[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4933473B2 - Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof - Google Patents

Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof Download PDF

Info

Publication number
JP4933473B2
JP4933473B2 JP2008094318A JP2008094318A JP4933473B2 JP 4933473 B2 JP4933473 B2 JP 4933473B2 JP 2008094318 A JP2008094318 A JP 2008094318A JP 2008094318 A JP2008094318 A JP 2008094318A JP 4933473 B2 JP4933473 B2 JP 4933473B2
Authority
JP
Japan
Prior art keywords
slurry
interface
value
meter
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008094318A
Other languages
Japanese (ja)
Other versions
JP2009241045A (en
Inventor
栄 小三田
康輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2008094318A priority Critical patent/JP4933473B2/en
Publication of JP2009241045A publication Critical patent/JP2009241045A/en
Application granted granted Critical
Publication of JP4933473B2 publication Critical patent/JP4933473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、水道水、工業用水等を製造するスラリ循環型凝集沈殿処理装置、及びその運転方法に関するものである。   The present invention relates to a slurry circulation type coagulation sedimentation treatment apparatus for producing tap water, industrial water, and the like, and an operation method thereof.

上水処理における凝集沈殿処理では、濁度の低い原水を対象として凝集沈殿処理において、凝集反応の核となる凝集補助剤を添加して凝集反応を促進する方法がある。凝集補助剤としては砂などの固体粒子が用いられる。この処理方法をスラリ循環型凝集処理装置に適用する場合、沈殿池のスラリ界面位置及び/又は処理水濁度に応じて砂などの固体粒子の添加率を調整する方法が提案されている。一方、既に凝集反応で形成されたフロックに対してバラスト機能を有する砂を付着させてフロックの沈降速度を高める方法もあるが、前者とは全く異なる思想に基づき異なる処理機構を有する方法である。   In the coagulation sedimentation treatment in the water treatment, there is a method of promoting the coagulation reaction by adding an agglomeration auxiliary agent serving as a nucleus of the aggregation reaction in the coagulation sedimentation treatment for the raw water having low turbidity. Solid particles such as sand are used as the coagulant aid. When this treatment method is applied to a slurry circulation type agglomeration treatment apparatus, a method has been proposed in which the addition rate of solid particles such as sand is adjusted in accordance with the position of the slurry interface in the sedimentation basin and / or the turbidity of the treated water. On the other hand, there is a method of increasing the sedimentation speed of flocs by attaching sand having ballast function to flocs already formed by agglomeration reaction, but this method has a different processing mechanism based on a completely different idea from the former.

浄水処理においは、河川水等を凝集沈殿処理して濁度成分や有機物の除去を行っている。近年の河川水の濁度は、上流にダムが建設された影響などにより昭和30年代や40年代に比べて低下しており、晴天時には10度以下となることが多く、1度前後まで低下することが珍しくない。濁度の低い原水に対して凝集沈殿処理を行うと、凝集反応が進行し難かったり沈降性の悪いフロックが形成されるなどし、処理水濁度の悪化を招く。   In the purification process, river water is coagulated and precipitated to remove turbidity components and organic substances. The turbidity of river water in recent years is lower than that of the Showa 30s and 40s due to the construction of a dam upstream, etc., and it is often 10 degrees or less in fine weather and decreases to around 1 degree. It is not uncommon. When the coagulation sedimentation treatment is performed on the raw water having a low turbidity, the coagulation reaction is difficult to proceed or flocs having poor sedimentation properties are formed, and the turbidity of the treatment water is deteriorated.

浄水処理においては、PAC(ポリ塩化アルミニウム)などの無機凝集剤の添加率はジャーティスに基づいて決められるのが一般的である。過去のジャーテスト結果に基づいて、原水濁度に対応した無機凝集剤添加率を選定する場合もある。原水濁度が低い場合、無機凝集剤が少なすぎると凝集反応が生じ難い。一方、無機凝集剤添加率を凝集反応が生じる十分な量まで増加すると原水濁質に対する無機凝集剤の比率が高くなり、フロックが膨潤して沈降し難くなる。   In the water purification treatment, the addition rate of an inorganic flocculant such as PAC (polyaluminum chloride) is generally determined based on jartis. An inorganic flocculant addition rate corresponding to the raw water turbidity may be selected based on past jar test results. When the raw water turbidity is low, if the amount of the inorganic flocculant is too small, the aggregation reaction is difficult to occur. On the other hand, when the addition rate of the inorganic flocculant is increased to a sufficient amount that causes the flocculation reaction, the ratio of the inorganic flocculant to the raw water suspension becomes high, and the flocs swell and become difficult to settle.

このような濁度の低い原水の凝集沈殿処理に対しては、特許文献1及び特許文献2に示すように無機凝集剤添加前または無機凝集剤添加と同時に、原水に砂などの固体粒子を凝集補助剤として添加し、凝集反応を促進させる方法がある。凝集補助剤の添加は原水の濁質が増加した状態を模擬的に作ることになる。横流式沈殿池を用いる凝集処理装置に凝集補助剤を適用する場合には、原水濁度を測定し、凝集補助剤添加後の濁度が凝集反応に適した所定の濁度になるように不足する濁度に相当する添加率で連続的に添加を行えばよい。   For coagulation sedimentation treatment of raw water with low turbidity, as shown in Patent Document 1 and Patent Document 2, solid particles such as sand are aggregated in the raw water before or simultaneously with the addition of the inorganic flocculant. There is a method of adding as an auxiliary agent to promote the agglutination reaction. The addition of the coagulant aid simulates a state in which the turbidity of the raw water has increased. When a coagulant aid is applied to a coagulation treatment device that uses a cross-flow type sedimentation basin, the raw water turbidity is measured, and the turbidity after adding the coagulant aid is insufficient to achieve a predetermined turbidity suitable for the coagulation reaction. The addition may be continuously performed at an addition rate corresponding to the turbidity.

凝集補助剤の添加は、スラリ循環型凝集沈殿処理装置において有効である。凝集補助剤の添加率の調整は、横流式沈殿池を用いる凝集沈殿処理装置と同様に原水濁度に基づいて行うことができるが、スラリ循環型凝集沈殿処理装置の特性を利用して、凝集補助剤の添加率を合理的に削減することが可能である。   The addition of the coagulant aid is effective in the slurry circulation type coagulation sedimentation treatment apparatus. The adjustment rate of the coagulant auxiliary agent can be adjusted based on the raw water turbidity in the same manner as the coagulation sedimentation treatment device using the cross-flow type sedimentation basin. It is possible to rationally reduce the additive rate.

スラリ循環型凝集沈殿処理装置では沈殿部で凝集補助剤を含有したスラリが沈降し、沈降したスラリは攪拌部に返送される。このために凝集時に十分な濁質が存在して凝集反応が進行し、このため凝集補助剤を連続で添加する必要がなく、状況に応じて間欠的に添加すればよい。沈殿部から攪拌部へのスラリの返送にはポンプなどの設備を必要としない。攪拌翼上部は攪拌翼中央から槽周部に向う水平方向の噴出水流を形成する構造を有し、攪拌翼からの噴出水流によって攪拌部から水路経由で沈殿部へ原水量を超える水量が流れる。原水量を超える分の水量は沈殿部から攪拌部へ固体粒子を包含するスラリとなって自然に返送される。   In the slurry circulation type coagulation sedimentation processing apparatus, the slurry containing the coagulant aid settles in the sedimentation section, and the sedimented slurry is returned to the stirring section. For this reason, sufficient turbidity is present at the time of aggregation and the aggregation reaction proceeds. Therefore, it is not necessary to continuously add the aggregation auxiliary agent, and it may be added intermittently depending on the situation. No equipment such as a pump is required to return the slurry from the settling section to the stirring section. The upper part of the stirring blade has a structure that forms a horizontal jet water flow from the center of the stirring blade toward the periphery of the tank, and the amount of water exceeding the amount of raw water flows from the stirring part to the precipitation part via the water channel by the jet water flow from the stirring blade. The amount of water exceeding the amount of raw water is naturally returned as a slurry containing solid particles from the precipitation section to the stirring section.

また、沈殿部にスラリブランケットを有しており、スラリブランケットの界面状態(界面位置及び界面位置の変化)と排泥操作(スラリ排出量操作)を考慮した凝集補助剤の添加率調整が必要である。更に、沈殿部でのスラリの沈降性の難易はスラリのSV(Sludge Volume)を測定することで判断でき、SVを活用した凝集補助剤の添加率調整が可能である。スラリブランケットは、沈殿部においてスラリが沈降して処理水とは分離しているが沈積せずに浮遊している状態である。沈殿部のスラリは上昇流によって膨張・展開した状態であり、沈殿部の上澄水と膨張・展開したスラリとの境界面がスラリ界面である。このスラリ界面の位置は既存のスラリ界面計で測定できる。SVは任意の一定量のスラリを所定時間静置した場合に沈積したスラッジの占める容積率であり、SV計又は手動で測定できる。スラリ循環型凝集沈殿処理装置においては、一般的に静置時間5〜10分で測定している。   In addition, it has a slurry blanket in the sedimentation section, and it is necessary to adjust the rate of addition of the coagulant aid in consideration of the slurry blanket interface state (interface position and change in interface position) and the sludge operation (slurry discharge amount operation). is there. Furthermore, the difficulty of the sedimentation of the slurry in the sedimentation part can be determined by measuring the slurry SV (Sludge Volume), and the addition rate of the coagulant aid using SV can be adjusted. The slurry blanket is a state in which the slurry settles in the settling portion and is separated from the treated water but is not deposited but is floating. The slurry in the settling portion is in a state of being expanded and expanded by the upward flow, and the boundary surface between the supernatant water of the settling portion and the expanded and expanded slurry is the slurry interface. The position of this slurry interface can be measured with an existing slurry interface meter. SV is a volume ratio occupied by sludge deposited when an arbitrary fixed amount of slurry is allowed to stand for a predetermined time, and can be measured by an SV meter or manually. In the slurry circulation type coagulation sedimentation processing apparatus, the measurement is generally performed at a standing time of 5 to 10 minutes.

スラリ循環型凝集沈殿処理装置において凝集補助剤を添加する場合、沈殿部のスラリ界面位置及び/又は処理水濁度に応じて凝集補助剤の添加率を調整することが、従来提案されている。しかし、この方法では凝集補助剤である砂等の不溶解性粒状物質の添加率を適切に調整することができないということが、下記の状況から明らかになっている。   When adding a coagulant aid in a slurry circulation type coagulation sedimentation treatment apparatus, it has been conventionally proposed to adjust the addition rate of the coagulant aid according to the position of the slurry interface in the precipitation part and / or the turbidity of the treated water. However, it has become clear from the following situation that the addition rate of insoluble particulate matter such as sand, which is an agglomeration aid, cannot be appropriately adjusted by this method.

スラリ循環型凝集沈殿処理装置の沈殿部(沈殿池)では、処理水の上昇流速とフロックの沈降が釣り合った状態でスラリブランケットを形成して滞留しており、フロックの沈降速度が速い場合には、スラリブランケット部のスラリ濃度が密になり、フロックの沈降速度が遅い場合にはスラリブランケット部の密度が粗になる。運転条件を一定とした場合にスラリ界面位置が変化する要因は主に下記のA、Bの2つがある。   In the sedimentation section (sedimentation basin) of the slurry circulation type coagulation sedimentation processing equipment, a slurry blanket is formed and stays in a state where the rising flow rate of the treated water and the sedimentation of the floc are balanced. When the slurry concentration in the slurry blanket part becomes dense and the sedimentation speed of the floc is slow, the density of the slurry blanket part becomes rough. There are mainly two factors A and B below that change the slurry interface position when the operating conditions are constant.

