジメチルブトキシシラン、テトラエトキシシラン、デシルトリブトキシシラン等が挙げられる。
【0017】
導電助剤として炭素材料を用いる場合は、それへの吸着効果を考慮した場合、メチルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、イソブチルトリメトキシシラン、フェニルトリメトキシシランが好ましく、メチルトリエトキシシラン、メチルトリメトキシシランが最も好ましい。
【0018】
本発明において、アルコキシシランを熱処理して形成される化合物の被覆量は、正極活物質100質量部に対して、0.01質量部から5質量部の範囲とする。より好ましくは、0.03質量部から3質量部であり、更に好ましくは、0.05質量部から1質量部である。
【0019】
0.01質量部未満の被覆量であると、正極活物質に対する前記化合物の被覆量は少なくなりすぎるため、導電助剤の付着を十分に行うことが困難である。体積抵抗率測定装置を使用して測定したところ、0.01質量部以上が好ましい被覆量であることがわかった。
【0020】
一方、5質量部を超える被覆量であると、正極活物質の体積割合が減少するほか、前記化合物の過剰な被覆により充放電反応が阻害され、容量の低下を招くことが考えられるため、5質量部以下の範囲とすることが好ましい。
【0021】
導電助剤としては炭素材料や金属粉末などを用いることができるが、黒鉛系材料、ファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック等、市販の炭素材料を好ましく使用することができる。具体的には、♯3050、♯3030、♯3040、♯3230、♯3350、♯52、♯50、♯47、♯45、♯33、♯32、♯30、♯650、♯750、♯850、♯2200、♯2600(三菱化学)バルカンXC−72、バルカンXC−72R、Black Pearls3500、Black Pearls120、Black Pearls800、Black Pearls1400(Cabot)デンカブラック(電気化学工業)、ケッチェンブラックEC、ケッチェンブラックEC600JD(ケッチェンブラック・インターナショナル)、Raven14、Raven22、Raven2000(Columbian)等が挙げられるが、これらに限定する必要性はない。
【0022】
アルコキシシランが被覆した正極活物質に対する導電助剤の付着量は、正極活物質100質量部に対して、0.1質量部から10質量部であることが好ましい。より好ましくは、0.5質量部から5質量部である。
【0023】
0.1質量部未満の添加量であると、シラン化合物が被覆した正極活物質への付着量が不足するため、体積抵抗率が高く、電池におけるインピーダンス低減にはあまり効果的でない。
【0024】
10質量部を超える添加量であると、正極活物質の体積割合が減少して容量の低下を招くため、10質量部以下の範囲が好ましい。
【0025】
導電助剤の粒径は、0.005μmから1μmが好ましい。より好ましいのは、0.01μmから0.5μm、さらに好ましくは0.015μmから0.1μmである。
【0026】
0.005μm未満の粒径をもつ導電助剤は、非常に小粒径であるためハンドリングが悪く、生産性が悪くなる。また、1μmを超える粒径をもつ導電助剤は、正極活物質を被覆した場合、導電助剤同士の接触面積が低減され、電子伝導性を高める効果が得られ難い。
【0027】
正極活物質はLiCoO2、LiMn2O4あるいはLiNiO2等に代表されるリチウム含有複酸化物が好ましく用いられる。本発明の効果は公知された正極活物質であれば、特に限定はないが、BET比表面積が0.5m2/g以上を有する正極活物質を用いた場合、より本発明の効果が顕著に表れる。高比表面積を有する正極活物質は、正極電極中において、活物質同士の接触面積が増加するため、インピーダンス特性の低下が生じやすくなる。しかし、本発明により、正極活物質表面に導電助剤が均一に付着した場合、優れた電子伝導性を有する正極活物質となり、さらに導電助剤同士の接触面積が増加し、インピーダンス特性に優れた非水二次電池を提供することが可能になる。
【0028】
正極活物質は、乳鉢や粉砕機などにより、機械的に乾式粉砕を行うことが望ましい。これは、アルコキシシランによるシラン化合物被覆処理前に、よりシラン化合物が被覆しやすい状態に正極活物質の凝集体を解きほぐすためである。正極活物質の粉砕処理は、乳鉢や粉砕機に限らず、機械的な分散および粉砕により、凝集体を解きほぐすものであれば、特に限定はされない。
【0029】
正極活物質の粒子表面に対してアルコキシシランを被覆する方法は、前述したように、正極活物質とアルコキシシランとを機械的に混合攪拌したり、正極活物質にアルコキシシランを噴霧しながら機械的に混合攪拌すればよい。被覆方法はこれらに限定されるものではない。これにより、添加したアルコキシシランは、ほぼ全量が正極活物質の粒子表面に被覆される。
【0030】
正極活物質とアルコキシシランとの攪拌するための機器としては、粉体層にせん断力を加えることのできる装置が好ましく、殊に、せん断、へらなで及び圧縮が同時に行える装置、例えば、ホイール形混練機、ボール型混練機、ブレード型混練機、ロール型混練機を用いることができる。本発明の実施にあたっては、ボール型混練機がより効果的に使用できる。
【0031】
上記ホイール型混練機としては、具体的に、マルチマル、ストッツミル、ウエットパンミル、コナーミル、リングマラー等がある。上記ボール型混練機としては、遊星ボールミル、サンドミル等がある。上記ブレード型混練機としては、具体的に、ヘンシェルミキサー、プラネタリーミキサー、ナウタミキサー、ブラベンダー等がある。上記ロール型混練機としては、具体的に、エクストルーダー等がある。
【0032】
混練に使用する混練機は、特にこれらに限定されない。
混合攪拌の条件は、正極活物質へのシラン化合物の被覆をより均一にすることが望ましい。回転数、分散時間、分散用ビーズ径等の調製を行い、分散時間は30分から60分程度の分散時間が好ましい。
