JP4934624B2 - Insulated wire - Google Patents
Insulated wire Download PDFInfo
- Publication number
- JP4934624B2 JP4934624B2 JP2008088655A JP2008088655A JP4934624B2 JP 4934624 B2 JP4934624 B2 JP 4934624B2 JP 2008088655 A JP2008088655 A JP 2008088655A JP 2008088655 A JP2008088655 A JP 2008088655A JP 4934624 B2 JP4934624 B2 JP 4934624B2
- Authority
- JP
- Japan
- Prior art keywords
- diisocyanate
- formula
- mol
- represented
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 32
- 239000002966 varnish Substances 0.000 claims description 32
- 239000004962 Polyamide-imide Substances 0.000 claims description 26
- 229920002312 polyamide-imide Polymers 0.000 claims description 26
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 claims description 24
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 21
- 125000005442 diisocyanate group Chemical group 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 20
- 229920005989 resin Polymers 0.000 claims description 20
- ICLCCFKUSALICQ-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanato-3-methylphenyl)-2-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC(C=2C=C(C)C(N=C=O)=CC=2)=C1 ICLCCFKUSALICQ-UHFFFAOYSA-N 0.000 claims description 18
- 239000003973 paint Substances 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 14
- 230000001050 lubricating effect Effects 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 239000004020 conductor Substances 0.000 description 15
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 14
- 239000010410 layer Substances 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- -1 3,5-tolylene diisocyanate Isocyanates Chemical class 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000005462 imide group Chemical group 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- SHXBKOTUGHTKLV-UHFFFAOYSA-N benzene-1,2,4,5-tetracarboxylic acid;dihydrate Chemical compound O.O.OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O SHXBKOTUGHTKLV-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- VMDKCOKSZGQUME-UHFFFAOYSA-N 1,2-diisocyanato-3-methylbenzene Chemical compound CC1=CC=CC(N=C=O)=C1N=C=O VMDKCOKSZGQUME-UHFFFAOYSA-N 0.000 description 1
- RMLOYAZEIZIABM-UHFFFAOYSA-N 1,2-diisocyanato-4-methylbenzene Chemical compound CC1=CC=C(N=C=O)C(N=C=O)=C1 RMLOYAZEIZIABM-UHFFFAOYSA-N 0.000 description 1
- DKBHJZFJCDOGOY-UHFFFAOYSA-N 1,4-diisocyanato-2-methylbenzene Chemical compound CC1=CC(N=C=O)=CC=C1N=C=O DKBHJZFJCDOGOY-UHFFFAOYSA-N 0.000 description 1
- 0 CC(C=CC=C1)=C*1N Chemical compound CC(C=CC=C1)=C*1N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N O=C(c(c1c2)cc(C(O3)=O)c2C3=O)OC1=O Chemical compound O=C(c(c1c2)cc(C(O3)=O)c2C3=O)OC1=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
- Paints Or Removers (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
本発明は、モータや発電機などのコイルを構成するために最適な、耐加工性に優れた絶縁被膜を提供する絶縁塗料と、この塗料を塗布・焼付した絶縁電線に関する。 The present invention relates to an insulating paint that provides an insulating coating excellent in workability, which is optimal for constituting a coil of a motor or a generator, and an insulated wire coated and baked with this paint.
近年、モータや発電機の小型化、軽量化、高出力化へのニーズが高まってきており、これを実現するために、モータのコアに、より多くの絶縁電線を巻き付ける必要が生じてきている。このために、より多くの絶縁電線を、狭いコアスロットの中に詰め込むことになり、絶縁電線の被膜には、過酷な加工条件に耐え、かつ絶縁性能を保持できることが要求されるようになってきている。 In recent years, there has been an increasing need for miniaturization, weight reduction, and high output of motors and generators, and in order to achieve this, it has become necessary to wrap more insulated wires around the motor core. . For this reason, more insulated wires are packed in a narrow core slot, and the coating of insulated wires is required to withstand severe processing conditions and to maintain insulation performance. ing.
一般的なポリアミドイミド樹脂を用いた絶縁電線、例えば、ジフェニルメタン−4,4’−ジイソシアネート(MDI)とトリメリット酸無水物(TMA)から重合により合成されるポリアミドイミド樹脂を用いた絶縁電線では、上記の用途に供すると、加工時に受ける過酷な力により損傷を受け、電気特性に不具合を生じるという問題が生じている。 Insulated wires using a general polyamideimide resin, for example, insulated wires using a polyamideimide resin synthesized by polymerization from diphenylmethane-4,4′-diisocyanate (MDI) and trimellitic anhydride (TMA), If it uses for said use, it will be damaged by the severe force received at the time of a process, and the problem of producing a malfunction in an electrical property has arisen.
