[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4933409B2 - Semiconductor manufacturing apparatus and semiconductor manufacturing method - Google Patents

Semiconductor manufacturing apparatus and semiconductor manufacturing method Download PDF

Info

Publication number
JP4933409B2
JP4933409B2 JP2007308851A JP2007308851A JP4933409B2 JP 4933409 B2 JP4933409 B2 JP 4933409B2 JP 2007308851 A JP2007308851 A JP 2007308851A JP 2007308851 A JP2007308851 A JP 2007308851A JP 4933409 B2 JP4933409 B2 JP 4933409B2
Authority
JP
Japan
Prior art keywords
wafer
gas
support member
surface side
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007308851A
Other languages
Japanese (ja)
Other versions
JP2009135201A (en
Inventor
雅美 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2007308851A priority Critical patent/JP4933409B2/en
Publication of JP2009135201A publication Critical patent/JP2009135201A/en
Application granted granted Critical
Publication of JP4933409B2 publication Critical patent/JP4933409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体ウェーハの上面に、加熱しながらプロセスガスを供給して成膜を行なう半導体製造装置および半導体製造方法に関する。   The present invention relates to a semiconductor manufacturing apparatus and a semiconductor manufacturing method for forming a film by supplying a process gas while heating the upper surface of a semiconductor wafer.

近年、半導体装置の低価格化、高性能化の要求に伴い、成膜工程における高い生産性と共に、膜厚均一性などの高品質化が要求されている。   In recent years, along with demands for lower prices and higher performance of semiconductor devices, high quality such as film thickness uniformity is required in addition to high productivity in the film forming process.

高品質化を維持しながら生産性を向上する方法として、テーブルに載置されたウェーハを高速で回転しながら加熱してエピタキシャル成長を行う枚葉式の半導体製造装置が知られている(例えば特許文献1など参照)。   As a method for improving productivity while maintaining high quality, a single-wafer type semiconductor manufacturing apparatus that performs epitaxial growth by heating a wafer placed on a table while rotating at high speed is known (for example, Patent Documents). 1 etc.).

上記の技術においては、回転時のウェーハの浮き上がりや位置ずれを防止するために、ウェーハが載置されるテーブルの外周縁部には回転機構による回転に伴って揺動し、ウェーハを上面側からテーブル方向へ押圧する部材が設けられている。しかし、回転時のウェーハの浮き上がりや位置ずれを二点で抑える構造のため、例えば1500rpmにも及ぶ高速回転を行う場合には支持が不十分となり、回転軌道に誤差が生じ易くなる。すなわち、ウェーハ上面の膜厚が不均一になってしまうという問題があった。
特開平11−97515号公報
In the above technique, in order to prevent the wafer from being lifted or displaced during rotation, the outer peripheral edge of the table on which the wafer is placed swings with the rotation of the rotation mechanism, and the wafer is moved from the upper surface side. A member for pressing in the table direction is provided. However, because of the structure that suppresses the lift and misalignment of the wafer during rotation at two points, for example, when performing high-speed rotation as high as 1500 rpm, the support becomes insufficient, and an error is likely to occur in the rotation trajectory. That is, there is a problem that the film thickness on the upper surface of the wafer becomes non-uniform.
JP 11-97515 A

上述したように、半導体装置の低価格化、高性能化の要求に伴い、成膜工程における高い生産性と共に、膜厚均一性などの高品質化が要求されている。   As described above, along with demands for lower cost and higher performance of semiconductor devices, higher productivity such as film thickness uniformity is required in addition to high productivity in the film forming process.

そこで、本発明は、従来技術の問題に鑑み、高速回転時にウェーハを確実に支持し、ウェーハの上面に均一な成膜を行うことが可能な半導体製造方法および半導体製造装置を提供することを目的とするものである。   SUMMARY OF THE INVENTION In view of the problems of the prior art, an object of the present invention is to provide a semiconductor manufacturing method and a semiconductor manufacturing apparatus capable of reliably supporting a wafer during high-speed rotation and performing uniform film formation on the upper surface of the wafer. It is what.