【0033】
アルコキシシランはそのまま溶媒に希釈せず、添加して用いてもよいが、アルコールや水に希釈したアルコキシシラン溶液を用いることが好ましい。これは、より均一に正極活物質表面に被覆させるためには、より低粘度溶液を攪拌した方が好ましいためである。
【0034】
また、導電助剤を被覆させる分散時間は、導電助剤の比表面積および粒径にもよるが、30分から3時間程度行うことが好ましい。
【0035】
導電助剤をアルコキシシラン被覆正極活物質へ付着させた後、乾燥および加熱処理を行う。加熱処理温度は、50℃から150℃で行うことが好ましい。また、乾燥時間は10分から5時間程度行うことが好ましい。この熱処理工程により、アルコキシシランが安定な化合物となり、正極活物質の表面に導電助剤をより密着させた正極活物質が得られる。
【0036】
本発明においては、負極活物質、電解液などの他の構成要素は、特に限定されず、従来公知のものを用いることができる。
【0037】
【実施例】
以下、本発明に関する実施例および比較例を示して、その効果を具体的に説明するが、本発明はこれに限定されることはない。
【0038】
(実施例)
正極活物質の処理
正極活物質であるコバルト酸リチウム300gをジルコニアポットに入れ、遊星ボールミルにより回転数100rpmで10分間、凝集体を解きほぐした。このとき、ポット容積の1/3まで、φ=1mmのジルコニアビーズを入れて行った。以下同様のビーズを使用して分散を行った。
【0039】
その後、メチルトリエトキシシラン15gを150mlのエタノール溶液で混合希釈した後、このメチルトリエトキシシラン溶液をジルコニアポットに入れ、遊星ボールミルにより、250rpmで30分間攪拌を行い、正極活物質に対するアルコキシシランの被覆を行った。
【0040】
この正極活物質分散溶液に、導電助剤としてカーボンブラック♯3050(三菱化学社製)を6g添加し、軽く溶液中にカーボンブラックを浸漬させた後、遊星ボールミルにより、300rpmで3時間混合攪拌を行い、正極活物質表面に、活物質100質量部に対して2質量部のカーボンブラックを付着させた。
【0041】
得られた正極活物質分散液をろ過した後、乾燥機を用いて120℃、2時間熱処理を行い、残留している水分やエタノール等を揮発させた。これにより、アルコキシシランを熱処理して形成される化合物および導電助剤で表面を均一に被覆した正極活物質を得た。この正極活物質について、元素分析を行って前記化合物の被覆量を求めたところ、正極活物質100質量部に対して、Si換算で0.8質量部であった。
【0042】
正極の作製
前記被覆処理後の正極活物質を97質量部、結着剤としてポリフッ化ビニリデン(PVdF)を3質量部、分散溶媒として、N−メチルピロリドン(NMP)を使用し、プラネタリーミキサーで混合および分散を行い、正極塗料を調製した。上記正極塗料をメッシュ80の網を通過させ、粗大粒子を除去した後、20μm厚のアルミニウム箔からなる正極集電体の両面に均一に塗布し、乾燥して正極活物質含有塗膜を形成した。単位面積あたりの電極重量は、25.0mg/cm2であった。ただし、これより作られる正極を負極やセパレータなどと共に巻回構造の電極体にした時に、この帯状体を乾燥後、厚み170μmに圧縮成形した。切断後、アルミニウム製リード体を溶接して、シート状の正極を作製した。
【0043】
負極の作製
負極活物質として、002面の面間距離(d002):0.337nm、c軸方向の結晶子の大きさ(Lc):95nm、平均粒径:10μm、純度99.9%以上という特性を持つ黒鉛系炭素材料180質量部を、ポリフッ化ビニリデン14質量部をN−メチルピロリドン190質量部に溶解させた溶液と混合し、負極活物質含有ペーストを調製した。この負極活物質含有ペーストを厚さ10μmの帯状の銅箔からなる負極集電体の両面に均一に塗布し、乾燥して負極活物質含有塗膜を形成した。単位面積あたりの電極重量は11.8mg/cm2であった。この帯状体を乾燥後、厚み167μmに圧縮成形し、所定の大きさに切断した。次いで、ニッケル製のリード体を溶接して、帯状の負極を作製した。
【0044】
電解液の調製
メチルエチルカーボネートとエチレンカーボネートとを体積比2:1で混合した混合溶媒に、LiPF6 を1.2mol/lの濃度になるように溶解し、非水電解質(電解液)を調製した。
【0045】
二次電池の作製
上記正極および負極を乾燥処理後、正極および負極を厚さ25μmの微孔性ポリエチレンフィルムからなるセパレータを介して渦巻状に捲回し、捲回構造の電極体とした。これを袋状のアルミラミネートフィルム内に挿入し、上記電解液を注入した後、真空封止を行い、その状態で3時間室温放置し、正極、負極およびセパレータに電解液を十分に含浸させて非水二次電池を作製した。
【0046】
(比較例1)
シラン化合物および導電助剤で被覆処理を行った正極活物質に代えて、コバルト酸リチウムを95質量部用いて正極を作製した以外は、実施例と同様にして、非水二次電池を作製した。
【0047】
上記実施例および比較例の各非水二次電池について、充放電を繰り返した時の放電容量およびインピーダンスの変化を測定した。同様に貯蔵試験後の放電容量およびインピーダンスの変化も測定した。その結果を表1に示す。
【0048】
放電容量は、1Cの電流制限回路を設けて4.2Vの定電圧で充電を行い、電池の電圧が3Vに低下するまで放電を行ったときの容量で規定した。充放電の繰り返しによる容量の変化は、1サイクル目と300サイクル目の放電容量を測定することにより評価した。また、貯蔵特性については、60℃で1週間貯蔵後の放電容量を測定することにより評価した。
【0049】
表1には、比較例の電池の1サイクル目の放電容量を100とし、その放電容量に対する相対値で表した。
【0050】