従来、ワニスの合成原料に4,4’−ビトリレンジイソシアネート(TODI)を加え、ポリアミドイミドの分子構造中にビフェニル構造を導入したり(特許文献1)、絶縁電線の耐外傷性をさらに向上させるために、絶縁皮膜の強度に加えて導体の柔軟性を特定したり(特許文献3)、合成に用いる酸無水物としてトリメリット酸無水物(TMA)の他にピロメリット酸二無水物(PMDA)を併用し、分子構造中のイミド基の割合を増やして絶縁被膜の弾性率を大きくすることで耐加工性能を向上させる提案(特許文献2)がなされてきた。 Conventionally, 4,4'-bitolylene diisocyanate (TODI) is added to the raw material for varnish to introduce a biphenyl structure into the molecular structure of polyamideimide (Patent Document 1), and further improve the damage resistance of insulated wires. Therefore, in addition to the strength of the insulating film, the flexibility of the conductor is specified (Patent Document 3), or pyromellitic dianhydride (TMA) in addition to trimellitic anhydride (TMA) as an acid anhydride used in the synthesis ( (PMDA) has been proposed (Patent Document 2) to improve the processing resistance by increasing the elastic modulus of the insulating coating by increasing the proportion of imide groups in the molecular structure.
上記の公知例では、原料に使用する4,4’−ビトリレンジイソシアネート(TODI)の割合を増やしてポリアミドイミド中のビフェニル構造の割合を増やすことで弾性率の向上が望めるものの、絶縁被膜の可とう性が悪化するといった問題が生じる。可とう性を補うためにジフェニルメタン−4,4’−ジイソシアネート(MDI)を用いることも提案されているが、MDIを併用すると、柔らかくなりすぎ、高弾性率とするためには設計分子量を高分子量側にする必要がある。従って、耐加工性を満足するためにはポリアミドイミドの分子量を大きなものにする必要があり、ワニスの粘度が大きなものになってしまい、電線に被覆する場合、溶剤で希釈して粘度調整をすることが必要となる。そのため所定の絶縁被膜厚さを得るためには塗布回数を多くしなければならず、作業性・生産性が悪化するといった問題が生じていた。 In the above known example, although the elastic modulus can be improved by increasing the proportion of 4,4′-bitolylene diisocyanate (TODI) used as a raw material and increasing the proportion of the biphenyl structure in the polyamideimide, There arises a problem that flexibility is deteriorated. It has also been proposed to use diphenylmethane-4,4'-diisocyanate (MDI) to compensate for flexibility, but when used in combination with MDI, it becomes too soft and the design molecular weight is set to a high molecular weight in order to obtain a high elastic modulus. Need to be on the side. Therefore, in order to satisfy the processing resistance, it is necessary to increase the molecular weight of the polyamideimide, and the viscosity of the varnish becomes large. When coating the wire, the viscosity is adjusted by diluting with a solvent. It will be necessary. Therefore, in order to obtain a predetermined insulating film thickness, the number of times of coating has to be increased, resulting in a problem that workability and productivity are deteriorated.
また、4,4’−ビトリレンジイソシアネート(TODI)は、ジフェニルメタン−4,4’−ジイソシアネート(MDI)やトリレンジイソシアネート(TDI)と比較して格段に高価な材料であり、TODIをより多く用いると、ワニス価格及びこれを用いた絶縁電線の価格の高騰を招く。 In addition, 4,4′-bitolylene diisocyanate (TODI) is a material that is much more expensive than diphenylmethane-4,4′-diisocyanate (MDI) and tolylene diisocyanate (TDI). If used, the varnish price and the price of insulated wires using the varnish will rise.
一方、ワニスの合成に用いる酸無水物としてトリメリット酸無水物(TMA)の他にピロメリット酸二無水物(PMDA)を併用する場合でも、原料に使用するPMDAの割合を増やしてポリアミドイミド中のイミド構造の割合を増やすことにより弾性率の向上が望めるものの、溶剤への溶解性が著しく低下し、導体への塗布・焼付時の作業性に支障を生じるといった問題点があった。 On the other hand, even when pyromellitic dianhydride (PMDA) is used in combination with trimellitic anhydride (TMA) as an acid anhydride for varnish synthesis, the proportion of PMDA used as a raw material is increased in polyamideimide Although an improvement in the elastic modulus can be expected by increasing the proportion of the imide structure, there has been a problem that the solubility in a solvent is remarkably lowered and the workability at the time of coating and baking onto a conductor is hindered.
従って、本発明の目的は、耐加工性、可とう性、弾性率に優れた皮膜性状が良好な絶縁被膜であって、溶解性、作業性・生産性がよく、経済性がよい絶縁被膜を提供する絶縁塗料と、この塗料を塗布・焼付された絶縁電線、及びこれを用いたモータの提供にある。 Accordingly, an object of the present invention is an insulating film having excellent film properties with excellent workability, flexibility and elastic modulus, and having good solubility, workability / productivity, and economical efficiency. The object is to provide an insulating paint to be provided, an insulated wire coated and baked with the paint, and a motor using the same.
本発明においてポリアミドイミド合成時に用いるジイソシアネート成分として、屈曲構造を有するトリレンジイソシアネート(TDI)を用いることにより、ポリアミドイミド分子中のビフェニル構造やイミド基の割合を増やしても溶剤への溶解性を向上させることができるため、塗布・焼付時の作業性が良好で、塗布・焼付後の絶縁電線が過酷な巻線工程でも損傷を回避できる被膜の機械的強度を保持できる。これは、屈曲構造付与成分としてTDIを用いることにより、ジフェニルメタン−4,4’−ジイソシアネート(MDI)を屈曲構造付与成分として用いる場合と異なり、自由回転をする部分が無いため、MDIを用いるより剛直な分子になることが期待でき、TDIの方がMDIより、できたポリアミドイミドの分子量が多少小さくても高弾性率な被膜になるためと考えられる。 By using tolylene diisocyanate (TDI) having a bent structure as the diisocyanate component used in the synthesis of polyamideimide in the present invention, the solubility in a solvent is improved even if the proportion of biphenyl structure and imide group in the polyamideimide molecule is increased. Therefore, the workability at the time of application / baking is good, and the insulated wire after application / baking can maintain the mechanical strength of the coating that can avoid damage even in a severe winding process. Unlike the case where diphenylmethane-4,4′-diisocyanate (MDI) is used as a bending structure imparting component by using TDI as a bending structure imparting component, there is no part that freely rotates, so that it is more rigid than using MDI. This is probably because TDI has a higher elastic modulus than MDI, even if the molecular weight of the resulting polyamideimide is somewhat smaller.
ジフェニルメタン−4,4’−ジイソシアネート(MDI)をポリアミドイミド分子鎖中に屈曲構造を付与する成分としてワニス合成時に用いることもできるが、得られたワニスを塗布・焼付して作成したポリアミドイミド被膜にトリレンジイソシアネート(TDI)を用いて合成したワニスを塗布・焼付して作成したポリアミドイミド被膜と同等の耐摩耗特性を発現させるためには、ワニス中のポリアミドイミド分子量を、TDIを用いた場合より高分子量に調整する必要が生じるため、ワニス粘度が大きくなり、導体への塗布・焼付時の作業性に支障が生じる。そのため、屈曲構造を付与するジイソシアネート成分としては、MDIよりTDIを用いるほうが望ましい。屈曲構造をポリアミドイミド分子鎖中に導入する別の手段としてはポリアミドイミド合成時に用いる酸成分としてイソフタル酸を用いることもできる。 Diphenylmethane-4,4′-diisocyanate (MDI) can also be used as a component for imparting a bent structure in the polyamideimide molecular chain during varnish synthesis, but the obtained varnish is coated and baked to form a polyamideimide coating. In order to develop wear resistance equivalent to that of a polyamide-imide film created by applying and baking a varnish synthesized using tolylene diisocyanate (TDI), the molecular weight of the polyamide-imide in the varnish should be less than when TDI is used. Since it is necessary to adjust to a high molecular weight, the varnish viscosity increases, and the workability at the time of coating and baking onto a conductor is hindered. Therefore, it is desirable to use TDI rather than MDI as the diisocyanate component that imparts a bent structure. As another means for introducing the bent structure into the polyamideimide molecular chain, isophthalic acid can also be used as an acid component used in the synthesis of polyamideimide.
本発明者らは、上記知見に基づき、屈曲構造を付与するジイソシアネート成分としてTDIを選択し、ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、ポリアミドイミドの合成にジイソシアネート成分として関与する4,4’−ビトリレンジイソシアネート(TODI)、及びトリレンジイソシアネート(TDI)と、酸成分として関与するピロメリット酸二無水物(PMDA)、及びトリメリット酸無水物(TMA)との組成に着目し、鋭意検討の結果、全ジイソシアネート成分中、4,4’−ビトリレンジイソシアネート(TODI)5〜33モル%、及びトリレンジイソシアネート(TDI)95〜67モル%、全酸成分中、ピロメリット酸二無水物(PMDA)5〜60モル%、及びトリメリット酸無水物(TMA)95〜40モル%を用いて重合反応させることにより、本発明の課題が解決されることを見出し、本発明を完成するに至った。 Based on the above knowledge, the present inventors select TDI as a diisocyanate component that imparts a bent structure, and in a polyamideimide synthesized using equimolar amounts of a diisocyanate component and an acid component, Participating 4,4'-bitolylene diisocyanate (TODI) and tolylene diisocyanate (TDI) and pyromellitic dianhydride (PMDA) and trimellitic anhydride (TMA) involved as acid components Focusing on the composition, as a result of intensive studies, 4,4'-bitolylene diisocyanate (TODI) 5 to 33 mol% and tolylene diisocyanate (TDI) 95 to 67 mol% in all diisocyanate components, in all acid components , Pyromellitic dianhydride (PMDA) 5-60 mol%, and trimelli By polymerization reaction using a preparative acid anhydride (TMA) 95 to 40 mol%, it found that the object of the present invention are solved, leading to completion of the present invention.
本発明の課題は以下の手段によって達成された。
1.ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、全ジイソシアネート成分中、式(1)
The object of the present invention has been achieved by the following means.
1. In the polyamideimide synthesized using equimolar amounts of diisocyanate component and acid component, in all diisocyanate components, formula (1)
で示される4,4’−ビトリレンジイソシアネートを5〜33モル%、及び式(2) 5 to 33 mol% of 4,4'-bitolylene diisocyanate represented by the formula (2)
で示されるトリレンジイソシアネートを95〜67モル%、全酸成分中、式(3) 95-67 mol% of tolylene diisocyanate represented by the formula (3)
で示されるピロメリット酸二無水物を5〜60モル%、及び式(4) 5 to 60 mol% of pyromellitic dianhydride represented by the formula (4)
で示されるトリメリット酸無水物を95〜40モル%を用いて重合させた絶縁樹脂ワニスからなる絶縁塗料。 An insulating paint comprising an insulating resin varnish obtained by polymerizing trimellitic anhydride represented by the formula (95) to 40 mol%.
2.前記式(1)で示される4,4’−ビトリレンジイソシアネートが、式(1a) 2. The 4,4'-vitrylene diisocyanate represented by the formula (1) is represented by the formula (1a)
で示される3,3’−ジメチルビフェニル−4,4’−ジイソシアネートである前記1または3に記載の絶縁塗料。
3.前記式(2)で示されるトリレンジイソシアネートがその2,4−異性体と2,6−異性体との混合物である前記1又は2のいずれかに記載の絶縁塗料。
4.前記1〜3のいずれかに記載の絶縁塗料を塗布焼き付けた絶縁層が絶縁被膜の全部または一部である絶縁電線。
5.表面潤滑層を有する前記4記載の絶縁電線。
6.前記4または5記載の絶縁電線を用いたモータ。
4. The insulating paint according to 1 or 3, which is 3,3′-dimethylbiphenyl-4,4′-diisocyanate represented by
3. 3. The insulating paint according to any one of 1 and 2, wherein the tolylene diisocyanate represented by the formula (2) is a mixture of its 2,4-isomer and 2,6-isomer.
4). The insulated wire which the insulating layer which apply | coated and baked the insulating paint in any one of said 1-3 is all or one part of an insulating film.
5. 5. The insulated wire according to 4 above, which has a surface lubricating layer.
6). A motor using the insulated wire according to 4 or 5 above.
本発明は、モータや発電機などのコイルを構成するために最適な、耐加工性に優れた絶縁被膜を与える絶縁塗料と、この塗料を塗布・焼付された絶縁電線を提供する。本発明によれば、過酷な加工条件に耐え、加工時に損傷を受けず、かつ絶縁性能を保持できる、電気特性に不具合を生じない、耐外傷性、耐加工性能、耐摩耗特性、可とう性、弾性率に優れ、皮膜性状が良好な絶縁被膜であって、溶解性、作業性・生産性がよく、経済性がよい絶縁被膜を与える絶縁塗料と、この塗料を塗布・焼付された絶縁電線、及びこれを用いたモータを提供することができる。 The present invention provides an insulating paint that provides an insulating coating excellent in workability, which is optimal for constituting coils of motors and generators, and an insulated wire coated and baked with this paint. According to the present invention, it can withstand severe processing conditions, is not damaged at the time of processing, can maintain insulation performance, does not cause defects in electrical characteristics, is resistant to trauma, processing resistance, wear resistance, flexibility Insulating coating that provides an insulating coating with excellent elastic modulus and good film properties, good solubility, workability and productivity, and good economic efficiency, and an insulated wire coated and baked with this coating And a motor using the same can be provided.
本発明に係る絶縁塗料は、ジイソシアネート成分と酸成分を等モル量用いて合成されるポリアミドイミドにおいて、
全ジイソシアネート成分中、式(1)
Insulating paint according to the present invention is a polyamideimide synthesized using equimolar amounts of a diisocyanate component and an acid component.
Of all diisocyanate components, formula (1)
で示される4,4’−ビトリレンジイソシアネート(TODIと略称する)を5〜33モル%、及び式(2) 5 to 33 mol% of 4,4'-vitrylene diisocyanate (abbreviated as TODI) represented by formula (2)
で示されるトリレンジイソシアネート(TDIと略称する)を95〜67モル%、全酸成分中、式(3) 95 to 67 mol% of tolylene diisocyanate (abbreviated as TDI) represented by the formula (3)
で示されるピロメリット酸二無水物(PMDAと略称する)を5〜60モル%、及び式(4) 5 to 60 mol% of pyromellitic dianhydride (abbreviated as PMDA) represented by formula (4)
で示されるトリメリット酸無水物(TMAと略称する)を95〜40モル%を用いて重合させた絶縁樹脂ワニスからなる絶縁塗料である。 Is an insulating paint made of an insulating resin varnish obtained by polymerizing 95 to 40 mol% of trimellitic anhydride (abbreviated as TMA).
前記式(1)で示される4,4’−ビトリレンジイソシアネート(TODI)の具体例としては、式(1a) Specific examples of 4,4'-vitrylene diisocyanate (TODI) represented by the formula (1) include those represented by the formula (1a)
で示される3,3’−ジメチルビフェニル−4,4’−ジイソシアネートのほか、2,2’−ジメチルビフェニル−4,4’−ジイソシアネート、2,3’−ジメチルビフェニル−4,4’−ジイソシアネートが挙げられ、これらの中、3,3’−ジメチルビフェニル−4,4’−ジイソシアネートが好ましい。 2,3′-dimethylbiphenyl-4,4′-diisocyanate, 2,2′-dimethylbiphenyl-4,4′-diisocyanate and 2,3′-dimethylbiphenyl-4,4′-diisocyanate Among these, 3,3′-dimethylbiphenyl-4,4′-diisocyanate is preferable.
前記式(2)で示されるトリレンジイソシアネート(TDI)の具体例としては、式(2a) Specific examples of tolylene diisocyanate (TDI) represented by the formula (2) include those represented by the formula (2a)
で示される2,4−トリレンジイソシアネート、式(2b) 2,4-tolylene diisocyanate represented by the formula (2b)
で示される2,6−トリレンジイソシアネート、これらの異性体の混合物のほか、2,3−トリレンジイソシアネート、2,5−トリレンジイソシアネート、3,4−トリレンジイソシアネート、3,5−トリレンジイソシアネート、これらの2以上の異性体の混合物が挙げられる。これらの中、トリレンジイソシアネートの2,4−異性体と2,6−異性体の混合物の具体例を挙げると、2,4−異性体と2,6−異性体との質量比が、80:20、または65:35の異性体混合物が挙げられる。 2,6-tolylene diisocyanate, a mixture of these isomers, 2,3-tolylene diisocyanate, 2,5-tolylene diisocyanate, 3,4-tolylene diisocyanate, 3,5-tolylene diisocyanate Isocyanates and mixtures of these two or more isomers. Among these, specific examples of the mixture of the 2,4-isomer and the 2,6-isomer of tolylene diisocyanate will give a mass ratio of 2,4-isomer and 2,6-isomer of 80. : 20, or 65:35 isomer mixtures.
本発明において絶縁層を形成するために用いられるポリアミドイミド樹脂絶縁塗料(樹脂組成物)は、常法により、例えば、極性溶媒中で、ジイソシアネート成分と酸成分を等モル量用いて合成され、全ジイソシアネート成分中、4,4’−ビトリレンジイソシアネート(TODI)5〜33モル%、及びトリレンジイソシアネート(TDI)95〜67モル%、全酸成分中、ピロメリット酸二無水物(PMDA)5〜60モル%、及びトリメリット酸無水物(TMA)95〜40モル%を用いて重合反応させることができる。 The polyamide-imide resin insulating paint (resin composition) used for forming the insulating layer in the present invention is synthesized by an ordinary method, for example, using a diisocyanate component and an acid component in equimolar amounts in a polar solvent. In the diisocyanate component, 4,4′-bitolylene diisocyanate (TODI) 5 to 33 mol%, and tolylene diisocyanate (TDI) 95 to 67 mol%, in all acid components, pyromellitic dianhydride (PMDA) 5 The polymerization reaction can be carried out using ˜60 mol% and trimellitic anhydride (TMA) 95-40 mol%.
本発明の酸成分は、ピロメリット酸二水物(PMDA)とトリメリット酸無水物(TMA)から構成するものであり、ベンゾフェノンテトラカルボン酸二無水物(BTDAと略称する)を含まない。
ベンゾフェノンテトラカルボン酸ニ無水物(BTDA)はそのベンゾフェノン骨格に起因して250〜380nmに吸収領域を持ち、水素引き抜き型ラジカル重合開始材として作用する。したがって、ワニス安定性や皮膜の経時変化安定性に問題が生じると考えられる。また、ピロメリット酸二水物(PMDA)を用いた方がベンゾフェノンテトラカルボン酸二無水物(BDTA)を用いた場合よりも、ポリマーの耐熱性が優位である。本発明の酸成分にベンゾフェノンテトラカルボン酸二無水物(BDTA)は含めない。
The acid component of the present invention is composed of pyromellitic acid dihydrate (PMDA) and trimellitic anhydride (TMA) and does not contain benzophenone tetracarboxylic dianhydride (abbreviated as BTDA).
Benzophenone tetracarboxylic dianhydride (BTDA) has an absorption region at 250 to 380 nm due to its benzophenone skeleton, and acts as a hydrogen abstraction type radical polymerization initiator. Therefore, it is considered that problems occur in varnish stability and stability over time of the film. In addition, the heat resistance of the polymer is superior in the case of using pyromellitic acid dihydrate (PMDA) than in the case of using benzophenone tetracarboxylic dianhydride (BDTA). Benzophenone tetracarboxylic dianhydride (BDTA) is not included in the acid component of the present invention.
合成時に使用する溶媒は、調製後の樹脂が溶解するものであればいずれでもよく、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン等を用いることができる。これらの中、N−メチル−2−ピロリドンが好ましい。 The solvent used in the synthesis may be any solvent as long as the resin prepared can be dissolved, and N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, etc. may be used. it can. Of these, N-methyl-2-pyrrolidone is preferred.
このようにして得たポリアミドイミド樹脂塗料を、導体上に直接あるいは他の層を介して塗布、焼付けして、導体上に絶縁層を形成する。ここでいう他の層とは、耐熱ポリエステル樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂などエナメル被覆電線の被覆樹脂として一般に用いることのできる樹脂による絶縁樹脂層を指し、被覆電線に求められる加工条件、耐熱性によって使用する樹脂を選ぶことができる。 The polyamideimide resin paint thus obtained is applied and baked directly on the conductor or through another layer to form an insulating layer on the conductor. The other layer here refers to an insulating resin layer made of a resin that can be generally used as a coating resin for an enamel-coated electric wire such as a heat-resistant polyester resin, a polyesterimide resin, a polyamide-imide resin, or a polyimide resin, and is a process required for the coated electric wire. The resin to be used can be selected according to conditions and heat resistance.
また、本発明の目的を損なわない範囲で、各絶縁層には、従来から絶縁皮膜中に添加できることが知られている各種の添加剤(例えば潤滑剤、無機微粉末、金属アルコキシレートなど)を添加することができる。 In addition, various additives (for example, lubricants, inorganic fine powders, metal alkoxylates, and the like) that are conventionally known to be added to an insulating film are added to each insulating layer within a range that does not impair the object of the present invention. Can be added.
例えば、多層被覆電線の最外層に表面潤滑層を設けることにより電線の耐加工性をさらに高めることができる。ここで言う表面潤滑層とは、ポリアミドイミド樹脂溶液に潤滑剤微粒子を分散させたワニスを塗布・焼付して形成した樹脂被膜層を指す。樹脂溶液に分散させる潤滑剤としては、カルナバワックスやモンタンワックスの様なエステル系ワックスや、ポリエチレンやポリテトラフルオロエチレン(PTFE)のような合成樹脂系ワックスから、電線表面に付与させる潤滑性能に合わせて1種または複数種のものを用いることができる。 For example, by providing a surface lubricating layer on the outermost layer of the multilayer coated electric wire, the work resistance of the electric wire can be further improved. The surface lubrication layer mentioned here refers to a resin coating layer formed by applying and baking a varnish in which lubricant fine particles are dispersed in a polyamideimide resin solution. Lubricants dispersed in the resin solution can be selected from ester waxes such as carnauba wax and montan wax, and synthetic resin waxes such as polyethylene and polytetrafluoroethylene (PTFE) according to the lubrication performance to be applied to the wire surface. 1 type or multiple types can be used.
本発明において、導体上にこれらの樹脂ワニスを塗布する方法は常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、もし導体断面形状が四角形であるならば、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。これらの樹脂ワニスを塗布した導体は、常法により、焼付炉で焼き付けされる。具体的な焼き付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400〜500℃にて通過時間を30〜90秒に設定することにより達成することができる。 In the present invention, a method for applying these resin varnishes on the conductor may be a conventional method, for example, a method using a varnish application die having a similar shape to the conductor shape, or if the conductor cross-sectional shape is a square, A die called a “universal die” formed in a cross beam shape can be used. The conductor coated with these resin varnishes is baked in a baking furnace by a conventional method. The specific baking conditions depend on the shape of the furnace used, but in the case of a natural convection type vertical furnace of about 5 m, the passage time is set to 400 to 500 ° C. to 30 to 90 seconds. Can be achieved.
本発明の絶縁電線において、導体としては通常、銅またはその合金からなるものを用いる。また、絶縁被膜の全膜厚についても特に限定されない。全膜厚で、導体径(直径)の3〜5%とすることが好ましい。例えば直径1.0mmの導体の場合、絶縁被膜の全膜厚は30〜50μmが好ましい。 In the insulated wire of the present invention, the conductor is usually made of copper or an alloy thereof. Further, the total film thickness of the insulating coating is not particularly limited. The total film thickness is preferably 3 to 5% of the conductor diameter (diameter). For example, in the case of a conductor having a diameter of 1.0 mm, the total thickness of the insulating coating is preferably 30 to 50 μm.
上記の絶縁電線を用いた回転電機の実施態様として、図1に示すようなモータ1の電機子2に適用し、特に図2には部分図として示した積層コア3のスロット4に絶縁電線5を巻回した例を示している。もちろん、この構造のモータに限定されるものではなく、中央部にマグネットローラを配置し、その周りに積層コアのスロットに絶縁電線が巻回された電機子を構成するプラシレスモータ、さらには発電機等、あらゆるタイプの回転電機に適用できるものである。
As an embodiment of the rotating electric machine using the above-described insulated wire, it is applied to the
以下に、実施例を挙げて本発明をさらに説明するが、本発明は、これらの実施例によって何らの制約を受けるものではない。 Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited by these examples.
[ワニスの合成方法]
容量3リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、撹拌機を備えた合成装置を用意した。その中に、TMA96.1g(0.5モル)、PMDA109.1g(0.5モル)、TDI139.3g(0.8モル)、TODI52.9g(0.2モル)と、溶媒として、N−メチル−2−ピロリドン(NMP)1096.6gを加え、窒素気流中撹拌しながら、常温から140℃まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘調になるまで、140℃で2時間撹拌を続けた。その後常温まで冷却し、ポリアミドイミドワニス組成1(樹脂濃度22質量%)1406gを得た。
[Synthesis method of varnish]
A synthesis device equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer was prepared in a three-liter flask having a volume of 3 liters. Among them, TMA 96.1 g (0.5 mol), PMDA 109.1 g (0.5 mol), TDI 139.3 g (0.8 mol), TODI 52.9 g (0.2 mol), and N- Methyl-2-pyrrolidone (NMP) 1096.6g was added, and it heated up from normal temperature to 140 degreeC over 2 hours, stirring in nitrogen stream. Stirring was continued at 140 ° C. for 2 hours until the generation of carbon dioxide gas was observed from inside the flask and the solution in the flask became viscous. Thereafter, the mixture was cooled to room temperature to obtain 1406 g of a polyamideimide varnish composition 1 (resin concentration: 22% by mass).
上記合成方法と同様の方法で、表1に示す量の各成分を加え、ポリアミドイミドワニス組成2〜13を得た。組成9,13では、ワニスに濁りが生じた。それぞれの組成で作成したワニスを、ガラス板に約30μm厚に塗布し150℃で10分間加熱後、250℃で10分間、加熱焼き付けを行い、ポリアミドイミドフィルムを作成した。組成9,11,13のワニスでは、焼き付け後、細かいひび割れが生じ、フィルムを作成することができなかった。組成1〜13のワニス性状、ワニス粘度、組成1〜8,10,12で作成したフィルムの弾性率を、表1に併記した。ワニス性状、ワニス粘度測定方法、被覆性状、弾性率の試験方法及び評価基準は以下のとおりである。
(a)ワニス性状
合成終了後、目視で確認。均一な粘稠溶液となったものを「良好」、均一な溶液とならず濁りを生じたものを「濁り」とした。
(b)ワニス粘度測定方法
JIS C2351のエナメル線用ワニスに準拠してB型粘度計を用い30±0.5℃で測定した。
(c)被覆性状試験方法
(評価方法)加熱後のガラス板よりフィルム状に剥離できたものを「良好」と評価し、加熱や着付け時に被膜にひび割れが生じフィルム状に剥離できなかった物を「ひび割れ」と評価し、表1中に記した。
(d)弾性率試験方法
(評価方法)加熱焼き付け後のフィルムを幅10mm、長さ100mmに切り出し、引っ張り試験機を用いて標線間距離50mm、引っ張り速度5mm/分で測定したS−Sカーブより弾性率を求めた。
By the method similar to the said synthesis method, each component of the quantity shown in Table 1 was added, and the polyamideimide varnish compositions 2-13 were obtained. In compositions 9 and 13, varnish was turbid. Varnishes prepared with the respective compositions were applied to a glass plate to a thickness of about 30 μm, heated at 150 ° C. for 10 minutes, and then baked at 250 ° C. for 10 minutes to prepare a polyamideimide film. In the varnishes of compositions 9, 11, and 13, fine cracks occurred after baking, and a film could not be prepared. Table 1 shows the varnish properties of
(A) Varnish properties Visual confirmation after synthesis. A solution that became a uniform viscous solution was defined as “good”, and a solution that did not become a uniform solution and became cloudy was defined as “turbidity”.
(B) Varnish viscosity measuring method It measured at 30 +/- 0.5 degreeC using the B-type viscosity meter based on the varnish for enameled wire of JISC2351.
(C) Covering property test method (evaluation method) A coating film that was peeled off from a heated glass plate was evaluated as “good”, and a film that cracked during heating or wearing and could not be peeled into a film It was evaluated as “cracked” and recorded in Table 1.
(D) Elastic modulus test method (evaluation method) The S-S curve obtained by cutting the film after heating and baking into a width of 10 mm and a length of 100 mm and measuring the distance between marked lines with a tensile tester at 50 mm and a tensile speed of 5 mm / min. More elastic modulus was obtained.
なお、表1中、TMA、PMDA、TDI、及びTODIは、下記のものを示す。
TMA :トリメリット酸無水物
PMDA:ピロメリット酸二無水物
TDI :トリレンジイソシアネート(2,4−異性体と2,6−異性体との質量比が、
80:20の異性体混合物)
TODI:3,3’−ジメチルビフェニル−4,4’−ジイソシアネート
In Table 1, TMA, PMDA, TDI, and TODI indicate the following.
TMA: trimellitic anhydride PMDA: pyromellitic dianhydride TDI: tolylene diisocyanate (mass ratio of 2,4-isomer and 2,6-isomer is
80:20 isomer mixture)
TODI: 3,3′-dimethylbiphenyl-4,4′-diisocyanate
[電線製造]
表1の各組成を用いて、導体(1.2mm径)に塗布・焼付した結果を表2まとめた。
組成1〜7までを、それぞれ実施例1〜7として示す。組成8〜13までを、それぞれ比較例1〜6として示す。
組成9,11,13のワニスは、固形分22質量%の状態では電線製造が困難であったため、それぞれ固形分13,15,13質量%までNMPで希釈して電線製造に供した。
それぞれの電線について、耐加工性評価として一方向摩耗試験(JIS−C3003)、可とう性評価として自己径巻き付け試験を行った。自己径巻き付け試験の試験方法及び評価基準は次のとおりである。
[Electric wire manufacturing]
Table 2 summarizes the results of coating and baking onto a conductor (1.2 mm diameter) using each composition in Table 1.
Since varnishes of compositions 9, 11, and 13 had difficulty in producing wires in a state where the solid content was 22% by mass, they were diluted with NMP to a solid content of 13, 15, and 13% by mass, respectively, and used for wire production.
Each wire was subjected to a unidirectional wear test (JIS-C3003) as a workability evaluation and a self-diameter winding test as a flexibility evaluation. The test method and evaluation criteria of the self-diameter winding test are as follows.
(e)自己径巻き付け試験方法
JIS−C3003の可とう性試験方法に準拠し、被覆電線自身の周囲に線と線が接触するように緊密に10回巻き付けたとき、被膜に導体が見える亀裂を生じないかを約15倍の拡大鏡を用いて調べた。
評価基準
○:拡大鏡観察で亀裂無きこと無きこと
キレツ:拡大鏡観察によって導体が見える亀裂が生じている
(E) Self-diameter winding test method In accordance with the flexibility test method of JIS-C3003, when the wire is wound tightly 10 times so that the wire comes into contact with the periphery of the coated wire itself, a crack is visible in which the conductor is visible on the coating. The occurrence of the occurrence was examined using a magnifier of about 15 times.
Evaluation criteria ○: No cracks in magnifying glass observations Kiretsu: Cracks in which conductors can be seen by magnifying glass observations
表1,2の結果によれば、比較例1,3,5では、一方向摩耗特性の値が実施例1〜7と比較すると劣っている。また、比較例2,4,6では、自己径巻き付けで亀裂が観察され、可とう性が劣っていることが判る。これに対し、全ジイソシアネート成分中、TODI20,33,30モル%、及びTDI80,67,70モル%、全酸成分中、PMDA50,50,25モル%、及びTMA50,50,75モル%を用いて重合反応させた組成1,2,4では、皮膜性状が良好で、弾性率及び可とう性(自己径巻付)がよいばかりでなく、特に皮膜が剥離しづらい(一方向摩耗特性)点において優れていることが判る。また、TODIを用いず、全ジイソシアネート成分としてTDIを用い、全酸成分中、PMDA20,33モル%、及びTMA80,67モル%を用いて重合反応させた組成3,5、及び全ジイソシアネート成分中、TODI各60モル%、及びTDI各40モル%、全酸成分中、PMDA20,33モル%、及びTMA80,67モル%を用いて重合反応させた組成6,7では、皮膜性状が良好で、弾性率及び可とう性(自己径巻付)がよいばかりでなく、比較例1〜6に比べて皮膜が剥離しづらい(一方向摩耗特性)か、または可とう性において優れていることが判る。
According to the results of Tables 1 and 2, in Comparative Examples 1, 3, and 5, the value of the unidirectional wear characteristic is inferior to that of Examples 1-7. Further, in Comparative Examples 2, 4, and 6, cracks are observed by self-diameter winding, and it is understood that the flexibility is inferior. On the other hand, TODI20,33,30 mol% and TDI80,67,70 mol% in all diisocyanate components, PMDA50,50,25 mol%, and TMA50,50,75 mol% in all acid components are used. In the
1 モータ
2 電機子
3 積層コア
4 スロット
5 絶縁電線
1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088655A JP4934624B2 (en) | 2008-03-28 | 2008-03-28 | Insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088655A JP4934624B2 (en) | 2008-03-28 | 2008-03-28 | Insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009242490A JP2009242490A (en) | 2009-10-22 |
JP4934624B2 true JP4934624B2 (en) | 2012-05-16 |
Family
ID=41304783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008088655A Active JP4934624B2 (en) | 2008-03-28 | 2008-03-28 | Insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4934624B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5342277B2 (en) * | 2009-03-03 | 2013-11-13 | 古河電気工業株式会社 | Multi-layer insulated wire |
CN112143373A (en) * | 2020-10-20 | 2020-12-29 | 安徽晟然绝缘材料有限公司 | Self-lubricating high-toughness wire enamel and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815517B2 (en) * | 1976-07-30 | 1983-03-25 | 古河電気工業株式会社 | Manufacturing method of electrical insulation paint |
JP2936895B2 (en) * | 1991-11-22 | 1999-08-23 | 住友電気工業株式会社 | Insulated wire |
JPH0773745A (en) * | 1993-08-31 | 1995-03-17 | Sumitomo Electric Ind Ltd | Insulated electric wire |
DE69932293T2 (en) * | 1998-02-13 | 2007-07-05 | The Furukawa Electric Co., Ltd. | ISOLATED WIRE |
JP3977305B2 (en) * | 2003-08-29 | 2007-09-19 | 古河電気工業株式会社 | Insulated conductor |
JP5040058B2 (en) * | 2004-02-19 | 2012-10-03 | 東レ株式会社 | Porous membrane, method for producing the same, and lithium ion secondary battery using the same |
JP2007270074A (en) * | 2006-03-31 | 2007-10-18 | Sumitomo Electric Ind Ltd | Processing resistant polyamide-imide resin vanish and electrical insulating wire |
-
2008
- 2008-03-28 JP JP2008088655A patent/JP4934624B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009242490A (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5626530B2 (en) | Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same | |
JP5609732B2 (en) | Insulating paint and insulated wire using the same | |
WO2012102121A1 (en) | Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same | |
JP5761151B2 (en) | Insulated wires and coils | |
JP2012184416A (en) | Polyamideimide resin insulation coating and insulated electric wire formed by using the same | |
JP2013131423A (en) | Electrically insulated electric wire and coil | |
JP2013191356A (en) | Insulation electric wire and coil formed by using the same | |
JP6394697B2 (en) | Insulated wires and coils | |
JP2007270074A (en) | Processing resistant polyamide-imide resin vanish and electrical insulating wire | |
WO2012153636A1 (en) | Polyimide resin varnish, insulated electric wire using same, electric coil, and motor | |
JP5351011B2 (en) | Insulated wire, electric coil and motor | |
JP4934624B2 (en) | Insulated wire | |
JP2012234625A (en) | Insulation wire, electric machine coil using the same, and motor | |
CN109293920B (en) | Resin composition and insulated wire using same | |
JP4190589B2 (en) | Insulated wire | |
JP2012046619A (en) | Insulated wire, electric appliance coil using the same, and motor | |
JP3287025B2 (en) | Insulated wire | |
JP3724922B2 (en) | Polyimide-based insulating paint and insulated wire | |
JP5407059B2 (en) | Insulated wire | |
JP5342277B2 (en) | Multi-layer insulated wire | |
JP2011159578A (en) | Insulation wire, and electric coil and motor using the same | |
JP2936895B2 (en) | Insulated wire | |
JP2011159577A (en) | Insulated electrical wire and electric coil and motor using the same | |
JP2012164424A (en) | Polyester imide resin based varnish for low dielectric constant coating film | |
JP2013028695A (en) | Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120220 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4934624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |