[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4934624B2 - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP4934624B2
JP4934624B2 JP2008088655A JP2008088655A JP4934624B2 JP 4934624 B2 JP4934624 B2 JP 4934624B2 JP 2008088655 A JP2008088655 A JP 2008088655A JP 2008088655 A JP2008088655 A JP 2008088655A JP 4934624 B2 JP4934624 B2 JP 4934624B2
Authority
JP
Japan
Prior art keywords
diisocyanate
formula
mol
represented
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008088655A
Other languages
Japanese (ja)
Other versions
JP2009242490A (en
Inventor
貴和 伊藤
亮介 小比賀
恵一 冨澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008088655A priority Critical patent/JP4934624B2/en
Publication of JP2009242490A publication Critical patent/JP2009242490A/en
Application granted granted Critical
Publication of JP4934624B2 publication Critical patent/JP4934624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、モータや発電機などのコイルを構成するために最適な、耐加工性に優れた絶縁被膜を提供する絶縁塗料と、この塗料を塗布・焼付した絶縁電線に関する。   The present invention relates to an insulating paint that provides an insulating coating excellent in workability, which is optimal for constituting a coil of a motor or a generator, and an insulated wire coated and baked with this paint.

近年、モータや発電機の小型化、軽量化、高出力化へのニーズが高まってきており、これを実現するために、モータのコアに、より多くの絶縁電線を巻き付ける必要が生じてきている。このために、より多くの絶縁電線を、狭いコアスロットの中に詰め込むことになり、絶縁電線の被膜には、過酷な加工条件に耐え、かつ絶縁性能を保持できることが要求されるようになってきている。   In recent years, there has been an increasing need for miniaturization, weight reduction, and high output of motors and generators, and in order to achieve this, it has become necessary to wrap more insulated wires around the motor core. . For this reason, more insulated wires are packed in a narrow core slot, and the coating of insulated wires is required to withstand severe processing conditions and to maintain insulation performance. ing.

一般的なポリアミドイミド樹脂を用いた絶縁電線、例えば、ジフェニルメタン−4,4’−ジイソシアネート(MDI)とトリメリット酸無水物(TMA)から重合により合成されるポリアミドイミド樹脂を用いた絶縁電線では、上記の用途に供すると、加工時に受ける過酷な力により損傷を受け、電気特性に不具合を生じるという問題が生じている。   Insulated wires using a general polyamideimide resin, for example, insulated wires using a polyamideimide resin synthesized by polymerization from diphenylmethane-4,4′-diisocyanate (MDI) and trimellitic anhydride (TMA), If it uses for said use, it will be damaged by the severe force received at the time of a process, and the problem of producing a malfunction in an electrical property has arisen.

従来、ワニスの合成原料に4,4’−ビトリレンジイソシアネート(TODI)を加え、ポリアミドイミドの分子構造中にビフェニル構造を導入したり(特許文献1)、絶縁電線の耐外傷性をさらに向上させるために、絶縁皮膜の強度に加えて導体の柔軟性を特定したり(特許文献3)、合成に用いる酸無水物としてトリメリット酸無水物(TMA)の他にピロメリット酸二無水物(PMDA)を併用し、分子構造中のイミド基の割合を増やして絶縁被膜の弾性率を大きくすることで耐加工性能を向上させる提案(特許文献2)がなされてきた。   Conventionally, 4,4'-bitolylene diisocyanate (TODI) is added to the raw material for varnish to introduce a biphenyl structure into the molecular structure of polyamideimide (Patent Document 1), and further improve the damage resistance of insulated wires. Therefore, in addition to the strength of the insulating film, the flexibility of the conductor is specified (Patent Document 3), or pyromellitic dianhydride (TMA) in addition to trimellitic anhydride (TMA) as an acid anhydride used in the synthesis ( (PMDA) has been proposed (Patent Document 2) to improve the processing resistance by increasing the elastic modulus of the insulating coating by increasing the proportion of imide groups in the molecular structure.

特許2936895公報Japanese Patent No. 2936895 特許3977305公報Japanese Patent No. 3777305 WO99/41757再公表特許公報WO99 / 41757 republished patent gazette

上記の公知例では、原料に使用する4,4’−ビトリレンジイソシアネート(TODI)の割合を増やしてポリアミドイミド中のビフェニル構造の割合を増やすことで弾性率の向上が望めるものの、絶縁被膜の可とう性が悪化するといった問題が生じる。可とう性を補うためにジフェニルメタン−4,4’−ジイソシアネート(MDI)を用いることも提案されているが、MDIを併用すると、柔らかくなりすぎ、高弾性率とするためには設計分子量を高分子量側にする必要がある。従って、耐加工性を満足するためにはポリアミドイミドの分子量を大きなものにする必要があり、ワニスの粘度が大きなものになってしまい、電線に被覆する場合、溶剤で希釈して粘度調整をすることが必要となる。そのため所定の絶縁被膜厚さを得るためには塗布回数を多くしなければならず、作業性・生産性が悪化するといった問題が生じていた。   In the above known example, although the elastic modulus can be improved by increasing the proportion of 4,4′-bitolylene diisocyanate (TODI) used as a raw material and increasing the proportion of the biphenyl structure in the polyamideimide, There arises a problem that flexibility is deteriorated. It has also been proposed to use diphenylmethane-4,4'-diisocyanate (MDI) to compensate for flexibility, but when used in combination with MDI, it becomes too soft and the design molecular weight is set to a high molecular weight in order to obtain a high elastic modulus. Need to be on the side. Therefore, in order to satisfy the processing resistance, it is necessary to increase the molecular weight of the polyamideimide, and the viscosity of the varnish becomes large. When coating the wire, the viscosity is adjusted by diluting with a solvent. It will be necessary. Therefore, in order to obtain a predetermined insulating film thickness, the number of times of coating has to be increased, resulting in a problem that workability and productivity are deteriorated.