A.原水濁度の低下によって無機凝集剤に対する濁質の割合が低くなり、フロックの比重が低下して沈降し難くなることである。この場合、フロックの比重低下に伴い沈降速度が低下し、スラリブランケットが膨張することでスラリ界面が上昇する。
B.原水濁度の増加によって沈殿部に存在するスラリ総量が増加することである。原水濁度が増加すると、無機凝集剤に対する濁度の割合が増加してフロックの沈降性は良くなり、スラリブランケットが収縮してスラリ界面が低下する。しかし、流入濁質の増加によって装置内のスラリ増加量が排泥量より大きくなると、スラリ界面は上昇することになる。
A. The ratio of the turbidity to the inorganic flocculant is lowered due to the decrease in raw water turbidity, and the specific gravity of flocs is decreased to make it difficult to settle. In this case, the sedimentation speed decreases with the decrease in the specific gravity of the floc, and the slurry blanket expands to raise the slurry interface.
B. The total amount of slurry present in the sedimentation area increases due to the increase in raw water turbidity. As the raw water turbidity increases, the ratio of turbidity to the inorganic flocculant increases and the floc sedimentation improves, and the slurry blanket shrinks and the slurry interface decreases. However, if the amount of increase in slurry in the apparatus becomes larger than the amount of mud due to an increase in inflowing turbidity, the slurry interface will rise.

上記Aに対する適切な対応は、凝集補助剤の添加率を増加して、フロックの沈降性を向上させることである。
また、上記Bに対する対応は、凝集補助剤である不溶解性粒状物質の添加率を低減し、排泥量を増加することである。
上記A、Bの要因は、処理水濁度によって区別することが出来ないため、沈殿部のスラリ界面位置と処理水濁度とを組み合わせても、適切な調整を行うことは出来ない。
Appropriate response to A is to increase the flocs sedimentation by increasing the addition rate of the coagulant aid.
Moreover, the response | compatibility with said B is reducing the addition rate of the insoluble granular material which is a coagulant | flocculant, and increasing the amount of sludge.
The factors A and B cannot be distinguished from each other by the treated water turbidity. Therefore, even if the slurry interface position of the sedimentation portion and the treated water turbidity are combined, appropriate adjustment cannot be performed.

一方、横流式沈殿池での凝集補助剤添加率の調整と同様に、原水濁度に基づいて凝集補助剤の添加率調整を行うことは可能であるが、添加率が過剰になる。凝集補助剤の添加は凝集反応を促進させ、かつ沈降し易いスラリを形成するために行うものであり、原水濁度が低くても沈降し易いスラリが生成されていれば、凝集補助剤の添加は不要である。また、原水濁度が低くても、沈殿池のスラリ界面位置が上昇して処理水濁度の悪化を招く状況でなければ、凝集補助剤をすぐに添加する必要がない。
特開2006−7086号公報 特表2003−326110号公報
On the other hand, it is possible to adjust the addition rate of the coagulant aid based on the raw water turbidity, similar to the adjustment of the coagulant aid addition rate in the cross-flow type sedimentation basin, but the addition rate becomes excessive. The addition of the coagulant aid is performed to promote the coagulation reaction and form a slurry that easily settles. If a slurry that is easy to settle even if the raw water turbidity is low, the addition of the coagulant aid is added. Is unnecessary. Even if the raw water turbidity is low, it is not necessary to immediately add the coagulant aid unless the slurry interface position of the sedimentation basin is raised and the treated water turbidity is deteriorated.
JP 2006-7086 A Special table 2003-326110 gazette

本発明は上述の点に鑑みてなされたもので、スラリ循環型凝集沈殿処理装置において、原水濁度が低い場合やフロックの沈降性が原水濁度によって変動する場合でも、沈殿部のスラリ界面レベルを適正位置に維持し、低濁度の原水から効率よく処理水を得ることができるスラリ循環型凝集沈殿処理装置、及びその運転方法を提供することを目的とする。   The present invention has been made in view of the above points, and in the slurry circulation type coagulation sedimentation treatment apparatus, even when the raw water turbidity is low or the sedimentation property of the flock fluctuates depending on the raw water turbidity, the slurry interface level of the sedimentation part. It is an object to provide a slurry circulation type coagulation sedimentation treatment apparatus capable of efficiently obtaining treated water from raw water with low turbidity and an operating method thereof.

上記課題を解決するため本発明は、原水と無機凝集剤を攪拌してスラリを形成する攪拌部と、該攪拌部と水路部を介して設けられ、水路部から導入されるスラリを浄化するスラリブランケットを下方に形成すると共に該スラリブランケットの上方に処理水層を形成する沈殿部と、沈殿部の下方からスラリを攪拌部に戻す流路を設けたスラリ循環型凝集沈殿処理装置において、原水にスラリの比重を増加させる固体粒子を供給する固体粒子供給手段と、沈殿部に導かれるスラリのSV値を検出するSV計と、沈殿部に形成されたスラリブランケットのスラリ界面の位置を検出するスラリ界面計と、沈殿部の底部又は攪拌部の底部からスラリブランケット下方のスラリを排出するスラリ排出手段と、SV計で検出したSV値とスラリ界面計で検出したスラリ界面の位置を記憶して、SV計で検出したSV値を現時点のSV値とし該現時点のSV値と記憶したSV値からSV値の時間変化を算出するとともに、スラリ界面計で検出したスラリ界面の位置を現時点のスラリ界面の位置とし該現時点のスラリ界面の位置と記憶したスラリ界面の位置からスラリ界面の位置の時間変化を算出し、SV計によるSV測定値とその時間変化、及びスラリ界面計によるスラリ界面の測定位置とその時間変化に基づいて、固体粒子の添加量とスラリの排出量をそれぞれ、増加するか低減するか現状維持にするかを判断し、固体粒子供給手段及びスラリ排出手段を制御し、固体粒子の添加率を過不足無く適正に調整すると共に、スラリ界面の位置が所定位置に維持されるように調整する制御手段を設けたことを特徴とする。 The present invention for solving the above problems, a stirring portion for forming a slurry by stirring raw water and an inorganic coagulant, provided through the stirring拌部and waterways unit, for purifying the slurry is introduced from the water channel precipitation unit to form a treated aqueous layer above the slurry blanket to form a slurry blanket downward in the slurry circulating coagulating sedimentation processing apparatus having a flow path for returning to the stirring section slurry from below the precipitation unit, Solid particle supply means for supplying solid particles to increase the specific gravity of the slurry to the raw water, an SV meter for detecting the SV value of the slurry guided to the settling part, and detecting the position of the slurry interface of the slurry blanket formed in the settling part A slurry interface unit that discharges slurry under the slurry blanket from the bottom of the sedimentation unit or the bottom of the stirring unit, and the SV value detected by the SV meter and the slurry interface meter The position of the slurry interface is stored, the SV value detected by the SV meter is set as the current SV value, and the time change of the SV value is calculated from the current SV value and the stored SV value, and detected by the slurry interface meter. The time change of the position of the slurry interface is calculated from the position of the current slurry interface and the stored position of the slurry interface, and the SV measured value by the SV meter and its time change, Based on the measurement position of the slurry interface by the slurry interface meter and its change over time, it is determined whether to increase or decrease the solid particle addition amount and the slurry discharge amount, respectively, or to maintain the current state, and to supply the solid particle and controlling the slurry discharge means, the addition ratio of the solid particles along with just enough properly adjusted, provided a control means for adjusting such that the position of the slurry interface is maintained at a predetermined position It is characterized in.

上記のようにSV計で検出したSV値を現時点のSV値とし該現時点のSV値と記憶したSV値からSV値の時間変化を算出するとともに、スラリ界面計で検出したスラリ界面の位置を現時点のスラリ界面の位置とし該現時点のスラリ界面の位置と記憶したスラリ界面の位置からスラリ界面の位置の時間変化を算出し、SV値の時間変化と界面の位置の時間変化に基づいて、固体粒子の添加量とスラリの排出量をそれぞれ、増加するか低減するか現状維持にするかを判断し、固体粒子供給手段とスラリ排出手段とを制御して固体粒子の供給量及びスラリ排出量を制御し、固体粒子の添加率を過不足無く適正に調整すると共に、スラリ界面の位置が所定位置に維持されるように調整する制御手段を設けたので、凝集補助剤として添加する砂等の固体粒子の添加率を過不足なく適切に調整できると共に、装置内に蓄積するスラリの排出量を過不足なく適切に調整でき、スラリ界面レベルを所定の位置に維持でき、低濁度の原水から効率良く処理水を得ることができる。 As described above, the SV value detected by the SV meter is set as the current SV value, the time change of the SV value is calculated from the current SV value and the stored SV value, and the position of the slurry interface detected by the slurry interface meter is determined at this time. The time change of the position of the slurry interface is calculated from the current position of the slurry interface and the stored position of the slurry interface, and based on the time change of the SV value and the time change of the interface position , the solid particle Determine whether to increase or decrease the amount of slurry added and the amount of slurry discharged, respectively, and control the solid particle supply means and slurry discharge means to control the solid particle supply amount and slurry discharge amount. In addition, the control means for adjusting the addition rate of the solid particles properly without excess and deficiency and adjusting the position of the slurry interface to be maintained at a predetermined position is provided. The addition rate of body particles can be adjusted appropriately without excess and deficiency, and the discharge amount of slurry accumulated in the device can be adjusted appropriately without excess and deficiency, the slurry interface level can be maintained at a predetermined position, and raw water with low turbidity can be maintained. Treated water can be obtained efficiently.

また、本発明は、原水と無機凝集剤を攪拌してスラリを形成する攪拌部と、攪拌部と水路部を介して設けられ、水路部から導入されるスラリを浄化するスラリブランケットを下方に形成すると共に該スラリブランケットの上方に処理水層を形成する沈殿部と、沈殿部の下方からスラリを攪拌部に戻す流路を設けたスラリ循環型凝集沈殿処理装置の運転方法において、攪拌部から水路部を通して沈殿部に導かれるスラリのSV値をSV計で所定時間間隔で測定するとともに、沈殿部に形成されたスラリブランケットのスラリ界面の位置をスラリ界面計で所定時間間隔で測定し、測定したSV値と時間間隔及び測定したスラリ界面の位置と時間間隔からSV値の時間変化及びスラリ界面の位置の時間変化を算出し、SV値と該SV値の時間変化、及びスラリ界面の位置と該スラリ界面の位置の時間変化に基づいて、固体粒子の添加量とスラリの排出量をそれぞれ、増加するか低減するか現状維持にするかを判断し、固体粒子供給手段で供給される固体粒子の供給量及びスラリ排出手段で排出されるスラリ排出量を調整して、固体粒子の添加率を過不足無く適正に調整すると共に、スラリ界面の位置が所定位置に維持されるように調整することを特徴とする。 Further, the present invention includes a stirring unit to form a slurry by stirring raw water and an inorganic coagulant, provided through the stirring section and waterways portion, the slurry blanket for purifying slurry introduced from said water channel downward in the method of operating the precipitation unit to form a treated aqueous layer above the slurry blanket, slurry recycling coagulating sedimentation processing apparatus having a flow path for returning to the stirring section slurry from below the precipitation section thereby forming a stirring The SV value of the slurry guided to the sedimentation section through the water channel section is measured with a SV meter at a predetermined time interval, and the position of the slurry interface of the slurry blanket formed in the sedimentation section is measured with a slurry interface meter at a predetermined time interval. , from the measured SV value and location and time interval of the time interval and the measured slurry interface to calculate the time variation of the time change and the position of the slurry surface of the SV value, the SV value and the SV value Based on the time change and the time change of the position of the slurry interface and the position of the slurry interface, it is determined whether to increase or decrease the solid particle addition amount and the slurry discharge amount, respectively, or to maintain the current state. by adjusting the supply amount and the slurry discharge amount that will be discharged by the slurry discharge means of the solid particles that will be supplied by the particle supply means, the addition ratio of the solid particles along with just enough properly adjusted, the position of the slurry interface position It is characterized by adjusting so that it may be maintained.

上記のように、SV値と該SV値の時間変化、及びスラリ界面の位置と該スラリ界面の位置の時間変化に基づいて、固体粒子の添加量とスラリの排出量をそれぞれ、増加するか低減するか現状維持にするかを判断し、固体粒子の供給量及びスラリ排出量を調整するので、凝集補助剤として添加する砂等の固体粒子の添加率を過不足なく適切に調整できると共に、装置内に蓄積するスラリの排出量を過不足なく適切に調整でき、沈殿部に形成されたスラリブランケットのスラリ界面レベルを所定の位置に維持でき、低濁度の原水から効率よく処理水を得ることができる。 As described above, based on the SV value and the time change of the SV value, and the time change of the position of the slurry interface and the position of the slurry interface, the addition amount of solid particles and the discharge amount of slurry are increased or decreased, respectively. The amount of solid particles to be added and the amount of slurry discharged are adjusted, so that the addition rate of solid particles such as sand to be added as a coagulant aid can be adjusted appropriately without excess and equipment. The amount of slurry accumulated in the slurry can be adjusted appropriately without excess and deficiency, the slurry interface level of the slurry blanket formed in the settling area can be maintained at a specified position, and treated water can be efficiently obtained from raw water with low turbidity Can do.

また、本発明は上記スラリ循環型凝集沈殿処理装置の運転方法において、スラリの比重を増加させる固体粒子は、SiO2を主成分とする粒子であることを特徴とする。 Further, the present invention is characterized in that in the operation method of the slurry circulation type coagulation sedimentation treatment apparatus, the solid particles for increasing the specific gravity of the slurry are particles mainly composed of SiO 2 .

また、本発明は上記スラリ循環型凝集沈殿処理装置の運転方法において、スラリの比重を増加させる固体粒子は、粉末活性炭であることを特徴とする。   The present invention is also characterized in that, in the operation method of the slurry circulation type coagulation sedimentation treatment apparatus, the solid particles that increase the specific gravity of the slurry are powdered activated carbon.

上記固体粒子は、比重が2.0〜4.0であり、水に不溶解性の粒状物質である。砂、粉末活性炭、カオリンなどが有効であり、これらの中でも砂は好ましい。更に、主成分がSiO2である珪砂がより好ましい。 The solid particles are granular materials having a specific gravity of 2.0 to 4.0 and insoluble in water. Sand, powdered activated carbon, kaolin and the like are effective, and among these, sand is preferable. Furthermore, silica sand whose main component is SiO 2 is more preferable.

上記課題を解決するため本発明は、原水濁度が低い場合やフロックの沈降性が原水濁度によって変化する場合、凝集補助剤としてスラリの比重を増加させる固体粒子の添加率を合理的に判断して過不足無く適切に調整し、更に装置内に蓄積するスラリの排出を過不足無く行い、スラリ界面を沈殿部の所定の水深に維持し、低濁度の処理水(沈殿水)を効率的に得ることができる。   In order to solve the above problems, the present invention rationally determines the addition rate of solid particles that increase the specific gravity of the slurry as an agglomeration aid when the raw water turbidity is low or when the floc sedimentation changes depending on the raw water turbidity. It adjusts properly without excess and deficiency, discharges the slurry accumulated in the equipment without excess and deficiency, maintains the slurry interface at the prescribed depth of the sedimentation section, and efficiently treats low turbidity treated water (precipitation water) Can be obtained.

以下、本願発明の実施の形態例を図面に基づいて説明する。図1は本発明に係るスラリ循環型凝集沈殿処理装置の概略構成を示す図である。図1に示すように、スラリ循環型凝集沈殿処理装置は、着水井1とスラリ循環型凝集沈殿処理槽2を備えている。着水井1は河川水、湖沼水、地下水などの水源から取水した原水が流入する取水池である。スラリ循環型凝集沈殿処理槽2は中央下方に攪拌部(攪拌槽)3を備え、該攪拌部3の周囲上部に沈殿部(沈殿槽)5、中央上部に水路部4が配置された構成である。また、攪拌部3には攪拌翼6が配置され、該攪拌翼6は攪拌モータ7により回転されるようになっている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a slurry circulation type coagulation sedimentation processing apparatus according to the present invention. As shown in FIG. 1, the slurry circulation type coagulation sedimentation treatment apparatus includes a landing well 1 and a slurry circulation type coagulation sedimentation treatment tank 2. The landing well 1 is an intake pond into which raw water taken from a water source such as river water, lake water, or groundwater flows. The slurry circulation type coagulation sedimentation treatment tank 2 is provided with a stirring part (stirring tank) 3 below the center, a sedimentation part (precipitation tank) 5 is arranged at the upper part of the periphery of the stirring part 3, and a water channel part 4 is arranged at the center upper part. is there. A stirring blade 6 is disposed in the stirring unit 3, and the stirring blade 6 is rotated by a stirring motor 7.

スラリ循環型凝集沈殿処理槽2の沈殿部5の上部には処理水(沈殿水)を集める集水樋8が設けられ、該集水樋8に流入した処理水は処理水排出管9を通して所定の場所に送水されるようになっている。また、沈殿部5の下部にはスラリ排出管10が設けられ、該スラリ排出管10には排泥ポンプ11が配置されている。また、水路部4には、pHを測定するpH計14、SV値を測定するSV計15が設けられ、更に沈殿部5にはスラリ界面を検出するスラリ界面計16が設けられている。また、攪拌部3内には固体粒子添加ポンプ12により、固体粒子供給管13を介して凝集補助剤である固体粒子(ここではSiO2を主体とする珪砂)が供給されるようになっている。なお、固体粒子としては、上記のように、比重が2.0〜4.0で、水に不溶解性の粒状物質である砂、粉末活性炭、カオリンなどが有効であり、これらの中でも砂は好ましい。更に、主成分がSiO2である珪砂がより好ましい。 A water collecting basin 8 for collecting treated water (precipitated water) is provided at the upper part of the sedimentation section 5 of the slurry circulation type coagulation sedimentation treatment tank 2, and the treated water that has flowed into the water collecting basin 8 passes through the treated water discharge pipe 9 to be predetermined. Water is to be sent to the place. In addition, a slurry discharge pipe 10 is provided below the settling portion 5, and a sludge pump 11 is disposed in the slurry discharge pipe 10. Further, a pH meter 14 for measuring pH and an SV meter 15 for measuring SV value are provided in the water channel portion 4, and a slurry interface meter 16 for detecting a slurry interface is provided in the sedimentation portion 5. In addition, solid particles (here, silica sand mainly composed of SiO 2 ) serving as an agglomeration aid are supplied into the stirring unit 3 by a solid particle addition pump 12 through a solid particle supply pipe 13. . As the solid particles, sand, powdered activated carbon, kaolin, etc., which are granular materials insoluble in water having a specific gravity of 2.0 to 4.0 as described above, are effective. Among these, sand is preferable. Furthermore, silica sand whose main component is SiO 2 is more preferable.

着水井1の原水17に無機凝集剤18が添加された無機凝集剤添加原水は原水導入管21を通ってスラリ循環型凝集沈殿処理槽2の攪拌部3に供給され、攪拌翼6によって攪拌される。該無機凝集剤添加原水は攪拌翼6により攪拌されると共に加圧され水路部4内に流入し、該水路部4を経由して沈殿部5に流入する。沈殿部5ではフロックが沈降し、清澄な上澄水は処理水(沈殿水)として集水樋8に流入し、処理水排出管9を通って所定場所に送水される。無機凝集剤18の添加率(単位原水量当りの無機凝集剤の添加量)は、濁度計19で測定された原水17の濁度測定値又は人手によるジャーテストの結果に基づいて決められ、流量計20で測定された原水17の流量に対応した量の無機凝集剤18が添加される。なお、無機凝集剤18は攪拌部3の原水に供給するようにしてもよい。凝集反応ではpHが重要な反応因子であり、水路部4に設置するpH計14で凝集反応後のpH値を測定し凝集反応に適切なpH値範囲になるように、図示は省略するがNaOHやH2SO4などのpH調整剤を原水に添加する。一般的にはpH6.5〜7.5の範囲で凝集反応を行う。 The inorganic flocculant-added raw water in which the inorganic flocculant 18 is added to the raw water 17 of the landing well 1 is supplied to the stirring unit 3 of the slurry circulation type coagulation sedimentation treatment tank 2 through the raw water introduction pipe 21 and stirred by the stirring blade 6. The The inorganic flocculant-added raw water is stirred and pressurized by the stirring blade 6 and flows into the water channel portion 4 and flows into the sedimentation portion 5 via the water channel portion 4. In the sedimentation section 5, flocs settle, and the clear supernatant water flows into the catchment basin 8 as treated water (precipitated water) and is sent to a predetermined place through the treated water discharge pipe 9. The addition rate of inorganic flocculant 18 (the amount of inorganic flocculant added per unit raw water amount) is determined based on the turbidity measurement value of raw water 17 measured by turbidimeter 19 or the result of manual jar test, An amount of the inorganic flocculant 18 corresponding to the flow rate of the raw water 17 measured by the flow meter 20 is added. The inorganic flocculant 18 may be supplied to the raw water of the stirring unit 3. In the agglutination reaction, pH is an important reaction factor, and the pH value after the agglomeration reaction is measured with a pH meter 14 installed in the water channel 4 so that the pH value range is appropriate for the agglomeration reaction, but NaOH is not shown. And a pH adjuster such as H 2 SO 4 is added to the raw water. In general, the aggregation reaction is carried out in the range of pH 6.5 to 7.5.

攪拌部3には原水17と無機凝集剤18のみではなく、沈殿部5の底部からスラリが流入しており、更に凝集補助剤である固体粒子が固体粒子供給管13を通して固体粒子添加ポンプ12により注入されている。攪拌部3ではこれらが混合・攪拌されることで、素早く凝集反応が進行し、沈降性のよいスラリが形成される。形成されたスラリは水路部4を経由して沈殿部5へ流入し沈降するが、一部のスラリは沈殿部5内の上昇流により沈積することなく上昇流速と釣り合いが取れた状態で膨張したスラリブランケット22を形成する。処理水はスラリブランケット22内を通過することで、微細なフロックがスラリブランケット22に捕捉されて清澄化が促進する。スラリブランケット22上には固液分離の終了した清澄な上澄水である処理水の層が形成される。該処理水層の処理水は集水樋8の上端部を越えて流入し、処理水(沈殿水)として処理水排出管9を通って送水される。スラリブランケット22と処理水層の境界面がスラリ界面23であり、該スラリ界面23の位置はスラリ界面計16で検出されるようになっている。   Slurry flows not only from the raw water 17 and the inorganic flocculant 18 but also from the bottom of the sedimentation section 5 into the agitation unit 3, and solid particles that are coagulant aids are fed by the solid particle addition pump 12 through the solid particle supply pipe 13. Being injected. In the stirring unit 3, these are mixed and stirred, so that the agglomeration reaction proceeds quickly, and a slurry having good sedimentation is formed. The formed slurry flows into the sedimentation section 5 via the water channel section 4 and sinks, but some of the slurry expands in a state balanced with the ascending flow rate without being deposited by the upward flow in the sedimentation section 5. A slurry blanket 22 is formed. By passing the treated water through the slurry blanket 22, fine flocs are captured by the slurry blanket 22 and clarification is promoted. On the slurry blanket 22, a layer of treated water which is a clear supernatant water after the solid-liquid separation is completed is formed. The treated water in the treated water layer flows over the upper end of the water collecting basin 8 and is sent through the treated water discharge pipe 9 as treated water (precipitated water). The boundary surface between the slurry blanket 22 and the treated water layer is a slurry interface 23, and the position of the slurry interface 23 is detected by the slurry interface meter 16.

沈殿部5内でスラリが沈降し難くなると、スラリの沈降と上昇流速との釣り合いが取れるようにスラリブランケット22は膨張してスラリ界面23の位置が上昇する。更に沈降し難くなると、スラリ界面23が沈殿部5の集水樋8の上端部を越えて上昇し、スラリが集水樋8内に溢流することになる。よってスラリ界面23の位置とスラリの沈降性の両者を把握して、スラリ界面23の位置が高くなり過ぎないように又はスラリの沈降性が悪くなり過ぎないように対応をとる必要がある。   When it becomes difficult for the slurry to settle in the settling portion 5, the slurry blanket 22 expands and the position of the slurry interface 23 rises so that the sedimentation of the slurry and the rising flow rate can be balanced. When it becomes difficult to settle, the slurry interface 23 rises beyond the upper end of the catchment 8 of the settling part 5, and the slurry overflows into the catchment 8. Therefore, it is necessary to grasp both the position of the slurry interface 23 and the settling property of the slurry and take measures so that the position of the slurry interface 23 does not become too high or the settling property of the slurry does not become too bad.