また、インピーダンスは、電池容量と同様の条件で、LCRメータにより1kHzにおけるインピーダンスを測定し、比較例の1サイクル目のインピーダンスを100とする相対値で表した。
【0051】
【表1】
【0052】
シラン化合物および導電助剤で表面を被覆し、熱処理したコバルト酸リチウムを用いた実施例の非水二次電池は、比較例の電池と比べて1サイクル目の放電容量が高く、かつ、充放電サイクルを繰り返しても、あるいは、高温で貯蔵した後でも、放電容量の低下が少なかった。また、実施例の電池は、比較例に比べてインピーダンスが低く、300サイクル後および高温貯蔵後のインピーダンス上昇がほとんどないことがわかる。
【0053】
【発明の効果】
シラン化合物および導電助剤で被覆され、熱処理された正極活物質を非水二次電池の正極に用いることにより、放電容量が向上するとともに、大幅なインピーダンス特性の改善を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery having excellent impedance characteristics after high-temperature storage or after a charge / discharge cycle.
[0002]
[Prior art]
With the downsizing of electronic devices and the spread of mobile phones, there is an increasing demand for secondary batteries having high energy density. Currently, as a high-capacity secondary battery that meets this requirement, lithium-containing double oxides such as LiCoO 2 , LiNiO 2, or LiMn 2 O 4 are used as the positive electrode active material, and lithium using a carbon-based material as the negative electrode active material. Ion secondary batteries have been commercialized. This lithium ion secondary battery has a high average driving voltage of 3.6 V, which is about three times the average driving voltage of conventional nickel-cadmium batteries and nickel hydrogen batteries. In addition, since a carbon-based material is used as the negative electrode active material and the moving body involved in charge / discharge is lithium, which is a light metal, weight reduction can be expected. In the future, with the expansion of demand for portable information terminal equipment, it is predicted that the use of lithium-ion secondary batteries with high capacity and light weight will increase.
[0003]
Unlike conventional non-aqueous secondary batteries that use lithium metal as a negative electrode, a lithium ion secondary battery is a paste in which the above active material is dispersed in a solution together with a binder and the like. A coating film containing an active material is formed on both sides of the current collector and the negative electrode current collector, respectively, to produce positive and negative electrodes. These band-like electrodes are wound spirally through a separator to form an electrode body, which is inserted into a battery can to constitute a battery.
[0004]
Since the lithium-containing double oxide used in the positive electrode is inferior in electronic conductivity, the electron conductivity is ensured by adding a carbon material-based conductive additive such as carbon black (lithium ion secondary battery second Edition, Masayuki Yoshio / Akiya Ozawa, Nikkan Kogyo Shimbun).