また、4,4’−ビトリレンジイソシアネート(TODI)は、ジフェニルメタン−4,4’−ジイソシアネート(MDI)やトリレンジイソシアネート(TDI)と比較して格段に高価な材料であり、TODIをより多く用いると、ワニス価格及びこれを用いた絶縁電線の価格の高騰を招く。   In addition, 4,4′-bitolylene diisocyanate (TODI) is a material that is much more expensive than diphenylmethane-4,4′-diisocyanate (MDI) and tolylene diisocyanate (TDI). If used, the varnish price and the price of insulated wires using the varnish will rise.

一方、ワニスの合成に用いる酸無水物としてトリメリット酸無水物(TMA)の他にピロメリット酸二無水物(PMDA)を併用する場合でも、原料に使用するPMDAの割合を増やしてポリアミドイミド中のイミド構造の割合を増やすことにより弾性率の向上が望めるものの、溶剤への溶解性が著しく低下し、導体への塗布・焼付時の作業性に支障を生じるといった問題点があった。   On the other hand, even when pyromellitic dianhydride (PMDA) is used in combination with trimellitic anhydride (TMA) as an acid anhydride for varnish synthesis, the proportion of PMDA used as a raw material is increased in polyamideimide Although an improvement in the elastic modulus can be expected by increasing the proportion of the imide structure, there has been a problem that the solubility in a solvent is remarkably lowered and the workability at the time of coating and baking onto a conductor is hindered.

従って、本発明の目的は、耐加工性、可とう性、弾性率に優れた皮膜性状が良好な絶縁被膜であって、溶解性、作業性・生産性がよく、経済性がよい絶縁被膜を提供する絶縁塗料と、この塗料を塗布・焼付された絶縁電線、及びこれを用いたモータの提供にある。   Accordingly, an object of the present invention is an insulating film having excellent film properties with excellent workability, flexibility and elastic modulus, and having good solubility, workability / productivity, and economical efficiency. The object is to provide an insulating paint to be provided, an insulated wire coated and baked with the paint, and a motor using the same.

本発明においてポリアミドイミド合成時に用いるジイソシアネート成分として、屈曲構造を有するトリレンジイソシアネート(TDI)を用いることにより、ポリアミドイミド分子中のビフェニル構造やイミド基の割合を増やしても溶剤への溶解性を向上させることができるため、塗布・焼付時の作業性が良好で、塗布・焼付後の絶縁電線が過酷な巻線工程でも損傷を回避できる被膜の機械的強度を保持できる。これは、屈曲構造付与成分としてTDIを用いることにより、ジフェニルメタン−4,4’−ジイソシアネート(MDI)を屈曲構造付与成分として用いる場合と異なり、自由回転をする部分が無いため、MDIを用いるより剛直な分子になることが期待でき、TDIの方がMDIより、できたポリアミドイミドの分子量が多少小さくても高弾性率な被膜になるためと考えられる。   By using tolylene diisocyanate (TDI) having a bent structure as the diisocyanate component used in the synthesis of polyamideimide in the present invention, the solubility in a solvent is improved even if the proportion of biphenyl structure and imide group in the polyamideimide molecule is increased. Therefore, the workability at the time of application / baking is good, and the insulated wire after application / baking can maintain the mechanical strength of the coating that can avoid damage even in a severe winding process. Unlike the case where diphenylmethane-4,4′-diisocyanate (MDI) is used as a bending structure imparting component by using TDI as a bending structure imparting component, there is no part that freely rotates, so that it is more rigid than using MDI. This is probably because TDI has a higher elastic modulus than MDI, even if the molecular weight of the resulting polyamideimide is somewhat smaller.

ジフェニルメタン−4,4’−ジイソシアネート(MDI)をポリアミドイミド分子鎖中に屈曲構造を付与する成分としてワニス合成時に用いることもできるが、得られたワニスを塗布・焼付して作成したポリアミドイミド被膜にトリレンジイソシアネート(TDI)を用いて合成したワニスを塗布・焼付して作成したポリアミドイミド被膜と同等の耐摩耗特性を発現させるためには、ワニス中のポリアミドイミド分子量を、TDIを用いた場合より高分子量に調整する必要が生じるため、ワニス粘度が大きくなり、導体への塗布・焼付時の作業性に支障が生じる。そのため、屈曲構造を付与するジイソシアネート成分としては、MDIよりTDIを用いるほうが望ましい。屈曲構造をポリアミドイミド分子鎖中に導入する別の手段としてはポリアミドイミド合成時に用いる酸成分としてイソフタル酸を用いることもできる。   Diphenylmethane-4,4′-diisocyanate (MDI) can also be used as a component for imparting a bent structure in the polyamideimide molecular chain during varnish synthesis, but the obtained varnish is coated and baked to form a polyamideimide coating. In order to develop wear resistance equivalent to that of a polyamide-imide film created by applying and baking a varnish synthesized using tolylene diisocyanate (TDI), the molecular weight of the polyamide-imide in the varnish should be less than when TDI is used. Since it is necessary to adjust to a high molecular weight, the varnish viscosity increases, and the workability at the time of coating and baking onto a conductor is hindered. Therefore, it is desirable to use TDI rather than MDI as the diisocyanate component that imparts a bent structure. As another means for introducing the bent structure into the polyamideimide molecular chain, isophthalic acid can also be used as an acid component used in the synthesis of polyamideimide.

本発明者らは、上記知見に基づき、屈曲構造を付与するジイソシアネート成分としてTDIを選択し、ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、ポリアミドイミドの合成にジイソシアネート成分として関与する4,4’−ビトリレンジイソシアネート(TODI)、及びトリレンジイソシアネート(TDI)と、酸成分として関与するピロメリット酸二無水物(PMDA)、及びトリメリット酸無水物(TMA)との組成に着目し、鋭意検討の結果、全ジイソシアネート成分中、4,4’−ビトリレンジイソシアネート(TODI)5〜33モル%、及びトリレンジイソシアネート(TDI)95〜67モル%、全酸成分中、ピロメリット酸二無水物(PMDA)5〜60モル%、及びトリメリット酸無水物(TMA)95〜40モル%を用いて重合反応させることにより、本発明の課題が解決されることを見出し、本発明を完成するに至った。   Based on the above knowledge, the present inventors select TDI as a diisocyanate component that imparts a bent structure, and in a polyamideimide synthesized using equimolar amounts of a diisocyanate component and an acid component, Participating 4,4'-bitolylene diisocyanate (TODI) and tolylene diisocyanate (TDI) and pyromellitic dianhydride (PMDA) and trimellitic anhydride (TMA) involved as acid components Focusing on the composition, as a result of intensive studies, 4,4'-bitolylene diisocyanate (TODI) 5 to 33 mol% and tolylene diisocyanate (TDI) 95 to 67 mol% in all diisocyanate components, in all acid components , Pyromellitic dianhydride (PMDA) 5-60 mol%, and trimelli By polymerization reaction using a preparative acid anhydride (TMA) 95 to 40 mol%, it found that the object of the present invention are solved, leading to completion of the present invention.

本発明の課題は以下の手段によって達成された。
1.ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、全ジイソシアネート成分中、式(1)
The object of the present invention has been achieved by the following means.
1. In the polyamideimide synthesized using equimolar amounts of diisocyanate component and acid component, in all diisocyanate components, formula (1)

Figure 0004934624
Figure 0004934624

で示される4,4’−ビトリレンジイソシアネートを5〜33モル%、及び式(2) 5 to 33 mol% of 4,4'-bitolylene diisocyanate represented by the formula (2)

Figure 0004934624
Figure 0004934624

で示されるトリレンジイソシアネートを95〜67モル%、全酸成分中、式(3) 95-67 mol% of tolylene diisocyanate represented by the formula (3)

Figure 0004934624
Figure 0004934624

で示されるピロメリット酸二無水物を5〜60モル%、及び式(4) 5 to 60 mol% of pyromellitic dianhydride represented by the formula (4)

Figure 0004934624
Figure 0004934624

で示されるトリメリット酸無水物を95〜40モル%を用いて重合させた絶縁樹脂ワニスからなる絶縁塗料。 An insulating paint comprising an insulating resin varnish obtained by polymerizing trimellitic anhydride represented by the formula (95) to 40 mol%.

2.前記式(1)で示される4,4’−ビトリレンジイソシアネートが、式(1a) 2. The 4,4'-vitrylene diisocyanate represented by the formula (1) is represented by the formula (1a)

Figure 0004934624
Figure 0004934624

で示される3,3’−ジメチルビフェニル−4,4’−ジイソシアネートである前記1または3に記載の絶縁塗料。
3.前記式(2)で示されるトリレンジイソシアネートがその2,4−異性体と2,6−異性体との混合物である前記1又は2のいずれかに記載の絶縁塗料。
4.前記1〜3のいずれかに記載の絶縁塗料を塗布焼き付けた絶縁層が絶縁被膜の全部または一部である絶縁電線。
5.表面潤滑層を有する前記4記載の絶縁電線。
6.前記4または5記載の絶縁電線を用いたモータ。
4. The insulating paint according to 1 or 3, which is 3,3′-dimethylbiphenyl-4,4′-diisocyanate represented by
3. 3. The insulating paint according to any one of 1 and 2, wherein the tolylene diisocyanate represented by the formula (2) is a mixture of its 2,4-isomer and 2,6-isomer.
4). The insulated wire which the insulating layer which apply | coated and baked the insulating paint in any one of said 1-3 is all or one part of an insulating film.
5. 5. The insulated wire according to 4 above, which has a surface lubricating layer.
6). A motor using the insulated wire according to 4 or 5 above.

本発明は、モータや発電機などのコイルを構成するために最適な、耐加工性に優れた絶縁被膜を与える絶縁塗料と、この塗料を塗布・焼付された絶縁電線を提供する。本発明によれば、過酷な加工条件に耐え、加工時に損傷を受けず、かつ絶縁性能を保持できる、電気特性に不具合を生じない、耐外傷性、耐加工性能、耐摩耗特性、可とう性、弾性率に優れ、皮膜性状が良好な絶縁被膜であって、溶解性、作業性・生産性がよく、経済性がよい絶縁被膜を与える絶縁塗料と、この塗料を塗布・焼付された絶縁電線、及びこれを用いたモータを提供することができる。   The present invention provides an insulating paint that provides an insulating coating excellent in workability, which is optimal for constituting coils of motors and generators, and an insulated wire coated and baked with this paint. According to the present invention, it can withstand severe processing conditions, is not damaged at the time of processing, can maintain insulation performance, does not cause defects in electrical characteristics, is resistant to trauma, processing resistance, wear resistance, flexibility Insulating coating that provides an insulating coating with excellent elastic modulus and good film properties, good solubility, workability and productivity, and good economic efficiency, and an insulated wire coated and baked with this coating And a motor using the same can be provided.

本発明に係る絶縁塗料は、ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、
全ジイソシアネート成分中、式(1)
Insulating paint according to the present invention is a polyamideimide synthesized using equimolar amounts of a diisocyanate component and an acid component.
Of all diisocyanate components, formula (1)

Figure 0004934624
Figure 0004934624

で示される4,4’−ビトリレンジイソシアネート(TODIと略称する)を5〜33モル%、及び式(2) 5 to 33 mol% of 4,4'-vitrylene diisocyanate (abbreviated as TODI) represented by formula (2)

Figure 0004934624
Figure 0004934624

で示されるトリレンジイソシアネート(TDIと略称する)を95〜67モル%、全酸成分中、式(3) 95 to 67 mol% of tolylene diisocyanate (abbreviated as TDI) represented by the formula (3)

Figure 0004934624
Figure 0004934624

で示されるピロメリット酸二無水物(PMDAと略称する)を5〜60モル%、及び式(4) 5 to 60 mol% of pyromellitic dianhydride (abbreviated as PMDA) represented by formula (4)

Figure 0004934624
Figure 0004934624

で示されるトリメリット酸無水物(TMAと略称する)を95〜40モル%を用いて重合させた絶縁樹脂ワニスからなる絶縁塗料である。 Is an insulating paint made of an insulating resin varnish obtained by polymerizing 95 to 40 mol% of trimellitic anhydride (abbreviated as TMA).

前記式(1)で示される4,4’−ビトリレンジイソシアネート(TODI)の具体例としては、式(1a)   Specific examples of 4,4'-vitrylene diisocyanate (TODI) represented by the formula (1) include those represented by the formula (1a)

Figure 0004934624
Figure 0004934624

で示される3,3’−ジメチルビフェニル−4,4’−ジイソシアネートのほか、2,2’−ジメチルビフェニル−4,4’−ジイソシアネート、2,3’−ジメチルビフェニル−4,4’−ジイソシアネートが挙げられ、これらの中、3,3’−ジメチルビフェニル−4,4’−ジイソシアネートが好ましい。 2,3′-dimethylbiphenyl-4,4′-diisocyanate, 2,2′-dimethylbiphenyl-4,4′-diisocyanate and 2,3′-dimethylbiphenyl-4,4′-diisocyanate Among these, 3,3′-dimethylbiphenyl-4,4′-diisocyanate is preferable.

前記式(2)で示されるトリレンジイソシアネート(TDI)の具体例としては、式(2a)   Specific examples of tolylene diisocyanate (TDI) represented by the formula (2) include those represented by the formula (2a)

Figure 0004934624
Figure 0004934624

で示される2,4−トリレンジイソシアネート、式(2b) 2,4-tolylene diisocyanate represented by the formula (2b)

Figure 0004934624
Figure 0004934624

で示される2,6−トリレンジイソシアネート、これらの異性体の混合物のほか、2,3−トリレンジイソシアネート、2,5−トリレンジイソシアネート、3,4−トリレンジイソシアネート、3,5−トリレンジイソシアネート、これらの2以上の異性体の混合物が挙げられる。これらの中、トリレンジイソシアネートの2,4−異性体と2,6−異性体の混合物の具体例を挙げると、2,4−異性体と2,6−異性体との質量比が、80:20、または65:35の異性体混合物が挙げられる。 2,6-tolylene diisocyanate, a mixture of these isomers, 2,3-tolylene diisocyanate, 2,5-tolylene diisocyanate, 3,4-tolylene diisocyanate, 3,5-tolylene diisocyanate Isocyanates and mixtures of these two or more isomers. Among these, specific examples of the mixture of the 2,4-isomer and the 2,6-isomer of tolylene diisocyanate will give a mass ratio of 2,4-isomer and 2,6-isomer of 80. : 20, or 65:35 isomer mixtures.

本発明において絶縁層を形成するために用いられるポリアミドイミド樹脂絶縁塗料(樹脂組成物)は、常法により、例えば、極性溶媒中で、ジイソシアネート成分と酸成分を等モル量用いて合成され、全ジイソシアネート成分中、4,4’−ビトリレンジイソシアネート(TODI)5〜33モル%、及びトリレンジイソシアネート(TDI)95〜67モル%、全酸成分中、ピロメリット酸二無水物(PMDA)5〜60モル%、及びトリメリット酸無水物(TMA)95〜40モル%を用いて重合反応させることができる。   The polyamide-imide resin insulating paint (resin composition) used for forming the insulating layer in the present invention is synthesized by an ordinary method, for example, using a diisocyanate component and an acid component in equimolar amounts in a polar solvent. In the diisocyanate component, 4,4′-bitolylene diisocyanate (TODI) 5 to 33 mol%, and tolylene diisocyanate (TDI) 95 to 67 mol%, in all acid components, pyromellitic dianhydride (PMDA) 5 The polymerization reaction can be carried out using ˜60 mol% and trimellitic anhydride (TMA) 95-40 mol%.

本発明の酸成分は、ピロメリット酸二水物(PMDA)とトリメリット酸無水物(TMA)から構成するものであり、ベンゾフェノンテトラカルボン酸二無水物(BTDAと略称する)を含まない。
ベンゾフェノンテトラカルボン酸ニ無水物(BTDA)はそのベンゾフェノン骨格に起因して250〜380nmに吸収領域を持ち、水素引き抜き型ラジカル重合開始材として作用する。したがって、ワニス安定性や皮膜の経時変化安定性に問題が生じると考えられる。また、ピロメリット酸二水物(PMDA)を用いた方がベンゾフェノンテトラカルボン酸二無水物(BDTA)を用いた場合よりも、ポリマーの耐熱性が優位である。本発明の酸成分にベンゾフェノンテトラカルボン酸二無水物(BDTA)は含めない。
The acid component of the present invention is composed of pyromellitic acid dihydrate (PMDA) and trimellitic anhydride (TMA) and does not contain benzophenone tetracarboxylic dianhydride (abbreviated as BTDA).
Benzophenone tetracarboxylic dianhydride (BTDA) has an absorption region at 250 to 380 nm due to its benzophenone skeleton, and acts as a hydrogen abstraction type radical polymerization initiator. Therefore, it is considered that problems occur in varnish stability and stability over time of the film. In addition, the heat resistance of the polymer is superior in the case of using pyromellitic acid dihydrate (PMDA) than in the case of using benzophenone tetracarboxylic dianhydride (BDTA). Benzophenone tetracarboxylic dianhydride (BDTA) is not included in the acid component of the present invention.

合成時に使用する溶媒は、調製後の樹脂が溶解するものであればいずれでもよく、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン等を用いることができる。これらの中、N−メチル−2−ピロリドンが好ましい。   The solvent used in the synthesis may be any solvent as long as the resin prepared can be dissolved, and N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, etc. may be used. it can. Of these, N-methyl-2-pyrrolidone is preferred.

このようにして得たポリアミドイミド樹脂塗料を、導体上に直接あるいは他の層を介して塗布、焼付けして、導体上に絶縁層を形成する。ここでいう他の層とは、耐熱ポリエステル樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂などエナメル被覆電線の被覆樹脂として一般に用いることのできる樹脂による絶縁樹脂層を指し、被覆電線に求められる加工条件、耐熱性によって使用する樹脂を選ぶことができる。   The polyamideimide resin paint thus obtained is applied and baked directly on the conductor or through another layer to form an insulating layer on the conductor. The other layer here refers to an insulating resin layer made of a resin that can be generally used as a coating resin for an enamel-coated electric wire such as a heat-resistant polyester resin, a polyesterimide resin, a polyamide-imide resin, or a polyimide resin, and is a process required for the coated electric wire. The resin to be used can be selected according to conditions and heat resistance.

また、本発明の目的を損なわない範囲で、各絶縁層には、従来から絶縁皮膜中に添加できることが知られている各種の添加剤(例えば潤滑剤、無機微粉末、金属アルコキシレートなど)を添加することができる。   In addition, various additives (for example, lubricants, inorganic fine powders, metal alkoxylates, and the like) that are conventionally known to be added to an insulating film are added to each insulating layer within a range that does not impair the object of the present invention. Can be added.

例えば、多層被覆電線の最外層に表面潤滑層を設けることにより電線の耐加工性をさらに高めることができる。ここで言う表面潤滑層とは、ポリアミドイミド樹脂溶液に潤滑剤微粒子を分散させたワニスを塗布・焼付して形成した樹脂被膜層を指す。樹脂溶液に分散させる潤滑剤としては、カルナバワックスやモンタンワックスの様なエステル系ワックスや、ポリエチレンやポリテトラフルオロエチレン(PTFE)のような合成樹脂系ワックスから、電線表面に付与させる潤滑性能に合わせて1種または複数種のものを用いることができる。   For example, by providing a surface lubricating layer on the outermost layer of the multilayer coated electric wire, the work resistance of the electric wire can be further improved. The surface lubrication layer mentioned here refers to a resin coating layer formed by applying and baking a varnish in which lubricant fine particles are dispersed in a polyamideimide resin solution. Lubricants dispersed in the resin solution can be selected from ester waxes such as carnauba wax and montan wax, and synthetic resin waxes such as polyethylene and polytetrafluoroethylene (PTFE) according to the lubrication performance to be applied to the wire surface. 1 type or multiple types can be used.

本発明において、導体上にこれらの樹脂ワニスを塗布する方法は常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、もし導体断面形状が四角形であるならば、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。これらの樹脂ワニスを塗布した導体は、常法により、焼付炉で焼き付けされる。具体的な焼き付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400〜500℃にて通過時間を30〜90秒に設定することにより達成することができる。   In the present invention, a method for applying these resin varnishes on the conductor may be a conventional method, for example, a method using a varnish application die having a similar shape to the conductor shape, or if the conductor cross-sectional shape is a square, A die called a “universal die” formed in a cross beam shape can be used. The conductor coated with these resin varnishes is baked in a baking furnace by a conventional method. The specific baking conditions depend on the shape of the furnace used, but in the case of a natural convection type vertical furnace of about 5 m, the passage time is set to 400 to 500 ° C. to 30 to 90 seconds. Can be achieved.

本発明の絶縁電線において、導体としては通常、銅またはその合金からなるものを用いる。また、絶縁被膜の全膜厚についても特に限定されない。全膜厚で、導体径(直径)の3〜5%とすることが好ましい。例えば直径1.0mmの導体の場合、絶縁被膜の全膜厚は30〜50μmが好ましい。   In the insulated wire of the present invention, the conductor is usually made of copper or an alloy thereof. Further, the total film thickness of the insulating coating is not particularly limited. The total film thickness is preferably 3 to 5% of the conductor diameter (diameter). For example, in the case of a conductor having a diameter of 1.0 mm, the total thickness of the insulating coating is preferably 30 to 50 μm.

上記の絶縁電線を用いた回転電機の実施態様として、図1に示すようなモータ1の電機子2に適用し、特に図2には部分図として示した積層コア3のスロット4に絶縁電線5を巻回した例を示している。もちろん、この構造のモータに限定されるものではなく、中央部にマグネットローラを配置し、その周りに積層コアのスロットに絶縁電線が巻回された電機子を構成するプラシレスモータ、さらには発電機等、あらゆるタイプの回転電機に適用できるものである。   As an embodiment of the rotating electric machine using the above-described insulated wire, it is applied to the armature 2 of the motor 1 as shown in FIG. 1, and in particular, the insulated wire 5 is inserted into the slot 4 of the laminated core 3 shown as a partial view in FIG. The example which wound is shown. Of course, the motor is not limited to this structure. A plus-less motor that constitutes an armature in which a magnet roller is arranged in the center and an insulated wire is wound around a slot of a laminated core around the magnet roller. It can be applied to all types of rotating electrical machines such as machines.

以下に、実施例を挙げて本発明をさらに説明するが、本発明は、これらの実施例によって何らの制約を受けるものではない。   Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited by these examples.

[ワニスの合成方法]
容量3リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、撹拌機を備えた合成装置を用意した。その中に、TMA96.1g(0.5モル)、PMDA109.1g(0.5モル)、TDI139.3g(0.8モル)、TODI52.9g(0.2モル)と、溶媒として、N−メチル−2−ピロリドン(NMP)1096.6gを加え、窒素気流中撹拌しながら、常温から140℃まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘調になるまで、140℃で2時間撹拌を続けた。その後常温まで冷却し、ポリアミドイミドワニス組成1(樹脂濃度22質量%)1406gを得た。
[Synthesis method of varnish]
A synthesis device equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer was prepared in a three-liter flask having a volume of 3 liters. Among them, TMA 96.1 g (0.5 mol), PMDA 109.1 g (0.5 mol), TDI 139.3 g (0.8 mol), TODI 52.9 g (0.2 mol), and N- Methyl-2-pyrrolidone (NMP) 1096.6g was added, and it heated up from normal temperature to 140 degreeC over 2 hours, stirring in nitrogen stream. Stirring was continued at 140 ° C. for 2 hours until the generation of carbon dioxide gas was observed from inside the flask and the solution in the flask became viscous. Thereafter, the mixture was cooled to room temperature to obtain 1406 g of a polyamideimide varnish composition 1 (resin concentration: 22% by mass).

上記合成方法と同様の方法で、表1に示す量の各成分を加え、ポリアミドイミドワニス組成2〜13を得た。組成9,13では、ワニスに濁りが生じた。それぞれの組成で作成したワニスを、ガラス板に約30μm厚に塗布し150℃で10分間加熱後、250℃で10分間、加熱焼き付けを行い、ポリアミドイミドフィルムを作成した。組成9,11,13のワニスでは、焼き付け後、細かいひび割れが生じ、フィルムを作成することができなかった。組成1〜13のワニス性状、ワニス粘度、組成1〜8,10,12で作成したフィルムの弾性率を、表1に併記した。ワニス性状、ワニス粘度測定方法、被覆性状、弾性率の試験方法及び評価基準は以下のとおりである。
(a)ワニス性状
合成終了後、目視で確認。均一な粘稠溶液となったものを「良好」、均一な溶液とならず濁りを生じたものを「濁り」とした。
(b)ワニス粘度測定方法
JIS C2351のエナメル線用ワニスに準拠してB型粘度計を用い30±0.5℃で測定した。
(c)被覆性状試験方法
(評価方法)加熱後のガラス板よりフィルム状に剥離できたものを「良好」と評価し、加熱や着付け時に被膜にひび割れが生じフィルム状に剥離できなかった物を「ひび割れ」と評価し、表1中に記した。
(d)弾性率試験方法
(評価方法)加熱焼き付け後のフィルムを幅10mm、長さ100mmに切り出し、引っ張り試験機を用いて標線間距離50mm、引っ張り速度5mm/分で測定したS−Sカーブより弾性率を求めた。
By the method similar to the said synthesis method, each component of the quantity shown in Table 1 was added, and the polyamideimide varnish compositions 2-13 were obtained. In compositions 9 and 13, varnish was turbid. Varnishes prepared with the respective compositions were applied to a glass plate to a thickness of about 30 μm, heated at 150 ° C. for 10 minutes, and then baked at 250 ° C. for 10 minutes to prepare a polyamideimide film. In the varnishes of compositions 9, 11, and 13, fine cracks occurred after baking, and a film could not be prepared. Table 1 shows the varnish properties of compositions 1 to 13, the varnish viscosity, and the elastic modulus of the films prepared with compositions 1 to 8, 10, and 12. The varnish properties, the varnish viscosity measurement method, the coating properties, the elastic modulus test method and the evaluation criteria are as follows.
(A) Varnish properties Visual confirmation after synthesis. A solution that became a uniform viscous solution was defined as “good”, and a solution that did not become a uniform solution and became cloudy was defined as “turbidity”.
(B) Varnish viscosity measuring method It measured at 30 +/- 0.5 degreeC using the B-type viscosity meter based on the varnish for enameled wire of JISC2351.
(C) Covering property test method (evaluation method) A coating film that was peeled off from a heated glass plate was evaluated as “good”, and a film that cracked during heating or wearing and could not be peeled into a film It was evaluated as “cracked” and recorded in Table 1.
(D) Elastic modulus test method (evaluation method) The S-S curve obtained by cutting the film after heating and baking into a width of 10 mm and a length of 100 mm and measuring the distance between marked lines with a tensile tester at 50 mm and a tensile speed of 5 mm / min. More elastic modulus was obtained.

なお、表1中、TMA、PMDA、TDI、及びTODIは、下記のものを示す。
TMA :トリメリット酸無水物
PMDA:ピロメリット酸二無水物
TDI :トリレンジイソシアネート(2,4−異性体と2,6−異性体との質量比が、
80:20の異性体混合物)
TODI:3,3’−ジメチルビフェニル−4,4’−ジイソシアネート
In Table 1, TMA, PMDA, TDI, and TODI indicate the following.
TMA: trimellitic anhydride PMDA: pyromellitic dianhydride TDI: tolylene diisocyanate (mass ratio of 2,4-isomer and 2,6-isomer is
80:20 isomer mixture)
TODI: 3,3′-dimethylbiphenyl-4,4′-diisocyanate

[電線製造]
表1の各組成を用いて、導体(1.2mm径)に塗布・焼付した結果を表2まとめた。
組成1〜7までを、それぞれ実施例1〜7として示す。組成8〜13までを、それぞれ比較例1〜6として示す。
組成9,11,13のワニスは、固形分22質量%の状態では電線製造が困難であったため、それぞれ固形分13,15,13質量%までNMPで希釈して電線製造に供した。
それぞれの電線について、耐加工性評価として一方向摩耗試験(JIS−C3003)、可とう性評価として自己径巻き付け試験を行った。自己径巻き付け試験の試験方法及び評価基準は次のとおりである。
[Electric wire manufacturing]
Table 2 summarizes the results of coating and baking onto a conductor (1.2 mm diameter) using each composition in Table 1.
Compositions 1 to 7 are shown as Examples 1 to 7, respectively. Compositions 8 to 13 are shown as Comparative Examples 1 to 6, respectively.
Since varnishes of compositions 9, 11, and 13 had difficulty in producing wires in a state where the solid content was 22% by mass, they were diluted with NMP to a solid content of 13, 15, and 13% by mass, respectively, and used for wire production.
Each wire was subjected to a unidirectional wear test (JIS-C3003) as a workability evaluation and a self-diameter winding test as a flexibility evaluation. The test method and evaluation criteria of the self-diameter winding test are as follows.

(e)自己径巻き付け試験方法
JIS−C3003の可とう性試験方法に準拠し、被覆電線自身の周囲に線と線が接触するように緊密に10回巻き付けたとき、被膜に導体が見える亀裂を生じないかを約15倍の拡大鏡を用いて調べた。
評価基準
○:拡大鏡観察で亀裂無きこと無きこと
キレツ:拡大鏡観察によって導体が見える亀裂が生じている
(E) Self-diameter winding test method In accordance with the flexibility test method of JIS-C3003, when the wire is wound tightly 10 times so that the wire comes into contact with the periphery of the coated wire itself, a crack is visible in which the conductor is visible on the coating. The occurrence of the occurrence was examined using a magnifier of about 15 times.
Evaluation criteria ○: No cracks in magnifying glass observations Kiretsu: Cracks in which conductors can be seen by magnifying glass observations

表1,2の結果によれば、比較例1,3,5では、一方向摩耗特性の値が実施例1〜7と比較すると劣っている。また、比較例2,4,6では、自己径巻き付けで亀裂が観察され、可とう性が劣っていることが判る。これに対し、全ジイソシアネート成分中、TODI20,33,30モル%、及びTDI80,67,70モル%、全酸成分中、PMDA50,50,25モル%、及びTMA50,50,75モル%を用いて重合反応させた組成1,2,4では、皮膜性状が良好で、弾性率及び可とう性(自己径巻付)がよいばかりでなく、特に皮膜が剥離しづらい(一方向摩耗特性)点において優れていることが判る。また、TODIを用いず、全ジイソシアネート成分としてTDIを用い、全酸成分中、PMDA20,33モル%、及びTMA80,67モル%を用いて重合反応させた組成3,5、及び全ジイソシアネート成分中、TODI各60モル%、及びTDI各40モル%、全酸成分中、PMDA20,33モル%、及びTMA80,67モル%を用いて重合反応させた組成6,7では、皮膜性状が良好で、弾性率及び可とう性(自己径巻付)がよいばかりでなく、比較例1〜6に比べて皮膜が剥離しづらい(一方向摩耗特性)か、または可とう性において優れていることが判る。   According to the results of Tables 1 and 2, in Comparative Examples 1, 3, and 5, the value of the unidirectional wear characteristic is inferior to that of Examples 1-7. Further, in Comparative Examples 2, 4, and 6, cracks are observed by self-diameter winding, and it is understood that the flexibility is inferior. On the other hand, TODI20,33,30 mol% and TDI80,67,70 mol% in all diisocyanate components, PMDA50,50,25 mol%, and TMA50,50,75 mol% in all acid components are used. In the compositions 1, 2, and 4 subjected to the polymerization reaction, the film properties are good, the elastic modulus and the flexibility (self-diameter winding) are not only good, but the film is particularly difficult to peel (unidirectional wear characteristics). It turns out that it is excellent. Moreover, using TODI as the total diisocyanate component without using TODI, in the total acid component, PMDA 20, 33 mol% and TMA 80, 67 mol% were used for the polymerization reaction 3, 5 and in the total diisocyanate component, In Compositions 6 and 7 polymerized using TODI 60 mol% and TDI 40 mol%, PMDA 20,33 mol%, and TMA 80,67 mol% in the total acid components, the film properties are good and elastic. It can be seen that not only the rate and flexibility (self-diameter winding) are good, but also the film is harder to peel (unidirectional wear characteristics) or is superior in flexibility than Comparative Examples 1-6.

Figure 0004934624
Figure 0004934624

Figure 0004934624
Figure 0004934624

モータの模式断面図である。It is a schematic cross section of a motor.

符号の説明Explanation of symbols

1 モータ
2 電機子
3 積層コア
4 スロット
5 絶縁電線
1 Motor 2 Armature 3 Laminated Core 4 Slot 5 Insulated Wire

Claims (6)

ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、全ジイソシアネート成分中、式(1)
Figure 0004934624
で示される4,4’−ビトリレンジイソシアネートを5〜33モル%、及び式(2)
Figure 0004934624
で示されるトリレンジイソシアネートを95〜67モル%、全酸成分中、式(3)
Figure 0004934624
で示されるピロメリット酸二無水物を5〜60モル%、及び式(4)
Figure 0004934624
で示されるトリメリット酸無水物を95〜40モル%を用いて重合させた絶縁樹脂ワニスからなる絶縁塗料。
In the polyamideimide synthesized using equimolar amounts of diisocyanate component and acid component, in all diisocyanate components, formula (1)
Figure 0004934624
5 to 33 mol% of 4,4′-vitrylene diisocyanate represented by the formula (2)
Figure 0004934624
95-67 mol% of tolylene diisocyanate represented by the formula (3)
Figure 0004934624
5 to 60 mol% of pyromellitic dianhydride represented by the formula (4)
Figure 0004934624
An insulating paint comprising an insulating resin varnish obtained by polymerizing trimellitic anhydride represented by the formula (95) to 40 mol%.
前記式(1)で示される4,4’−ビトリレンジイソシアネートが、式(1a)
Figure 0004934624
で示される3,3’−ジメチルビフェニル−4,4’−ジイソシアネートである請求項1に記載の絶縁塗料。
The 4,4′-vitrylene diisocyanate represented by the formula (1) is represented by the formula (1a)
Figure 0004934624
The insulating paint according to claim 1, which is 3,3′-dimethylbiphenyl-4,4′-diisocyanate represented by the formula:
前記式(2)で示されるトリレンジイソシアネートがその2,4−異性体と2,6−異性体との混合物である請求項1又は2に記載の絶縁塗料。   The insulating paint according to claim 1 or 2, wherein the tolylene diisocyanate represented by the formula (2) is a mixture of the 2,4-isomer and the 2,6-isomer. 請求項1〜3のいずれか1項に記載の絶縁塗料を塗布焼き付けた絶縁層が絶縁被膜の全部または一部である絶縁電線。   The insulated wire in which the insulating layer which apply | coated and baked the insulating coating material of any one of Claims 1-3 is all or one part of an insulating film. 表面潤滑層を有する請求項4記載の絶縁電線。   The insulated wire according to claim 4 having a surface lubricating layer. 請求項4または5記載の絶縁電線を用いたモータ。   A motor using the insulated wire according to claim 4.
JP2008088655A 2008-03-28 2008-03-28 Insulated wire Active JP4934624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088655A JP4934624B2 (en) 2008-03-28 2008-03-28 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088655A JP4934624B2 (en) 2008-03-28 2008-03-28 Insulated wire

Publications (2)

Publication Number Publication Date
JP2009242490A JP2009242490A (en) 2009-10-22
JP4934624B2 true JP4934624B2 (en) 2012-05-16

Family

ID=41304783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088655A Active JP4934624B2 (en) 2008-03-28 2008-03-28 Insulated wire

Country Status (1)

Country Link
JP (1) JP4934624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342277B2 (en) * 2009-03-03 2013-11-13 古河電気工業株式会社 Multi-layer insulated wire
CN112143373A (en) * 2020-10-20 2020-12-29 安徽晟然绝缘材料有限公司 Self-lubricating high-toughness wire enamel and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815517B2 (en) * 1976-07-30 1983-03-25 古河電気工業株式会社 Manufacturing method of electrical insulation paint
JP2936895B2 (en) * 1991-11-22 1999-08-23 住友電気工業株式会社 Insulated wire
JPH0773745A (en) * 1993-08-31 1995-03-17 Sumitomo Electric Ind Ltd Insulated electric wire
DE69932293T2 (en) * 1998-02-13 2007-07-05 The Furukawa Electric Co., Ltd. ISOLATED WIRE
JP3977305B2 (en) * 2003-08-29 2007-09-19 古河電気工業株式会社 Insulated conductor
JP5040058B2 (en) * 2004-02-19 2012-10-03 東レ株式会社 Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP2007270074A (en) * 2006-03-31 2007-10-18 Sumitomo Electric Ind Ltd Processing resistant polyamide-imide resin vanish and electrical insulating wire

Also Published As

Publication number Publication date
JP2009242490A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
JP5609732B2 (en) Insulating paint and insulated wire using the same
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
JP5761151B2 (en) Insulated wires and coils
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2013131423A (en) Electrically insulated electric wire and coil
JP2013191356A (en) Insulation electric wire and coil formed by using the same
JP6394697B2 (en) Insulated wires and coils
JP2007270074A (en) Processing resistant polyamide-imide resin vanish and electrical insulating wire
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP5351011B2 (en) Insulated wire, electric coil and motor
JP4934624B2 (en) Insulated wire
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
CN109293920B (en) Resin composition and insulated wire using same
JP4190589B2 (en) Insulated wire
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP3287025B2 (en) Insulated wire
JP3724922B2 (en) Polyimide-based insulating paint and insulated wire
JP5407059B2 (en) Insulated wire
JP5342277B2 (en) Multi-layer insulated wire
JP2011159578A (en) Insulation wire, and electric coil and motor using the same
JP2936895B2 (en) Insulated wire
JP2011159577A (en) Insulated electrical wire and electric coil and motor using the same
JP2012164424A (en) Polyester imide resin based varnish for low dielectric constant coating film
JP2013028695A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R151 Written notification of patent or utility model registration

Ref document number: 4934624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250