スラリの沈降性をよくするためには、スラリの比重を増加させることであるが、ここでは固体粒子添加ポンプ12と固体粒子供給管13で構成される固体粒子添加手段により、攪拌部3内に凝集補助剤としての固体粒子(ここではSiO2を主成分とする珪砂)を注入する。一方、スラリの沈降性が良くてもスラリ循環型凝集沈殿処理槽2内にスラリが蓄積することにより、スラリ界面23は上昇する。この場合は、スラリ排出管10と排泥ポンプ11からなるスラリ排出手段により沈殿部5の底部からスラリの排出(排泥)を行なう。 In order to improve the sedimentation property of the slurry, it is to increase the specific gravity of the slurry. Here, the solid particle addition means composed of the solid particle addition pump 12 and the solid particle supply pipe 13 is used in the stirring unit 3. Solid particles (here, silica sand whose main component is SiO 2 ) as an agglomerating aid are injected. On the other hand, even if the sedimentation property of the slurry is good, the slurry interface 23 rises as the slurry accumulates in the slurry circulation type coagulation sedimentation treatment tank 2. In this case, the slurry is discharged (sludge) from the bottom of the settling portion 5 by the slurry discharge means including the slurry discharge pipe 10 and the sludge pump 11.

沈殿部5へ流入するスラリの沈降性とその変化を把握するために、水路部4にSV値を計測するSV計15を設置し、沈殿部5のスラリ界面23の位置とその変化を把握するために、沈殿部5にスラリ界面23の位置を測定するスラリ界面計16を設置している。後に図4を用いて詳述するように、SV計15によるSV測定値及びスラリ界面計16によるスラリ界面測定位置は電気信号として制御手段32へ送られ、SV測定値、スラリ界面測定位置の各データは、RAM32−2の所定エリアに格納され、CPU32−1でSV値と界面位置の各々の時間変化を演算して算出するとともに、その算出結果に応じて、上記固体粒子の添加率とスラリの排出量(排泥量)をそれぞれ、増加するか低減するか現状維持にするかの判断を行う。この判断により、制御手段32から制御信号を固体粒子添加ポンプ12及び排泥ポンプ11に送出して運転条件を変更する。   In order to grasp the sedimentation property of the slurry flowing into the sedimentation part 5 and its change, an SV meter 15 for measuring the SV value is installed in the water channel part 4 to grasp the position of the slurry interface 23 of the sedimentation part 5 and its change. For this purpose, a slurry interface meter 16 for measuring the position of the slurry interface 23 is installed in the sedimentation section 5. As will be described in detail later with reference to FIG. 4, the SV measurement value by the SV meter 15 and the slurry interface measurement position by the slurry interface meter 16 are sent as electrical signals to the control means 32, and each of the SV measurement value and the slurry interface measurement position is shown. The data is stored in a predetermined area of the RAM 32-2, and the CPU 32-1 calculates and calculates temporal changes in the SV value and the interface position, and according to the calculation result, the addition rate and slurry of the solid particles are calculated. Judgment is made on whether to increase, decrease or maintain the current status. Based on this determination, a control signal is sent from the control means 32 to the solid particle addition pump 12 and the sludge pump 11 to change the operation conditions.

図2及び図3は本発明のスラリ循環型凝集沈殿処理装置で行う凝集補助剤としての固体粒子の添加量の調整及びスラリ排出量(排泥量)の調整の判断の一例を示す図である。なお、図2の符号Aは図3の符号Aに接続される。固体粒子の添加量の調整及びスラリ排出量の調整は、下記の手順で行う。   2 and 3 are diagrams showing an example of determination of adjustment of the addition amount of solid particles as a coagulant auxiliary agent and adjustment of slurry discharge amount (drainage amount) performed in the slurry circulation type coagulation sedimentation processing apparatus of the present invention. . 2 is connected to the reference A in FIG. Adjustment of the addition amount of solid particles and adjustment of the slurry discharge amount are performed according to the following procedure.

第1に、SV計15で測定された現時点のSV値(SVの測定値(%))と基準値(SVの基準値(%))とを比較し、現時点のSV値が高いか低いかを評価する。SV値の基準値は一般に10分間静置時のSV値が10〜30%の範囲で装置に応じて設定する。第2に、SV測定値が増加しているか減少しているか維持しているかを評価する。第3に、スラリ界面計16で測定されたスラリ界面位置を基準値と比較し、現時点のスラリ界面23の位置が高いか低いかを評価する。スラリ界面23の基準値は装置に応じて沈殿部5の水深に対応して設定する。第4に、スラリ界面23の位置が上昇しているか下降しているか維持しているかを評価する。   First, the current SV value (SV measurement value (%)) measured by the SV meter 15 is compared with the reference value (SV reference value (%)), and whether the current SV value is high or low. To evaluate. The SV value reference value is generally set in accordance with the apparatus in the range of 10 to 30% of SV value after standing for 10 minutes. Second, it evaluates whether the SV measurement is increasing or decreasing. Third, the slurry interface position measured by the slurry interface meter 16 is compared with a reference value to evaluate whether the current position of the slurry interface 23 is high or low. The reference value of the slurry interface 23 is set according to the water depth of the sedimentation part 5 according to the apparatus. Fourth, it is evaluated whether the position of the slurry interface 23 is rising or falling.

以上の4回の評価によって下記する6通りの状態が存在し、それぞれの状態に応じて固体粒子の添加量SAの調整と、スラリ排出量SLの調整を行う第1乃至第6調整がある。
・第1調整:固体粒子添加率SAの現状維持(→)、スラリ排出量SLの現状維持(→)
・第2調整:固体粒子添加率SAの現状維持(→)、スラリ排出量SLの低減(↓)
・第3調整:固体粒子添加率SAの増加(↑)、スラリ排出量SLの現状維持(→)
・第4調整:固体粒子添加率SAの低減(↓)、スラリ排出量SLの現状維持(→)
・第5調整:固体粒子添加率SAの低減(↓)、スラリ排出量SLの増加(↑)
・第6調整:固体粒子添加率SAの現状維持(→)、スラリ排出量SLの増加(↑)
There are six states described below by the above four evaluations, and there are first to sixth adjustments for adjusting the addition amount SA of solid particles and adjusting the slurry discharge amount SL according to each state.
First adjustment: Maintaining the current state of the solid particle addition rate SA (→), maintaining the current state of the slurry discharge SL (→)
・ Second adjustment: Maintaining the current rate of solid particle addition SA (→), reducing slurry discharge SL (↓)
・ Third adjustment: increase of solid particle addition rate SA (↑), maintenance of slurry discharge SL (→)
-Fourth adjustment: reduction of solid particle addition rate SA (↓), maintenance of current state of slurry discharge SL (→)
-Fifth adjustment: Reduction of solid particle addition rate SA (↓), increase of slurry discharge SL (↑)
・ Sixth adjustment: Maintain the current state of solid particle addition rate SA (→), increase slurry discharge SL (↑)

第5調整のように、固体粒子添加率とスラリ排出量の両方を変化させる場合には、スラリ排出量の変更を優先して実施することが好ましい。特にスラリ界面23が高くなりスラリ排出量を増やさなければならない状況では、スラリが集水樋8に溢流して、処理水にスラリが溢流することを防止するために迅速にスラリ界面23の低下を行う必要がある。スラリ界面23を低下させる効果は、スラリ排出と固体粒子添加の両方が有しているが、スラリ排出の方が即効性がある。以下、図2及び図3に基づいて固体粒子の添加量の調整及びスラリ排出量の調整を説明する。   When both the solid particle addition rate and the slurry discharge amount are changed as in the fifth adjustment, it is preferable to prioritize the change of the slurry discharge amount. In particular, in situations where the slurry interface 23 becomes high and the amount of slurry discharged must be increased, the slurry interface 23 is rapidly lowered to prevent the slurry from overflowing into the catchment 8 and the slurry from overflowing into the treated water. Need to do. Although both the slurry discharge and the solid particle addition have the effect of lowering the slurry interface 23, the slurry discharge is more effective. Hereinafter, the adjustment of the addition amount of the solid particles and the adjustment of the slurry discharge amount will be described with reference to FIGS.

先ずステップST1において、SV計15で測定したSV値と基準値を比較し、SV値が基準値より高いか低いかを評価する。基準以下の場合はステップST2に移行し、基準超過の場合はステップST9(図3参照)に移行する。ステップST2において、SV値の変化があるか否かを評価し、SV値が減少或いは維持の場合はステップST3に移行し、増加の場合はステップST4に移行する。   First, in step ST1, the SV value measured by the SV meter 15 is compared with the reference value to evaluate whether the SV value is higher or lower than the reference value. If it is below the standard, the process proceeds to step ST2, and if it exceeds the standard, the process proceeds to step ST9 (see FIG. 3). In step ST2, it is evaluated whether or not there is a change in the SV value. If the SV value is decreased or maintained, the process proceeds to step ST3. If the SV value is increased, the process proceeds to step ST4.

ステップST3において、スラリ界面計16で測定された界面位置(スラリ界面23の位置)を基準値と比較し、基準以下であった場合はステップST5に移行し、基準超過の場合はステップST6に移行する。ステップST5において、界面位置(スラリ界面計16で測定されたスラリ界面23の位置)に変化があるか否かを評価し、界面位置が下降或いは維持である場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを低減(↓)する(第2調整)。界面位置が上昇の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)とする(第1調整)。ステップST6において、界面位置の変化があるか否かを評価し、界面位置が下降或いは維持の場合は固体粒子添加率SAを低減(↓)とし、スラリ排出量SLを現状維持(→)とする(第4調整)。界面位置が上昇の場合は固体粒子添加率SAを低減(↓)とし、スラリ排出量を増加(↑)とする(第5調整)を行う。   In step ST3, the interface position (slurry interface 23 position) measured by the slurry interface meter 16 is compared with a reference value. If the interface position is below the reference, the process proceeds to step ST5, and if it exceeds the standard, the process proceeds to step ST6. To do. In step ST5, it is evaluated whether or not there is a change in the interface position (the position of the slurry interface 23 measured by the slurry interface meter 16). If the interface position is lowered or maintained, the solid particle addition rate SA is maintained as it is. (→) to reduce (↓) the slurry discharge amount SL (second adjustment). When the interface position is increased, the solid particle addition rate SA is maintained as it is (→), and the slurry discharge amount SL is maintained as it is (→) (first adjustment). In step ST6, it is evaluated whether or not there is a change in the interface position. If the interface position is lowered or maintained, the solid particle addition rate SA is reduced (↓), and the slurry discharge amount SL is maintained (→). (4th adjustment). When the interface position is increased, the solid particle addition rate SA is reduced (↓), and the slurry discharge amount is increased (↑) (fifth adjustment).

ステップST4において、界面位置を基準値と比較し、基準以下であった場合はステップST7に移行し、基準超過の場合はステップST8に移行する。ステップST7において、界面位置の変化があるか否かを評価し、界面位置が下降或いは維持の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量を低減(↓)する(第2調整)。界面位置が上昇の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)する(第1調整)。ステップST8において、界面位置の変化があるか否かを評価し、スラリ界面23の位置が下降或いは維持である場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)する(第1調整)。界面位置が上昇の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを増加(↑)する(第6調整)。   In step ST4, the interface position is compared with the reference value, and if it is below the reference, the process proceeds to step ST7, and if it exceeds the reference, the process proceeds to step ST8. In step ST7, it is evaluated whether or not there is a change in the interface position. If the interface position is lowered or maintained, the solid particle addition rate SA is maintained (→) and the slurry discharge amount is reduced (↓) (No. 1). 2 adjustment). When the interface position is increased, the solid particle addition rate SA is maintained as it is (→), and the slurry discharge amount SL is maintained (→) (first adjustment). In step ST8, it is evaluated whether there is a change in the interface position. If the position of the slurry interface 23 is lowered or maintained, the solid particle addition rate SA is maintained (→), and the slurry discharge amount SL is maintained. (→) (first adjustment). When the interface position rises, the solid particle addition rate SA is maintained as it is (→), and the slurry discharge amount SL is increased (↑) (sixth adjustment).

ステップST9において、SV値の変化があるか否かを評価し、SV値が減少或いは維持の場合はステップST10に移行し、増加の場合はステップST11に移行する。ステップST12において、界面位置を基準値と比較し、基準以下であった場合はステップST12に移行し、基準超過の場合はステップST13に移行する。ステップST12において、界面位置の変化があるか否かを評価し、界面位置が下降或いは維持の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを低減(↓)する(第2調整)。界面位置が上昇の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)する(第1調整)。ステップST13において、スラリ界面計16で測定されたスラリ界面23の位置に変化があるか否かを評価し、測定位置が下降或いは維持である場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)する(第1調整)。スラリ界面23の位置が上昇である場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)する(第1調整)。   In step ST9, it is evaluated whether or not there is a change in the SV value. If the SV value is decreased or maintained, the process proceeds to step ST10, and if it is increased, the process proceeds to step ST11. In step ST12, the interface position is compared with a reference value. If the interface position is equal to or less than the reference, the process proceeds to step ST12. If the reference position is exceeded, the process proceeds to step ST13. In step ST12, it is evaluated whether there is a change in the interface position. If the interface position is lowered or maintained, the solid particle addition rate SA is maintained (→), and the slurry discharge SL is reduced (↓) ( Second adjustment). When the interface position is increased, the solid particle addition rate SA is maintained as it is (→), and the slurry discharge amount SL is maintained (→) (first adjustment). In step ST13, it is evaluated whether or not there is a change in the position of the slurry interface 23 measured by the slurry interface meter 16. If the measurement position is lowered or maintained, the solid particle addition rate SA is maintained as the current state (→). Then, the current slurry discharge amount SL is maintained (→) (first adjustment). When the position of the slurry interface 23 is rising, the solid particle addition rate SA is maintained (→), and the slurry discharge amount SL is maintained (→) (first adjustment).

ステップST11において、界面位置を基準値と比較し、基準以下の場合はステップST14に移行し、基準超過の場合はステップST15に移行する。ステップST14において、界面位置の変化があるか否かを評価し、測定位置が下降或いは維持の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを低減(↓)する(第2調整)。界面位置が上昇の場合は固体粒子添加率SAを現状維持(→)とし、スラリ排出量SLを現状維持(→)する(第1調整)。ステップST15において、界面位置の変化があるか否かを評価し、測定位置が下降或いは維持である場合は固体粒子添加率SAを増加(↑)とし、スラリ排出量SLを現状維持(→)する(第3調整)を行う。界面位置が上昇の場合は固体粒子添加率SAを増加(↑)とし、スラリ排出量SLを現状維持(→)する(第3調整)。   In step ST11, the interface position is compared with a reference value. If the interface position is equal to or less than the reference, the process proceeds to step ST14. If the reference position is exceeded, the process proceeds to step ST15. In step ST14, it is evaluated whether or not there is a change in the interface position. If the measurement position is lowered or maintained, the solid particle addition rate SA is maintained (→), and the slurry discharge SL is reduced (↓) ( Second adjustment). When the interface position is increased, the solid particle addition rate SA is maintained as it is (→), and the slurry discharge amount SL is maintained (→) (first adjustment). In step ST15, it is evaluated whether there is a change in the interface position. If the measurement position is lowered or maintained, the solid particle addition rate SA is increased (↑), and the slurry discharge amount SL is maintained (→). (Third adjustment) is performed. When the interface position is increased, the solid particle addition rate SA is increased (↑), and the slurry discharge amount SL is maintained (→) (third adjustment).

上記固体粒子添加率SAの調整及びスラリ排出量SLの調整は、SV計15で測定されたSV値、スラリ界面計16で測定されたスラリー界面23の位置に基づいて図2及び図3に示す評価・判断により、人手による固体粒子添加ポンプ12及び排泥ポンプ11の運転操作により、固体粒子添加率SA及びスラリ排出量SLを調整してもよいが、図4に示すようにCPU等を備える制御手段32を設けて自動的に行ってもよい。   The adjustment of the solid particle addition rate SA and the adjustment of the slurry discharge amount SL are shown in FIGS. 2 and 3 based on the SV value measured by the SV meter 15 and the position of the slurry interface 23 measured by the slurry interface meter 16. Depending on the evaluation / judgment, the solid particle addition rate SA and the slurry discharge amount SL may be adjusted by operating the solid particle addition pump 12 and the sludge pump 11 manually. However, as shown in FIG. Control means 32 may be provided to perform automatically.

図4において、制御手段32はCPU32−1、RAM32−2、ROM32−3、I/O32−4、及びI/O32−5を備えている。SV計15で測定されたSV値、スラリ界面計16で測定されたスラリ界面23の位置、流量計20で測定された原水の流量、濁度計19で測定された原水の濁度、pH計14で測定された水路部4のスラリのpH値等がI/O32−4を介して制御手段32に入力され、各データはRAM32−2の所定エリアに格納される。CPU32−1はROM32−3に格納されているプログラムを実行することにより、SV計15で測定されたSV値及びその変化、スラリ界面計16で測定されたスラリ界面位置及びその変化により、図2及び図3に示すような評価・判断を行い、I/O32−5を介して固体粒子添加ポンプ12、排泥ポンプ11の運転操作を行い上記第1〜第6調整を自動的に行う。   In FIG. 4, the control means 32 includes a CPU 32-1, RAM 32-2, ROM 32-3, I / O 32-4, and I / O 32-5. SV value measured by SV meter 15, position of slurry interface 23 measured by slurry interface meter 16, raw water flow rate measured by flow meter 20, turbidity of raw water measured by turbidimeter 19, pH meter 14 is input to the control means 32 via the I / O 32-4, and each data is stored in a predetermined area of the RAM 32-2. The CPU 32-1 executes the program stored in the ROM 32-3, and the SV value measured by the SV meter 15 and its change, and the slurry interface position measured by the slurry interface meter 16 and its change are shown in FIG. And the evaluation / judgment as shown in FIG. 3 is performed, and the solid particle addition pump 12 and the sludge pump 11 are operated through the I / O 32-5 to automatically perform the first to sixth adjustments.

また、CPU32−1はROM32−3に格納されているプログラムにより、濁度計19で測定された原水濁度、流量計20で測定された原水流量に基づいて無機凝集剤18の添加率、添加量を算出し、無機凝集剤添加機構33(図1には図示していない)を運転操作し、原水17に無機凝集剤18を添加する。また、pH計14で測定された水路部4のスラリのpH値から凝集反応後のpHが凝集反応に適切なpH範囲(一般的にはpH6.5〜7.5範囲)になるように、NaOHやH2SO4等のpH調整剤の添加量を算出し、pH調整機構34(図1には図示していない)を運転操作して該pH調整剤を原水に添加する。 Further, the CPU 32-1 uses the program stored in the ROM 32-3 to add the inorganic flocculant 18 based on the raw water turbidity measured by the turbidimeter 19 and the raw water flow measured by the flow meter 20. The amount is calculated, the inorganic flocculant addition mechanism 33 (not shown in FIG. 1) is operated, and the inorganic flocculant 18 is added to the raw water 17. Further, from the pH value of the slurry of the water channel part 4 measured by the pH meter 14, the pH after the aggregation reaction is in a pH range suitable for the aggregation reaction (generally pH 6.5 to 7.5 range) An addition amount of a pH adjusting agent such as NaOH or H 2 SO 4 is calculated, and the pH adjusting mechanism 34 (not shown in FIG. 1) is operated to add the pH adjusting agent to the raw water.

図1のスラリ界面23を測定するスラリ界面計16の一例としては、荏原環境エンジニアリング製の「エバラ界面計」が挙げられる。このスラリ界面計には超音波エコー方式と透過光方式がある。超音波エコー方式は、上澄水中に固定された超音波発信部から下方向に超音波を発してその反響を検出してスラリ界面23の位置を検出する方式である。透過光方式は、センサ部を自動的に上下に動かしてセンサ部で透過光を検出するものであり、センサ部がスラリ界面23よりも上に位置する場合は光の透過率が高く、スラリ界面23よりも下に位置する場合は光の透過率が低くなることを利用してスラリ界面23の位置を検出する方式である。   An example of the slurry interface meter 16 for measuring the slurry interface 23 in FIG. 1 is an “Ebara Interface Meter” manufactured by EBARA Environmental Engineering. This slurry interface meter includes an ultrasonic echo method and a transmitted light method. The ultrasonic echo method is a method of detecting the position of the slurry interface 23 by emitting an ultrasonic wave downward from an ultrasonic wave transmission unit fixed in the supernatant water and detecting the echo. In the transmitted light method, the sensor unit is automatically moved up and down to detect the transmitted light, and when the sensor unit is located above the slurry interface 23, the light transmittance is high, and the slurry interface When the position is below 23, the position of the slurry interface 23 is detected by utilizing the fact that the light transmittance is low.

図1のSV値を計測するSV計15の一例としては、荏原環境エンジニアリング製の「SVアナライザ」が挙げられる。このSV計は真空ポンプによる吸引力によって試料スラリを透明な沈降管に導入し、沈降管内で所定時間静置した後のスラリ界面位置を透過率によって検出するものである。沈降管上部はスラリが沈降して清澄な水となるため光の透過率が高く、沈降管下部は沈降したスラッジにより光の透過率が低くなる。   As an example of the SV meter 15 for measuring the SV value in FIG. 1, “SV analyzer” manufactured by EBARA Environmental Engineering is cited. In this SV meter, the sample slurry is introduced into a transparent sedimentation tube by the suction force of a vacuum pump, and the position of the slurry interface after standing in the sedimentation tube for a predetermined time is detected by the transmittance. The upper part of the settling tube has a high light transmittance because the slurry settles into clear water, and the lower part of the settling tube has a low light transmittance due to the settled sludge.

次に、実験例を挙げて本発明を具体的に説明する。図5は実験装置の構成例を示す図で、図1と同一符号を付した部分は同一又は相当部分を示す。本実験装置は攪拌部3と水路部4を具備する凝集槽35と沈殿部5を備えている。攪拌部3に無機凝集剤18を添加した原水17を導入し、攪拌部3で攪拌モータ7により攪拌翼6を回転することにより、原水17と無機凝集剤18は攪拌される。攪拌された原水17と無機凝集剤18の混合液はスラリとなり水路部4を経由して、沈殿部5のフロック形成部5aに流入し沈降するが、一部のスラリは沈殿部5内の上昇流により沈積することなく上昇流速と釣り合いが取れた状態で膨張したスラリブランケット22を形成する。   Next, the present invention will be specifically described with reference to experimental examples. FIG. 5 is a diagram showing a configuration example of the experimental apparatus, and the portions denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding portions. This experimental apparatus includes a coagulation tank 35 including a stirring unit 3 and a water channel unit 4 and a precipitation unit 5. The raw water 17 to which the inorganic flocculant 18 is added is introduced into the stirring unit 3, and the stirring blade 6 is rotated by the stirring motor 7 in the stirring unit 3, whereby the raw water 17 and the inorganic flocculant 18 are stirred. The mixed liquid of the stirred raw water 17 and the inorganic flocculant 18 becomes a slurry and flows into the flock formation part 5a of the precipitation part 5 through the water channel part 4 and settles, but some of the slurry rises in the precipitation part 5. The slurry blanket 22 is formed in a state where it is balanced with the rising flow velocity without being deposited by the flow.

攪拌部3には固体粒子供給管13を通して固体粒子添加ポンプ12により固体粒子が注入されるようになっている。処理水はスラリブランケット22内を通過することで、微細なフロックがスラリブランケット22に捕捉されて清澄化が促進する。スラリブランケット22上には固液分離が終了した清澄な上澄水である処理水の層が形成され処理水(沈殿水)として流出する。スラリブランケット22と処理水層の境界面がスラリ界面23である。   Solid particles are injected into the stirring unit 3 by a solid particle addition pump 12 through a solid particle supply pipe 13. By passing the treated water through the slurry blanket 22, fine flocs are captured by the slurry blanket 22 and clarification is promoted. On the slurry blanket 22, a layer of treated water, which is a clear supernatant water after solid-liquid separation, is formed and flows out as treated water (precipitation water). The interface between the slurry blanket 22 and the treated water layer is a slurry interface 23.

沈殿部5内のスラリはスラリ循環ポンプ24で攪拌部3に返送されると共に、該攪拌部3内には水路部4のSV値と沈殿部5のスラリ界面23の位置により、凝集補助剤である固体粒子(ここではSiO2を主成分とする珪砂)を注入する。この実験装置は小型であるために、実際のスラリ循環型凝集沈殿処理装置に使用するようなSV計やスラリ界面計を設置することが困難である。そこでここでは、SV値は水路部4のスラリの100mLを透明メスシリンダに採取して10分静置後のスラッジ量を目視で測定し、スラリ界面は透明塩化ビニル製の沈殿部5の底部からの界面までの高さを目視で測定した。実験装置の仕様と運転条件を図6に示す。 The slurry in the settling unit 5 is returned to the stirring unit 3 by the slurry circulation pump 24, and the stirring unit 3 contains a coagulant aid depending on the SV value of the water channel unit 4 and the position of the slurry interface 23 of the settling unit 5. Some solid particles (here, silica sand whose main component is SiO 2 ) are injected. Since this experimental apparatus is small, it is difficult to install an SV meter or a slurry interface meter used in an actual slurry circulation type coagulation sedimentation processing apparatus. Therefore, here, the SV value is obtained by collecting 100 mL of the slurry of the water channel section 4 in a transparent graduated cylinder and measuring the amount of sludge after standing for 10 minutes, and the slurry interface is from the bottom of the precipitation section 5 made of transparent vinyl chloride. The height to the interface was visually measured. The specifications and operating conditions of the experimental apparatus are shown in FIG.

原水17は水道水にカオリンを添加した人工原水であり、濁度を3度に調整した。無機凝集剤18はPAC(ポリ塩化アルミニウム)を用いた。固体粒子は、粒径が105μm以下の重量割合が97%の砂を使用している。固体粒子の添加率調整とスラリの排出量調整は図2及び図3に基づいて実施し、SVの基準値を10分間静置後20%、スラリ界面23の位置の基準値を沈殿部5底部からの高さ1.0mとした。ここで、添加率とは原水流量に対する添加量の比率を意味しており、固体粒子の添加率もPCAの添加率も同様である。   Raw water 17 is artificial raw water obtained by adding kaolin to tap water, and the turbidity was adjusted to 3 degrees. As the inorganic flocculant 18, PAC (polyaluminum chloride) was used. As the solid particles, sand having a particle size of 105 μm or less and 97% by weight is used. The solid particle addition rate adjustment and the slurry discharge amount adjustment are carried out based on FIG. 2 and FIG. 3, the SV reference value is set at 20% after standing for 10 minutes, and the reference value of the position of the slurry interface 23 is set at the bottom of the precipitation part 5 The height was 1.0 m. Here, the addition rate means the ratio of the addition amount to the raw water flow rate, and the addition rate of solid particles and the addition rate of PCA are the same.

図6に示すように、実験装置の仕様は、攪拌部3と水路部4からなる凝集槽35の容積:5.1L、フロック形成部5aの容積:1.5L、沈殿部(沈殿池)5の容積:120mm(直径φ)×1500mm(高さH)である。また、原水17には水道水にカオリン(主成分がSiO2,Al23の白陶)を添加した人工原水を用い、無機凝集剤にはPAC(ポリ塩化アルミニウム)を用いている。運転条件は、原水流量:509mL/分、沈殿部5の上昇流速:50mm/分、スラリ返送流量:509mL/分、原水濁度:3度、PAC添加率:20mg/L、基準値は、SV値:10分間静置後での20%、スラリ界面位置:沈殿部5の底部からの高さ1.0mとした。 As shown in FIG. 6, the specifications of the experimental apparatus are as follows: the volume of the coagulation tank 35 composed of the agitating unit 3 and the water channel unit 4: 5.1 L, the volume of the flock forming unit 5 a: 1.5 L, and the settling unit (sedimentation basin) 5. The volume is 120 mm (diameter φ) × 1500 mm (height H). The raw water 17 is made of artificial raw water obtained by adding kaolin (white ceramic with SiO 2 and Al 2 O 3 as main components) to tap water, and PAC (polyaluminum chloride) is used as the inorganic flocculant. Operating conditions are: raw water flow rate: 509 mL / min, ascending flow rate of sedimentation section 5: 50 mm / min, slurry return flow rate: 509 mL / min, raw water turbidity: 3 degrees, PAC addition rate: 20 mg / L, reference value is SV Value: 20% after standing for 10 minutes, slurry interface position: height from the bottom of the precipitation part 5 was 1.0 m.

実験結果を図7に示す。ここで、SV値の変化及び界面位置の変化は、時間経過欄の時間である試験開始時、1時間後、2時間後、3時間後、4時間後から15分後の値とを比較した時の変化である。図7に示すように、試験開始時の判断基準である「SV値を基準値と比較」は「超過(22%)」、「SV値の変化」は「増加」、「界面位置を基準値と比較」は「以下(0.9m)」、「界面位置の変化」は「上昇」であり、この判断基準に基づく対応である「砂添加率(mg/L)」は前後とも「無し」、「排泥量(mL)/分」は前後とも「4mL/分」、「沈殿処理水濁度(度)」は「0.8度」である。   The experimental results are shown in FIG. Here, the change in the SV value and the change in the interface position were compared with the values in the time passage column at the start of the test, 1 hour, 2 hours, 3 hours, 4 hours, and 15 minutes later. It is a change of time. As shown in FIG. 7, “comparison of SV value with reference value”, which is a judgment criterion at the start of the test, is “excess (22%)”, “change in SV value” is “increase”, and “interface position is a reference value” “Comparison with” is “less than (0.9 m)”, “Change in interface position” is “Rise”, and “Sand addition rate (mg / L)” corresponding to this criterion is “None” before and after. “The amount of waste mud (mL) / min” is “4 mL / min” both before and after, and “Precipitation water turbidity (degree)” is “0.8 degrees”.

1時間後の判断基準である「SV値を基準値と比較」は「超過(24%)」、「SV値の変化」は「増加」、「界面位置を基準値と比較」は「超過(1.3m)」、「界面位置の変化」は「上昇」であり、この判断基準に基づく対応である「砂添加率(mg/L)」は経過前は「無し」で経過後は「7」、「排泥量(mL)/分」は経過前後とも「4」、「沈殿処理水濁度(度)」は「0.7」である。   “Compare SV value with reference value”, which is a criterion after 1 hour, is “excess (24%)”, “change in SV value” is “increase”, and “comparison of interface position with reference value” is “excess ( 1.3 m) ”and“ change in interface position ”are“ rise ”, and“ sand addition rate (mg / L) ”corresponding to this criterion is“ none ”before progress and“ 7 ”after progress. "And" mud amount (mL) / min "are" 4 "before and after the passage, and" precipitation water turbidity (degree) "is" 0.7 ".

2時間後の判断基準である「SV値を基準値と比較」は「超過(22%)」、「SV値の変化」は「減少」、「界面位置を基準値と比較」は「超過(1.1m)」、「界面位置の変化」は「低下」であり、この判断基準に基づく対応である「砂添加率(mg/L)」は経過前後とも「7」、「排泥量(mL)/分」は経過前後とも「4」、「沈殿処理水濁度(度)」は「0.7」である。   2 hours later, “Compare SV value with reference value” is “excess (22%)”, “Change in SV value” is “decrease”, “Compare interface position with reference value” is “exceed ( 1.1 m) ”and“ change in interface position ”are“ decrease ”, and“ sand addition rate (mg / L) ”corresponding to this criterion is“ 7 ” "mL) / min" is "4" before and after the passage, and "precipitation water turbidity (degree)" is "0.7".

3時間後の判断基準である「SV値を基準値と比較」は「超過(21%)」、「SV値の変化」は「減少」、「界面位置を基準値と比較」は「超過(0.8m)」、「界面位置の変化」は「低下」であり、この判断基準に基づく対応である「砂添加率(mg/L)」は経過前後とも「7」、「排泥量(mL)/分」は経過前ば「4」経過後は「3」、「沈殿処理水濁度(度)」は「0.8」である。   3 hours later, “Compare SV value with reference value” is “Exceed (21%)”, “Change in SV value” is “Decrease”, “Compare interface position with reference value” is “Exceed ( 0.8 m) ”and“ change in interface position ”are“ decrease ”, and“ sand addition rate (mg / L) ”corresponding to this criterion is“ 7 ”and“ sludge amount ( “mL) / min” is “3” after the lapse of “4” and “0.8” for the “precipitation water turbidity (degree)”.

4時間後の判断基準である「SV値を基準値と比較」は「以下(19%)」、「SV値の変化」は「減少」、「界面位置を基準値と比較」は「以下(0.7m)」、「界面位置の変化」は「上昇」であり、この判断基準に基づく対応である「砂添加率(mg/L)」は経過前後とも「7」、「排泥量(mL)/分」は経過前後とも「3」、「沈殿処理水濁度(度)」は「0.7」である。   “Comparison of SV value with reference value” as a criterion after 4 hours is “below (19%)”, “Change in SV value” is “decrease”, and “Compare interface position with reference value” is “below ( 0.7 m) ”and“ change in interface position ”are“ rise ”, and“ sand addition rate (mg / L) ”corresponding to this judgment criterion is“ 7 ” “mL) / min” is “3” before and after the passage, and “precipitation water turbidity (degree)” is “0.7”.

〔比較例1〕
比較例として、図8に示す処理フローによる砂添加率とスラリ排泥量の調整、即ち砂添加率とスラリ排泥量をSV値のみに基づき、スラリ界面に基づかないで制御をおこなった結果を図9に示す。実験装置と運転条件は、図5と図6に示すものと同一である。図8の処理フローでは、先ずステップST21においてSV値を基準値と比較し、基準以下であったらステップST22に移行し、基準超過であったらテップST23に移行する。ステップST22において、SV値の変化があるか否かを評価し、SV値が減少或いは維持の場合は、固体粒子添加率SAとスラリ排出量SLをともに低減(↓)とし、増加の場合は、固体粒子添加率SAとスラリ排出量SLをともに現状維持(→)とする。ステップST23において、SV値の変化があるか否かを評価し、SV値が減少或いは維持の場合は、固体粒子添加率SAとスラリ排出量SLをともに現状維持(→)とし、増加の場合は、固体粒子添加率SAとスラリ排出量SLをともに増加(↑)とする。
[Comparative Example 1]
As a comparative example, the result of controlling the sand addition rate and the slurry drainage amount by the processing flow shown in FIG. 8, that is, controlling the sand addition rate and the slurry drainage amount based only on the SV value and not based on the slurry interface. As shown in FIG. The experimental apparatus and operating conditions are the same as those shown in FIGS. In the processing flow of FIG. 8, first, in step ST21, the SV value is compared with the reference value. If it is below the reference, the process proceeds to step ST22, and if it exceeds the standard, the process proceeds to step ST23. In step ST22, it is evaluated whether or not there is a change in the SV value. If the SV value is decreased or maintained, the solid particle addition rate SA and the slurry discharge amount SL are both reduced (↓). Both the solid particle addition rate SA and the slurry discharge amount SL are maintained as they are (→). In step ST23, it is evaluated whether or not there is a change in the SV value. If the SV value is decreased or maintained, both the solid particle addition rate SA and the slurry discharge amount SL are maintained at the current state (→). The solid particle addition rate SA and the slurry discharge amount SL are both increased (↑).

図9においてSV値(SV測定値)の変化は、時間経過欄の時間(試験開始時、1時間後、2時間後、3時間後、4時間後)とそれから15分後のSV値とを比較したときの変化である。上記実験例と同じく砂未添加、排泥量4(mL/分)の条件から試験を開始し、SV値とその変化に基づいて砂添加、排泥量の対応を行った。開始時にSV値が既に基準値である20%を超過し、SV値の変化が「増加」であったため砂添加率と排泥量の両方を増加している(砂添加率:「無し」→「7(7mg/L)、排泥量「4(mL/分)→「5(mL/分)」)。1時間後のSV値に基づいて砂添加率を「7→4(mg/L)」、排泥量を「5→4mL/分」に変更した後、SV値は基準値以下で緩やかに増加した(2時間後「以下(18%)で「増加」、3時間後「以下(20)%で「増加」、4時間後「超過(22%)で「増加」)。   In FIG. 9, the change of the SV value (SV measurement value) indicates the time in the time passage column (at the start of the test, 1 hour, 2 hours, 3 hours, 4 hours) and the SV value 15 minutes later. This is a change when compared. As in the above experimental example, the test was started from the condition of no sand added and the amount of sludge 4 (mL / min), and the addition of sand and the amount of mud were handled based on the SV value and the change thereof. At the start, the SV value already exceeded the reference value of 20%, and the change in the SV value was “increase”, so both the sand addition rate and the amount of mud were increased (sand addition rate: “None” → “7 (7 mg / L), amount of discharged mud“ 4 (mL / min) → “5 (mL / min)”). After changing the sand addition rate to “7 → 4 (mg / L)” and the amount of mud from “5 → 4 mL / min” based on the SV value after 1 hour, the SV value gradually increases below the reference value. (After 2 hours, “Increased at (18%)”, After 3 hours, “Below (Increased at (20)%”, After 4 hours, “Increased at (Over) (22%))”

4時間後の沈殿処理水度が「4.2(度)」と悪化している。この原因は、スラリ界面23の上昇によってスラリが溢流したためである。1時間後の砂添加率と排泥量の調整以降はスラリ界面位置は増加に転じて上昇し続けているが、SV値からスラリ界面位置の判断ができないため、SV値のみに基づく調整で砂添加率と排泥量の両方を適切に制御することはできない。   The water content for precipitation after 4 hours deteriorated to “4.2 (degrees)”. This is because the slurry overflowed due to the rise of the slurry interface 23. After the adjustment of the sand addition rate and the amount of mud after 1 hour, the slurry interface position continues to increase and continues to rise. However, since the slurry interface position cannot be determined from the SV value, Both the rate of addition and the amount of mud cannot be properly controlled.

〔比較例2〕
比較例として、図10に示す処理フローによる砂添加率とスラリ排泥量の調整、即ち砂添加率とスラリ排泥量をスラリ界面位置のみに基づき、SV値に基づかないで制御をおこなった結果を図11に示す。実験装置と運転条件は、図5と図6に示すものと同一である。図10の処理フローでは、先ずステップST31において界面位置を基準値と比較し、基準以下であったらステップST32に移行し、基準超過であったらテップST33に移行する。ステップST32において、界面位置に変化があるか否かを評価し、界面位置が下降或いは維持の場合は、固体粒子添加率SAとスラリ排出量SLをともに低減(↓)とし、上昇の場合は、固体粒子添加率SAとスラリ排出量SLをともに現状維持(→)とする。ステップST33において、界面位置に変化があるか否かを評価し、界面位置が下降或いは維持の場合は、固体粒子添加率SAとスラリ排出量SLをともに現状維持(→)とし、上昇の場合は、固体粒子添加率SAとスラリ排出量SLをともに増加(↑)とする。
[Comparative Example 2]
As a comparative example, the result of controlling the sand addition rate and the slurry discharge amount by the processing flow shown in FIG. 10, that is, controlling the sand addition rate and the slurry discharge amount based only on the slurry interface position and not based on the SV value. Is shown in FIG. The experimental apparatus and operating conditions are the same as those shown in FIGS. In the processing flow of FIG. 10, first, in step ST31, the interface position is compared with a reference value. If the interface position is below the reference, the process proceeds to step ST32. In step ST32, it is evaluated whether or not there is a change in the interface position. If the interface position is lowered or maintained, both the solid particle addition rate SA and the slurry discharge amount SL are reduced (↓). Both the solid particle addition rate SA and the slurry discharge amount SL are maintained as they are (→). In step ST33, it is evaluated whether or not there is a change in the interface position. If the interface position is lowered or maintained, both the solid particle addition rate SA and the slurry discharge amount SL are maintained (→). The solid particle addition rate SA and the slurry discharge amount SL are both increased (↑).

図11において界面位置の変化は、時間経過欄の時間(試験開始時、1時間後、2時間後、3時間後、4時間後)とそれから15分後のスラリ界面位置とを比較したときの変化であり、砂未添加、排泥量4(mL/分)の条件から試験を開始し、スラリ界面位置とその変化に基づいて砂添加、排泥量の対応を行った。試験開始時の界面位置と基準値との比較は「以下(0.9m)」、界面位置の変化は「上昇」、砂添加率は前後「無し」、排泥量は前後「4(mL/分)」である。   In FIG. 11, the change in the interface position is the time when the time in the time passage column (at the start of the test, 1 hour, 2 hours, 3 hours, 4 hours) and the slurry interface position after 15 minutes are compared. The test was started from the condition of no addition of sand and the amount of sludge discharged 4 (mL / min), and the addition of sand and the amount of sludge was handled based on the slurry interface position and the change. The comparison between the interface position at the start of the test and the reference value is “below (0.9 m)”, the change in the interface position is “increased”, the sand addition rate is “no” before and after, and the amount of mud is “4 (mL / Min)).

図11に示すように、1時間後の界面位置を基準値との比較は「超過(1.3m)」、界面位置の変化は「上昇」し、砂添加率を経過前「無し」→経過後「7(mg/L)」に増加し、排泥量を経過前「4(mL/分)」→経過後「5(mL/分)」に増加した。2時間後の界面位置を基準値との比較は「以下(1.0m)」、界面位置の変化は「低下」し、砂添加率は経過前「7(mg/L)」→経過後「4(mg/L)」に減少し、排泥量は経過前「5(mL/分)」→経過後「4(mL/分)」に減少した。3時間後の界面位置を基準値との比較は「超過(1.3m)」、界面位置の変化は「上昇」し、砂添加率は経過前「4(mg/L)」→経過後「7(mg/L)」に増加し、排泥量は経過前「4(mL/分)」→経過後「5(mL/分)」に増加した。4時間後には界面消失、砂添加率は経過前「7(mg/L)」→経過後「無し」に減少し、排泥量は経過前「5(mL/分)」→経過後「4(mL/分)」に減少した。   As shown in FIG. 11, the comparison of the interface position after 1 hour with the reference value is “exceeded (1.3 m)”, the change in the interface position is “increased”, and the sand addition rate is “None” → elapsed After that, it increased to “7 (mg / L)”, and the amount of mud was increased from “4 (mL / min)” before lapse to “5 (mL / min)” after lapse. The comparison of the interface position after 2 hours with the reference value is “below (1.0 m)”, the change of the interface position is “decreased”, and the sand addition rate is “7 (mg / L)” before the progress → 4 (mg / L) ”, and the amount of mud was reduced from“ 5 (mL / min) ”before the lapse to“ 4 (mL / min) ”after the lapse. The comparison of the interface position after 3 hours with the reference value is “excess (1.3 m)”, the change of the interface position is “increased”, and the sand addition rate is “4 (mg / L)” before the progress → 7 (mg / L) ”, and the amount of mud was increased from“ 4 (mL / min) ”before the lapse to“ 5 (mL / min) ”after the lapse. After 4 hours, the disappearance of the interface and the sand addition rate decreased from “7 (mg / L)” to “None” before the lapse, and the amount of mud was “5 (mL / min)” before the lapse to “4” after the lapse. (ML / min) ".

3時間後までは沈殿部5にスラリブランケット22が存在しスラリ界面23を確認することができたが、4時間後にはスラリブランケット22及びスラリ界面23が消失した。この原因は、3時間後に、界面状況に基づいて砂添加量と排泥量の両方を増加したためである。スラリが砂を過剰に包含して沈降性が向上し過ぎたためにスラリブランケット22が収縮し、その上排泥量の増加を行ったため、沈殿部5の底部に収縮したスラリの殆どが排出されてしまった。スラリの沈降性が良ければ砂の添加率を増加させる必要はなく、スラリ界面23の上昇に対しては排泥量の増加で対応すべきである。しかし、スラリ界面位置からはスラリの沈降性は判断できないため、スラリ界面位置のみに基づく調整でき砂添加率と排泥量の両方の適切な制御ができない。   Until 3 hours later, the slurry blanket 22 was present in the settling portion 5 and the slurry interface 23 could be confirmed, but after 4 hours, the slurry blanket 22 and the slurry interface 23 disappeared. This is because, after 3 hours, both the amount of added sand and the amount of mud were increased based on the interface conditions. Since the slurry contained sand excessively and the sedimentation property was improved too much, the slurry blanket 22 contracted and the amount of mud was increased. Therefore, most of the contracted slurry was discharged to the bottom of the sedimentation section 5. Oops. If the settling property of the slurry is good, it is not necessary to increase the rate of sand addition, and the increase in the slurry interface 23 should be dealt with by increasing the amount of mud. However, since the sedimentation property of the slurry cannot be determined from the position of the slurry interface, it can be adjusted based only on the position of the slurry interface, and appropriate control of both the sand addition rate and the amount of mud cannot be performed.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

本発明に係るスラリ循環型凝集沈殿処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the slurry circulation type coagulation sedimentation processing apparatus which concerns on this invention. 本発明に係るスラリ循環型凝集沈殿処理装置の処理フローを示す図である。It is a figure which shows the processing flow of the slurry circulation type coagulation sedimentation processing apparatus which concerns on this invention. 本発明に係るスラリ循環型凝集沈殿処理装置の処理フローを示す図である。It is a figure which shows the processing flow of the slurry circulation type coagulation sedimentation processing apparatus which concerns on this invention. 本発明に係るスラリ循環型凝集沈殿処理装置の制御手段の構成例を示す図である。It is a figure which shows the structural example of the control means of the slurry circulation type coagulation sedimentation processing apparatus which concerns on this invention. 実験装置の概略構成例を示す図である。It is a figure which shows the schematic structural example of an experimental apparatus. 実験装置の仕様、運転条件、基準値を示す図である。It is a figure which shows the specification of an experimental apparatus, an operating condition, and a reference value. 実験結果を示す図である。It is a figure which shows an experimental result. 比較例1の処理フローを示す図である。10 is a diagram showing a processing flow of Comparative Example 1. FIG. 比較例1を示す図であるIt is a figure which shows the comparative example 1. 比較例2の処理フローを示す図である。It is a figure which shows the processing flow of the comparative example 2. FIG. 比較例2を示す図であるIt is a figure which shows the comparative example 2.

符号の説明Explanation of symbols

1 着水井
2 スラリ循環型凝集沈殿処理槽
3 攪拌部
4 水路部
5 沈殿部(沈殿槽)
6 攪拌翼
7 攪拌モータ
8 集水樋
9 処理水排出管
10 スラリ排出管
11 排泥ポンプ
12 固体粒子添加ポンプ
13 固体粒子供給管
14 pH計
15 SV計
16 スラリ界面計
17 原水
18 無機凝集剤
19 濁度計
20 流量計
21 原水導入管
22 スラリブランケット
23 スラリ界面
24 スラリ循環ポンプ
32 制御手段
33 無機凝集剤添加機構
34 pH調整機構
35 凝集槽
DESCRIPTION OF SYMBOLS 1 Landing well 2 Slurry circulation type coagulation sedimentation processing tank 3 Stirring part 4 Water channel part 5 Precipitation part (sedimentation tank)
6 Stirrer blade 7 Stirrer motor 8 Catchment tank 9 Treated water discharge pipe 10 Slurry discharge pipe 11 Sludge pump 12 Solid particle addition pump 13 Solid particle supply pipe 14 pH meter 15 SV meter 16 Slurry interface meter 17 Raw water 18 Inorganic flocculant 19 Turbidimeter 20 Flow meter 21 Raw water introduction pipe 22 Slurry blanket 23 Slurry interface 24 Slurry circulation pump 32 Control means 33 Inorganic flocculant addition mechanism 34 pH adjustment mechanism 35 Coagulation tank

Claims (4)

原水と無機凝集剤を攪拌してスラリを形成する攪拌部と、該攪拌部と水路部を介して設けられ、該水路部から導入される前記スラリを浄化するスラリブランケットを下方に形成すると共に該スラリブランケットの上方に処理水層を形成する沈殿部と、該沈殿部の下方からスラリを前記攪拌部に戻す流路を設けたスラリ循環型凝集沈殿処理装置において、
前記原水にスラリの比重を増加させる固体粒子を供給する固体粒子供給手段と、
前記沈殿部に導かれるスラリのSV値を検出するSV計と、
前記沈殿部に形成されたスラリブランケットのスラリ界面の位置を検出するスラリ界面計と、
前記沈殿部の底部又は前記攪拌部の底部から前記スラリブランケット下方のスラリを排出するスラリ排出手段と、
前記SV計で検出したSV値と前記スラリ界面計で検出したスラリ界面の位置を記憶して、
前記SV計で検出したSV値を現時点のSV値とし該現時点のSV値と前記記憶したSV値からSV値の時間変化を算出するとともに、前記スラリ界面計で検出したスラリ界面の位置を現時点のスラリ界面の位置とし該現時点のスラリ界面の位置と前記記憶したスラリ界面の位置からスラリ界面の位置の時間変化を算出し、
前記SV計によるSV測定値とその時間変化、及び前記スラリ界面計によるスラリ界面の測定位置とその時間変化に基づいて、固体粒子の添加量とスラリの排出量をそれぞれ、増加するか低減するか現状維持にするかを判断し、前記固体粒子供給手段及び前記スラリ排出手段を制御し、前記固体粒子の添加率を過不足無く適正に調整すると共に、前記スラリ界面の位置が所定位置に維持されるように調整する制御手段を設けたことを特徴とするスラリ循環型凝集沈殿処理装置。
A stirring unit that stirs the raw water and the inorganic flocculant to form a slurry, and a slurry blanket that is provided through the stirring unit and the water channel unit and purifies the slurry introduced from the water channel unit is formed below and In a slurry circulation type coagulation sedimentation treatment apparatus provided with a sedimentation part for forming a treated water layer above the slurry blanket and a flow path for returning the slurry to the stirring part from below the sedimentation part,
Solid particle supply means for supplying solid particles for increasing the specific gravity of the slurry to the raw water;
An SV meter for detecting the SV value of the slurry guided to the settling portion;
A slurry interface meter for detecting the position of the slurry interface of the slurry blanket formed in the settling portion;
Slurry discharging means for discharging the slurry below the slurry blanket from the bottom of the settling section or the bottom of the stirring section;
Storing the SV value detected by the SV meter and the position of the slurry interface detected by the slurry interface meter;
Using the SV value detected by the SV meter as the current SV value, the time change of the SV value is calculated from the current SV value and the stored SV value, and the position of the slurry interface detected by the slurry interface meter is The time change of the position of the slurry interface is calculated from the position of the current slurry interface and the stored position of the slurry interface as the position of the slurry interface,
Whether to increase or decrease the amount of solid particles added and the amount of slurry discharged, respectively, based on the SV measured value by the SV meter and its time change, and the measurement position and time change of the slurry interface by the slurry interface meter. It is determined whether the current state is to be maintained, the solid particle supply means and the slurry discharge means are controlled, the addition rate of the solid particles is appropriately adjusted without excess and deficiency, and the position of the slurry interface is maintained at a predetermined position. A slurry circulation type coagulation sedimentation processing apparatus, characterized in that a control means for adjusting so as to be provided is provided.
原水と無機凝集剤を攪拌してスラリを形成する攪拌部と、該攪拌部と水路部を介して設けられ、該水路部から導入される前記スラリを浄化するスラリブランケットを下方に形成すると共に該スラリブランケットの上方に処理水層を形成する沈殿部と、該沈殿部の下方からスラリを前記攪拌部に戻す流路を設けたスラリ循環型凝集沈殿処理装置の運転方法において、
前記攪拌部から前記水路部を通して前記沈殿部に導かれるスラリのSV値をSV計で所定時間間隔で測定するとともに、前記沈殿部に形成されたスラリブランケットのスラリ界面の位置をスラリ界面計で所定時間間隔で測定し、前記測定したSV値と時間間隔及び前記測定したスラリ界面の位置と時間間隔から該SV値の時間変化及び該スラリ界面の位置の時間変化を算出し、
前記SV値と該SV値の時間変化、及びスラリ界面の位置と該スラリ界面の位置の時間変化に基づいて、固体粒子の添加量とスラリの排出量をそれぞれ、増加するか低減するか現状維持にするかを判断し、固体粒子供給手段で供給される固体粒子の供給量及びスラリ排出手段で排出されるスラリ排出量を調整して、前記固体粒子の添加率を過不足無く適正に調整すると共に、前記スラリ界面の位置が所定位置に維持されるように調整することを特徴とするスラリ循環型凝集沈殿処理装置の運転方法。
A stirring unit that stirs the raw water and the inorganic flocculant to form a slurry, and a slurry blanket that is provided through the stirring unit and the water channel unit and purifies the slurry introduced from the water channel unit is formed below and In the operating method of the slurry circulation type coagulation sedimentation treatment apparatus provided with a sedimentation part for forming a treated water layer above the slurry blanket and a flow path for returning the slurry to the stirring part from below the sedimentation part,
The SV value of the slurry guided from the stirring unit to the settling unit through the water channel unit is measured with an SV meter at predetermined time intervals, and the position of the slurry interface of the slurry blanket formed in the settling unit is set with the slurry interface meter. Measured at time intervals, and calculated from the measured SV value and time interval and the position and time interval of the measured slurry interface, the time change of the SV value and the time change of the position of the slurry interface,
Based on the SV value and the time change of the SV value, and the time change of the position of the slurry interface and the position of the slurry interface, whether the amount of solid particles added and the amount of slurry discharged are increased or decreased, respectively, are maintained. determining whether the to, by adjusting the supply amount and the slurry discharge amount that will be discharged by the slurry discharge means of the solid particles that will be supplied in a solid particle supply means, appropriately adjusting the addition rate of the solid particles just enough In addition, an operation method of the slurry circulation type coagulation sedimentation treatment apparatus, wherein the position of the slurry interface is adjusted to be maintained at a predetermined position.
請求項に記載のスラリ循環型凝集沈殿処理装置の運転方法において、
前記スラリの比重を増加させる固体粒子は、SiOを主成分とする粒子であることを特徴とするスラリ循環型凝集沈殿処理装置の運転方法。
In the operation method of the slurry circulation type coagulation sedimentation processing device according to claim 2 ,
The solid particles for increasing the specific gravity of the slurry are particles mainly composed of SiO 2 .
請求項に記載のスラリ循環型凝集沈殿処理装置の運転方法において、
前記スラリの比重を増加させる固体粒子は、粉末活性炭であることを特徴とするスラリ循環型凝集沈殿処理装置の運転方法。
In the operation method of the slurry circulation type coagulation sedimentation processing device according to claim 2 ,
The solid particles that increase the specific gravity of the slurry are powdered activated carbon.
JP2008094318A 2008-03-31 2008-03-31 Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof Active JP4933473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094318A JP4933473B2 (en) 2008-03-31 2008-03-31 Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094318A JP4933473B2 (en) 2008-03-31 2008-03-31 Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2009241045A JP2009241045A (en) 2009-10-22
JP4933473B2 true JP4933473B2 (en) 2012-05-16

Family

ID=41303583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094318A Active JP4933473B2 (en) 2008-03-31 2008-03-31 Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP4933473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585090A (en) * 2016-03-01 2016-05-18 煤科集团杭州环保研究院有限公司 Gravity-assistant flocculation clarification device and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573829B2 (en) 2012-03-07 2017-02-21 Japan Alsi Co., Ltd. Bioreactor and the waste water treatment method
JP6071998B2 (en) * 2012-03-07 2017-02-01 日本アルシー株式会社 Microbial reactor
JP6949770B2 (en) * 2018-03-29 2021-10-13 水ing株式会社 Coagulation sedimentation device and coagulation sedimentation method
JP7333246B2 (en) * 2019-10-29 2023-08-24 コスモ石油株式会社 Pretreatment device for portable wastewater treatment evaluation and wastewater treatment evaluation method
CN117357939A (en) * 2023-11-27 2024-01-09 中交第四航务工程局有限公司 Mud and sand stirring and separating device and separating method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140027B1 (en) * 1970-07-31 1976-11-01
JPS54150780A (en) * 1978-05-18 1979-11-27 Souichi Nagahara Interfacial operating method of thickner and its device
JPS61263611A (en) * 1985-05-16 1986-11-21 Ebara Res Co Ltd Method for operating and controlling slurry circulation flocculating sedimentation apparatus
JPH03174204A (en) * 1989-12-04 1991-07-29 Ebara Infilco Co Ltd Slurry blanket-type flocculating and settling device
JPH03174205A (en) * 1989-12-04 1991-07-29 Ebara Infilco Co Ltd Slurry blanket-type flocculating and settling device
JPH0694040B2 (en) * 1991-09-20 1994-11-24 荏原インフィルコ株式会社 Water purification method and device
JPH05184816A (en) * 1992-01-14 1993-07-27 Nippon Steel Corp Method for controlling sludge separation interface level in flocculating sedimentation tank for purified water production
JP3814853B2 (en) * 1995-11-21 2006-08-30 栗田工業株式会社 Coagulation sedimentation equipment
JP2001104712A (en) * 1999-10-07 2001-04-17 Japan Organo Co Ltd Flocculation/precipitation equipment and method of water treatment using the same
JP3933991B2 (en) * 2002-05-14 2007-06-20 株式会社西原環境テクノロジー Coagulation separation device
JP3973967B2 (en) * 2002-05-14 2007-09-12 株式会社西原環境テクノロジー Coagulation separation device
JP2004141773A (en) * 2002-10-24 2004-05-20 Japan Organo Co Ltd Flocculation and precipitation equipment
JP4223870B2 (en) * 2003-06-26 2009-02-12 荏原エンジニアリングサービス株式会社 Water purification method
JP4272122B2 (en) * 2004-06-25 2009-06-03 株式会社荏原製作所 Coagulated water treatment method and apparatus
JP2007007601A (en) * 2005-07-01 2007-01-18 Chugoku Electric Power Co Inc:The Purified water treatment method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585090A (en) * 2016-03-01 2016-05-18 煤科集团杭州环保研究院有限公司 Gravity-assistant flocculation clarification device and method

Also Published As

Publication number Publication date
JP2009241045A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
CN100450943C (en) Method and system unit for flue gas desulfurization and wastewater treatment
JP4933473B2 (en) Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof
RU2523480C2 (en) Method of water treatment
JP5173538B2 (en) Water treatment method
JP5401087B2 (en) Flocculant injection control method
JP2017087090A (en) Water treatment method and water treatment equipment
JP4202207B2 (en) Coagulation separation device
JP4004854B2 (en) Water purification method and apparatus
JP2006075750A (en) Flocculation separation treatment device and flocculation separation treatment method
CN212214694U (en) A monitoring facilities and mud-water separation equipment for mud-water separation
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP4516152B1 (en) Coagulation precipitation treatment method
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
JP2019171309A5 (en)
JP2021186793A (en) Water purification method and water purification apparatus
JP5210948B2 (en) Chemical injection control method for water purification plant
JP7074406B2 (en) Drug addition amount control device and drug addition amount control method
JP5121802B2 (en) Solid-liquid separation system
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP2019198806A (en) Water treatment method, and water treatment device
JP4422865B2 (en) Coagulation sedimentation equipment
JP4455735B2 (en) Coagulation sedimentation equipment
JP4475194B2 (en) Drainage treatment method and apparatus
JP3973967B2 (en) Coagulation separation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250