本発明の半導体製造装置は、ウェーハが搬入される反応室と、この反応室にソースガスを含む第1のプロセスガスを供給するガス供給機構と、このガス供給機構より供給された第1のプロセスガスを整流状態でウェーハの上面側に供給する整流板と、反応室より第1のプロセスガスを排出するガス排出機構と、反応室内の所定位置でウェーハを下面側より支持する第1の支持部材と、この第1の支持部材の上方に設けられ、ウェーハの外周縁部を上面側より全周に亘って支持する第2の支持部材と、この第2の支持部材を昇降させ、ウェーハの支持および開放を行わせる昇降駆動機構と、ウェーハを第1および第2の支持部材と共に回転させる回転駆動機構と、第1および第2の支持部材によって支持されたウェーハを下面側より加熱する加熱機構を備え、第2の支持部材におけるウェーハの支持箇所は、ウェーハの外周縁部に形成されたベベル内であることを特徴とする。 The semiconductor manufacturing apparatus according to the present invention includes a reaction chamber into which a wafer is carried in, a gas supply mechanism that supplies a first process gas containing a source gas to the reaction chamber, and a first process that is supplied from the gas supply mechanism. A rectifying plate that supplies gas to the upper surface side of the wafer in a rectified state, a gas discharge mechanism that discharges the first process gas from the reaction chamber, and a first support member that supports the wafer from the lower surface side at a predetermined position in the reaction chamber And a second support member that is provided above the first support member and supports the outer peripheral edge of the wafer over the entire circumference from the upper surface side, and the second support member is moved up and down to support the wafer. And an elevating drive mechanism for performing opening, a rotary drive mechanism for rotating the wafer together with the first and second support members, and a heating mechanism for heating the wafer supported by the first and second support members from the lower surface side. A mechanism, the support portions of the wafer in the second support member, and wherein the bevel in der Rukoto formed in the outer peripheral edge of the wafer.

また、本発明の半導体製造装置において、ガス供給機構は、水素ガスまたは不活性ガスを含む第2のプロセスガスをウェーハの外周部に供給することが好ましい。   In the semiconductor manufacturing apparatus of the present invention, it is preferable that the gas supply mechanism supplies a second process gas containing hydrogen gas or inert gas to the outer peripheral portion of the wafer.

本発明の半導体製造方法は、反応室内にウェーハを搬入し、ウェーハを第1の支持部材上に載置し、載置されたウェーハの外周縁部を第2の支持部材によってウェーハの上面側から全周に亘って支持し、支持されたウェーハの上面側に、ソースガスを含む第1のプロセスガスを整流状態で供給し、水素ガスまたは不活性ガスを含む第2のプロセスガスをウェーハの外周部に供給し、ウェーハを第1および第2の支持部材と共に回転させながら加熱し、ウェーハの上面側に成膜することを特徴とする。 In the semiconductor manufacturing method of the present invention, a wafer is carried into a reaction chamber, the wafer is placed on a first support member, and the outer peripheral edge of the placed wafer is moved from the upper surface side of the wafer by the second support member. The first process gas including the source gas is supplied in a rectified state to the upper surface side of the supported wafer, and the second process gas including hydrogen gas or inert gas is supplied to the outer periphery of the wafer. The wafer is heated while being rotated together with the first and second support members, and a film is formed on the upper surface side of the wafer.

本発明によれば、高速回転時にウェーハを確実に支持でき、ウェーハの上面に均一な成膜を行うことが可能となる。   According to the present invention, the wafer can be reliably supported during high-speed rotation, and uniform film formation can be performed on the upper surface of the wafer.

以下、本発明の実施形態について、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本実施形態の半導体製造装置の断面図を示す。同図に示すように、ウェーハwが成膜処理される反応室11には、反応室11上方より、プロセスガスなどをウェーハwの上面に供給するためのガス供給口12a、ウェーハwの外周部に例えば水素ガスや、Ar、Heなどの不活性ガスや、さらにHClを含むクリーニングガスなどを供給するためのガス供給口12bと、反応室11下方よりガスを排出し、反応室11内の圧力を一定(常圧)に制御するためのガス排出口13が設置されている。   FIG. 1 shows a cross-sectional view of the semiconductor manufacturing apparatus of this embodiment. As shown in the figure, in the reaction chamber 11 where the wafer w is formed, a gas supply port 12a for supplying a process gas or the like to the upper surface of the wafer w from above the reaction chamber 11, and the outer peripheral portion of the wafer w For example, hydrogen gas, an inert gas such as Ar or He, a gas supply port 12b for supplying a cleaning gas containing HCl, and the like, a gas is discharged from below the reaction chamber 11, and the pressure in the reaction chamber 11 is discharged. Is provided with a gas discharge port 13 for controlling the pressure at a constant (normal pressure).

反応室11上部には、ガス供給口12aから供給されるプロセスガスなどをウェーハwの上面に整流状態で供給するための整流板14aと、ガス供給口12bから供給される水素ガスまたは不活性ガスを含むガスなどをウェーハwの外周部(外側)に整流状態で供給するための整流板14bが、それぞれ設置されている。そして、これら整流板14a、14bの下部には、整流板14aと整流板14bの間に、下端がウェーハw表面から例えば20mmの高さとなるように、仕切り板15が設置されている。   In the upper part of the reaction chamber 11, a rectifying plate 14a for supplying a process gas supplied from the gas supply port 12a to the upper surface of the wafer w in a rectified state, and a hydrogen gas or an inert gas supplied from the gas supply port 12b. A rectifying plate 14b is provided for supplying a gas containing gas to the outer peripheral portion (outside) of the wafer w in a rectified state. And the partition plate 15 is installed in the lower part of these rectifying plates 14a and 14b between the rectifying plates 14a and 14b so that a lower end may be 20 mm high from the surface of the wafer w.

反応室11下部には、モータ(図示せず)、回転軸(図示せず)などから構成されたウェーハwを回転させるための回転駆動機構16と、回転駆動機構16上でウェーハwを載置するための下部支持部材17が設置されている。尚、ここでは下部支持部材17をサセプタとしているが、開口部を有するホルダーであってもよい。下部支持部材17の上方には、例えばリング状の上部支持部材18が設けられ、昇降駆動機構19によって鉛直方向に昇降し、ウェーハwの支持と開放が行われる。上部支持部材18は、ウェーハwの外周縁部を全周に亘ってウェーハwの上面側より支持する。   At the bottom of the reaction chamber 11, a rotation drive mechanism 16 for rotating a wafer w composed of a motor (not shown), a rotation shaft (not shown), and the like, and the wafer w are placed on the rotation drive mechanism 16. A lower support member 17 is installed for this purpose. Here, the lower support member 17 is a susceptor, but a holder having an opening may be used. Above the lower support member 17, for example, a ring-shaped upper support member 18 is provided, and is lifted and lowered in the vertical direction by the lift drive mechanism 19 to support and release the wafer w. The upper support member 18 supports the outer peripheral edge of the wafer w from the upper surface side of the wafer w over the entire circumference.

図2にウェーハの支持構造を説明する要部拡大図を示す。同図に示すように、下部支持部材17上に載置されたウェーハwは、成膜面Aと、ウェーハwの外周縁部に例えば400μm程度形成されたベベル部Bからなり、リング状の上部支持部材18の内壁面Cはウェーハwのベベル部B上に位置している。また、上部支持部材18および下部支持部材17とウェーハwのベベル部Bの間には、ウェーハwの熱膨張に対応できるように僅かに間隙(例えば0.2μm)が設けられることが好ましい。   FIG. 2 shows an enlarged view of a main part for explaining the wafer support structure. As shown in the figure, the wafer w placed on the lower support member 17 is composed of a film-forming surface A and a bevel portion B formed on the outer peripheral edge of the wafer w, for example, about 400 μm. The inner wall surface C of the support member 18 is located on the bevel portion B of the wafer w. Further, it is preferable that a slight gap (for example, 0.2 μm) is provided between the upper support member 18 and the lower support member 17 and the bevel portion B of the wafer w so as to cope with the thermal expansion of the wafer w.

尚、上部支持部材18の内壁面Cはウェーハwのベベル部Bと平行となるように形成されているが、同じテーパが設けられていることが温度分布制御、効果的な支持を行う上では好ましい。また、上部支持部材18の内壁面Cの断面形状は特に限定されるものではない。例えば、段部が設けられていても、曲面となっていてもよく、回転時のウェーハwの上方への浮き上がりを防止することができればよい。   The inner wall surface C of the upper support member 18 is formed to be parallel to the bevel portion B of the wafer w. However, the same taper is provided for temperature distribution control and effective support. preferable. Further, the cross-sectional shape of the inner wall surface C of the upper support member 18 is not particularly limited. For example, it may be provided with a stepped portion or may be a curved surface as long as it can prevent the wafer w from being lifted upward during rotation.

図3にウェーハの支持構造を説明する斜視図を示す。同図に示すように、ウェーハwのベベル部Bは、リング状に形成された上部支持部材18によってウェーハwの上面側から全周に亘って囲い込まれている。   FIG. 3 is a perspective view for explaining the wafer support structure. As shown in the figure, the bevel portion B of the wafer w is surrounded by the upper support member 18 formed in a ring shape over the entire circumference from the upper surface side of the wafer w.

また、下部支持部材17の下方には、ウェーハwを加熱するためのインヒータ20aが設置され、下部支持部材17とインヒータ20aの間に、ウェーハwの周縁部を加熱するためのアウトヒータ20bが設置されている。インヒータ20aの下部には、ウェーハwを効率的に加熱するための円盤状のリフレクター21が設置されている。   An in-heater 20a for heating the wafer w is installed below the lower support member 17, and an out-heater 20b for heating the peripheral portion of the wafer w is installed between the lower support member 17 and the in-heater 20a. Has been. A disc-shaped reflector 21 for efficiently heating the wafer w is installed below the in-heater 20a.

このような半導体製造装置を用いて、ウェーハwの上面に例えばSiエピタキシャル膜を形成する。   For example, an Si epitaxial film is formed on the upper surface of the wafer w using such a semiconductor manufacturing apparatus.

先ず、例えばφ200mmのウェーハwを、搬送アーム(図示せず)によって反応室11に導入し、下部支持部材17上に載置する。   First, for example, a φ200 mm wafer w is introduced into the reaction chamber 11 by a transfer arm (not shown) and placed on the lower support member 17.

次に、昇降駆動機構19によってリング状の上部支持部材18を降下させることでウェーハwの外周縁部のベベル部を全周に亘って囲い込むように、ウェーハwの上面側から支持する。   Next, the ring-shaped upper support member 18 is lowered by the elevating drive mechanism 19 to support from the upper surface side of the wafer w so as to surround the bevel portion of the outer peripheral edge of the wafer w over the entire circumference.

次に、ウェーハwの温度が例えば1100℃となるように、インヒータ20a、アウトヒータ20bの温度を制御すると共に、ウェーハwを回転駆動機構16により、例えば1500〜2000rpmで高速回転させる。このとき、ウェーハwの回転軌道は、上部支持部材18と下部支持部材17の協働によってほぼ一定に維持される。   Next, the temperature of the in-heater 20a and the out-heater 20b is controlled so that the temperature of the wafer w becomes, for example, 1100 ° C., and the wafer w is rotated at a high speed of, for example, 1500 to 2000 rpm by the rotation drive mechanism 16. At this time, the rotation trajectory of the wafer w is maintained substantially constant by the cooperation of the upper support member 18 and the lower support member 17.

次に、ガス供給口12aより、トリクロロシラン(TCS)濃度が例えば2.5%となるように調製されたプロセスガスを、例えば50SLMで導入し、整流板14aを介して整流状態でウェーハwの上面に供給し、ウェーハwの上面にSiエピタキシャル膜を成長させる。このとき、同時にガス供給口12bより、例えばHガスを例えば50SLMで導入し、整流板14bを介して整流状態でウェーハwの外周部に供給し、ウェーハw外周部上のプロセスガスを希釈する。供給された希釈ガスは、仕切り板15、供給速度、濃度の制御により、ウェーハwの上面への流入、プロセスガスとの混合が抑えられる。尚、反応室11内の圧力が常圧に制御されるように、余剰なプロセスガス、希釈ガス、反応副生成物などは、ガス排出口13より排出される。 Next, a process gas prepared to have a trichlorosilane (TCS) concentration of, for example, 2.5% is introduced from the gas supply port 12a by, for example, 50 SLM, and the wafer w is rectified through the rectifying plate 14a. Then, an Si epitaxial film is grown on the upper surface of the wafer w. At this time, H 2 gas, for example, is introduced from the gas supply port 12b at, for example, 50 SLM and supplied to the outer peripheral portion of the wafer w in a rectified state via the rectifying plate 14b, thereby diluting the process gas on the outer peripheral portion of the wafer w. . The supplied dilution gas can be prevented from flowing into the upper surface of the wafer w and being mixed with the process gas by controlling the partition plate 15, the supply speed, and the concentration. Excess process gas, dilution gas, reaction byproducts, and the like are discharged from the gas discharge port 13 so that the pressure in the reaction chamber 11 is controlled to normal pressure.

そして、ウェーハwの上面にSiエピタキシャル膜を所望の膜厚(例えば150μm)となるまで成長させる。成膜処理の完了後は、図4に示すように、上部支持部材18を昇降駆動機構19によって上昇させると、ウェーハwを突き上げピン(図示せず)によって下部支持部材17の上方に移動し、ウェーハwを搬送アーム(図示せず)で保持して反応室11より搬出する。   Then, an Si epitaxial film is grown on the upper surface of the wafer w until a desired film thickness (for example, 150 μm) is obtained. After completion of the film forming process, as shown in FIG. 4, when the upper support member 18 is raised by the elevating drive mechanism 19, the wafer w is moved up by the push pin (not shown) above the lower support member 17, The wafer w is held by a transfer arm (not shown) and unloaded from the reaction chamber 11.

このように、上部支持部材18を設けることより、高速回転時においてウェーハwの外周縁部を下部支持部材17との協働によって確実に支持することが可能となる。従って、ウェーハwの浮き上がりや位置ずれが抑制されるので、ウェーハwの上面に形成されるエピタキシャル膜などの膜厚の均一性を図ることが可能となる。   Thus, by providing the upper support member 18, the outer peripheral edge of the wafer w can be reliably supported by the cooperation with the lower support member 17 during high-speed rotation. Therefore, since the wafer w is prevented from being lifted or displaced, the uniformity of the film thickness of the epitaxial film or the like formed on the upper surface of the wafer w can be achieved.

さらに、ポイントで支持する場合、ウェーハwと支持部材との熱伝導率の差により、温度分布における特異点が生じてしまうが、ウェーハwの外周縁部を、均一な温度で支持することが可能となる。そして、特異点に起因するウェーハwのスリップの発生を抑えることが可能となる。   Furthermore, when supporting at a point, a singular point in the temperature distribution occurs due to the difference in thermal conductivity between the wafer w and the support member, but the outer peripheral edge of the wafer w can be supported at a uniform temperature. It becomes. And it becomes possible to suppress the occurrence of slipping of the wafer w due to the singular point.

また、上部支持部材18を設けることにより、ウェーハwと下部支持部材17との間隙にプロセスガス(ソースガス)が流入しにくい構造とすることができる。また、流入しても還流しない構造であるため、間隙部分において、流入したプロセスガス(ソースガス)による堆積物の発生を抑えることができる。従って、ウェーハwと下部支持部材17の貼りつきによる生産効率の低下を抑制することが可能となる。   Further, by providing the upper support member 18, a structure in which the process gas (source gas) does not easily flow into the gap between the wafer w and the lower support member 17 can be obtained. Further, since the structure does not return even if it flows in, it is possible to suppress the generation of deposits due to the flowing process gas (source gas) in the gap portion. Accordingly, it is possible to suppress a decrease in production efficiency due to the adhesion between the wafer w and the lower support member 17.

また、本実施形態においては、整流板14aを設けてガスを整流することにより、ウェーハwの上面にプロセスガスを均一に供給することができ、膜厚の均一性を図ることができる。   Further, in the present embodiment, by providing the rectifying plate 14a and rectifying the gas, the process gas can be uniformly supplied to the upper surface of the wafer w, and the film thickness can be made uniform.

さらに、本実施形態においては、整流板14bを設けてウェーハwの外側に整流された水素ガスや、Ar、Heなどの不活性ガスを供給することにより、ウェーハwの周囲に滞留するソースガスを効果的に除去することができる。また、ソースガスが残存した場合でも、平衡を成膜反応が抑制される方向にシフトさせることができ、ウェーハwの外周部における堆積物の生成を抑えることが可能となる。さらに、堆積物が生成した場合でも、HClを含むクリーニングガスを供給することにより、堆積物の除去が可能となる。   Further, in the present embodiment, the source gas staying around the wafer w is provided by supplying a rectifying plate 14b and supplying hydrogen gas rectified outside the wafer w or an inert gas such as Ar or He. It can be effectively removed. Further, even when the source gas remains, the equilibrium can be shifted in the direction in which the film formation reaction is suppressed, and the generation of deposits on the outer peripheral portion of the wafer w can be suppressed. Further, even when deposits are generated, the deposits can be removed by supplying a cleaning gas containing HCl.

また、本実施形態においては、整流板14aと整流板14bとの間に、下端がウェーハw表面から例えば20mmの高さとなるように、仕切り板15が設置されている。ウェーハwの上面に供給されるプロセスガスと、ウェーハwの外周部に供給されるガスの混合状態は、主にウェーハwの外周部に供給されるガスの速度、濃度に支配されるが、この仕切り板15により、ガスの混合をより効果的に抑制することができる。   In the present embodiment, the partition plate 15 is installed between the rectifying plate 14a and the rectifying plate 14b so that the lower end is, for example, 20 mm high from the surface of the wafer w. The mixed state of the process gas supplied to the upper surface of the wafer w and the gas supplied to the outer periphery of the wafer w is mainly governed by the speed and concentration of the gas supplied to the outer periphery of the wafer w. The partition plate 15 can more effectively suppress gas mixing.

また、ガスの混合抑制の観点では、仕切り板15はウェーハw近くまで設けられることが好ましいと考えられる。しかしながら、回転するウェーハwの上面に供給されるガスは、ウェーハwの上面に境界層を形成し、余剰のガスは外周方向に排出されるため、その排出経路において障害とならないように配置する必要がある。例えば、所望のプロセス条件において、仕切り板15の設置高さを変動させたときの、仕切り板15への堆積物量を測定し、堆積物の生成量が少なくなる高さとなるように配置すればよい。   Further, from the viewpoint of suppressing gas mixing, it is considered that the partition plate 15 is preferably provided up to the vicinity of the wafer w. However, the gas supplied to the upper surface of the rotating wafer w forms a boundary layer on the upper surface of the wafer w, and the surplus gas is discharged in the outer peripheral direction. There is. For example, the amount of deposit on the partition plate 15 when the installation height of the partition plate 15 is changed under desired process conditions may be measured and arranged so that the amount of deposit generated is reduced. .

また、本実施形態によれば、半導体ウェーハwの上面にエピタキシャル膜などの膜を高い生産性で形成することが可能となる。そして、ウェーハの歩留り向上と共に、素子形成工程及び素子分離工程を経て形成される半導体装置の歩留りの向上、素子特性の安定を図ることが可能となる。特にN型ベース領域、P型ベース領域や、絶縁分離領域などに100μm以上の厚膜成長が必要な、パワーMOSFETやIGBTなどのパワー半導体装置のエピタキシャル形成工程に適用されることにより、良好な素子特性を得ることが可能となる。   Further, according to the present embodiment, it is possible to form a film such as an epitaxial film on the upper surface of the semiconductor wafer w with high productivity. As well as improving the yield of the wafer, it is possible to improve the yield of the semiconductor device formed through the element formation process and the element isolation process and to stabilize the element characteristics. In particular, an excellent element can be obtained by being applied to an epitaxial formation process of a power semiconductor device such as a power MOSFET or IGBT that requires a thick film growth of 100 μm or more in an N-type base region, a P-type base region, an insulating isolation region, or the like. It becomes possible to obtain characteristics.