[0005]
[Problems to be solved by the invention]
As the capacity of lithium secondary batteries increases, efforts have been made to increase the specific surface area of the positive electrode active material and to reduce the amount of conductive additive. However, as the specific surface area of the positive electrode active material increases, the contact area between the active material and the conductive additive increases, so that the impedance of the battery increases unless the amount of conductive additive is increased. Further, in the conventional mixing / dispersing of the positive electrode active material, the conductive auxiliary agent and the binder, it is difficult to reduce the amount of the conductive auxiliary agent, and in particular, it has not been possible to suppress an increase in impedance after high temperature storage or after cycling.
[0006]
An object of the present invention is to provide a non-aqueous secondary battery having excellent impedance characteristics after high-temperature storage and after a charge / discharge cycle.
[0007]
[Means for Solving the Problems]
As a result of various investigations to solve these problems, the present inventors have coated the surface of the positive electrode active material with a silane compound and a conductive auxiliary agent, so that a conventional positive electrode active material, a conductive auxiliary agent, As compared with the battery characteristics of the lithium ion secondary battery using a mixture of the above, it has been found that the discharge capacity is improved and the impedance characteristics can be greatly improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the method for coating the surface of the positive electrode active material with a silane compound and a conductive auxiliary agent include, for example, coating the surface of the active material with a silane compound such as alkoxysilane, attaching a conductive auxiliary agent thereto, and performing a heat treatment. Can be considered.
[0009]
The coating treatment with alkoxysilane can be performed using an alkoxysilane solution in which alkoxysilane is added to water or alcohol. Specific examples include a method of mixing and stirring the positive electrode active material and the alkoxysilane solution with a disperser and the like, and a method of spraying the alkoxysilane solution to coat the positive electrode active material, but is not particularly limited. .
[0010]
After the alkoxysilane coating, a conductive additive is further uniformly deposited. Specifically, a method of mixing a positive electrode active material coated with alkoxysilane and a conductive additive using a disperser such as a ball mill or a kneader is preferable, but is not particularly limited.
[0011]
After adhering the conductive auxiliary agent, heat treatment is performed to stabilize the adhesion between the positive electrode active material and the conductive auxiliary agent, and the compound formed by heat treating alkoxysilane on the surface of the positive electrode active material and the conductive auxiliary agent Can be obtained.
[0012]
In the positive electrode active material of the present invention, since the conductive auxiliary agent uniformly adheres to the surface of the active material, the conductivity is greatly improved, and the amount of the conductive auxiliary agent added can be greatly reduced as compared with the conventional case. Therefore, it is possible to provide a non-aqueous secondary battery having excellent impedance characteristics while reducing the amount of conductive additive added compared to the conventional case.
[0013]
When the volume resistivity of the positive electrode active material used in the present invention was measured, it showed a lower value than that of an untreated positive electrode active material, and a lithium ion secondary battery using this active material showed excellent impedance characteristics. It was done. This conductive auxiliary agent, a surface of the positive electrode active material uniformly with the compounds which are formed by heat-treating alkoxy silanes, because it covered a strong bond is presumed to be due to electron conductivity is excellent The Furthermore, in the coating film, the contact area between the positive electrode active materials is reduced, and the contact area between the active material and the conductive auxiliary agent or the conductive auxiliary agent is greatly increased, thereby forming an excellent conductive path. Conceivable. Further, even under harsh conditions such as repeated charge / discharge and storage tests, the conductive path can exist stably, so that excellent impedance characteristics are maintained.
[0014]
As said alkoxysilane, the compound represented by Formula (1) is used preferably.
[0015]
X a -Si-R 4-a Formula (1)
(Wherein X is, -C 6 H 5, - ( CH 3) 2 CHCH 2, are either -C m CH 2m + 1, R is -OCH 3, -OC 2 H 5, -OC 3 H 7 is a: an integer of 0-3, m: an integer of 1-12.)
[0016]
Specifically, methyltriethoxysilane, dimethyldiethoxysilane, tetraethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, methyltrimethoxysilane, tetramethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, isobutyltrimethoxy Examples include silane, decyltrimethoxysilane, methyltributoxysilane, dimethylbutoxysilane, tetraethoxysilane, decyltributoxysilane, and the like.
[0017]
When a carbon material is used as a conductive additive, methyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, isobutyltrimethoxysilane, and phenyltrimethoxysilane are preferable in consideration of the adsorption effect on the carbon material. Most preferred are silane and methyltrimethoxysilane.
[0018]
In the present invention, the amount of the compound formed by heat-treating alkoxysilane is in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material. More preferably, it is 0.03 mass part to 3 mass parts, More preferably, it is 0.05 mass part to 1 mass part.
[0019]
If it is a coverage of less than 0.01 part by weight, since the coating amount of the compound to the positive electrode active material is too small, it is difficult to sufficiently perform the deposition of the conductive additive. When it measured using the volume resistivity measuring apparatus, it turned out that 0.01 mass part or more is a preferable coating amount.
[0020]
On the other hand, if at a coverage of more than 5 parts by weight, since addition volume ratio of the positive electrode active material is reduced, the charge and discharge reaction is inhibited by an excess coating of the compound, it is considered that lead to a decrease in capacity, 5 It is preferable to set it as the range below a mass part.
[0021]
Carbon materials, metal powders, and the like can be used as the conductive aid, but commercially available carbon materials such as graphite materials, furnace black, channel black, acetylene black, and ketjen black can be preferably used. Specifically, # 3050, # 3030, # 3040, # 3230, # 3350, # 52, # 50, # 47, # 45, # 33, # 32, # 30, # 650, # 750, # 850, # 2200, # 2600 (Mitsubishi Chemical) Vulcan XC-72, Vulcan XC-72R, Black Pearls 3500, Black Pearls 120, Black Pearls 800, Black Pearls 1400 (Cabot) Denka Black (Electrochemical Industry), Ketjen Black EC, Ketjen Black EC600JD (Ketjen Black International), Raven14, Raven22, Raven2000 (Columbian), etc. are mentioned, but it is not necessary to limit to these.
[0022]
The adhesion amount of the conductive assistant to the positive electrode active material coated with alkoxysilane is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material. More preferably, it is 0.5 to 5 parts by mass.
[0023]
When the addition amount is less than 0.1 parts by mass, the amount of adhesion to the positive electrode active material coated with the silane compound is insufficient, so that the volume resistivity is high and it is not very effective in reducing the impedance in the battery.
[0024]
When the addition amount exceeds 10 parts by mass, the volume ratio of the positive electrode active material decreases and the capacity is reduced, and therefore the range of 10 parts by mass or less is preferable.
[0025]
The particle diameter of the conductive assistant is preferably 0.005 μm to 1 μm. More preferably, the thickness is 0.01 μm to 0.5 μm, and still more preferably 0.015 μm to 0.1 μm.
[0026]
A conductive additive having a particle size of less than 0.005 μm has a very small particle size, so that handling is poor and productivity is poor. In addition, when the conductive assistant having a particle size exceeding 1 μm is coated with the positive electrode active material, the contact area between the conductive assistants is reduced, and it is difficult to obtain the effect of increasing the electronic conductivity.
[0027]
As the positive electrode active material, a lithium-containing double oxide represented by LiCoO 2 , LiMn 2 O 4, LiNiO 2 or the like is preferably used. The effect of the present invention is not particularly limited as long as it is a known positive electrode active material. However, when a positive electrode active material having a BET specific surface area of 0.5 m 2 / g or more is used, the effect of the present invention is more remarkable. appear. In the positive electrode active material having a high specific surface area, the contact area between the active materials is increased in the positive electrode, so that impedance characteristics are likely to be deteriorated. However, according to the present invention, when the conductive auxiliary agent uniformly adheres to the surface of the positive electrode active material, it becomes a positive electrode active material having excellent electronic conductivity, and further, the contact area between the conductive auxiliary agents is increased, and the impedance characteristics are excellent. A non-aqueous secondary battery can be provided.
[0028]
The positive electrode active material is desirably mechanically dry pulverized with a mortar or a pulverizer. This is because, before the silane compound coating treatment with alkoxysilane, the aggregates of the positive electrode active material are unraveled so that the silane compound is more easily coated. The pulverization treatment of the positive electrode active material is not limited to a mortar or a pulverizer as long as the aggregate is unraveled by mechanical dispersion and pulverization.
[0029]
As described above, the method of coating the particle surface of the positive electrode active material with the alkoxysilane is mechanically mixed and stirred with the positive electrode active material and the alkoxysilane, or mechanically while spraying the alkoxysilane onto the positive electrode active material. And mixing and stirring. The coating method is not limited to these. Thereby, almost all of the added alkoxysilane is coated on the particle surface of the positive electrode active material.
[0030]
As an apparatus for stirring the positive electrode active material and the alkoxysilane, an apparatus capable of applying a shearing force to the powder layer is preferable, and in particular, an apparatus capable of simultaneously performing shearing, spatula and compression, for example, a wheel type A kneader, a ball-type kneader, a blade-type kneader, or a roll-type kneader can be used. In carrying out the present invention, a ball-type kneader can be used more effectively.
[0031]
Specific examples of the wheel-type kneader include multi-mal, stotz mill, wet pan mill, conner mill, and ring muller. Examples of the ball kneader include a planetary ball mill and a sand mill. Specific examples of the blade type kneader include a Henschel mixer, a planetary mixer, a nauta mixer, and a Brabender. Specific examples of the roll-type kneader include an extruder.
[0032]
The kneader used for kneading is not particularly limited to these.
As for the conditions of mixing and stirring, it is desirable to make the coating of the silane compound on the positive electrode active material more uniform. The number of revolutions, dispersion time, dispersion bead diameter, etc. are adjusted, and the dispersion time is preferably about 30 to 60 minutes.
[0033]
Alkoxysilane may be used as it is without being diluted in a solvent, but it is preferable to use an alkoxysilane solution diluted in alcohol or water. This is because it is preferable to stir the lower viscosity solution in order to coat the surface of the positive electrode active material more uniformly.
[0034]
Moreover, although the dispersion time which coat | covers a conductive support agent is based also on the specific surface area and particle size of a conductive support agent, it is preferable to carry out for about 30 minutes to 3 hours.
[0035]
After making a conductive support agent adhere to an alkoxysilane covering positive electrode active material, drying and heat processing are performed. The heat treatment temperature is preferably 50 to 150 ° C. The drying time is preferably about 10 minutes to 5 hours. By this heat treatment step, the alkoxysilane is a stable reduction Gobutsu, positive electrode active material more is adhered a conductive auxiliary agent to the surface of the positive electrode active material is obtained.
[0036]
In the present invention, other components such as the negative electrode active material and the electrolytic solution are not particularly limited, and conventionally known components can be used.
[0037]
【Example】
Hereinafter, although the Example and comparative example regarding this invention are shown and the effect is demonstrated concretely, this invention is not limited to this.
[0038]
(Example)
Treatment of positive electrode active material 300 g of lithium cobaltate, which is a positive electrode active material, was placed in a zirconia pot, and the aggregates were loosened with a planetary ball mill at a rotation speed of 100 rpm for 10 minutes. At this time, the zirconia beads of φ = 1 mm were added up to 1/3 of the pot volume. Thereafter, similar beads were used for dispersion.
[0039]
Then, after mixing and diluting 15 g of methyltriethoxysilane with 150 ml of ethanol solution, this methyltriethoxysilane solution was put into a zirconia pot and stirred at 250 rpm for 30 minutes with a planetary ball mill to coat the alkoxysilane on the positive electrode active material. Went.
[0040]
To this positive electrode active material dispersion solution, 6 g of carbon black # 3050 (manufactured by Mitsubishi Chemical Corporation) was added as a conductive aid, and after lightly dipping the carbon black in the solution, mixing and stirring were performed at 300 rpm for 3 hours using a planetary ball mill. Then, 2 parts by mass of carbon black was attached to the surface of the positive electrode active material with respect to 100 parts by mass of the active material.
[0041]
After filtering the obtained positive electrode active material dispersion, heat treatment was performed at 120 ° C. for 2 hours using a dryer to volatilize residual moisture, ethanol, and the like. This gave uniformly coated positive electrode active material surface with a compound formed by heat-treating alkoxy silanes and conductive additive. With respect to this positive electrode active material, elemental analysis was performed to determine the coating amount of the compound. As a result, it was 0.8 parts by mass in terms of Si with respect to 100 parts by mass of the positive electrode active material.
[0042]
Production of positive electrode 97 parts by mass of the positive electrode active material after the coating treatment, 3 parts by mass of polyvinylidene fluoride (PVdF) as a binder, and N-methylpyrrolidone (NMP) as a dispersion solvent, A positive electrode paint was prepared by mixing and dispersing with a planetary mixer. The positive electrode paint was passed through a mesh 80 mesh to remove coarse particles, and then uniformly applied to both surfaces of a positive electrode current collector made of 20 μm thick aluminum foil and dried to form a positive electrode active material-containing coating film. . The electrode weight per unit area was 25.0 mg / cm 2 . However, when the positive electrode made from this was made into an electrode body with a wound structure together with a negative electrode and a separator, the strip was dried and compression-molded to a thickness of 170 μm. After cutting, an aluminum lead body was welded to produce a sheet-like positive electrode.
[0043]
Production of negative electrode As the negative electrode active material, the distance between planes of 002 plane (d002): 0.337 nm, crystallite size in the c-axis direction (Lc): 95 nm, average particle size: 10 μm, purity 99. A negative electrode active material-containing paste was prepared by mixing 180 parts by mass of a graphite-based carbon material having a characteristic of 9% or more with a solution in which 14 parts by mass of polyvinylidene fluoride was dissolved in 190 parts by mass of N-methylpyrrolidone. This negative electrode active material-containing paste was uniformly applied to both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm and dried to form a negative electrode active material-containing coating film. The electrode weight per unit area was 11.8 mg / cm 2 . After drying this strip, it was compression molded to a thickness of 167 μm and cut into a predetermined size. Next, a nickel lead body was welded to produce a strip-shaped negative electrode.
[0044]
Electrolyte Preparation <br/> methylethyl carbonate and ethylene carbonate in a volume ratio of 2: a mixed solvent obtained by mixing 1 was dissolved to a LiPF 6 concentration of 1.2 mol / l, a non-aqueous electrolyte (electrolyte Liquid).
[0045]
Production of secondary battery After the positive electrode and the negative electrode were dried, the positive electrode and the negative electrode were spirally wound through a separator made of a microporous polyethylene film having a thickness of 25 µm, and an electrode body having a wound structure was obtained. did. This was inserted into a bag-like aluminum laminate film, and after injecting the electrolyte solution, vacuum-sealed, and left in that state for 3 hours at room temperature to fully impregnate the positive electrode, negative electrode, and separator with the electrolyte solution. A non-aqueous secondary battery was produced.
[0046]
(Comparative Example 1)
A non-aqueous secondary battery was produced in the same manner as in Example except that the positive electrode active material coated with the silane compound and the conductive assistant was replaced with 95 parts by mass of lithium cobaltate. .
[0047]
About each non-aqueous secondary battery of the said Example and comparative example, the change of the discharge capacity and impedance when charging / discharging was repeated was measured. Similarly, changes in discharge capacity and impedance after the storage test were also measured. The results are shown in Table 1.
[0048]
The discharge capacity was defined as the capacity when the battery was discharged at a constant voltage of 4.2 V with a 1 C current limiting circuit and discharged until the battery voltage dropped to 3 V. The change in capacity due to repeated charge and discharge was evaluated by measuring the discharge capacity at the first and 300th cycles. The storage characteristics were evaluated by measuring the discharge capacity after storage at 60 ° C. for 1 week.
[0049]
In Table 1, the discharge capacity at the first cycle of the battery of the comparative example is defined as 100, and is expressed as a relative value with respect to the discharge capacity.
[0050]
The impedance was expressed as a relative value with the impedance at 1 kHz measured by an LCR meter under the same conditions as the battery capacity and the impedance of the first cycle of the comparative example as 100.
[0051]
[Table 1]
[0052]
The non-aqueous secondary battery of the example using lithium cobaltate , the surface of which was coated with a silane compound and a conductive additive and heat-treated , had a higher discharge capacity at the first cycle than the battery of the comparative example, Even after repeated discharge cycles or after storage at high temperatures, there was little decrease in discharge capacity. In addition, it can be seen that the batteries of the examples have lower impedance than the comparative examples, and there is almost no increase in impedance after 300 cycles and after high temperature storage.
[0053]
【Effect of the invention】
By using a positive electrode active material coated with a silane compound and a conductive aid and heat-treated for the positive electrode of the non-aqueous secondary battery, the discharge capacity is improved and the impedance characteristics can be greatly improved.
Claims (3)
前記正極中に存在する正極活物質が、アルコキシシランを熱処理して形成される化合物および導電助剤で被覆されており、
前記導電助剤は、前記化合物により正極活物質の表面に接着されており、
前記正極活物質に対する前記化合物の被覆量が、正極活物質100質量部に対して、Si換算で0.01〜5質量部であることを特徴とする非水二次電池。Having a positive electrode, a negative electrode and a non-aqueous electrolyte;
The positive electrode active material present in the positive electrode, is coated with a compound formed by heat-treating alkoxy silanes and conductive additive,
The conductive auxiliary agent is adhered to the surface of the positive electrode active material by the compound,
The positive active coating amount of the compound to the material, the positive electrode active material 100 parts by weight, the non-aqueous secondary battery, wherein 0.01 to 5 parts by mass der Rukoto in terms of Si.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001172054A JP4938182B2 (en) | 2001-06-07 | 2001-06-07 | Non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001172054A JP4938182B2 (en) | 2001-06-07 | 2001-06-07 | Non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002367610A JP2002367610A (en) | 2002-12-20 |
JP4938182B2 true JP4938182B2 (en) | 2012-05-23 |
Family
ID=19013736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001172054A Expired - Lifetime JP4938182B2 (en) | 2001-06-07 | 2001-06-07 | Non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4938182B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8354191B2 (en) | 2004-04-27 | 2013-01-15 | Mitsubishi Chemical Corporation | Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery |
JP4529784B2 (en) * | 2004-04-27 | 2010-08-25 | 三菱化学株式会社 | Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery |
JP5128779B2 (en) | 2006-03-06 | 2013-01-23 | パナソニック株式会社 | Lithium ion secondary battery |
JP5169094B2 (en) | 2007-09-12 | 2013-03-27 | ソニー株式会社 | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same |
CN103118985B (en) * | 2010-09-21 | 2015-01-21 | 巴斯夫欧洲公司 | Process for preparing modified transition metal mixed oxides |
US20140227578A1 (en) * | 2011-05-19 | 2014-08-14 | Toyota Jidosha Kabushiki Kaisha | Lithium solid state battery |
CN103190020A (en) * | 2011-11-02 | 2013-07-03 | 株式会社日立制作所 | Nonaqueous secondary battery |
CN103403924A (en) * | 2012-03-09 | 2013-11-20 | 株式会社日立制作所 | Secondary battery with non-aqueous electrolyte |
JP5573936B2 (en) * | 2012-12-27 | 2014-08-20 | 戸田工業株式会社 | Conductive particle powder |
JP6528982B2 (en) * | 2013-12-05 | 2019-06-12 | 株式会社Gsユアサ | Lithium ion secondary battery |
WO2017051500A1 (en) * | 2015-09-24 | 2017-03-30 | パナソニックIpマネジメント株式会社 | Negative electrode active material for nonaqueous electrolyte secondary batteries and negative electrode |
CN108140806B (en) | 2015-10-05 | 2021-05-28 | 东丽株式会社 | Positive electrode for lithium ion secondary battery and method for producing same |
JPWO2020170763A1 (en) * | 2019-02-19 | 2021-03-11 | Jfeスチール株式会社 | Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries |
JPWO2022168994A1 (en) * | 2021-02-05 | 2022-08-11 | ||
JP7197670B2 (en) * | 2021-03-19 | 2022-12-27 | 積水化学工業株式会社 | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02262243A (en) * | 1989-03-31 | 1990-10-25 | Matsushita Electric Ind Co Ltd | Positive electrode for lithium secondary battery and manufacture thereof |
JP3496414B2 (en) * | 1996-11-27 | 2004-02-09 | 株式会社デンソー | Positive electrode active material for lithium secondary battery, method for producing the same, and positive electrode for lithium secondary battery |
JPH11224664A (en) * | 1998-02-06 | 1999-08-17 | Nikki Chemcal Co Ltd | Lithium-ion secondary battery having high moisture resistance and high safety |
JP2000058063A (en) * | 1998-08-12 | 2000-02-25 | Hitachi Metals Ltd | Lithium secondary battery having high conductive positive electrode and manufacture thereof |
JP2000264636A (en) * | 1999-03-17 | 2000-09-26 | Toda Kogyo Corp | Lithium manganese spinel oxide particle powder and its production |
JP2000281354A (en) * | 1999-03-31 | 2000-10-10 | Toda Kogyo Corp | Layer rock salt type oxide particulate powder and its production |
JP4336007B2 (en) * | 1999-10-25 | 2009-09-30 | 京セラ株式会社 | Lithium battery |
JP2001283922A (en) * | 2000-03-29 | 2001-10-12 | Kyocera Corp | Manufacturing method of lithium secondary battery |
JP2001283913A (en) * | 2000-03-29 | 2001-10-12 | Kyocera Corp | Lithium battery |
-
2001
- 2001-06-07 JP JP2001172054A patent/JP4938182B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002367610A (en) | 2002-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102382277B1 (en) | Positive electrode for lithium ion secondary battery, graphene-positive electrode active material composite particle and method for manufacturing the same, and positive electrode paste for lithium ion secondary battery | |
CN1316649C (en) | Plus plate active material for secondary cell, its manufacturing method and secondary cell | |
CN106537663B (en) | Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles | |
JP4938182B2 (en) | Non-aqueous secondary battery | |
JP2009193940A (en) | ELECTRODE BODY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY | |
JP5505480B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
JP5505479B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
CN110104677B (en) | Composite lithium titanate material, preparation method and application thereof | |
JP2016538694A (en) | Method for producing positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and lithium secondary battery including the same | |
JP6358470B2 (en) | Method for producing negative electrode for secondary battery | |
JPWO2013054500A1 (en) | Negative electrode material for power storage device, negative electrode for power storage device, power storage device and vehicle | |
JP2003308845A (en) | Electrode for lithium secondary battery and lithium secondary battery using it | |
JP2016103433A (en) | Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery | |
JP2004186075A (en) | Electrode for secondary battery and secondary battery using this | |
JP2011159639A (en) | Electrode body, method for manufacturing the same, and lithium ion secondary battery | |
JP2016154100A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
WO2015121731A1 (en) | Nonaqueous electrolyte secondary battery | |
JP6760097B2 (en) | Positive electrode for lithium secondary battery and its manufacturing method | |
JP2023015188A (en) | Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP3579280B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode | |
JP5807807B2 (en) | Method for producing positive electrode plate of lithium ion secondary battery | |
JP2013062089A (en) | Lithium ion secondary battery | |
JP2009087891A (en) | Method for producing positive electrode active material and method for producing lithium secondary battery | |
JP2015170477A (en) | Non-aqueous electrolyte secondary battery | |
JPH09213309A (en) | Manufacture of positive electrode for lithium secondary cell and lithium secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040428 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120223 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4938182 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |