[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4935510B2 - Oscillating gear unit - Google Patents

Oscillating gear unit Download PDF

Info

Publication number
JP4935510B2
JP4935510B2 JP2007149213A JP2007149213A JP4935510B2 JP 4935510 B2 JP4935510 B2 JP 4935510B2 JP 2007149213 A JP2007149213 A JP 2007149213A JP 2007149213 A JP2007149213 A JP 2007149213A JP 4935510 B2 JP4935510 B2 JP 4935510B2
Authority
JP
Japan
Prior art keywords
gear
teeth
tooth
concave
meshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007149213A
Other languages
Japanese (ja)
Other versions
JP2008303906A (en
Inventor
誠 山澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ogino Industrial Co Ltd
Original Assignee
Ogino Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogino Industrial Co Ltd filed Critical Ogino Industrial Co Ltd
Priority to JP2007149213A priority Critical patent/JP4935510B2/en
Publication of JP2008303906A publication Critical patent/JP2008303906A/en
Application granted granted Critical
Publication of JP4935510B2 publication Critical patent/JP4935510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Description

本発明は、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置に関する。   According to the present invention, a first gear having n1 teeth fixed to a housing and a fourth gear having n4 teeth attached to an output shaft are arranged with their respective axis centers aligned with the input shaft, and the number of teeth A rotating body integrally provided with a second gear with n2 and a third gear with n3 teeth is provided at the inclined portion of the input shaft so that the second gear meshes with the first gear and the third gear meshes with the fourth gear. A point where the center point of the common sphere passing through the pitch circles of the first and second gears and the center point of the common sphere passing through the pitch circles of the third and fourth gears coincides with the origin. The axis of the input shaft is arranged on the X axis of the XY coordinates to be used, and the meshing points of the first and second gears and the meshing points of the fourth and third gears are the same quadrant or different quadrants of the XY coordinates. The present invention relates to a rocking gear device placed on top.

従来より、揺動運動を行ういわゆる揺動型歯車装置を用いた減速歯車装置の原理が知られていた。この揺動型歯車装置は、4つの歯車のみで大減速比を得ることが可能であり、様々な利点を有するものである。しかしながら、揺動型歯車装置はその歯形を高精度かつ低コストでの生産が困難な球面インボリュート歯形とする必要があり、実用化には至らなかった。本発明者はこの球面インボリュート歯形に替えて、一方の歯車の歯形を、歯すじ方向において歯厚および歯たけが等しいいわゆる等高歯とし、他方の歯形を該等高歯の歯形を創成転写し、さらに該等高歯を、ローラ状のコロを凸状歯として用いることにより、揺動型歯車装置の実用化を可能とした。なお、揺動型歯車装置の詳細については、特公平7−56324 号公報(特許文献1)に開示されている。   Conventionally, the principle of a reduction gear device using a so-called oscillating gear device for oscillating motion has been known. This oscillating gear device can obtain a large reduction ratio with only four gears, and has various advantages. However, the oscillating gear device needs to have a spherical involute tooth profile that is difficult to produce with high accuracy and low cost, and has not been put into practical use. Instead of this spherical involute tooth profile, the present inventor changed the tooth profile of one of the gears to a so-called contour tooth having the same tooth thickness and tooth depth in the tooth direction, and the other tooth profile was created and transferred to the tooth profile of the contour tooth. Furthermore, the swing-type gear device can be put to practical use by using the contoured teeth and roller-shaped rollers as convex teeth. The details of the oscillating gear device are disclosed in Japanese Patent Publication No. 7-56324 (Patent Document 1).

図9には、本発明者による揺動型歯車装置の要部断面が示されている。揺動型歯車装置は、入力軸1と出力軸2との間を、第1〜第4歯車A1〜A4 で連結し、これらの歯車によって減速を行っている。この第1〜第4歯車A1〜A4は傘歯車である。そして、第1歯車A1 はハウジング6に一体的に固定されている。また、第2歯車A2 および第3歯車A3 は1つの回転体3に設けられ、回転体3は入力軸1の傾斜部1aで回転自在に支承されている。このように回転体3を傾斜支持すると、入力軸1の回転に伴って回転体3に揺動運動を発生させることができる。また、各歯車の噛み合い部にコロ4aが介在されこのコロの転動により噛み合い摩擦を吸収している。   FIG. 9 shows a cross section of the main part of the oscillating gear device by the present inventor. In the oscillating gear device, the input shaft 1 and the output shaft 2 are connected by first to fourth gears A1 to A4, and the speed is reduced by these gears. The first to fourth gears A1 to A4 are bevel gears. The first gear A1 is fixed integrally to the housing 6. The second gear A2 and the third gear A3 are provided on one rotating body 3, and the rotating body 3 is rotatably supported by the inclined portion 1a of the input shaft 1. When the rotating body 3 is supported in an inclined manner as described above, a swinging motion can be generated in the rotating body 3 as the input shaft 1 rotates. A roller 4a is interposed in the meshing portion of each gear, and meshing friction is absorbed by the rolling of the roller.

図10に示すように、コロ4aは、第1歯車A1(第4歯車A4 )に形成された凹溝4bによって転動自在に支持されている。そして、凹溝4bから突出するコロ4aによって、半円柱状の凸状歯4を形成している。また、第2歯車A2 (第3歯車A3 )にも半円弧状凹溝を形成し、凹状歯5として構成する。そして、回転体3が矢印Bで示す方向に揺動運動を行うと、第2歯車A2 (第3歯車A3 )は矢印Cで示す方向に移動し、各凹状歯5と凸状歯4とを噛み合わせていく。この際に、各凹状歯と凸状歯との間に生ずる摺動を、コロ4aの転動で吸収している。
特公平7−56324号公報
As shown in FIG. 10, the roller 4a is supported by a concave groove 4b formed in the first gear A1 (fourth gear A4) so as to roll freely. And the semicylindrical convex tooth | gear 4 is formed with the roller 4a which protrudes from the ditch | groove 4b. Further, the second gear A2 (third gear A3) is also formed with a semicircular arc-shaped groove and formed as a concave tooth 5. When the rotating body 3 swings in the direction indicated by the arrow B, the second gear A2 (third gear A3) moves in the direction indicated by the arrow C, and the concave teeth 5 and the convex teeth 4 are moved. Engage with each other. At this time, the sliding generated between the concave teeth and the convex teeth is absorbed by the rolling of the rollers 4a.
Japanese Examined Patent Publication No. 7-56324

上記の揺動型歯車装置は、上記凸状歯を凹溝とコロとで構成、すなわち、噛み合い部にコロを介在させ、この噛み合い部に一定の与圧を与えバックラッシュをゼロにすることにより、原理的には噛み合い部の摩擦抵抗が低減されることになり、伝達効率と位置決め精度を高めることが可能となる。   In the above-mentioned oscillating gear device, the convex teeth are composed of a concave groove and a roller, that is, a roller is interposed in the meshing portion, and a constant pressure is applied to the meshing portion to reduce backlash to zero. In principle, the frictional resistance of the meshing portion is reduced, and the transmission efficiency and positioning accuracy can be increased.

ところで、この種の揺動型歯車装置は、4つの傘歯車で構成され、回転体の軸方向の両端部に形成される第2歯車および第3歯車に対し、その軸方向において対峙する第1歯車と第4歯車がそれぞれ噛み合うものであるため、第1歯車と第2歯車間および第3歯車と第4歯車間、つまり二組の噛み合い歯車間にそれぞれ歯数差を持たせることにより第1歯車と第2歯車間における一段の減速作用と、第3歯車と第4歯車間における減速作用の二段階の減速が得られ、低減速から高減速の幅広い減速比が得られる。   By the way, this type of oscillating gear device is composed of four bevel gears, and is opposed to the second gear and the third gear formed at both ends in the axial direction of the rotating body in the axial direction. Since the gear and the fourth gear mesh with each other, the first gear and the second gear, and the third gear and the fourth gear, i.e., the two sets of meshing gears have a difference in the number of teeth. A two-stage reduction between the gear and the second gear and a two-stage reduction between the third gear and the fourth gear are obtained, and a wide reduction ratio from a reduced speed to a high speed is obtained.

しかしながら、比較的低い減速比の場合においては、上記のように二段階の減速作用を得るようにすると、原理的に傾斜部の傾斜角を大きく設定する必要があり、それに伴って回転体の揺動運動の振幅が大きくなり、振動騒音が大きくなる。また二段減速の場合、第1ないし第4歯車の歯数をそれぞれ異ならせる必要があるので、加工装置の割り出しインデックスなどの加工設備をそれぞれ固有のものを用意する必要があり、生産性において不利となる。また、二段減速の場合、第1および第4歯車の軸芯に対し第2歯車および第3歯車の軸芯がそれぞれ偏心した状態で噛み合いが行われるため、単純な円弧歯形では凸状歯との干渉が生じるため創成加工機などを用いて創成転写する必要があり、歯数の相違は生産性においてさらに不利となる。   However, in the case of a relatively low reduction ratio, in order to obtain a two-stage reduction action as described above, in principle, it is necessary to set a large inclination angle of the inclined portion, and accordingly, the rotation of the rotating body The amplitude of dynamic motion increases and vibration noise increases. In the case of two-stage reduction, the number of teeth of the first to fourth gears needs to be different, so it is necessary to prepare unique processing equipment such as an index for the processing device, which is disadvantageous in productivity. It becomes. Further, in the case of two-stage reduction, meshing is performed with the shaft centers of the second gear and the third gear being eccentric with respect to the shaft cores of the first and fourth gears. Therefore, it is necessary to generate and transfer using a generating machine or the like, and the difference in the number of teeth is further disadvantageous in productivity.

本発明は、かかる点に鑑みてなされたもので、所定の減速比を得るに当たって、生産性が高くかつ振動騒音の低下に有利な揺動型歯車装置を提供することを目的とする。   The present invention has been made in view of the above point, and an object of the present invention is to provide an oscillating gear device that is highly productive and advantageous in reducing vibration noise when obtaining a predetermined reduction ratio.

上記課題を解決するための本発明の請求項1に係わる手段は、4つの円錐傘歯車を備え、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、上記入力軸の回転により回転体が傾斜部上において揺動運動を行うように構成される揺動型歯車装置であって、
該第1ないし第4歯車の互いに噛み合い対峙する歯車のうち第1歯車および第4歯車が、ピッチ円錐上において等間隔で歯車中心から放射方向に伸びる断面半円状の凹溝と、該凹溝内に転動自在に配置される円柱状のコロとで等高歯としての凸状歯として構成され、
上記第1歯車および第4歯車とそれぞれ噛み合う第2および第3歯車が、上記凸状歯に対応した凹状歯として構成され、
該凹状歯の歯すじ長さが該凸状歯の歯すじ長さより短く設定され、
上記第2歯車の歯数が第1歯車の歯数より多く設定され、上記第3歯車と第4歯車の歯数が同数に設定されており、
上記第2歯車の凹状歯が、その開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする。
The means according to claim 1 of the present invention for solving the above problem comprises four conical bevel gears, a first gear having n1 teeth fixed to the housing, and n4 teeth mounted on the output shaft. The fourth gear is arranged so that the respective axis centers of the input shaft coincide with each other, and the second gear having the number of teeth n2 and the third gear having the number of teeth n3 are integrally provided. A rocking gear configured to be supported by the inclined portion of the input shaft so as to mesh with the gear and the third gear to mesh with the fourth gear, and to rotate the rotating body on the inclined portion by the rotation of the input shaft. A dynamic gear device,
The first gear and the fourth gear of the first to fourth gears meshing with each other and facing each other have a semicircular groove having a semicircular cross section extending radially from the gear center at equal intervals on the pitch cone, and the groove It is configured as convex teeth as contour teeth with a cylindrical roller arranged so as to be able to roll inside,
The second and third gears that mesh with the first gear and the fourth gear, respectively, are configured as concave teeth corresponding to the convex teeth,
The tooth length of the concave teeth is set shorter than the tooth length of the convex teeth,
The number of teeth of the second gear is set to be greater than the number of teeth of the first gear, and the number of teeth of the third gear and the fourth gear are set to the same number ,
The concave teeth of the second gear are formed in a drum shape whose openings are expanded outward in the tooth trace direction and inward in the tooth trace direction across the reference pitch circle diameter .

4つの歯車のうち、第3歯車と第4歯車の歯数を同一歯数とし、第1歯車と第2歯車間に歯数差を与え、第1歯車と第2歯車間での一段の減速作用で、所定の減速比を得るように構成することで、所定の減速比を小さい傾斜角(傾斜部の傾斜角)とすることで実現できるので、傾斜角によって支配される回転体の揺動運動の振幅を小さくすることができ振動騒音を大幅に低減できる。   Of the four gears, the third gear and the fourth gear have the same number of teeth, a difference in the number of teeth is given between the first gear and the second gear, and a one-stage reduction between the first gear and the second gear. By configuring so as to obtain a predetermined reduction ratio by the action, the predetermined reduction ratio can be realized by setting the inclination ratio to a small inclination angle (inclination angle of the inclined portion). The amplitude of motion can be reduced, and vibration noise can be greatly reduced.

また、傾斜角を小さくすることによって、第1歯車の歯形としての凸状歯と噛み合う第2歯車の凹状歯の歯形形成においてもきわめて有利となる。つまり、揺動型歯車装置において、その減速作用は、第2歯車の歯数を第1歯車の歯数より多く設定し、その軸芯が所定値偏心した状態で噛み合いが行われるため、噛み合い始めから最大噛み合い位置の間および最大噛み合い位置から噛み合い離脱の間において、各歯車間の歯すじ方向の母線が交差することになり、第2歯車の凹状歯を単純な円弧歯形とした場合、第1歯車の凸状歯との干渉が生じることになるので凹状歯の歯すじ方向に干渉除去部を設ける必要がある。   Further, by reducing the inclination angle, it is extremely advantageous in forming the tooth profile of the concave tooth of the second gear meshing with the convex tooth as the tooth profile of the first gear. In other words, in the oscillating gear device, the speed reduction action is performed by setting the number of teeth of the second gear to be larger than the number of teeth of the first gear and the shaft core is decentered by a predetermined value. Between the maximum meshing position and the maximum meshing position and between meshing and disengagement, the generatrix line between the gears intersects, and when the concave tooth of the second gear is a simple arc tooth profile, Since interference with the convex teeth of the gear occurs, it is necessary to provide an interference removing portion in the direction of the streaks of the concave teeth.

この干渉部は傾斜角が大きければ大きくなり、その形状も複雑になり、特別な創成加工機が必要になり、生産性が悪くなるばかりか噛み合い精度の自由度ににも影響を与える。したがって、第1歯車と第2歯車のみによる一段減速とすることで、その傾斜角を小さくし噛み合い干渉部(歯すじ方向,歯底方向,歯幅方向)を小さくすることができ、第2歯車の歯形形状が簡略化され生産性の向上を図ると共に噛み合い精度の向上を図ることができる。   This interference portion becomes larger when the inclination angle is larger, and the shape thereof becomes complicated. A special creation machine is required, which not only deteriorates productivity but also affects the degree of freedom of meshing accuracy. Therefore, by setting the first-stage speed reduction using only the first gear and the second gear, it is possible to reduce the inclination angle and the meshing interference portion (tooth direction, root direction, tooth width direction), and the second gear. Thus, the tooth profile can be simplified to improve the productivity and improve the meshing accuracy.

なお、一段減速を得るに当たって、2対の噛み合い歯車対の一方に歯数差を与え、他方を同数とすればよく、減速作用を行う第1および第2歯車側であっても第3、第4歯車側であってもよいが、第1、第2歯車側で行う方が歯車各部の潤滑性を維持する上で有利になり、長期の使用に対し耐久性を向上できる。つまり、第3、第4歯車間で減速を行うようにした場合、第2歯車は第1歯車の同一箇所での噛み合いを繰り返すのみで、回転体が回転せず、第1歯車に対しロックされた状態となり、回転体内部の潤滑剤が特定位置に偏り、各歯車の噛み合い部への流動が損なわれることになる。それ故、第1、第2歯車側に減速作用を与えることにより、回転体が減速比に対応して回転することになるので、内部の潤滑剤の滞りを防ぐことができる。   In order to obtain a one-stage reduction, it is only necessary to give a difference in the number of teeth to one of the two pairs of meshing gears and make the other the same number. Although it may be on the side of the four gears, the operation on the first and second gears side is advantageous in maintaining the lubricity of each part of the gears, and the durability can be improved for long-term use. In other words, when deceleration is performed between the third and fourth gears, the second gear only repeats meshing at the same location of the first gear, and the rotating body does not rotate and is locked to the first gear. As a result, the lubricant inside the rotating body is biased to a specific position, and the flow to the meshing portion of each gear is impaired. Therefore, by giving a speed reducing action to the first and second gears, the rotating body rotates corresponding to the speed reduction ratio, so that the internal lubricant can be prevented from stagnation.

そして、第2歯車の凹状歯が、その開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることで、減速歯車としての第1歯車と第2歯車間における歯すじ方向の母線の交差角が最小になり、凸状歯との干渉部の最小化を図ることができるので、凹状歯の加工形態の自由度が大きくなり、生産性の向上および噛み合い精度の自由度の拡大が可能となる。And, the concave teeth of the second gear are formed in the hourglass shape whose openings expand outward in the tooth trace direction and inward in the tooth trace direction across the reference pitch circle diameter, so that the speed reduction gear as Since the crossing angle of the generatrix line between the first gear and the second gear is minimized and the interference part with the convex teeth can be minimized, the degree of freedom of the processing form of the concave teeth is increased. Thus, productivity can be improved and the degree of freedom of meshing accuracy can be expanded.

請求項2に係わる手段は、請求項1において、上記第1ないし第4歯車のうち第3歯車の歯数を上記第1歯車あるいは第2歯車の歯数と同一歯数に設定したことを特徴とする。少なくとも3つの歯車の歯数を同数とすることで、加工機のインデックステーブルなどの加工手段の共通化を図ることができ、きわめて生産性が向上する。特に、第2歯車および第3歯車は、回転体の両端に形成され、回転体と同一部品を構成しているので、歯数の共通化によって生産性がさらに向上する。   According to a second aspect of the present invention, in the first aspect, the number of teeth of the third gear among the first to fourth gears is set to the same number of teeth as that of the first gear or the second gear. And By making the number of teeth of at least three gears the same, it is possible to share processing means such as an index table of a processing machine, and productivity is greatly improved. In particular, since the second gear and the third gear are formed at both ends of the rotating body and constitute the same part as the rotating body, the productivity is further improved by sharing the number of teeth.

請求項3に係わる手段は、請求項1において、第3歯車の歯数を第2歯車の歯数と同一歯数に設定すると共に該第2歯車と第3歯車の各凹状歯の歯底位置を同位相に設定したことを特徴とする。このように第2歯車および第3歯車の凹状歯の周方向における位置を同位相にすることによって、第1歯車と第2歯車との最大噛み合い位置と第3歯車と第4歯車の最大噛み合い位置が同位相となり、位相ずれに伴う振動騒音の発生を防止できる。   According to a third aspect of the present invention, in the first aspect, the number of teeth of the third gear is set to the same number of teeth as that of the second gear, and the bottom positions of the concave teeth of the second gear and the third gear are set. Are set to the same phase. Thus, by setting the positions of the concave teeth of the second gear and the third gear in the circumferential direction to the same phase, the maximum meshing position of the first gear and the second gear and the maximum meshing position of the third gear and the fourth gear. Are in the same phase, and generation of vibration noise due to phase shift can be prevented.

請求項に係わる手段は、請求項1〜3のいずれか1つにおいて、上記第3歯車の凹状歯が、凸状歯を構成する円柱コロに対応して歯すじ方向において同一断面の円弧歯形として構成されていることを特徴とする。このように構成することにより、第2歯車の歯形の最適化に加えて第3歯車の歯形の最適化を図ることができ、噛み合い精度を高め伝達効率を高めることができる。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the concave tooth of the third gear is an arc tooth profile having the same cross section in the tooth line direction corresponding to the cylindrical roller constituting the convex tooth. It is comprised as follows. By configuring in this way, in addition to optimizing the tooth profile of the second gear, the tooth profile of the third gear can be optimized, and the meshing accuracy can be increased and the transmission efficiency can be increased.

請求項に係わる手段は、請求項1〜3のいずれか1つにおいて、上記第3歯車の凹状歯が、基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする。このように構成することにより、凹状歯を構成する第2歯車と第3歯車を実質的に同一の加工手段を用いて加工することができ、第2および第3歯車が回転体としての同一部品としての生産性が極めて向上する。特に、第3歯車の歯形を鼓形に形成することにより第4歯車のコロとの噛み合い精度が向上することになる。 According to a fifth aspect of the present invention, in any one of the first to third aspects, the concave teeth of the third gear expand outward in the tooth line direction and inward in the tooth line direction across the reference pitch circle diameter. It is characterized by being formed into a drum shape. By comprising in this way, the 2nd gear and 3rd gear which comprise a concave tooth can be processed using the substantially the same processing means, and the 2nd and 3rd gears are the same components as a rotating body. As a result, productivity is greatly improved. In particular, the meshing accuracy of the fourth gear with the roller is improved by forming the tooth shape of the third gear in a drum shape.

つまり、第3歯車と第4歯車は歯数が同一であるため、第1および第2歯車のように歯すじ方向の母線が交差することなく同一位置での噛み合いを繰り返す。それ故、凹状歯の開口部には歯すじ方向において同一断面の円弧歯型であってもコロとの干渉は生じないが、組み付け時の位置決め精度の狂いによって、相互の歯すじ方向の母線が交差し、コロとの干渉が生じる可能性がある。したがって、第3歯車の凹状歯を鼓形状に形成することにより噛み合い誘導作用により噛み合いを促進できる。また、凹状歯の噛み合い剛性を適度に弱めることができ、噛み合い時の異常面圧の発生を防ぐことができる。   In other words, since the third gear and the fourth gear have the same number of teeth, the meshing at the same position is repeated without crossing the generatrix in the direction of the tooth trace as in the first and second gears. Therefore, even if it is an arc tooth type with the same cross section in the tooth trace direction, the concave tooth opening does not interfere with the roller, but the misalignment of the positioning accuracy during assembly causes the mutual bus bars in the tooth trace direction to Intersect and may cause interference with rollers. Therefore, the engagement can be promoted by the engagement inducing action by forming the concave teeth of the third gear in a drum shape. Further, the meshing rigidity of the concave teeth can be moderately reduced, and the occurrence of abnormal surface pressure during meshing can be prevented.

なお、第3歯車の歯形形状としては、異常面圧を防ぐ意味では第2歯車の歯形に対して相似的に干渉除去幅を小さくしてもよいが、第2歯車と同一形状にすることで第2歯車と全く同一の加工ができるので生産性の向上により貢献することになる。この場合、第2歯車と第3歯車が同一歯数、同一形状であることから、組み付け時の誤組付けをも防止できる。   As the tooth profile of the third gear, the interference removal width may be reduced similarly to the tooth profile of the second gear in the sense of preventing abnormal surface pressure, but by making it the same shape as the second gear. Since the same processing as the second gear can be performed, it contributes to the improvement of productivity. In this case, since the second gear and the third gear have the same number of teeth and the same shape, erroneous assembly during assembly can be prevented.

本発明は、所定の減速比を得るに当たって、生産性が高くかつ振動騒音の低下に有利な揺動型歯車装置を提供することができる。また、凸状歯との干渉部の最小化を図ることができるので、凹状歯の加工形態の自由度が大きくなり、生産性の向上および噛み合い精度の自由度の拡大が可能となる。 The present invention can provide an oscillating gear device that is highly productive and advantageous in reducing vibration noise when obtaining a predetermined reduction ratio. In addition, since the interference portion with the convex teeth can be minimized, the degree of freedom in processing the concave teeth is increased, and the productivity can be improved and the degree of freedom in meshing accuracy can be increased.

以下本発明の実施態様を図1〜8に基づいて説明する。なお、上記従来例と同一ないし相当部分は同一符号を付し詳細な説明は省略する。まず、本発明に係わる実施態様の説明に先立って、図9,図10に示す従来の揺動型歯車装置について、その基本構造および基本原理について追加説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. The same or corresponding parts as those in the conventional example are given the same reference numerals, and detailed description thereof is omitted. Prior to the description of the embodiment according to the present invention, the basic structure and basic principle of the conventional oscillating gear device shown in FIGS. 9 and 10 will be additionally described.

図9および図10に示す揺動型歯車装置は、ハウジング6に固定された歯数n1 の第1歯車A1と、出力軸2に取付けられた歯数n4 の第4歯車A4とを、入力軸1との各軸芯を一致させて配置し、歯数n2 の第2歯車A2および歯数n3 の第3歯車A3を一体に設けた回転体3を、第2歯車A2が第1歯車A1と噛み合い、第3歯車A3が第4歯車A4と噛み合うように前記入力軸1の傾斜部1aで軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点が一致する点を原点OとするXY座標のX軸上に前記入力軸の軸芯Gを配置し、かつ、上記原点Oから所定の角度傾斜する軸上に上記傾斜部1aの軸芯Hを配置し、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置くことによって構成される。   9 and 10 includes a first gear A1 having n1 teeth fixed to the housing 6 and a fourth gear A4 having n4 teeth attached to the output shaft 2 as input shafts. 1 and the rotating body 3 in which the second gear A2 having the number of teeth n2 and the third gear A3 having the number of teeth n3 are integrally provided, and the second gear A2 is connected to the first gear A1. The center point of a common spherical surface that is supported by the inclined portion 1a of the input shaft 1 so that the third gear A3 meshes with the fourth gear A4 and passes through the pitch circles of the first and second gears, and the first gear A4. 3. The axis G of the input shaft is arranged on the X axis of the XY coordinates with the origin O as the point where the center points of the common spherical surfaces passing through the pitch circles of the fourth and fourth gears coincide with each other. The axis H of the inclined portion 1a is disposed on an axis inclined at an angle of the first and second gears and the fourth and third teeth. It is configured by placing the meshing point of the vehicle in the same quadrant or different quadrants of the XY coordinates.

上記揺動型歯車装置は、より具体的には、減速比に対応した歯数に設定された4つの円錐傘歯車として第1〜第4歯車A1〜A4を有し、第1歯車と第2歯車の歯車対と、第3歯車と第4歯車の歯車対の二組の歯車対にて構成されている。この二組の歯車対にそれぞれ所定の歯数差を与えることによって所定の減速比が得られる。このうち第1歯車A1 は、ハウジング6に一体的に固定され、回転をしない固定歯車である。第2歯車A2 、第3歯車A3 は、入力軸1の傾斜部1aによって軸支される回転体3に形成されている。また、第4歯車A4 は出力軸2に設けられている。   More specifically, the oscillating gear device has first to fourth gears A1 to A4 as four conical bevel gears set to the number of teeth corresponding to the reduction ratio, and the first gear and the second gear. It is composed of two gear pairs, a gear pair of gears and a gear pair of third gear and fourth gear. A predetermined reduction ratio is obtained by giving a predetermined difference in the number of teeth to each of the two sets of gear pairs. Of these, the first gear A1 is a fixed gear that is integrally fixed to the housing 6 and does not rotate. The second gear A 2 and the third gear A 3 are formed on the rotating body 3 that is supported by the inclined portion 1 a of the input shaft 1. The fourth gear A4 is provided on the output shaft 2.

回転体3は、入力軸1の軸芯Gに対して所定の角度をなす軸芯Hを有する傾斜部1aによって支持されている。この傾斜角は、噛み合い歯車対の各歯車間の歯数差すなわち基準ピッチ円直径の差に対応した偏心量になるように設定される。   The rotating body 3 is supported by an inclined portion 1 a having an axis H that forms a predetermined angle with respect to the axis G of the input shaft 1. This inclination angle is set to be an eccentric amount corresponding to the difference in the number of teeth between the gears of the meshing gear pair, that is, the difference in the reference pitch circle diameter.

したがって、入力軸1が回転すると、傾斜部1aが首を振るような運動をし、これに軸支される回転体3は、揺動運動をする。この、回転体3の揺動運動に伴い、第2歯車A2 を第1歯車A1 に、また、第3歯車A3 を第4歯車A4 にそれぞれ噛み合わせていく。すると、第2歯車A2 は、1周期の揺動運動(入力軸1の1回転)当り、第1歯車A1 との歯数差に相当する分だけ第1歯車A1 に対して回転する。すなわち、第1歯車A1 と、第2歯車A2 との間で、一段階の減速がなされる。同様に、第3歯車と第4歯車との間においても同様の減速作用が行われ、二段階の減速がなされる。   Therefore, when the input shaft 1 rotates, the inclined portion 1a moves such that the head swings, and the rotating body 3 pivotally supported by the inclined portion 1a performs a swinging motion. As the rotator 3 swings, the second gear A2 is engaged with the first gear A1, and the third gear A3 is engaged with the fourth gear A4. Then, the second gear A2 rotates with respect to the first gear A1 by an amount corresponding to the difference in the number of teeth from the first gear A1 per one cycle of swinging motion (one rotation of the input shaft 1). That is, a one-stage reduction is performed between the first gear A1 and the second gear A2. Similarly, the same deceleration action is performed between the third gear and the fourth gear, and two-stage deceleration is performed.

この場合、最終減速比は上記二組の歯車対の歯数差によって決まる。つまり、減速比をR(入力軸1が1回転したときの出力軸2の回転数)とすると、
R=1−(n1×n3)/(n2×n4) ・・・・・(i)
と表すことができる。
In this case, the final reduction ratio is determined by the difference in the number of teeth of the two sets of gear pairs. In other words, if the reduction ratio is R (the rotational speed of the output shaft 2 when the input shaft 1 makes one revolution),
R = 1− (n1 × n3) / (n2 × n4) (i)
It can be expressed as.

ここで、n1:第1歯車A1の歯数,n2:第2歯車A2の歯数,n3:第3歯車A3の歯数,n4:第4歯車A4の歯数として、n1=99,n2=100,n3=101,n4=100とすると、減速比R=1/10000となる。また、n1=9,n2=10,n3=11,n4=10とすると、減速比R=1/100となる。このように4つの歯車の歯数をそれぞれ任意に設定することにより高減速から低減速の幅広い減速比が得られる。   Here, n1: number of teeth of the first gear A1, n2: number of teeth of the second gear A2, n3: number of teeth of the third gear A3, n4: number of teeth of the fourth gear A4, n1 = 99, n2 = When 100, n3 = 101, and n4 = 100, the reduction ratio R = 1/10000. If n1 = 9, n2 = 10, n3 = 11, and n4 = 10, the reduction ratio R = 1/100. In this way, by setting the number of teeth of the four gears arbitrarily, a wide reduction ratio from high speed reduction to reduction speed can be obtained.

なお、前述のごとく、第1歯車A1 の歯数と第2歯車A2 の歯数差が1の場合には、揺動運動が1周期進むと、第1歯車A1 と第2歯車A2 との間で、噛み合う歯は1つずれる。また、同歯数差が2の場合は、揺動運動が1周期進むと、第1歯車A1 と第2歯車A2 との間で、噛み合う歯は2つずれる。同様にして、歯数差がnの場合には、噛み合う歯はn個ずれることになる。このことは、第3、第4歯車A3,A4 の関係においても同じである。   As described above, when the difference between the number of teeth of the first gear A1 and the number of teeth of the second gear A2 is 1, when the oscillating motion advances by one cycle, the distance between the first gear A1 and the second gear A2 Thus, the teeth that mesh are shifted by one. Further, when the difference in the number of teeth is 2, when the oscillating motion advances by one cycle, the meshing teeth are shifted between the first gear A1 and the second gear A2. Similarly, when the difference in the number of teeth is n, the meshing teeth are shifted by n. This also applies to the relationship between the third and fourth gears A3 and A4.

以上のような基本構成および基本原理をなす揺動型歯車装置の歯形を求める手法について、以下に説明する。ここで、図1に示す揺動型歯車装置の各傘歯車の歯形を求める手法を示す展開図を図3に、その要部拡大図を図4に示す(図3,図4に示す展開図は本発明に係わる一段減速を前提とした展開図であり、説明の都合上この図を利用して説明する)。なお、各歯車A1,A2,A3,A4 は摸式的にピッチ円錐で示している。   A method for obtaining the tooth profile of the oscillating gear device having the above basic configuration and basic principle will be described below. Here, FIG. 3 is a development view showing a method for obtaining the tooth profile of each bevel gear of the oscillating gear device shown in FIG. 1, and FIG. 4 is an enlarged view of a main part thereof (development views shown in FIGS. 3 and 4). Is a development based on the premise of one-stage deceleration according to the present invention, and will be described using this figure for convenience of explanation). Each gear A1, A2, A3, A4 is schematically shown as a pitch cone.

ここでは、第1歯車A1 、第2歯車A2 の各ピッチ円を通る共通球面Cir1と、第3歯車A3 、第4歯車A4 の各ピッチ円を通る共通球面Cir2とを考える。そして、各共通球面の中心点を一致させ、該一致点を原点Oとする。さらに、原点Oを原点とするXY座標を考える。このXY座標のX軸上に入力軸1の軸芯Gを配置する。また、第1、第2歯車A1 ,A2の噛み合い点をC1 、第3、第4歯車A3 ,A4 の噛み合い点をC2 とする。そして、噛み合い点C1,C2 を、第1象限と第3象限若しくは第2象限と第4象限に置く。   Here, a common spherical surface Cir1 passing through the pitch circles of the first gear A1 and the second gear A2 and a common spherical surface Cir2 passing through the pitch circles of the third gear A3 and the fourth gear A4 are considered. Then, the center points of the respective common spherical surfaces are made coincident with each other, and the coincidence point is set as the origin O. Further, XY coordinates with the origin O as the origin are considered. The axis G of the input shaft 1 is arranged on the X axis of the XY coordinates. Further, the meshing point of the first and second gears A1 and A2 is C1, and the meshing point of the third and fourth gears A3 and A4 is C2. Then, the meshing points C1, C2 are placed in the first quadrant and the third quadrant or the second quadrant and the fourth quadrant.

また、入力軸1の軸芯Gと傾斜部1aの軸芯Hとがなす角度をθ、第1歯車A1 の背円錐とピッチ円錐の中心線とでなす角度をθ1 、第2歯車A2 の背円錐とピッチ円錐の中心線とでなす角度をθ2 とすると、θ1 +θ2 =θである。なお、θ1 ,θ2 のいずれか一方の角度を零とすることも可能であり、この場合は、前記角度を零とした方の歯車が冠歯車となる。同様にして、第3、第4歯車A3 ,A4 の背円錐と各ピッチ円錐の中心線とでなす角度は、第3歯車A3 はθ3 、第4歯車A4 はθ4 かつθ3 +θ4 =θである。 The angle formed between the axis G of the input shaft 1 and the axis H of the inclined portion 1a is θ, the angle formed between the back cone of the first gear A1 and the center line of the pitch cone is θ 1 , and the second gear A2 If the angle formed by the back cone and the center line of the pitch cone is θ 2 , θ 1 + θ 2 = θ. It is also possible to make either one of the angles θ 1 and θ 2 zero, and in this case, the gear having the zero angle becomes the crown gear. Similarly, the third angle formed by the fourth gear A3, back cone and the center line of each pitch cone of A4, the third gear A3 is theta 3, the fourth gear A4 theta 4 cutlet theta 3 + theta 4 = θ.

また、第1〜第4歯車の歯数をそれぞれn1,n2,n3,n4とする。ここで、第1〜第4歯車A1〜A4 の各ピッチ円錐の頂点O1,O2,O3,O4 から、各背円錐の頂点D1,D2,D3,D4 までの距離D1O1,D2O2,D3O3,D4O4を、ピッチ円半径とする円筒歯車ER1,ER2,ER3,ER4 を考える。そして、このピッチ円上に形成されるインボリュート歯形若しくは任意の歯形を想定し、これを第1〜第4歯車A1〜A4 の相当円筒歯車とする。   The number of teeth of the first to fourth gears is n1, n2, n3, and n4, respectively. Here, the distances D1O1, D2O2, D3O3, D4O4 from the vertices O1, O2, O3, O4 of the pitch cones of the first to fourth gears A1-A4 to the vertices D1, D2, D3, D4 of the dorsal cones are set. Consider cylindrical gears ER1, ER2, ER3, ER4 with pitch circle radii. An involute tooth profile or an arbitrary tooth profile formed on the pitch circle is assumed, and this is assumed to be an equivalent cylindrical gear of the first to fourth gears A1 to A4.

ここで、該相当円筒歯車の相当歯数をZ1,Z2,Z3,Z4とすると、
Z1 =n1 /Sinθ1 ……(ii)
Z2 =n2 /Sinθ2 ……(iii )
Z3 =n3 /Sinθ3 ……(iv)
Z4 =n4 /Sinθ4 ……(v)
と表すことができる。
Here, if the equivalent number of teeth of the equivalent cylindrical gear is Z1, Z2, Z3, Z4,
Z1 = n1 / Sinθ 1 (ii)
Z2 = n2 / Sinθ 2 (iii)
Z3 = n3 / Sinθ 3 (iv)
Z4 = n4 / Sinθ 4 (v)
It can be expressed as.

したがって、この種の揺動型歯車装置の歯形は、上記式(ii),(iii )で得られる関係を有する相当円筒歯車において、第1歯車A1 に等高歯の歯形を形成し、さらに、第2歯車A2 に該歯形を創成転写することで形成される。第3、第4歯車A3 ,A4 も同様にして形成される。すなわち、第1〜第4歯車A1〜A4は2対の等高歯歯車対が形成されることになり、従来の球面インボリュウト歯形に比べて加工精度の自由度の高い揺動型歯車装置が得られることになる。   Therefore, the tooth profile of this type of oscillating gear device is the equivalent cylindrical gear having the relationship obtained by the above formulas (ii) and (iii), and the tooth profile of the contour tooth is formed on the first gear A1. It is formed by generating and transferring the tooth profile to the second gear A2. The third and fourth gears A3 and A4 are formed in the same manner. That is, the first to fourth gears A1 to A4 are formed with two pairs of constant tooth gears, and an oscillating gear device having a higher degree of freedom in machining accuracy than that of a conventional spherical involute tooth profile is obtained. Will be.

以上のような基本構成および基本原理の揺動型歯車装置の特徴部分について、以下図1〜図8に基づいて詳細に説明する。   The characteristic portions of the oscillating gear device having the above basic configuration and basic principle will be described in detail with reference to FIGS.

まず、減速比の設定について説明する。揺動型歯車装置の減速比は、上述の説明で明らかなように高減速から低減速の幅広い減速比を得られるものであるが、特に低減速比を得る場合、噛み合い歯車間の基準ピッチ円直径の差が大きくなり、この差に対応して傾斜部の傾斜角を大きくする必要があり、これによって、回転体の揺動運動の振幅が大きくなり、振動的に不利となる。   First, setting of the reduction ratio will be described. The speed reduction ratio of the oscillating gear device can obtain a wide speed reduction ratio from a high speed reduction to a reduction speed, as is clear from the above description. In particular, when obtaining a reduction speed ratio, the reference pitch circle between the meshing gears. The difference in diameter becomes large, and it is necessary to increase the inclination angle of the inclined portion corresponding to this difference. This increases the amplitude of the oscillating motion of the rotating body, which is disadvantageous in terms of vibration.

この振動は、バランサーを設けることで低減することは可能であるが、構造が複雑になり、コストが増大するといった新たな問題が発生する。そこで、本発明に係わる実施態様においては、二組の歯車対のうち、第1歯車A1,第2歯車A2の歯車対において歯数差を与え、第3歯車A3,第4歯車A4の歯車対側の歯数差をゼロにすることで所定の減速比が得られるように構成されている。一例として、第1〜第4歯車の歯数n1〜n4を、n1=99,n2=100,n3=100,n4=100とすることで、減速比Rは(i)式により、R=1/100となり、上述の低減速の例と同様の減速比が得られる。   Although this vibration can be reduced by providing a balancer, a new problem arises that the structure becomes complicated and the cost increases. Therefore, in the embodiment according to the present invention, a gear number difference is given to the gear pair of the first gear A1 and the second gear A2 of the two gear pairs, and the gear pair of the third gear A3 and the fourth gear A4. A predetermined reduction ratio is obtained by setting the difference in the number of teeth on the side to zero. As an example, by setting the number of teeth n1 to n4 of the first to fourth gears to be n1 = 99, n2 = 100, n3 = 100, and n4 = 100, the reduction ratio R is R = 1 according to the equation (i). / 100, and a reduction ratio similar to that of the above-described reduction speed example is obtained.

このように、第1歯車A1,第2歯車A2からなる歯車対のみの一段減速とすることで、上述の二段減速の例と比べて、基準ピッチ円直径は大きくなるものの、基準ピッチ円直径の差を小さくすることができ、同一減速比を小さい傾斜角で得ることが可能となる。このように傾斜角を小さくすることで振動の低減だけでなく、第1歯車と第4歯車間の軸間距離の短縮化および第3歯車の歯形の簡略化も可能となる。   As described above, the single pitch reduction of only the gear pair composed of the first gear A1 and the second gear A2 makes the reference pitch circle diameter larger than that of the above-described two-step reduction example, but the reference pitch circle diameter. Thus, the same reduction ratio can be obtained with a small inclination angle. Thus, by reducing the inclination angle, not only the vibration can be reduced, but also the distance between the first gear and the fourth gear can be shortened and the tooth profile of the third gear can be simplified.

さらに、第1歯車,第2歯車からなる歯車対側のみでの一段減速とする場合、第3歯車と第4歯車については、同一歯数であれば減速比に影響を与えることはなく、任意に設定できる。したがって、第3歯車A3,第4歯車A4の歯数を第1歯車A1,第2歯車A2のいずれか一方の歯数と同一歯数にすることにより、4つの歯車のうち3つの歯車の歯数を同一にすることができ、加工効率、すなわち生産効率の向上に大きく貢献する。   Furthermore, in the case of one-stage reduction only on the side of the gear pair consisting of the first gear and the second gear, the third gear and the fourth gear do not affect the reduction ratio as long as they have the same number of teeth, and are arbitrary. Can be set. Therefore, by setting the number of teeth of the third gear A3 and the fourth gear A4 to be the same as the number of teeth of either the first gear A1 or the second gear A2, the teeth of three gears out of the four gears. The number can be made the same, greatly contributing to the improvement of processing efficiency, that is, production efficiency.

この場合、第3歯車A3,第4歯車の歯数を第2歯車の歯数と同一にしてもよく、また、第1歯車の歯数を同一にしてもよいが、前者の場合、第2歯車A2,第3歯車A3の歯数を同数とすることで、第2歯車と第3歯車の周方向の位相を一致させることができるので、第1歯車A1,第2歯車A2の噛み合い位置と、第3歯車A3,第4歯車A4の噛み合い位置の位相を一致させることができ、回転体に作用するアキシャル荷重が同一タイミングで作用することになり、回転体の振動を最小にすることができる。   In this case, the number of teeth of the third gear A3 and the fourth gear may be the same as the number of teeth of the second gear, and the number of teeth of the first gear may be the same. By making the number of teeth of the gear A2 and the third gear A3 the same, the circumferential phases of the second gear and the third gear can be matched, so that the meshing positions of the first gear A1 and the second gear A2 The phases of the meshing positions of the third gear A3 and the fourth gear A4 can be matched, and the axial load acting on the rotating body acts at the same timing, so that the vibration of the rotating body can be minimized. .

また、後者の場合、加工の効率化において特に有利となる。つまり、第1歯車と第2歯車間に歯数差を与え一段減速を行う場合、歯車の歯形形状については、4つの歯車のうち第2歯車のみ相違し、他の第1歯車A1,第3歯車A3,第4歯車A4の残り3つの歯車の形状を共通化できるので、同一加工設備での共通加工が可能となる。   In the latter case, it is particularly advantageous in improving processing efficiency. That is, when the first gear and the second gear are provided with a difference in the number of teeth and one-stage reduction is performed, only the second gear of the four gears is different from the first gear A1, the third gear. Since the shapes of the remaining three gears of the gear A3 and the fourth gear A4 can be made common, common machining with the same machining facility becomes possible.

次に、以上のように構成される一段減速機構の各歯形形状について説明する。第1〜第4の4つの歯車のうち第1歯車A1および第4歯車A4は、円柱コロ4aと該コロを傾動不能に位置決め保持する凹溝4bとを備え、歯すじ方向に歯厚,歯たけの等しい等高歯としての凸状歯4として構成されている。一方、上記第1,第4歯車と噛み合う第2歯車A2および第3歯車A3は、上記等高歯としての凸状歯4と噛み合う所定の円弧形状をなす凹状歯5として構成されている。このうち、第2歯車A2は、第1歯車A1との間に歯数差を有し、傾斜部1aにより所定の偏心量を持っていることによって、噛み合い始め位置から最大噛み合い位置にかけて、また最大噛み合い位置から噛み合い離脱位置にかけて、歯すじ方向の母線が交差しながら噛み合いを行うものであるため、単純な直線状の凹状歯とした場合、凹状歯5の開口部において干渉が生じる。したがって、第2歯車A2の歯形は、後に詳細に説明するように凸状歯4との噛み合いが適正に行われるように凸状歯4を創成転写した創成歯あるいは近似創成歯として形成されている。   Next, each tooth profile shape of the one-stage reduction mechanism configured as described above will be described. Of the first to fourth gears, the first gear A1 and the fourth gear A4 include a cylindrical roller 4a and a concave groove 4b that positions and holds the roller so that it cannot be tilted. It is configured as convex teeth 4 as contour teeth with equal bamboo. On the other hand, the second gear A2 and the third gear A3 meshing with the first and fourth gears are configured as concave teeth 5 having a predetermined arc shape meshing with the convex teeth 4 as the contour teeth. Of these, the second gear A2 has a difference in the number of teeth from the first gear A1, and has a predetermined amount of eccentricity due to the inclined portion 1a. Since meshing is performed while the generatrix line crosses from the meshing position to the meshing disengagement position, interference is generated at the opening of the concave tooth 5 when a simple straight concave tooth is used. Accordingly, the tooth profile of the second gear A2 is formed as a generating tooth or an approximate generating tooth obtained by generating and transferring the convex tooth 4 so that the mesh with the convex tooth 4 is properly performed as will be described in detail later. .

また、回転体3の他方の軸端面に形成され、第4歯車A4と噛み合う第3歯車A3は、第4歯車と同一軸芯でかつ同一歯数をなしているので、回転体3の揺動運動に伴って、サイクロイド曲線に沿った挙動は行うものの、上記第2歯車のように歯すじ方向における母線が交差することはないので、歯すじ方向に同一断面の円弧歯形として形成される。なお、第1〜第4歯車の基準ピッチ円直径(PCD)はそれぞれ歯すじ方向中央に設定されている。   Further, the third gear A3 formed on the other shaft end surface of the rotating body 3 and meshed with the fourth gear A4 has the same axis as the fourth gear and the same number of teeth. Along with the movement, although the behavior along the cycloid curve is performed, the generatrix in the tooth trace direction does not intersect like the second gear, so that it is formed as an arc tooth profile having the same cross section in the tooth trace direction. The reference pitch circle diameter (PCD) of the first to fourth gears is set at the center of the tooth trace direction.

以下、第1〜第4歯車の歯形について、より詳細に説明する。なお、第1歯車A1および第4歯車A4は同一歯形をなすので、以下第1歯車を代表して説明する。   Hereinafter, the tooth profiles of the first to fourth gears will be described in more detail. Since the first gear A1 and the fourth gear A4 have the same tooth profile, the first gear will be described below as a representative.

上記凸状歯4は、歯すじ長さが凹状歯5の歯すじ長さより長く設定されている。その長さは、第2歯車A2の揺動運動に伴う噛み合い始め位置から噛み合い離脱位置の間で、第2歯車A2の凹状歯開口部における干渉除去幅が歯すじ方向両端で最大となるように、有効噛み合い長さが長く設定されている。また、凸状歯4を構成するコロ4aは第1歯車A1のハブに固定手段としてのリテーナ7,8によって歯すじ方向両端において係止する必要があるので、上記凸状歯4の長さはコロ4aの係止分の寸法を考慮してさらに長く設定されている。つまり、凸状歯4を構成するコロ4aの歯すじ長さは、凹状歯5の歯すじ長さに対して、有効歯すじ長さの差分とリテーナ係止分の長さが加算された寸法として設定されている。またコロ4aの外径は、歯すじ方向全域において同一直径となっている。   The convex teeth 4 are set so that the tooth length is longer than the tooth length of the concave teeth 5. The length is such that the interference removal width at the concave tooth opening of the second gear A2 is maximized at both ends of the tooth trace direction between the meshing start position and the meshing disengagement position associated with the swinging motion of the second gear A2. The effective meshing length is set to be long. Further, since the rollers 4a constituting the convex teeth 4 need to be locked at both ends in the tooth line direction by retainers 7 and 8 as fixing means to the hub of the first gear A1, the length of the convex teeth 4 is as follows. The length of the roller 4a is set longer in consideration of the dimension of the locking portion. That is, the length of the tooth 4a of the roller 4a constituting the convex tooth 4 is a dimension obtained by adding the difference of the effective tooth length and the length of the retainer to the tooth length of the concave tooth 5. Is set as Further, the outer diameter of the roller 4a is the same in the entire region of the tooth trace direction.

上記凸状歯4として構成されるコロ4aは、第1歯車の歯数と同数備え、その軸方向(歯すじ方向)の両端部において外側リテーナ7、内側リテーナ8によって位置決め保持されている。各リテーナ7,8はリング状に形成されており、軸方向内端には第1、第4歯車A1、A4の係止溝9と係合する環状の係止爪がそれぞれ形成されている。軸方向の外端には、コロ4aの軸端部を保持する環状の係止爪がそれぞれ形成されている。このリテーナ7,8はポリアミド系あるいはポリイミド系の樹脂にて形成され、自身が所定の外力の作用により変形が可能で、コロ4aの変位を弾性的に許容するように構成されている。   The rollers 4a configured as the convex teeth 4 have the same number as the number of teeth of the first gear, and are positioned and held by the outer retainer 7 and the inner retainer 8 at both ends in the axial direction (tooth direction). The retainers 7 and 8 are formed in a ring shape, and annular locking claws that are engaged with the locking grooves 9 of the first and fourth gears A1 and A4 are formed at the inner ends in the axial direction. At the outer end in the axial direction, annular locking claws that hold the shaft end portion of the roller 4a are formed. The retainers 7 and 8 are made of a polyamide or polyimide resin, and can be deformed by the action of a predetermined external force, and are elastically allowed to displace the rollers 4a.

以上のように構成される凸状歯4としてのコロ4aを支持する凹溝4bは、ピッチ円錐面上において、歯すじ方向全域において断面一様、つまり同一幅、同一深さのいわゆる等高凹歯として形成され、上記コロ4aを歯すじ方向において摺動可能でかつ回転方向に傾動不能に密接支持するように構成されている。   The concave grooves 4b that support the rollers 4a as the convex teeth 4 configured as described above are so-called contour concaves that are uniform in cross-section in the entire tooth line direction on the pitch conical surface, that is, of the same width and depth. It is formed as a tooth, and is configured to closely support the roller 4a so as to be slidable in the direction of the teeth and not tiltable in the direction of rotation.

その断面形状としては、図5に示すように、凹状歯5の断面形状と同様に多重円弧にて形成されている。具体的にはコロ4aの半径に対し1より大きい半径rを持つ2つの円弧でもって、その円弧中心をコロ4a中心に対してオフセットさせて形成されている。それ故、凹溝4bおよび凹状歯5の開口部近くには、二つの接触点P、Pが形成され、コロ4aとの間で45度より小さい所定の(たとえば15度)の接触角αが得られるとともに、この接触点P、Pから溝底に向かってコロ4aの外周から徐々に離間することで溝底近辺に所定のオイル溜り4d,5bが形成されることになる。なお、接触角αとは、基本的に凸状歯4aと凹状歯5の噛み合いにおいて互いの母線が重なり合う最大噛み合い位置における角度をいう。 As shown in FIG. 5, the cross-sectional shape is formed by multiple arcs as in the cross-sectional shape of the concave tooth 5. Specifically, two arcs having a radius r larger than 1 with respect to the radius of the roller 4a are formed by offsetting the center of the arc with respect to the center of the roller 4a. Therefore, two contact points P 0 and P 0 are formed near the openings of the concave grooves 4b and the concave teeth 5, and a predetermined (for example, 15 degrees) contact angle smaller than 45 degrees with the rollers 4a. α is obtained, and predetermined oil reservoirs 4d and 5b are formed in the vicinity of the groove bottom by gradually separating from the outer periphery of the roller 4a from the contact points P 0 and P 0 toward the groove bottom. Note that the contact angle α is basically an angle at the maximum meshing position where the buses overlap each other when meshing the convex teeth 4 a and the concave teeth 5.

したがって、円柱状のコロ4aは歯すじ方向の全域において、凹溝4bの接触点P、Pの2点にて確実に支持され、コロ4aの支持剛性が高められ、コロ4aの凹溝4b内における回転方向の傾動が確実に阻止され、結果、コロ4aと凹溝4bとが強固に結合され、実質的に一体的な凸状歯4が構成されることになる。また、凹溝4bにおける接触点P、P2点による支持は、加工精度の自由度拡大に対しても重要な意味を持つ。つまり、コロ4aとの接触が全面当たりの場合、その精度如何によりコロ4aとの接触が部分当りとなりコロ4aの位置決めが不正確になる可能性があるが、上述のように2点当りの場合、位置決め精度上の自由度が高く、コロ4aの支持剛性を比較的安定的に確保することが可能となる。 Therefore, the cylindrical roller 4a is reliably supported at the two contact points P 0 and P 0 of the concave groove 4b in the entire region of the tooth trace direction, the support rigidity of the roller 4a is increased, and the concave groove of the roller 4a is increased. The tilting in the rotational direction in 4b is reliably prevented, and as a result, the roller 4a and the concave groove 4b are firmly coupled to form a substantially integral convex tooth 4. Further, the support by the contact points P 0 and P 0 2 in the concave groove 4b has an important meaning for increasing the degree of freedom of processing accuracy. In other words, if the contact with the roller 4a hits the entire surface, depending on the accuracy, the contact with the roller 4a may hit the part, and the positioning of the roller 4a may be inaccurate. The degree of freedom in positioning accuracy is high, and the support rigidity of the roller 4a can be ensured relatively stably.

また、上述のように凹溝4bおよび凹状歯5の断面を多重円弧で形成し、接触点P、Pを開口部近くに設定することで、その接触角αを小さくすることができ、特に凹状歯5において、伝達効率の向上および歯車各部の耐久性の向上に大きく貢献する。 Moreover, the contact angle α can be reduced by forming the cross section of the concave groove 4b and the concave tooth 5 with multiple arcs as described above, and setting the contact points P 0 and P 0 near the opening, In particular, the concave tooth 5 greatly contributes to improvement of transmission efficiency and durability of each part of the gear.

つまり、第1歯車A1および第2歯車A2の噛み合いが生じているときには図5の凹状歯5の接触点Pではコロ4aに対し荷重Pがかかる。この荷重Pは第1、第2歯車A1、A2のピッチ円錐と平行な方向の分力である回転伝達力Tと、同じくピッチ円錐と垂直な方向の分力であるアキシャル力Fとに成分を分けて考えることができる。このアキシャル力が大きくなれば逆に回転伝達力が小さくなる。しかもアキシャル力は、第2歯車A2が形成される回転体3に曲げ力として作用し回転体3を支障するベアリングに悪影響を与え歯車装置としての耐久性を損なうことになる。 That is, the load P is applied to the roller 4a at the contact point P 0 of the concave tooth 5 of FIG. 5 when the meshing of the first gear A1 and the second gear A2 is generated. This load P has components for a rotational transmission force T, which is a component force in a direction parallel to the pitch cone of the first and second gears A1, A2, and an axial force F, which is also a component force in a direction perpendicular to the pitch cone. Can be considered separately. Conversely, if this axial force increases, the rotation transmission force decreases. In addition, the axial force acts as a bending force on the rotating body 3 on which the second gear A2 is formed, adversely affects the bearing that interferes with the rotating body 3, and impairs the durability of the gear device.

したがって、接触角αを小さくすれば、アキシャル力が小さくなり、伝達効率の向上および耐久性の向上がともに可能となる。なお、凸状歯を構成する凹溝4bにおいては、このアキシャル力は第1歯車が固定されるハウジング6にて受けることになるので、上述の耐久性には影響を与えることはない。   Therefore, if the contact angle α is reduced, the axial force is reduced, and both transmission efficiency and durability can be improved. In the concave groove 4b constituting the convex teeth, this axial force is received by the housing 6 to which the first gear is fixed, and thus the above-described durability is not affected.

次に第2歯車A2に形成される凹状歯5の歯形について詳細に説明する。凹状歯5は、先に概略説明したように、第1歯車A1としての凸状歯4を創成転写することによって形成される。創成転写(加工)方法としては、本発明者が先の特許出願(特開平10−235519号)に詳細に開示しているように、ワークを保持する保持手段を本発明が対象とするいわゆる揺動型歯車装置を介して駆動するように構成し、ワークおよび保持手段を揺動運動させながらワークと対を成すカッターホイルを歯すじ方向に移動させることにより、凸状歯4と干渉する干渉除去部が除去されて適切な歯形として創成転写が可能となる。   Next, the tooth profile of the concave tooth 5 formed on the second gear A2 will be described in detail. The concave teeth 5 are formed by generating and transferring the convex teeth 4 as the first gear A1, as schematically described above. As the generative transfer (processing) method, as disclosed in detail in the previous patent application (Japanese Patent Laid-Open No. 10-235519) by the present inventor, a holding means for holding a workpiece is a so-called swinging object of the present invention. Interference removal that interferes with the convex teeth 4 by moving the cutter wheel paired with the workpiece in the direction of the tooth trace while moving the workpiece and the holding means in a swinging manner. The part is removed, and the creation transfer can be performed as an appropriate tooth profile.

このような手法にて創成転写される凹状歯5の形状について以下詳細に説明する。図6は、第1歯車と第2歯車の噛み合いにあたって、第1歯車の凸状歯としての等高歯に対し、第2歯車の凹状歯を同一深さ、同一幅の等高凹歯(干渉状況を説明する上での仮想形状)とし、第2歯車が矢印方向に揺動運動する際、凸状等高歯としてのコロ4aと等高凹歯としての凹状歯5の関係を2次元的に示す模式図である。この場合、第2歯車の歯数が第1歯車の歯数より多く設定され、その基準ピッチ円直径は歯数差分大きく設定されるとともに歯すじ方向中央に設定される。また、第1歯車の中心は入出力軸の軸芯Gを中心とし、第2歯車は傾斜部の軸芯H上の中心を持ち、中心Hは中心Gの周りを偏心回転する。   The shape of the concave tooth 5 created and transferred by such a method will be described in detail below. FIG. 6 shows that when the first gear and the second gear are engaged, the concave teeth of the second gear have the same depth and the same width as the convex teeth of the first gear. When the second gear swings in the direction of the arrow, the relationship between the roller 4a as a convex contour tooth and the concave tooth 5 as a contour concave tooth is two-dimensional. It is a schematic diagram shown in FIG. In this case, the number of teeth of the second gear is set to be larger than the number of teeth of the first gear, and the reference pitch circle diameter is set larger than the difference in the number of teeth and set in the center of the tooth line direction. The center of the first gear is centered on the axis G of the input / output shaft, the second gear has the center on the axis H of the inclined portion, and the center H rotates eccentrically around the center G.

したがって、第2歯車が矢印方向に揺動運動つまり偏心運動すると、等高歯としての凹状歯とコロとは所定の角度範囲Eにおいて噛み合いが行われることになる。この場合、コロと凹状歯とは母線M1、M2に対して歯すじ方向に同一幅(同一径)に形成されているので、母線が重なる最大噛み合い位置W1位置においては適正な噛み合いとなるが、その前後の噛み合い角度位置では、母線が互いに交差し、凹状歯5にはコロ4aとの干渉が生じる。   Therefore, when the second gear swings in the direction of the arrow, that is, moves eccentrically, the concave teeth as the contour teeth and the rollers are engaged in a predetermined angle range E. In this case, the rollers and the concave teeth are formed to have the same width (the same diameter) in the direction of the teeth with respect to the buses M1 and M2, and therefore the proper meshing occurs at the maximum meshing position W1 where the buses overlap. At the meshing angle positions before and after that, the buses intersect each other, and the concave teeth 5 interfere with the rollers 4a.

この母線の交差は、噛み合い始め位置W2および噛み合い離脱位置W3とで最大となり、しかも交差方向が最大噛み合い位置を基点に前後で逆の傾きとなるので、その干渉部(図中斜線付与部)は噛み合い始め位置W2から最大噛み合い位置W1までの角度範囲では基準ピッチ円直径(PCD)外側では凹状歯5の反回転方向側で発生し、基準ピッチ円直径内側では回転方向側に発生する。また、最大噛み合い位置W1から噛み合い離脱位置W3までの角度範囲では、基準ピッチ円直径の外側と内側では、上記とは逆の方向に干渉部が発生する。よって、凹状歯5の開口部には、噛み合い始め位置から噛み合い離脱位置の噛み合い範囲において、基準ピッチ円直径を基点に歯すじ方向内外に拡大する鼓形状の干渉部が生まれる。   The intersection of the buses is maximum at the meshing start position W2 and the meshing disengagement position W3, and the crossing direction has a reverse inclination before and after the maximum meshing position as a base point, so that the interference part (hatched part in the figure) is In the angle range from the meshing start position W2 to the maximum meshing position W1, it occurs on the counter-rotation direction side of the concave teeth 5 outside the reference pitch circle diameter (PCD), and occurs on the rotation direction side inside the reference pitch circle diameter. Further, in the angle range from the maximum meshing position W1 to the meshing disengagement position W3, interference portions are generated in the direction opposite to the above on the outside and inside of the reference pitch circle diameter. Therefore, in the opening portion of the concave tooth 5, a drum-shaped interference portion is created that expands in and out of the tooth trace direction with the reference pitch circle diameter as a base point in the meshing range from the meshing start position to the meshing disengagement position.

この干渉部は、第1歯車と第2歯車の基準ピッチ円直径の差、つまり傾斜部の傾斜角によって影響を受け、その傾斜角が小さければ第1歯車と第2歯車間の偏心量が小さくなり上述の母線の交差角が小さくなり、上述の干渉部が小さくなり、逆に傾斜角が大きくなると、その交差角が大きくなり干渉部は大きく(歯すじ方向、歯底方向、歯幅方向ともに)なる。   The interference portion is affected by the difference in the reference pitch circle diameter between the first gear and the second gear, that is, the inclination angle of the inclined portion. If the inclination angle is small, the amount of eccentricity between the first gear and the second gear is small. When the crossing angle of the above-mentioned bus line becomes small, the above-mentioned interference part becomes small, and conversely, when the inclination angle becomes large, the crossing angle becomes large and the interference part becomes large (both the tooth trace direction, the root direction and the tooth width direction) )Become.

また、この干渉部は、第1歯車と第2歯車の基準ピッチ円直径の差による影響だけでなく、凹状歯の歯すじ長さおよび基準ピッチ円直径の設定位置によっても大きく影響を受ける。歯筋長さが長くなるほど歯すじ方向端部での干渉幅が大きくなる。また、歯すじ長さが一定でも、基準ピッチ円直径の設定位置をたとえば、歯すじ方向内端および外端に設定した場合には、基準ピッチ円直径から一方の端部までの距離が大きくなるので、基準ピッチ円直径を起点に歯すじ方向他端に向かっていわゆるラッパ状に広がりきわめて大きい干渉部が発生することになる。   In addition, the interference portion is greatly influenced not only by the difference between the reference pitch circle diameters of the first gear and the second gear but also by the setting positions of the tooth length of the concave teeth and the reference pitch circle diameter. As the tooth trace length increases, the interference width at the end of the tooth trace direction increases. In addition, even if the tooth trace length is constant, when the reference pitch circle diameter setting position is set at, for example, the inner end and the outer end in the tooth trace direction, the distance from the reference pitch circle diameter to one end is increased. Therefore, an extremely large interference portion is generated that spreads in a so-called trumpet shape toward the other end in the tooth trace direction starting from the reference pitch circle diameter.

したがって、凹状歯は上述の創成加工機によってその干渉部が除去されることにより所定の噛み合い範囲における適正な噛み合いが得られることになるが、干渉部除去後の歯形は伝達効率および加工精度の自由度に対しても大きく影響することになるので、干渉幅を支配する凹状歯の歯すじ長さおよび基準ピッチ円直径の設定を干渉幅が最小になるように考慮する必要がある。つまり、干渉幅が大きくなると、コロ4aとの噛み合い角度範囲、特に噛み合い始め位置および噛み合い離脱位置におけるコロとの接触角が大きくなり、その分アキシャル方向の分力が大きくなり伝達効率の低下につながる。   Therefore, the concave teeth can be properly meshed in the predetermined meshing range by removing the interference part by the above-described generating machine, but the tooth profile after the interference part removal is free of transmission efficiency and machining accuracy. Therefore, it is necessary to consider the setting of the streak length of the concave tooth that governs the interference width and the reference pitch circle diameter so that the interference width is minimized. That is, when the interference width increases, the meshing angle range with the roller 4a, particularly the contact angle with the roller at the meshing start position and the meshing disengagement position, and the axial force increases accordingly, leading to a decrease in transmission efficiency. .

また、この干渉幅の拡大は、加工形態の自由度および加工精度の自由度にも影響を与える。つまり、上述のように創成加工機を用いて加工を行えば、精度の確保は可能であるが、特別な加工機を新たに用意する必要があり、従来の直線的加工機で加工するにはあまりにも複雑な加工工程が必要となり、精度の確保と生産性の自由度の両立が困難になる。したがって、本実施態様においては、第1歯車と第2歯車化における一段減速のみの減速作用の設定による傾斜角の最小化に加えて、凹状歯の歯すじ長さを凸状歯より大幅に短く設定し、かつ基準ピッチ円直径を歯すじ中央に設定しているので、その干渉部を最小にすることができ、精度の確保と生産性の自由度確保の両立を図ることができる。   In addition, the increase in the interference width also affects the degree of freedom of the processing form and the degree of freedom of the processing accuracy. In other words, as long as machining is performed using a creation machine as described above, accuracy can be ensured, but a special machining machine needs to be newly prepared. An extremely complicated machining process is required, and it becomes difficult to ensure both accuracy and freedom of productivity. Therefore, in this embodiment, in addition to minimizing the inclination angle by setting the speed reducing action of only one speed reduction in the first gear and the second gear, the tooth length of the concave teeth is significantly shorter than that of the convex teeth. Since it is set and the reference pitch circle diameter is set at the center of the tooth trace, the interference portion can be minimized, and both ensuring of accuracy and ensuring of freedom of productivity can be achieved.

図7は、図6で明らかになった干渉部を除去した状態の凹状歯の歯形を示すもので、上記噛み合い範囲において最大噛み合い位置を含む前後5つの噛み合い位置での干渉部の除去状態を示す。   FIG. 7 shows the tooth profile of the concave tooth with the interference portion clarified in FIG. 6 removed, and shows the removal state of the interference portion at the front and rear meshing positions including the maximum meshing position in the meshing range. .

図中、歯底から開口端にかけて描かれている三角形状のエリアは、上記角度位置ごとに発生する干渉部が除去された干渉除去部が示されている。すなわち、第1エリアE1は噛み合い始め位置における干渉除去部に相当するエリアで、基準ピッチ円直径PCD1をはさんで回転方向側と半回転方向側にそれぞれ位置する。第2エリアE2は、噛み合い始め位置W2と最大噛み合い位置W1の間の中間角度位置での干渉除去部に相当するエリアを示す。第3および第4エリアE3、E4は最大噛み合い位置W3から噛み合い離脱方向での上記と同様の干渉除去エリアを示す。なお、エリアE3は干渉が発生しない非干渉除去部で、最大噛み合い位置W1でコロが接触するエリアを示す。   In the drawing, a triangular area drawn from the root of the tooth to the opening end shows an interference removing portion from which the interference portion generated at each angular position is removed. That is, the first area E1 is an area corresponding to the interference removing portion at the meshing start position, and is located on the rotation direction side and the half rotation direction side across the reference pitch circle diameter PCD1. The second area E2 indicates an area corresponding to the interference removal unit at an intermediate angle position between the meshing start position W2 and the maximum meshing position W1. The third and fourth areas E3 and E4 indicate the same interference removal area as described above in the meshing disengagement direction from the maximum meshing position W3. Area E3 is a non-interference removing portion where interference does not occur, and indicates an area where the roller contacts at the maximum meshing position W1.

この図から明らかなように、上記各干渉除去部は、基準ピッチ円直径を基点に半径方向内外(歯すじ方向内外)に向かってそれぞれ拡大するが傾斜角が小さいことに加えて、基準ピッチ円直径が中央にあることと歯すじ長さが短いこととでその拡大率は比較的小さく保たれる。なお、図7に示す上述の干渉除去部を示すエリアは連続した回転の元では連続した曲面となり、エリアを画成する線は存在しないが説明の都合上上記の角度位置ごとの除去エリアを示した。   As is clear from this figure, each of the interference canceling parts expands radially inward and outward (inside and outside of the streak direction) with the reference pitch circle diameter as a base point, but in addition to the small inclination angle, the reference pitch circle The enlargement ratio is kept relatively small by the fact that the diameter is in the center and the tooth trace length is short. Note that the area showing the above-described interference removal unit shown in FIG. 7 is a continuous curved surface under continuous rotation, and there is no line defining the area, but the removal area for each angular position is shown for convenience of explanation. It was.

以上の説明で明らかなように、傾斜角の最小化、歯すじ長さの短縮化および歯すじ中央部への基準ピッチ円直径の設定により、歯すじ方向両端部における干渉除去部の拡大率を比較的小さくすることができ、その分、噛み合い始め位置および噛み合い離脱位置におけるコロとの接触角が小さくなり伝達効率が向上する。その意味において、基準ピッチ円直径の設定は、歯すじ方向中央を基点に歯すじ方向内方あるいは外方おいてそれぞれ歯すじ長さの30%の範囲であることが望ましく、それ以上中心からずれると一端部における干渉除去部の拡大率がおおきくなり過ぎるので好ましくない。より好ましくは両端の干渉除去部がほぼ等しくなるように基準ピッチ円直径を設定する必要がある。   As is clear from the above explanation, the enlargement ratio of the interference removal portion at both ends of the tooth trace direction is reduced by minimizing the inclination angle, shortening the tooth trace length, and setting the reference pitch circle diameter at the center of the tooth trace. The contact angle with the roller at the meshing start position and the meshing disengagement position is reduced, and transmission efficiency is improved accordingly. In that sense, it is desirable that the reference pitch circle diameter is set within 30% of the length of the tooth streak inward or outward from the center of the tooth streak direction, and further deviates from the center. Since the enlargement ratio of the interference removal portion at one end is too large, it is not preferable. More preferably, it is necessary to set the reference pitch circle diameter so that the interference removal portions at both ends are substantially equal.

その意味において基準ピッチ円直径の位置は、歯すじ中央より若干外方に配置する必要がある。つまり、基準ピッチ円直径を歯すじ方向中心に設定した場合半径方向内端と外端とではモジュールに差があり、この点に起因して内端と外端の間に干渉幅の差が生じ、外端が内端より大きくなる傾向がある。図7は、基準ピッチ円直径を凹状歯の歯すじ方向中央に設定した場合(PCD1)と、中央より半径方向外方に設定した場合(基準ピッチ円直径PCD2)において開口部の内端および外端の開口幅の関係を示すもので、この図から明らかなように、PCD1の場合は、半径方向外端の幅Hは内端の幅Hより広く、また、PCD2の場合はその開口幅は、外端側が縮小し内端側が拡大しH´,H´となり、その結果、両者はほぼ等しい開口幅となる。それ故、基準ピッチ円直径を中央より外方に設定することにより干渉幅を等しくすることができる。なお、図8は、基準ピッチ円直径(PCD)位置における断面図で、点線は歯すじ方向外端部を示し、一点差線は歯すじ方向内端を示す。 In that sense, the position of the reference pitch circle diameter needs to be arranged slightly outward from the center of the tooth trace. In other words, when the reference pitch circle diameter is set at the center of the tooth trace direction, there is a difference in the module between the inner end and the outer end in the radial direction, and this causes a difference in interference width between the inner end and the outer end. The outer end tends to be larger than the inner end. Fig. 7 shows the inner and outer edges of the opening when the reference pitch circle diameter is set at the center of the concave teeth (PCD1) and radially outward from the center (reference pitch circle diameter PCD2). shows the relationship between the opening width of the end, as is clear from the figure, in the case of PCD1, width H 1 of the radially outer end is wider than the width of H 2 the inner end, also in the case of PCD2 the opening The width is reduced at the outer end side and enlarged at the inner end side to become H 1 ′ and H 2 ′. As a result, both have substantially the same opening width. Therefore, the interference width can be made equal by setting the reference pitch circle diameter outward from the center. FIG. 8 is a cross-sectional view at the reference pitch circle diameter (PCD) position. The dotted line indicates the outer end portion in the tooth trace direction, and the one-dot difference line indicates the inner end in the tooth trace direction.

つぎに、第3歯車の歯形について説明する。第3歯車は、第4歯車と歯数および基準ピッチ円直径を同じくし、かつ両歯車のピッチ円錐の頂点が原点O(偏心量ゼロ位置)と一致するように配置されているので、第3歯車と第4歯車の噛み合いは、同一位置にて噛み合い離脱を繰り返すのみとなり、相対的な噛み合い位置の移動はなく、その間での減速作用は生じない。したがって、第3歯車と第4歯車の噛み合い過程において、上記第1歯車と第2歯車の噛み合い過程のように、歯すじ方向の母線の交差は発生しないので、第2歯車で発生するような形態の干渉は発生しない。それ故、第3歯車の歯形すなわち、凹状歯の形状は第4歯車の直線状のコロと噛み合うように歯筋方向において同一断面の円弧形状に形成されている。   Next, the tooth profile of the third gear will be described. The third gear has the same number of teeth and reference pitch circle diameter as the fourth gear, and is arranged so that the apex of the pitch cone of both gears coincides with the origin O (the zero eccentricity zero position). The meshing between the gear and the fourth gear is merely repeated meshing and disengaging at the same position, there is no movement of the relative meshing position, and no deceleration action occurs between them. Therefore, in the meshing process of the third gear and the fourth gear, the crossing of the generatrix line does not occur unlike the meshing process of the first gear and the second gear. No interference occurs. Therefore, the tooth shape of the third gear, that is, the shape of the concave tooth is formed in an arc shape having the same cross section in the tooth trace direction so as to mesh with the linear roller of the fourth gear.

具体的には、コロとの接触角が第2歯車の接触角と同様に15度なるように多重円弧で構成されている。したがって、第3歯車は、回転体の揺動運動に伴って、サイクロイド曲線に沿って第4歯車との噛み合い離脱を繰り返すが、実質的な噛み合い過程においては、凹状歯の中心と上記凸状歯の中心とが軸方向の同一線上を直線的に移動して、干渉することなく適正な噛み合いが行われることになる。   Specifically, it is composed of multiple arcs so that the contact angle with the roller is 15 degrees, similar to the contact angle of the second gear. Accordingly, the third gear repeatedly engages and disengages with the fourth gear along the cycloid curve as the rotating body swings. In the substantial meshing process, the center of the concave teeth and the convex teeth are repeated. The center of the shaft moves linearly on the same line in the axial direction, and proper meshing is performed without interference.

以上のように、第3歯車の歯形を歯すじ方向に同一断面の円弧歯形とすることにより、この凹状歯の加工に当たって、第1歯車および第4歯車の凹溝と同様に、既存の切削手段にて所定の角度ごとに所定形状の工具にて、直線的に加工できるので、加工が容易となる。この場合、歯数を第1歯車および第4歯車の歯数と同数にすれば、3つの歯車の直線状の円弧歯形を共通の割り出し装置を用いて加工でき、生産性を高めることが可能となる。また一方で、第3歯車は、第2歯車と同様に回転体の軸端面に形成され、回転体と同一部品を構成するものであるため、第2歯車と同様に鼓形状に形成すれば、第2歯車と第3歯車とを同一の加工手段での加工が可能となり、回転体としての生産性が向上する。この場合、第3歯車の歯数(第4歯車の歯数も同様に)を第2歯車の歯数と同数に設定すれば、さらに生産性が向上する。   As described above, by making the tooth profile of the third gear an arc tooth profile having the same cross section in the tooth direction, the existing cutting means is used in the processing of the concave teeth in the same manner as the concave grooves of the first gear and the fourth gear. Since machining can be performed linearly with a tool having a predetermined shape for each predetermined angle, machining becomes easy. In this case, if the number of teeth is the same as the number of teeth of the first gear and the fourth gear, the linear arc tooth profile of the three gears can be processed using a common indexing device, and productivity can be increased. Become. On the other hand, the third gear is formed on the shaft end surface of the rotating body like the second gear, and constitutes the same part as the rotating body. The second gear and the third gear can be processed by the same processing means, and the productivity as a rotating body is improved. In this case, if the number of teeth of the third gear (the number of teeth of the fourth gear is the same) is set to be the same as the number of teeth of the second gear, the productivity is further improved.

このように、第3歯車の歯形を第2歯車の歯型と同様の形状にすることによって、単に生産性の向上だけでなく、第3歯車の凹状歯の歯すじ方向両端の開口部が幅広に形成されているので、第4歯車との位置決め誤差が生じた場合にも凸状歯の歯先を凹状歯内に誘導するいわゆる自己求心作用により噛み合いを促進できる。またこのように鼓形状に形成することで、凹状歯の剛性が適度に弱められるので、第4歯車との角度位置に多少の誤差があっても、凹状歯の弾性変形によって異常面圧の発生を抑制できる。   Thus, by making the tooth profile of the third gear the same as the tooth profile of the second gear, not only the productivity is improved, but also the openings at both ends of the concave teeth of the third gear are widened. Therefore, even when a positioning error with the fourth gear occurs, meshing can be promoted by a so-called self-centering action that guides the tip of the convex tooth into the concave tooth. Moreover, since the rigidity of the concave teeth is moderately weakened by forming the drum shape in this way, even if there is some error in the angular position with the fourth gear, abnormal surface pressure is generated due to the elastic deformation of the concave teeth. Can be suppressed.

以上の説明で明らかなように、上記実施態様の揺動型歯車装置は、設計自由度の高い第1歯車を歯すじ長さの長い凸状歯として構成し、設計自由度の低い第2歯車を歯すじ長さの短い凹状歯として構成することにより揺動型歯車装置の小型化を図り、また、歯すじ長さの長い凸状歯を加工の容易な等高歯とし、歯すじ長さの短い凹状歯を上記凸状歯を創成転写した創成歯あるいは近似創成歯とするとともにその基準ピッチ円直径を歯すじ方向中央部付近に設定することにより、加工精度の自由度の拡大を図り、さらに上記凸状歯を構成するコロを、歯すじ方向全域で一様な断面の凹溝でもって回転方向に傾動不能に支持しコロの支持剛性高め、凸状歯を構成するコロと凹溝とが強固に結合され実質的に一体化された凸状歯とすることで、位置決め精度の自由度の向上を図るようになされている。よって、上記実施態様の揺動型歯車装置においては、加工精度の自由度の拡大と位置決め精度の自由度の拡大とで噛み合い精度を高めることができ、生産性を損なうことなく伝達効率を向上させることが可能となる。   As is apparent from the above description, the oscillating gear device of the above embodiment is configured such that the first gear having a high degree of design freedom is formed as a convex tooth having a long tooth length, and the second gear having a low degree of design freedom. The oscillating gear device can be miniaturized by configuring the tooth as a concave tooth with a short tooth length, and the convex tooth with a long tooth length can be used as a contoured tooth that is easy to process. By setting the reference pitch circle diameter in the vicinity of the center of the tooth trace direction as a creation tooth obtained by creating and transferring the above-mentioned convex tooth or an approximate creation tooth, and increasing the degree of freedom of processing accuracy, Further, the rollers constituting the convex teeth are supported in a non-tiltable manner in the rotational direction with concave grooves having a uniform cross-section in the entire region of the tooth trace direction to increase the support rigidity of the rollers, and the rollers and concave grooves constituting the convex teeth By making the convex teeth that are firmly connected and substantially integrated, It is adapted to improve the flexibility of fit accuracy. Therefore, in the oscillating gear device of the above-described embodiment, the meshing accuracy can be increased by increasing the degree of freedom of processing accuracy and the degree of freedom of positioning accuracy, and the transmission efficiency is improved without impairing productivity. It becomes possible.

しかも、第1,第2歯車による一段減速機として構成することにより、所定の減速比を得るに当たって、生産性が高く、かつ上記凹状歯の長さの短縮化および基準ピッチ円直径の設定位置とあいまって、噛み合い干渉部の最小化を図ることができ、生産性の自由度の拡大が可能となる。しかも一段減速とすることによって、特に低減速領域での減速比の設定が、二段減速に比べて細かい設定が可能となり、設定の自由度が拡大する。   In addition, by configuring as a one-stage speed reducer using the first and second gears, in obtaining a predetermined reduction ratio, the productivity is high, the length of the concave teeth is shortened, and the reference pitch circle diameter is set. In combination, the meshing interference portion can be minimized, and the degree of freedom in productivity can be increased. Moreover, by setting the first-stage deceleration, the reduction ratio can be set more finely than the two-stage deceleration, particularly in the reduction speed region, and the degree of freedom of setting is expanded.

本発明は上記の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係わる揺動歯車装置の断面図。Sectional drawing of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の要部の正面図。The front view of the principal part of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の相当平歯車への展開説明図。Explanatory drawing to the equivalent spur gear of the rocking gear apparatus concerning this invention. 図4の要部の拡大図。The enlarged view of the principal part of FIG. 本発明に係わる揺動歯車装置の第1実施態様の歯形の断面。The tooth profile section of the 1st embodiment of the rocking gear device concerning the present invention. 本発明に係わる揺動歯車装置の凸状歯と凹状歯の関係を示す模式図。The schematic diagram which shows the relationship between the convex-tooth and concave-tooth of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の凹状歯の拡大斜視図。The expansion perspective view of the concave tooth of the rocking gear device concerning the present invention. 図7の断面図。Sectional drawing of FIG. 従来の揺動型歯車装置の断面図Sectional view of a conventional oscillating gear device 従来の揺動型歯車装置の噛み合い部の説明図。Explanatory drawing of the meshing part of the conventional rocking | fluctuation type gear apparatus.

1 入力軸
1a 傾斜部
2 出力軸
3 回転体3
4 凸状歯
4a コロ
4b 凹溝
5 凹状歯
6 ハウジング
7 外側リテーナ
8 内側リテーナ
1 Input shaft 1a Inclined part 2 Output shaft 3 Rotating body 3
4 Convex teeth 4a Roller 4b Groove
5 concave tooth 6 housing 7 outer retainer 8 inner retainer

Claims (5)

4つの円錐傘歯車を備え、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、上記入力軸の回転により回転体が傾斜部上において揺動運動を行うように構成される揺動型歯車装置であって、
該第1ないし第4歯車の互いに噛み合い対峙する歯車のうち第1歯車および第4歯車が、ピッチ円錐上において等間隔で歯車中心から放射方向に伸びる断面半円状の凹溝と、該凹溝内に転動自在に配置される円柱状のコロとで等高歯としての凸状歯として構成され、上記第1歯車および第4歯車とそれぞれ噛み合う第2および第3歯車が、上記凸状歯に対応した凹状歯として構成され、
該凹状歯の歯すじ長さが該凸状歯の歯すじ長さより短く設定され、
上記第2歯車の歯数が第1歯車の歯数より多く設定され、上記第3歯車と第4歯車の歯数が同数に設定されており、
上記第2歯車の凹状歯が、その開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする揺動型歯車装置。
Four conical bevel gears, a first gear with n1 teeth fixed to the housing, and a fourth gear with n4 teeth attached to the output shaft are arranged with their axis centers aligned with the input shaft And the input shaft so that the second gear meshes with the first gear, and the third gear meshes with the fourth gear. An oscillating gear device configured such that the rotating body performs a oscillating motion on the inclined portion by the rotation of the input shaft.
The first gear and the fourth gear of the first to fourth gears meshing with each other and facing each other have a semicircular groove having a semicircular cross section extending radially from the gear center at equal intervals on the pitch cone, and the groove The second and third gears, which are configured as convex teeth as contour teeth with a cylindrical roller that is rotatably arranged inside, are meshed with the first gear and the fourth gear, respectively. It is configured as a concave tooth corresponding to
The tooth length of the concave teeth is set shorter than the tooth length of the convex teeth,
The number of teeth of the second gear is set to be greater than the number of teeth of the first gear, and the number of teeth of the third gear and the fourth gear are set to the same number ,
The concave tooth of the second gear is formed into a drum shape whose opening is expanded outward in the tooth line direction and inward in the tooth line direction across the reference pitch circle diameter. Gear device.
上記第1ないし第4歯車のうち第3歯車の歯数を上記第1歯車あるいは第2歯車の歯数と同一歯数に設定したことを特徴とする請求項1に記載の揺動型歯車装置。   2. The oscillating gear device according to claim 1, wherein the number of teeth of the third gear among the first to fourth gears is set to the same number of teeth as that of the first gear or the second gear. . 第3歯車の歯数を第2歯車の歯数と同一歯数に設定すると共に該第2歯車と第3歯車の各凹状歯の歯底位置を同位相に設定したことを特徴とする請求項1に記載の揺動型歯車装置。   The number of teeth of the third gear is set to the same number of teeth as that of the second gear, and the bottom positions of the concave teeth of the second gear and the third gear are set to the same phase. 2. The rocking gear device according to 1. 上記第3歯車の凹状歯が、凸状歯を構成する円柱コロに対応して歯すじ方向において同一断面の円弧歯形として構成されていることを特徴とする請求項1〜3のいずれか1つに記載の揺動型歯車装置。 Concave teeth of the third gear, any one of claims 1 to 3, characterized in that it is configured as an arc tooth profile of the same cross-section in the tooth trace direction corresponding to a cylindrical roller that constitute the convex teeth The oscillating gear device described in 1. 上記第3歯車の凹状歯が、基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする請求項1〜3のいずれか1つに記載の揺動型歯車装置。 Concave teeth of the third gear, more of claims 1 to 3, characterized in that formed on the drum-shaped to extend in the tooth trace direction outward and tooth trace inward across the reference pitch diameter oscillating gear device according to one or.
JP2007149213A 2007-06-05 2007-06-05 Oscillating gear unit Active JP4935510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149213A JP4935510B2 (en) 2007-06-05 2007-06-05 Oscillating gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149213A JP4935510B2 (en) 2007-06-05 2007-06-05 Oscillating gear unit

Publications (2)

Publication Number Publication Date
JP2008303906A JP2008303906A (en) 2008-12-18
JP4935510B2 true JP4935510B2 (en) 2012-05-23

Family

ID=40232817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149213A Active JP4935510B2 (en) 2007-06-05 2007-06-05 Oscillating gear unit

Country Status (1)

Country Link
JP (1) JP4935510B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290778B2 (en) * 2009-01-15 2013-09-18 荻野工業株式会社 Oscillating gear unit
JP5290787B2 (en) * 2009-01-29 2013-09-18 荻野工業株式会社 Oscillating gear unit
JP2010216590A (en) * 2009-03-17 2010-09-30 Jtekt Corp Rocking type gear device
JP5143781B2 (en) * 2009-04-27 2013-02-13 荻野工業株式会社 Oscillating gear unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315892A (en) * 1998-05-01 1999-11-16 Namu:Kk Coriolis motion gear device
JP4971011B2 (en) * 2007-04-03 2012-07-11 荻野工業株式会社 Oscillating gear unit

Also Published As

Publication number Publication date
JP2008303906A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
CN110469651B (en) Wave gear device
JP5256249B2 (en) Bending gear system
JP2011112214A (en) Flexible meshing-type gear device, and method for manufacturing external gear thereof
JP6261761B2 (en) Wave generator and wave gear device
JP2010156430A (en) Deceleration device
JP4935510B2 (en) Oscillating gear unit
JP2023184669A (en) gear unit
JP4971012B2 (en) Oscillating gear unit
JP4939185B2 (en) Oscillating gear unit
WO2016140234A1 (en) Speed reducer or speed increaser
JP4939191B2 (en) Oscillating gear unit
JP4961225B2 (en) Oscillating gear unit
JP4971011B2 (en) Oscillating gear unit
JP2011021729A (en) Flexible meshing type gear device, and method for determining tooth profile of the same
JP2013100911A (en) Flexible meshing type gear device and method for determining tooth profile of flexible meshing type gear device
JP4884315B2 (en) Oscillating gear unit
JP5290787B2 (en) Oscillating gear unit
JP5290778B2 (en) Oscillating gear unit
JP5798882B2 (en) Gear transmission
JP4922741B2 (en) Oscillating gear unit
JP2016166674A (en) Speed reducer or accelerator
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP6275588B2 (en) Planetary gear device and method for manufacturing the internal gear
JPH11315908A (en) Gear pair and coriolis motion gear device
JP4971013B2 (en) Oscillating gear unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250