また、本実施形態においては、Si単結晶層(エピタキシャル膜)形成の場合を説明したが、本実施形態は、ポリSi層形成時にも適用することも可能である。また、例えばSiO膜やSi膜などSi膜以外の成膜や、例えばGaAs層、GaAlAsやInGaAsなど化合物半導体などにおいても適用することが可能である。その他要旨を逸脱しない範囲で種々変形して実施することができる。 In the present embodiment, the case of forming the Si single crystal layer (epitaxial film) has been described. However, the present embodiment can also be applied when forming the poly-Si layer. The present invention can also be applied to film formation other than Si film such as SiO 2 film and Si 3 N 4 film, and compound semiconductor such as GaAs layer, GaAlAs and InGaAs. Various other modifications can be made without departing from the scope of the invention.

本発明の一態様における半導体製造装置の断面を示す図。FIG. 6 is a cross-sectional view of a semiconductor manufacturing apparatus according to one embodiment of the present invention. 本発明の一態様におけるウェーハの支持構造を説明する要部拡大図。The principal part enlarged view explaining the support structure of the wafer in 1 aspect of this invention. 本発明の一態様におけるウェーハの支持構造を説明する斜視図。FIG. 6 is a perspective view illustrating a wafer support structure in one embodiment of the present invention. 本発明の一態様における半導体製造装置の断面を示す図。FIG. 6 is a cross-sectional view of a semiconductor manufacturing apparatus according to one embodiment of the present invention.

符号の説明Explanation of symbols

11…反応室、12a、12b…ガス供給口、13…ガス排出口、14a、14b…整流板、15…仕切り板、16…回転駆動機構、17…下部支持部材、18…上部支持部材、19…昇降駆動機構、20a…インヒータ、20b…アウトヒータ、21…リフレクター。   DESCRIPTION OF SYMBOLS 11 ... Reaction chamber, 12a, 12b ... Gas supply port, 13 ... Gas discharge port, 14a, 14b ... Rectifying plate, 15 ... Partition plate, 16 ... Rotary drive mechanism, 17 ... Lower support member, 18 ... Upper support member, 19 ... Elevating drive mechanism, 20a ... in heater, 20b ... out heater, 21 ... reflector.

Claims (3)

ウェーハが搬入される反応室と、
この反応室にソースガスを含む第1のプロセスガスを供給するガス供給機構と、
このガス供給機構より供給された前記第1のプロセスガスを整流状態で前記ウェーハの上面側に供給する整流板と、
前記反応室より前記第1のプロセスガスを排出するガス排出機構と、
前記反応室内の所定位置で前記ウェーハを下面側より支持する第1の支持部材と、
この第1の支持部材の上方に設けられ、前記ウェーハの外周縁部を上面側より全周に亘って支持する第2の支持部材と、
この第2の支持部材を昇降させ、前記ウェーハの支持および開放を行わせる昇降駆動機構と、
前記ウェーハを前記第1および前記第2の支持部材と共に回転させる回転駆動機構と、
前記第1および前記第2の支持部材によって支持された前記ウェーハを加熱する加熱機構と、
を備え、
前記第2の支持部材における前記ウェーハの支持箇所は、前記ウェーハの外周縁部に形成されたベベル内であることを特徴とする半導体製造装置。
A reaction chamber into which wafers are loaded;
A gas supply mechanism for supplying a first process gas including a source gas to the reaction chamber;
A rectifying plate for supplying the first process gas supplied from the gas supply mechanism to the upper surface side of the wafer in a rectified state;
A gas discharge mechanism for discharging the first process gas from the reaction chamber;
A first support member for supporting the wafer from a lower surface side at a predetermined position in the reaction chamber;
A second support member provided above the first support member and supporting the outer peripheral edge of the wafer over the entire circumference from the upper surface side;
An elevating drive mechanism for elevating and lowering the second support member to support and release the wafer;
A rotation drive mechanism for rotating the wafer together with the first and second support members;
A heating mechanism for heating the wafer supported by the first and second support members;
With
The support portion of the wafer in the second support member, the semi-conductor manufacturing apparatus you wherein within bevel formed on the outer peripheral edge of the wafer.
前記ガス供給機構は、水素ガスまたは不活性ガスを含む第2のプロセスガスを前記ウェーハの外周部に供給することを特徴とする請求項1記載の半導体製造装置。 The gas supply mechanism, according to claim 1 Symbol mounting a semiconductor manufacturing apparatus of the second process gas and supplying the outer peripheral portion of the wafer containing hydrogen gas or an inert gas. 反応室内にウェーハを搬入し、
前記ウェーハを第1の支持部材上に載置し、
前記載置された前記ウェーハの外周縁部を第2の支持部材によって前記ウェーハの上面側から全周に亘って支持し、
前記支持されたウェーハの上面側に、ソースガスを含む第1のプロセスガスを整流状態で供給し、
水素ガスまたは不活性ガスを含む第2のプロセスガスを前記ウェーハの外周部に供給し、
前記ウェーハを前記第1および前記第2の支持部材と共に回転させながら加熱し、
前記ウェーハの上面側に成膜することを特徴とする半導体製造方法。
Bring wafers into the reaction chamber,
Placing the wafer on a first support member;
The outer peripheral edge of the wafer placed above is supported over the entire circumference from the upper surface side of the wafer by a second support member,
Supplying a first process gas containing a source gas in a rectified state to the upper surface side of the supported wafer;
Supplying a second process gas containing hydrogen gas or inert gas to the outer periphery of the wafer;
Heating the wafer while rotating with the first and second support members;
Semiconductors manufacturing how to characterized by forming a film on an upper surface side of the wafer.
JP2007308851A 2007-11-29 2007-11-29 Semiconductor manufacturing apparatus and semiconductor manufacturing method Expired - Fee Related JP4933409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308851A JP4933409B2 (en) 2007-11-29 2007-11-29 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308851A JP4933409B2 (en) 2007-11-29 2007-11-29 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2009135201A JP2009135201A (en) 2009-06-18
JP4933409B2 true JP4933409B2 (en) 2012-05-16

Family

ID=40866847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308851A Expired - Fee Related JP4933409B2 (en) 2007-11-29 2007-11-29 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP4933409B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312544B1 (en) * 2011-12-26 2013-09-30 주식회사 엘지실트론 Epitaxial Reactor
US9388494B2 (en) 2012-06-25 2016-07-12 Novellus Systems, Inc. Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region
CN109155273B (en) * 2016-05-26 2024-01-02 三益半导体工业株式会社 Wafer heating and holding mechanism and method for turntable, and wafer rotation and holding device
US9738977B1 (en) * 2016-06-17 2017-08-22 Lam Research Corporation Showerhead curtain gas method and system for film profile modulation
JP6789774B2 (en) * 2016-11-16 2020-11-25 株式会社ニューフレアテクノロジー Film deposition equipment
US12087573B2 (en) 2019-07-17 2024-09-10 Lam Research Corporation Modulation of oxidation profile for substrate processing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601180Y2 (en) * 1993-12-06 1999-11-08 日新電機株式会社 Substrate holding device
JP3362552B2 (en) * 1995-03-10 2003-01-07 東京エレクトロン株式会社 Film processing equipment

Also Published As

Publication number Publication date
JP2009135201A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4956469B2 (en) Semiconductor manufacturing equipment
JP2010129764A (en) Susceptor, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP5341706B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2009270143A (en) Susceptor, semiconductor manufacturing apparatus, and semiconductor method for manufacturing
JP4933409B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5275935B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5038073B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
KR101422555B1 (en) Vapor phase growing method and vapor phase growing apparatus
JP4933399B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP5443096B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5432608B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2013051351A (en) Vapor-phase growth apparatus and vapor phase growth method
JP5615102B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP5271648B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP5802052B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5079726B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2009135202A (en) Semiconductor manufacturing device and semiconductor manufacturing method
JP2010074037A (en) Susceptor, and apparatus and method for manufacturing semiconductor
JP2011151118A (en) Apparatus and method for manufacturing semiconductor
JP5513578B2 (en) Susceptor, semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5134311B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2011198943A (en) Semiconductor manufacturing apparatus and method thereof
JP2008066559A (en) Method and apparatus of manufacturing semiconductor
JP2007073627A (en) Method and device for film forming
JP2011171479A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees