JP4929430B2 - Electrolyzed water production apparatus and electrolyzed water production method - Google Patents
Electrolyzed water production apparatus and electrolyzed water production method Download PDFInfo
- Publication number
- JP4929430B2 JP4929430B2 JP2006105906A JP2006105906A JP4929430B2 JP 4929430 B2 JP4929430 B2 JP 4929430B2 JP 2006105906 A JP2006105906 A JP 2006105906A JP 2006105906 A JP2006105906 A JP 2006105906A JP 4929430 B2 JP4929430 B2 JP 4929430B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrolyzed
- chamber
- pipe
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 324
- 238000004519 manufacturing process Methods 0.000 title claims description 55
- 239000003002 pH adjusting agent Substances 0.000 claims description 29
- 238000010992 reflux Methods 0.000 claims description 24
- 238000011144 upstream manufacturing Methods 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 8
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims 1
- 239000000460 chlorine Substances 0.000 description 21
- 229910052801 chlorine Inorganic materials 0.000 description 20
- 238000005868 electrolysis reaction Methods 0.000 description 19
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 238000003809 water extraction Methods 0.000 description 12
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000010494 dissociation reaction Methods 0.000 description 7
- 230000005593 dissociations Effects 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 230000035622 drinking Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000004448 titration Methods 0.000 description 6
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明は、連続流通型隔膜式電解槽を使用する電解水製造装置及び電解水の製造方法に関し、詳細には陽極水又は陰極水を採取するにあたりいずれかを廃棄する必要のない電解水製造装置及び電解水の製造方法に関する。 The present invention relates to an electrolyzed water production apparatus and electrolyzed water production method using a continuous flow type diaphragm electrolytic cell, and in particular, an electrolyzed water production apparatus that does not require disposal of either anode water or cathode water. And a method for producing electrolyzed water.
一般に、電解水製造装置には、一対の電極間に隔膜を有する隔膜式電解槽と、隔膜のない無隔膜式電解槽を備えたものとがあり、それぞれ目的に応じて利用されている。 In general, electrolyzed water production apparatuses include a diaphragm type electrolytic cell having a diaphragm between a pair of electrodes and a non-diaphragm type electrolytic cell without a diaphragm, which are used according to purposes.
隔膜式電解槽の隔膜には、荷電膜であるイオン交換膜、非荷電膜である中性膜等が用いられる。電解槽の陽極側(陽極室)では酸性の電解水が、陰極側(陰極室)ではアルカリ性の電解水が生成する。隔膜式電解槽を用いた装置を使用する場合、通常、陽極側電解生成水(陽極水)と陰極側電解生成水(陰極水)とは別々に採取される。 As the diaphragm of the diaphragm type electrolytic cell, an ion exchange membrane that is a charged membrane, a neutral membrane that is an uncharged membrane, or the like is used. Acidic electrolyzed water is generated on the anode side (anode chamber) of the electrolytic cell, and alkaline electrolyzed water is generated on the cathode side (cathode chamber). When using the apparatus using a diaphragm type electrolytic cell, normally, anode side electrolysis generated water (anode water) and cathode side electrolysis generated water (cathode water) are collected separately.
電解原水に電解質として塩化ナトリウムのような塩化物を添加して電解を行うと、陽極側には電極反応生成物である塩酸、次亜塩素酸、溶存酸素や、ヒドロキシルラジカルのような活性酸素が生成する。次亜塩素酸は、強力な塩素化反応と酸化反応を示すことから、陽極水は菌類の殺菌等に利用されている。 When electrolysis is performed by adding a chloride such as sodium chloride to the raw electrolytic water as an electrolyte, hydrochloric acid, hypochlorous acid, dissolved oxygen, and active oxygen such as hydroxyl radicals are electrode reaction products on the anode side. Generate. Since hypochlorous acid exhibits a strong chlorination reaction and an oxidation reaction, anodized water is used for sterilization of fungi.
一方、陰極側に生成する陰極水は飲用のアルカリイオン水として広く知られている。陰極水製造装置(例えば、特許文献1〜3参照)は医療器具等として市販されており、ミネラル水の普及とともに広く普及している。
On the other hand, cathodic water produced on the cathode side is widely known as drinking alkaline ionized water. Cathode water production apparatuses (see, for example,
無隔膜式電解槽による電解生成水は、陽極水と陰極水が混合した混合電解水として得られる。混合電解水は、陽極水が混合していることから次亜塩素酸水を含むので、主として殺菌や菌の増殖を制御することを目的として利用されている。 Electrolyzed water produced by the diaphragm-type electrolytic cell is obtained as mixed electrolyzed water in which anode water and cathode water are mixed. Since the mixed electrolyzed water contains hypochlorous acid water because the anode water is mixed, it is mainly used for the purpose of controlling sterilization and bacterial growth.
これらの電解生成水は、いくつかのパラメータによりその性質を表すことができる。パラメータとしては、pH、酸化還元電位、溶存酸素濃度、溶存水素濃度、次亜塩素酸濃度等が採用されている。これらパラメータの値は、電解原水に含まれる溶質の種類や濃度、電解水に付与された電解エネルギーの大きさ等により決定される。 These electrolyzed water can be characterized by several parameters. As parameters, pH, redox potential, dissolved oxygen concentration, dissolved hydrogen concentration, hypochlorous acid concentration and the like are adopted. The values of these parameters are determined by the type and concentration of the solute contained in the electrolyzed raw water, the amount of electrolytic energy imparted to the electrolyzed water, and the like.
アルカリイオン水を製造する場合、陰極側では水酸化物と溶存水素が生成するため、陰極水はpHが上昇してアルカリ性となり、溶存水素濃度が高くなる。そのため、アルカリイオン水の酸化還元電位は低くなり、時には比較電極の直読で−200mV以下になることもある。 When producing alkaline ionized water, hydroxide and dissolved hydrogen are produced on the cathode side, so that the pH of the cathode water increases and becomes alkaline, and the dissolved hydrogen concentration increases. For this reason, the redox potential of the alkaline ionized water is lowered, and sometimes it is −200 mV or less by direct reading of the reference electrode.
酸化還元電位が低いことは還元的雰囲気状態であることを意味する。溶存水素の溶解度は極めて低く、体内に取り込んでも気体として散逸してしまうので、アルカリイオン水を飲用するに際しては、これらは重要なパラメータではない。 A low oxidation-reduction potential means a reducing atmosphere. Since the solubility of dissolved hydrogen is very low and even if it is taken into the body, it is dissipated as a gas, so these are not important parameters when drinking alkaline ionized water.
電解生成水を飲用する場合、最も重要なパラメータは次亜塩素酸濃度とpHの値である。陰極水の場合は次亜塩素酸が含まれないので、pHの値のみが問題になる。強アルカリ性や強酸性の電解水は生体にとって危険であるので、弱アルカリ〜弱酸性領域の電解水が飲用される。電解エネルギーが大きいと、陽極水は強酸性側に、陰極水は強アルカリ側に傾くので、通常は、電解時にはあまり大きな電気量は使用できない。 When drinking electrolyzed water, the most important parameters are hypochlorous acid concentration and pH values. In the case of cathodic water, hypochlorous acid is not included, so only the pH value becomes a problem. Since strongly alkaline or strongly acidic electrolyzed water is dangerous for a living body, electrolyzed water in a weak alkali to weakly acidic region is drunk. When the electrolysis energy is large, the anodic water tends to be strongly acidic and the cathodic water tends to be strongly alkaline, so that usually a large amount of electricity cannot be used during electrolysis.
電解時に高い電気量を用いて得られる電解水のpHを所定範囲内に保つため、従来様々な方法が用いられている。例えば、無隔膜式電解槽により電解することにより、あるいは、隔膜式電解槽で電解した陽極水と陰極水とを混合することにより混合電解水を得た後、次亜塩素酸等の有害物質を除去する方法、隔膜式電解槽で電解を行う前又は後にpH調整剤を添加して陰極水のpHをコントロールする方法(特許文献4参照)等が知られている。
無隔膜式電解槽による電解や、隔膜式電解槽により電解後に混合電解水を得る方法は、陽陰両極の電解水を利用するので、水の有効利用という面からは有利である。ところが、隔膜式電解槽による電解を行い、陽極水又は陰極水のみを得る場合は、通常、他方の電極側に生成した電解水は廃棄される。実際、市販されているアルカリイオン水製造装置は、ほとんどのものが隔膜式電解槽から陽極水と陰極水を別々に排出する構造になっており、陰極側より排出される陰極水を飲用に供する一方で、陽極水については廃棄されている。このことは、水資源の有効利用という考え方に立脚すると、きわめて大きな損失となっている。 Electrolysis using a diaphragm-type electrolytic cell and a method of obtaining mixed electrolyzed water after electrolysis using a membrane-type electrolytic cell are advantageous from the viewpoint of effective use of water because both positive and negative electrolyzed water are used. However, when electrolysis is performed using a diaphragm type electrolytic cell to obtain only anode water or cathode water, the electrolyzed water generated on the other electrode side is usually discarded. In fact, most commercially available alkaline ionized water production apparatuses have a structure in which anode water and cathode water are separately discharged from the diaphragm type electrolytic cell, and the cathode water discharged from the cathode side is used for drinking. On the other hand, the anode water is discarded. This is a huge loss based on the idea of effective use of water resources.
本発明の目的は、隔膜式電解槽を用いて電解水を製造する電解水製造装置であって、陽極水及び陰極水のいずれか一方を取り出して利用する場合であっても、他方を廃棄する必要のない電解水製造装置及び電解水の製造方法を提供することにある。 An object of the present invention is an electrolyzed water production apparatus for producing electrolyzed water using a diaphragm-type electrolytic cell, and discards the other of the anode water and the cathode water even when it is taken out and used. An object of the present invention is to provide an electrolyzed water production apparatus and electrolyzed water production method that are not necessary.
本発明者は、上記課題を解決すべく鋭意検討を行った結果、隔膜式電解槽の陽極室又は陰極室のうち、いずれか一方に流通させた後、他方へ流通させることにより得られる電解水は、最後に通過した電極室の影響を強く受けたものとなり、結果として陽極水又は陰極水のみが得られることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has obtained electrolyzed water obtained by flowing to either one of the anode chamber or the cathode chamber of the diaphragm type electrolytic cell and then flowing to the other. Was strongly influenced by the electrode chamber that passed last, and as a result, it was found that only anodic water or cathodic water was obtained.
更に、隔膜式電解槽の陽極室と陰極室の両方に電解原水を連続的に供給して電解を行うに際し、いずれか一方に流通させた電解水を取り出すと共に、他方を流通させた電解水を電解槽の上流側に戻して電解原水に混合し、再び電解槽内で電解することにより、陽極水又は陰極水のみを取り出すことができることを見出した。 Furthermore, when electrolysis is performed by continuously supplying raw electrolytic water to both the anode chamber and the cathode chamber of the diaphragm type electrolytic cell, the electrolytic water circulated in either one is taken out and the electrolytic water circulated in the other is removed. It was found that only the anode water or the cathode water can be taken out by returning to the upstream side of the electrolytic cell, mixing with the raw electrolytic water, and electrolyzing again in the electrolytic cell.
上記目的を達成する本発明は、以下に記載するものである。 The present invention for achieving the above object is described below.
〔1〕 一対の電極を備え、前記電極間に張設された隔膜により陽極室及び陰極室が形成された流通型電解槽と、陽極室の入口側に連結された電解原水を陽極室に供給する電解原水供給管と、陰極室の出口側に連結され陰極室内の電解水を陰極室外に取出す電解水取出管と、陽極室の電解水出口側と陰極室の電解水入口側とを連結する流通管と、を有する電解水製造装置。 [1] A flow-type electrolytic cell having a pair of electrodes, in which an anode chamber and a cathode chamber are formed by a diaphragm stretched between the electrodes, and electrolyzed raw water connected to the inlet side of the anode chamber are supplied to the anode chamber The electrolyzed raw water supply pipe, the electrolyzed water outlet pipe connected to the outlet side of the cathode chamber and taking out electrolyzed water in the cathode chamber out of the cathode chamber, and the electrolyzed water outlet side of the anode chamber and the electrolyzed water inlet side of the cathode chamber An electrolyzed water production apparatus having a distribution pipe.
〔2〕 一対の電極を備え、前記電極間に張設された隔膜により陽極室及び陰極室が形成された流通型電解槽と、陰極室の入口側に連結された電解原水を陰極室に供給する電解原水供給管と、陽極室の出口側に連結され陽極室内の電解水を陽極室外に取出す電解水取出管と、陰極室の電解水出口側と陽極室の電解水入口側とを連結する流通管と、を有する電解水製造装置。 [2] A flow-type electrolytic cell having a pair of electrodes, in which an anode chamber and a cathode chamber are formed by a diaphragm stretched between the electrodes, and electrolyzed raw water connected to the inlet side of the cathode chamber is supplied to the cathode chamber The electrolytic raw water supply pipe is connected to the outlet side of the anode chamber, the electrolytic water outlet pipe for extracting the electrolytic water in the anode chamber to the outside of the anode chamber, and the electrolytic water outlet side of the cathode chamber and the electrolytic water inlet side of the anode chamber are connected. An electrolyzed water production apparatus having a distribution pipe.
〔3〕 一対の電極を備え、前記電極間に張設された隔膜により陽極室及び陰極室が形成された流通型電解槽と、下流側が分岐し、陽極室の入口側及び陰極室の入口側にその下流端がそれぞれ連結された電解原水供給分岐管と、陰極室の出口側に連結された電解水取出管と、一端が陽極室の出口側に、他端が前記電解原水供給分岐管の分岐部よりも上流側に連結された還流管と、を有する電解水製造装置。 [3] A flow-type electrolytic cell comprising a pair of electrodes, in which an anode chamber and a cathode chamber are formed by a diaphragm stretched between the electrodes, and a downstream side branches, an inlet side of the anode chamber and an inlet side of the cathode chamber The electrolytic raw water supply branch pipe connected to the downstream end of each of the two, the electrolytic water take-off pipe connected to the outlet side of the cathode chamber, one end on the outlet side of the anode chamber, and the other end of the electrolytic raw water supply branch pipe An electrolyzed water production apparatus, comprising: a reflux pipe connected to the upstream side of the branch portion.
〔4〕 還流管がポンプを介装してなる〔3〕に記載の電解水製造装置。 [4] The electrolyzed water production apparatus according to [3], wherein the reflux pipe is provided with a pump.
〔5〕 一対の電極を備え、前記電極間に張設された隔膜により陽極室及び陰極室が形成された流通型電解槽と、下流側が分岐し、陰極室の入口側及び陽極室の入口側にその下流端がそれぞれ連結された電解原水供給分岐管と、陽極室の出口側に連結された電解水取出管と、一端が陰極室の出口側に、他端が前記電解原水供給分岐管の分岐部よりも上流側に連結された還流管と、を有する電解水製造装置。 [5] A flow-type electrolytic cell comprising a pair of electrodes, in which an anode chamber and a cathode chamber are formed by a diaphragm stretched between the electrodes, and a downstream side branches, an inlet side of the cathode chamber and an inlet side of the anode chamber The electrolytic raw water supply branch pipe connected to the downstream end thereof, the electrolytic water outlet pipe connected to the outlet side of the anode chamber, one end on the outlet side of the cathode chamber, and the other end of the electrolytic raw water supply branch pipe An electrolyzed water production apparatus, comprising: a reflux pipe connected to the upstream side of the branch portion.
〔6〕 還流管がポンプを介装してなる〔5〕に記載の電解水製造装置。 [6] The electrolyzed water production apparatus according to [5], wherein the reflux pipe is provided with a pump.
〔7〕 水溶性無機塩を0.1mM以上含有する電解原水を、隔膜式電解槽内の陽極室及び陰極室のいずれか一方の室に連続的に供給して流通させた後、他方の室に導入して流通させることにより連続的に電気分解する電解水の製造方法。 [7] Electrolyzed raw water containing 0.1 mM or more of a water-soluble inorganic salt is continuously supplied to and circulated into either the anode chamber or the cathode chamber in the diaphragm type electrolytic cell, and then the other chamber. A method for producing electrolyzed water that is continuously electrolyzed by being introduced into and distributed.
〔8〕 水溶性無機塩を0.1mM以上含有する電解原水を、隔膜式電解槽内の陽極室及び陰極室に連続的に供給し、陽極室と陰極室のいずれか一方に流通させて電解した電解水を外部に取り出すと共に、他方に流通させて電解した電解水を電解槽の上流側に還流させて電解原水に混合することを特徴とする電解水の製造方法。 [8] Electrolyzed raw water containing 0.1 mM or more of a water-soluble inorganic salt is continuously supplied to the anode chamber and the cathode chamber in the diaphragm type electrolytic cell, and is circulated through either the anode chamber or the cathode chamber for electrolysis. A method for producing electrolyzed water, characterized in that the electrolyzed water taken out to the outside and recirculated to the other side to be electrolyzed is refluxed upstream of the electrolyzer and mixed with the electrolyzed raw water.
〔9〕 陽極室と陰極室のいずれか一方から外部に取り出す電解水と、他方から電解槽の上流側に還流させる電解水の流量の比が、1:50〜50:1である〔8〕に記載の電解水の製造方法。 [9] The ratio of the flow rate of the electrolyzed water taken out from either the anode chamber or the cathode chamber to the upstream side of the electrolyzer from the other is 1:50 to 50: 1. [8] The method for producing electrolyzed water as described in 1. above.
本発明によれば、電解原水を隔膜式電解槽の陽極室と陰極室のいずれか一方に供給した後他方に導入することにより、あるいは陽極室と陰極室の両方に電解原水を供給していずれか一方から電解水を取り出すと共に、他方を流通した電解水を電解槽の上流側に還流させることにより、陽極水又は陰極水のみを取り出すことができる。そのため、隔膜式電解水製造装置を用いて陽極水又は陰極水のみを取り出す場合であっても、他方を廃棄する必要がない。 According to the present invention, the electrolytic raw water is supplied to one of the anode chamber and the cathode chamber of the diaphragm type electrolytic cell and then introduced into the other, or the electrolytic raw water is supplied to both the anode chamber and the cathode chamber. Only the anode water or the cathode water can be taken out by taking out the electrolyzed water from one of them and refluxing the electrolyzed water flowing through the other to the upstream side of the electrolytic cell. Therefore, even when only anode water or cathode water is taken out using the diaphragm type electrolyzed water production apparatus, it is not necessary to discard the other.
本発明の電解水製造装置は、電解原水を全て陽極水又は陰極水として取り出すことができ、従来の隔膜式電解水製造装置に比較して電解原水の利用効率が極めて高い。また、pH調整剤の使用により、高い電解電流を印加しても、得られる電解水のpHを中性付近に保つことができる。更に、電解原水が電解槽内を一度通過する従来の製造装置に比較して、本発明の装置は電解槽内を電解原水が複数回通過する割合が高いので、解離係数Kwの大きい電解水を得ることができる。 The electrolyzed water production apparatus of the present invention can take out all of the electrolyzed raw water as anode water or cathodic water, and the use efficiency of the electrolyzed raw water is extremely high as compared with the conventional diaphragm type electrolyzed water producing apparatus. Moreover, even if a high electrolysis current is applied, the pH of the resulting electrolyzed water can be kept near neutral by using a pH adjuster. Furthermore, compared with the conventional manufacturing apparatus in which the electrolytic raw water passes once through the electrolytic cell, the apparatus of the present invention has a high rate of electrolytic raw water passing a plurality of times through the electrolytic tank. Obtainable.
図1は、本発明の電解水製造装置の一例を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing an example of the electrolyzed water production apparatus of the present invention.
図1中、100は電解水製造装置で、1は流通型隔膜式電解槽である。断面四辺形の電解槽1の内部には、一対の対向側壁15、16に沿って一対の電極3及び5が配設されている。図1においては、電極5が陽極で、電極3が陰極である。
In FIG. 1, 100 is an electrolyzed water production apparatus, and 1 is a flow-through diaphragm type electrolytic cell. Inside the
電極3、5間には、電極3及び5に平行に隔膜6が張設されている。隔膜6により電解槽1の内部空間は二分され、電解槽1内に陽極室4と陰極室2とが形成される。
A diaphragm 6 is stretched between the
図1中、17、18は、電極3、5に対して垂直な電解槽1の側壁を示している。側壁17の陽極室入口側には電解原水供給口11が、側壁17の陰極室電解水出口側には電解水取出口12が形成されている。電解原水供給口11には電解原水供給管9、電解水取出口12には電解水取出管10がそれぞれ連結されている。電解原水供給管9は、pH調整剤供給タンク8を備えている。
In FIG. 1, 17 and 18 indicate the side walls of the
側壁18の陽極室電解水出口側には陽極水取出口13が、側壁18の陰極室電解水入口側には陽極水供給口14が形成されている。陽極水取出口13と陽極水供給口14には、流通管7の両端がそれぞれ連結されている。流通管7により、陽極室4と陰極室2とは連通される。
An
水道水や塩化ナトリウム水溶液等の電解原水は、pH調整剤供給タンク8により所望によりpH調整剤が添加された後、電解原水供給管9を通って電解槽1の陽極室4内に送られる。陽極室4内で電解された後、流通管7を通って陰極室2内に供給される。陰極室2内で再び電解された後、電解水取出管10を通って外部に電解水として取り出される。
Electrolyzed raw water such as tap water or sodium chloride aqueous solution is fed into the
この装置により得られる電解水は、陽極室4と陰極室2内で電解された電解水であるが、最後に通過した陰極室での電解による影響を強く受けた状態となっている。電解水製造装置100で、得られる電解水は陰極水である。
The electrolyzed water obtained by this apparatus is electrolyzed water electrolyzed in the
電解水製造装置100は、電解水が陽極室と陰極室で2度電解されるため、電解水に付与される単位流量あたりの電解エネルギーが、陽極室又は陰極室のみを流通させる従来の製造装置の2倍である。
Since the electrolyzed water is electrolyzed twice in the anode chamber and the cathode chamber, the electrolyzed
電解水製造の際には、電極3、5間に直流電圧電流を印加する。
In the electrolyzed water production, a direct current voltage current is applied between the
なお、電解原水に印加する電流は、毎分1Lの流速を有する電解原水に対して0.5A〜10Aが好ましく、1A〜5Aが特に好ましい。0.5A未満の場合は、電解水中の溶存酸素量及び溶存水素量を電解原水よりも高くすることができず、10Aを超える場合、大電流が流れるため、電極の疲労が高まり極端に電解効率が落ちる傾向がある。 In addition, 0.5A-10A are preferable with respect to the electrolyzed raw water which has the flow rate of 1 L / min, and, as for the electric current applied to electrolyzed raw water, 1A-5A is especially preferable. If it is less than 0.5 A, the amount of dissolved oxygen and dissolved hydrogen in the electrolyzed water cannot be made higher than that of the electrolyzed raw water, and if it exceeds 10 A, a large current flows, so that the fatigue of the electrode increases and the electrolytic efficiency becomes extremely high. Tend to fall.
電極3、5は電気化学的に不活性な金属材料で形成されている。電極材料としては、白金、白金合金等が好ましい。
The
電極3、5の間隔は3〜1mm、好ましくは2〜1mmである。
The distance between the
隔膜6としては、イオン交換膜や、無電荷膜等、電解隔膜として従来使用されているものが適宜使用できる。 As the diaphragm 6, what is conventionally used as an electrolytic diaphragm, such as an ion exchange membrane or an uncharged membrane, can be used as appropriate.
電解槽1に供給される電解原水の流量は0.5〜10L/minが好ましく、より好ましくは1〜5L/minである。
The flow rate of the raw electrolytic water supplied to the
電解原水の水溶性無機塩等のイオン強度は、各水溶性無機電解質の合計で0.1mM以上とすることが好ましく、0.1〜0.5mMとすることがより好ましい。電解原水には、通常水道水や電解質として塩化ナトリウムが添加された水が使用され、Cl-、HCl等の形態で塩素が含まれる。 The ionic strength of the water-soluble inorganic salt or the like of the electrolyzed raw water is preferably 0.1 mM or more, more preferably 0.1 to 0.5 mM in total for each water-soluble inorganic electrolyte. The electrolyzed raw water usually uses tap water or water to which sodium chloride is added as an electrolyte, and contains chlorine in the form of Cl − , HCl or the like.
得られる電解水のpHを所望のpHに調整するには、pH調整剤供給タンク8により、例えば水酸化ナトリウム、炭酸水素ナトリウム等の塩基性電解質水溶液、又は、塩酸、リン酸等の酸性電解質水溶液を電解原水に添加することにより容易に行うことができる。pH調整剤の使用は任意であり、電解水の使用目的によってはpH調整剤は使用しなくてもよい。
In order to adjust the pH of the obtained electrolyzed water to a desired pH, a basic electrolyte aqueous solution such as sodium hydroxide or sodium bicarbonate or an acidic electrolyte aqueous solution such as hydrochloric acid or phosphoric acid is used by the pH
上記説明においては、pH調整剤供給タンク8を電解原水供給管9に取り付ける場合について示したが、電解水取出管10や流通管7にpH調整剤供給タンクを取り付けてもよい。
In the above description, the case where the pH adjusting
得られる電解水を飲用等の目的で利用する場合、電解水に含まれる次亜塩素酸や塩素ガス等の遊離塩素の濃度が高い場合には、電解水を活性炭等で処理することにより容易に除去できる。この場合、電解水取出管10は、活性炭等の吸着剤を充填した遊離塩素除去装置を介装していてもよい。
When the obtained electrolyzed water is used for drinking purposes, etc., when the concentration of free chlorine such as hypochlorous acid or chlorine gas contained in the electrolyzed water is high, it can be easily treated by treating the electrolyzed water with activated carbon or the like. Can be removed. In this case, the electrolyzed
本発明の電解水製造装置であって、陽極水を製造する装置の一例の概略構成図を図2に示す。図2においては、電極の極性が逆である以外は図1と同じ構成であるので、同じ部分には同じ符号を付してその説明を省略する。図2中、200は電解水製造装置、20は陰極水取出口、21は陰極水供給口である。 FIG. 2 shows a schematic configuration diagram of an example of an apparatus for producing anodized water, which is an electrolyzed water producing apparatus of the present invention. In FIG. 2, since it is the same structure as FIG. 1 except the polarity of an electrode being reverse, the same code | symbol is attached | subjected to the same part and the description is abbreviate | omitted. In FIG. 2, 200 is an electrolyzed water production apparatus, 20 is a cathode water outlet, and 21 is a cathode water supply port.
図2においては、電解原水は最初に陰極室2内に供給され、陰極室2内で電解された後、流通管7を通って陽極室4内に供給され、陽極室4内で電解される。
In FIG. 2, the raw electrolytic water is first supplied into the
陽極室4内においては、電解質溶液中に塩素イオンが存在すると酸化されて塩素ガスとなり、更に水に溶解した塩素ガスの一部が次亜塩素酸となる。塩素イオンから次亜塩素酸と塩素ガスが生成する割合は、溶液のpHによって変化する。殺菌等に利用する場合に、陽極水の遊離塩素の濃度を高くするには、電解原水の塩素イオン濃度を高くするとともに、pHを酸性側に調整する。具体的には、塩化ナトリウムや塩化カリウム等の塩化物電解質と塩酸との混合液をpH調整剤供給タンク8から電解原水に添加することにより、強酸性の次亜塩素酸を含む電解生成水を得ることができる。
In the
図3は、本発明の電解水製造装置の他の例を示す概略構成図である。 FIG. 3 is a schematic configuration diagram showing another example of the electrolyzed water production apparatus of the present invention.
図3中、300は電解水製造装置である。電解槽1の構成は、図1に示す電解槽の構成と同様である。
In FIG. 3, 300 is an electrolyzed water production apparatus. The configuration of the
側壁17の陰極室入口側、及び陽極室入口側には、それぞれ電解原水供給口30、31が形成されている。電解原水供給口30、31には、分岐部37cより下流側が37a、37bに分岐した電解原水供給分岐管37の下流端がそれぞれ取り付けられている。
Electrolytic raw
側壁18の陰極室出口側には陰極水取出口32が、陽極室出口側には陽極水取出口33が形成されている。陰極水取出口32には陰極水取出管34が、陽極水取出口33には還流管38が連結されている。還流管38には、三方バルブ36が介装されている。三方バルブ36には、陽極水取出管35の一端が連結されており、三方バルブ36を切り換えることにより、陽極水を装置外部に排出することが可能となっている。
A
還流管38の他端は、電解原水供給分岐管37の分岐部37cの上流側に連結されている。還流管38には、ポンプ39が介装される。
The other end of the
電解原水供給分岐管37は、pH調整剤供給タンク8を備えている。その下流の分岐管37aには、遊離塩素除去装置40が介装されている。
The electrolytic raw water
電解原水は、pH調整剤供給タンク8により、pH調整剤が添加された後、その一部は電解原水供給分岐管37aを通って電解槽1の陰極室2内に送られる。その後、陰極室2内で電解され陰極水となり、陰極水取出管34から外部に取り出される。
After the pH adjusting agent is added by the pH adjusting
電解原水の一部は、ポンプ39を作動させることにより電解原水供給分岐管37bを通って陽極室4内に導入され、電解分解されて陽極水となる。陽極水は還流管38から取り出された後、電解原水供給分岐管37の分岐部37cより上流側に戻される。陽極水は電解原水供給分岐管37内で電解原水と混合され、再び電解原水の一部となって、pH調整剤供給タンク8を通過した後、陰極室2又は陽極室4に送られる。
A part of the electrolytic raw water is introduced into the
陽極室4内で生成した遊離塩素は、陰極室2内に導入される際に遊離塩素除去装置40により除去される。
The free chlorine generated in the
遊離塩素除去装置40には、遊離塩素を除去できる公知の材料を充填でき、例えば、活性炭、活性炭素繊維、ゼオライト等を挙げることができる。
The free
なお、得られる陰極水を飲用目的としない場合には、遊離塩素除去装置40の使用は任意である。
In addition, when the obtained cathode water is not intended for drinking, the use of the free
得られる陰極水のpHを所望の値とするためには、図1の場合と同様な電解質水溶液をpH調整剤として添加する。 In order to adjust the pH of the obtained cathode water to a desired value, an aqueous electrolyte solution similar to that in FIG. 1 is added as a pH adjuster.
電解原水には陽極水を混合させることから、電解原水供給分岐管37の下流側を流通する電解原水のpHは、当初の電解原水より酸性側に傾いている。陰極室2内の陰極水はアルカリ性側に傾いているので、これらを混合することにより得られる陰極水はある程度中和される。
Since the anode water is mixed with the electrolytic raw water, the pH of the electrolytic raw water flowing through the downstream side of the electrolytic raw water
電解水製造装置300を用いる場合に、陰極室の出口側から外部に取り出す陰極水の流量と、陽極室の出口側から分岐部37cの上流側に還流させる陽極水の流量の比は、1:50〜50:1が好ましく、1:20〜20:1がより好ましく、1:10〜10:1が更に好ましい。
When the electrolyzed
pH調整剤供給タンク8の取り付け位置は、図3の場合に限定されず、任意の位置とすることができる。遊離塩素除去装置40は、陰極水取出管34に取り付けられていてもよい。
The attachment position of the pH adjusting
使用する電解原水、pH調整剤や、電解電流、電極間距離、電解原水の流量等の好ましい値については図1の場合と同様である。 Preferred values of the raw electrolytic water, pH adjuster, electrolytic current, interelectrode distance, electrolytic raw water flow rate, etc. used are the same as in FIG.
図3に示す装置においては、還流管38はポンプ39を介装しているが、ポンプ39は使用しなくてもよい。
In the apparatus shown in FIG. 3, the
ポンプ39を使用しない場合は、電解原水の一部は、破線矢印で示した経路により陽極室4から陰極室2へ導入される。すなわち、電解原水供給管37から還流管38を通って陽極室4内で電解された後、電解水供給分岐管37b、37aを通って陰極室2内で電解される。この場合も、陽極室4内で生成した遊離塩素を、遊離塩素除去装置40で取り除くことが可能である。また、pH調整剤供給タンク8により、陰極水のpHを所望の値とすることができる。
When the
図4は陽極水を製造する本発明の電解水製造装置の一例を示す概略構成図である。図4に示す電解水製造装置400は、電極の極性が逆であること及び遊離塩素除去装置40がないこと以外は図3に示す装置と同じ構成であるので、同じ部分には同じ符号を付してその説明を省略する。図4中、42は陽極水取出管、41は陰極水取出管である。
FIG. 4 is a schematic configuration diagram showing an example of the electrolyzed water production apparatus of the present invention for producing anodized water. The electrolyzed
電解原水は、pH調整剤供給タンク8により、pH調整剤が添加された後、その一部は電解原水供給分岐管37aを通って電解槽1の陽極室4内に送られる。陽極室4内で電解された後、陽極水取出管42から外部に取り出される。
The electrolytic raw water is added with the pH adjusting agent by the pH adjusting
電解原水供給分岐管37bを流通した電解原水は、陰極室2内で電解分解され、還流管38から取り出され、ポンプ39により分岐部37cよりも上流側に戻される。
The electrolyzed raw water flowing through the electrolyzed raw water
図4においても、破線矢印は、ポンプ39を使用しない場合に陰極室2を流通し陽極室に供給される電解原水の経路を示している。
Also in FIG. 4, the broken line arrows indicate the path of the electrolytic raw water that flows through the
pH調整剤供給タンク8により添加するpH調整剤は、図2の場合と同様である。
The pH adjusting agent added by the pH adjusting
実施例1
図3に示す電解水製造装置300を用いて水道水を電解し、陰極水を製造した。但し、電解槽の内部空間は15cm×10cm×0.2cmの直方体であり、電解槽内に140mm×100mmの板状に形成した白金電極2枚を2mm間隔に挿入して陽極と陰極を配備した。隔膜には非電荷膜を使用した。この電解槽に水道水(合計塩素濃度15mg/L)を3L/minの流量で供給し、電極間を流れる電流は陰極室を流れる水の流速1L/minに対して1.5Aに設定した。pH調整剤には炭酸水素ナトリウム水溶液を、遊離塩素除去装置40の吸着剤には活性炭を使用した。ポンプ39は使用しなかった。還流管38を流れる電解原水の流量は、1.5L/minであった。
Example 1
Using the electrolyzed
比較例1
図3に示す電解水製造装置300の三方バルブ36を陽極水が陽極水取出管35から外部に排出されるように切り換えて実施例1と同じ条件で陰極水を製造した。分岐管37aと37bを流れる電解原水の流量は、1:1であった。
Comparative Example 1
Cathode water was produced under the same conditions as in Example 1 by switching the three-
実施例1及び比較例1で得られた陰極水のpH、酸化還元電位(ORP)、溶存酸素量(DO)、電気伝導度(EC)を測定した結果を表2に示す。 Table 2 shows the results of measuring the pH, redox potential (ORP), dissolved oxygen content (DO), and electrical conductivity (EC) of the cathode water obtained in Example 1 and Comparative Example 1.
実施例1においては、単位時間当たりの流量に対する電気量が比較例1より多くなっているにもかかわらず、陰極水のpHは比較例1より低く、中性になっている。また、ORPの値は比較例1より実施例1で高くなっており、表1の溶存酸素量の結果を併せて考慮すると、実施例1では、溶存酸素と溶存水素が共存しているものと推察できる。 In Example 1, although the amount of electricity with respect to the flow rate per unit time is larger than that of Comparative Example 1, the pH of the cathode water is lower than that of Comparative Example 1 and is neutral. Further, the ORP value is higher in Example 1 than in Comparative Example 1, and considering the result of dissolved oxygen amount in Table 1 together, in Example 1, dissolved oxygen and dissolved hydrogen coexist. I can guess.
試験例1
実施例1及び比較例1で得られた陰極水800mLを逆浸透膜で脱塩し、比較例1のpHを実施例1のpHと同じ値に調整した後、0.1M塩酸を10μLずつ添加しながら電気伝導度を測定した。結果を図5に示す。
Test example 1
After desalting 800 mL of the cathodic water obtained in Example 1 and Comparative Example 1 with a reverse osmosis membrane, adjusting the pH of Comparative Example 1 to the same value as that of Example 1, 10 μL of 0.1 M hydrochloric acid was added. The electrical conductivity was measured. The results are shown in FIG.
図5において、変曲点は中和反応の終点を示している。変曲点における0.1M塩酸の添加量は、比較例1の陰極水が100μL付近であるのに対し、実施例1の陰極水は40μL付近である。 In FIG. 5, the inflection point indicates the end point of the neutralization reaction. The amount of 0.1M hydrochloric acid added at the inflection point is about 100 μL for the cathodic water of Comparative Example 1, while about 40 μL for the cathodic water of Example 1.
比較例1の陰極水の解離係数をKw1、中和滴定による滴定量をV1とし、実施例1の陰極水の解離係数をKw2、中和滴定による滴定量をV2とする。水の解離指数pKw=-logKwを比較すると、比較例1の解離指数は pKw1=14+log(V1/V0)、実施例1の解離指数は pKw2=14+log(V2/V0)となる。実施例1の滴定量V2が比較例1の滴下量V1より少ないので、pKw2<pKw1となり、実施例1の陰極水の方が水の解離係数Kwが大きいことがわかる。但し、V0は25℃における1気圧下でのコントロールの滴定量で、電解原水のpHを調整して陰極水のpHと同じ値にするのに要した滴定量である。一般に、水の解離係数Kwが大きくなると溶質を良く溶かしたり、溶質の反応性が高まることが知られており、実施例1の陰極水のほうがこれらの性質に優れていることがわかる。 The dissociation coefficient of the cathode water of Comparative Example 1 is Kw 1 , the titration amount by neutralization titration is V 1 , the dissociation coefficient of the cathodic water of Example 1 is Kw 2 , and the titration amount by neutralization titration is V 2 . Comparing the water dissociation index pKw = −logKw, the dissociation index of Comparative Example 1 is pKw 1 = 14 + log (V 1 / V 0 ), and the dissociation index of Example 1 is pKw 2 = 14 + log (V 2 / log (V 2 / V 0 ). Since titre V 2 of Example 1 less than the drop amount V 1 of the Comparative Example 1, PKW 2 <PKW 1 next, it can be seen that towards the cathode water of Example 1 is large dissociation constant Kw of water. However, V 0 is a control titration under 1 atm at 25 ° C. and is the titration required to adjust the pH of the electrolyzed raw water to the same value as the pH of the cathode water. In general, it is known that when the water dissociation coefficient Kw increases, the solute is dissolved well and the reactivity of the solute increases, and it can be seen that the cathode water of Example 1 is superior in these properties.
実施例2
図4に示す電解水製造装置400を用いて0.2%の塩化ナトリウム水溶液を電解し、陽極水を製造した。但し、電解槽及び電極は、実施例1と同様のものを使用した。電解槽に塩化ナトリウム水溶液を3L/minの流量で供給し、電極間を流れる電流は陽極室を流れる水の流速1L/minに対して3Aに設定した。pH調整剤には塩酸を使用した。ポンプ39は使用しなかった。還流管38を流れる電解原水の流量は、1L/minであった。
Example 2
An electrolyzed
比較例2
図4に示す電解水製造装置400の三方バルブ36を陰極水が陰極水取出管41から外部に排出されるように切り換えた以外は、実施例2と同じ条件で陽極水を製造した。分岐管37aと37bを流れる電解原水の流量は、1:1であった。
Comparative Example 2
Anode water was produced under the same conditions as in Example 2 except that the three-
実施例2及び比較例2で得られた陽極水のpH、ORP、DO、遊離塩素濃度を表2に示す。 Table 2 shows the pH, ORP, DO, and free chlorine concentration of the anode water obtained in Example 2 and Comparative Example 2.
実施例2においては、陰極水を電解原水に混合して陽極室に導入することにより、陰極水を廃棄することなく陽極水として再生することが可能となった。 In Example 2, the cathode water was mixed with the electrolytic raw water and introduced into the anode chamber, so that the cathode water could be regenerated as anode water without being discarded.
1 電解槽
2 陰極室
3 陰極
4 陽極室
5 陽極
6 隔膜
7 供給管
8 pH調整剤供給タンク
9 電解原水供給管
10 電解水取出管
11、30、31 電解原水供給口
12 電解水取出口
13、33 陽極水取出口
14 陽極水供給口
15、16、17、18 側壁
20、32 陰極水取出口
21 陰極水供給口
34、41 陰極水取出管
35、42 陽極水取出管
36 三方バルブ
37、37a、37b 電解原水供給分岐管
37c 分岐部
38 還流管
39 ポンプ
40 遊離塩素除去装置
100、200、300、400 電解水製造装置
DESCRIPTION OF
Claims (7)
前記電解水製造装置は、前記陽極室から取出される陽極水を前記陰極室へ導入する、任意に切替可能な第一の陽極水導入経路と第二の陽極水導入経路とを有し、
前記第一の陽極水導入経路は、前記還流管と、前記電解原水供給分岐管の前記連結部より下流部分とからなり、前記PH調整剤供給部を備え、
前記第二の陽極水導入経路は、前記電解原水供給分岐管の前記分岐部より下流部分からなる、電解水製造装置。 A diaphragm- type electrolytic cell having a pair of electrodes, in which an anode chamber and a cathode chamber are formed by a diaphragm stretched between the electrodes, and a downstream side is branched, on the inlet side of the anode chamber and the inlet side of the cathode chamber The electrolyzed raw water supply branch pipe connected at the downstream end thereof, the electrolyzed water outlet pipe connected to the outlet side of the cathode chamber, the one end at the outlet side of the anode chamber, and the other end branched from the electrolytic raw water supply branch pipe a reflux condenser coupled to the upstream side of the part, met electrolyzed water production apparatus having a PH adjusting agent supply portion between the branch portion and the connection portion between the return pipe of the electrolyte raw water supply branch pipe And
The electrolyzed water production apparatus has a first anodic water introduction path and a second anodic water introduction path that can be arbitrarily switched to introduce anodic water taken out from the anodic chamber into the cathodic chamber,
The first anode water introduction path is composed of the reflux pipe and a downstream portion of the connection portion of the electrolytic raw water supply branch pipe, and includes the PH adjuster supply section.
Said 2nd anode water introduction path | route is an electrolyzed water manufacturing apparatus which consists of a downstream part from the said branch part of the said electrolyzed raw water supply branch pipe .
前記電解水製造装置は、前記陰極室から取出される陰極水を前記陽極室へ導入する、任意に切替可能な第一の陰極水導入経路と第二の陰極水導入経路とを有し、
前記第一の陰極水導入経路は、前記還流管と、前記電解原水供給分岐管の前記連結部より下流部分とからなり、前記PH調整剤供給部を備え、
前記第二の陰極水導入経路は、前記電解原水供給分岐管の前記分岐部より下流部分からなる、電解水製造装置。 A diaphragm- type electrolytic cell having a pair of electrodes and having an anode chamber and a cathode chamber formed by a diaphragm stretched between the electrodes; The electrolyzed raw water supply branch pipe connected at the downstream end thereof, the electrolyzed water outlet pipe connected to the outlet side of the anode chamber, one end at the outlet side of the cathode chamber, and the other end branched from the electrolytic raw water supply branch pipe a reflux condenser coupled to the upstream side of the part, met electrolyzed water production apparatus having a PH adjusting agent supply portion between the branch portion and the connection portion between the return pipe of the electrolyte raw water supply branch pipe And
The electrolyzed water production apparatus has a first cathodic water introduction path and a second cathodic water introduction path that can be arbitrarily switched to introduce the cathodic water taken out from the cathodic chamber into the anode chamber,
The first cathodic water introduction path includes the reflux pipe and a downstream portion of the connection portion of the electrolytic raw water supply branch pipe, and includes the PH adjusting agent supply section.
Said 2nd cathodic water introduction path | route is an electrolyzed water manufacturing apparatus which consists of a downstream part from the said branch part of the said electrolyzed raw water supply branch pipe .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006105906A JP4929430B2 (en) | 2006-04-07 | 2006-04-07 | Electrolyzed water production apparatus and electrolyzed water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006105906A JP4929430B2 (en) | 2006-04-07 | 2006-04-07 | Electrolyzed water production apparatus and electrolyzed water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007275778A JP2007275778A (en) | 2007-10-25 |
JP4929430B2 true JP4929430B2 (en) | 2012-05-09 |
Family
ID=38677837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006105906A Active JP4929430B2 (en) | 2006-04-07 | 2006-04-07 | Electrolyzed water production apparatus and electrolyzed water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4929430B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100078331A1 (en) * | 2008-10-01 | 2010-04-01 | Scherson Daniel A | ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS |
JP2013071103A (en) * | 2011-09-29 | 2013-04-22 | Aqua Eco Kk | Electrolytic water generating device and electrolytic water generating method |
JP5238899B1 (en) * | 2012-07-13 | 2013-07-17 | 稔 菅野 | Disinfecting water generating apparatus and disinfecting cleaning method |
JP6085625B2 (en) * | 2014-11-27 | 2017-02-22 | 株式会社バイオレドックス研究所 | Cosmetic liquid and method for producing the same |
JP6403214B2 (en) * | 2015-06-23 | 2018-10-10 | 高知県公立大学法人 | Slurry ice production system for seafood |
JP6171047B1 (en) * | 2016-04-26 | 2017-07-26 | 株式会社バイオレドックス研究所 | Electrolyzed water production apparatus and operation method thereof |
JP6909600B2 (en) * | 2017-03-16 | 2021-07-28 | マクセルホールディングス株式会社 | Electrolyzed hydrogen water generator |
JP7202062B2 (en) * | 2017-04-26 | 2023-01-11 | 株式会社日本トリム | Electrolyzed water generator |
JP6885776B2 (en) * | 2017-04-26 | 2021-06-16 | 株式会社日本トリム | Electrolyzed water generator |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078960A (en) * | 1993-06-29 | 1995-01-13 | Matsushita Electric Works Ltd | Alkaline ion water forming device |
JPH08229564A (en) * | 1995-02-27 | 1996-09-10 | Morinaga Milk Ind Co Ltd | Production of acidic water and device therefor |
JPH11188361A (en) * | 1997-12-26 | 1999-07-13 | Hoshizaki Electric Co Ltd | Electrolytic water producing apparatus |
JP2911869B2 (en) * | 1998-02-10 | 1999-06-23 | 三浦電子株式会社 | Method for producing electrolytic sterilized water or sterile water |
JP4365202B2 (en) * | 2003-12-25 | 2009-11-18 | ホシザキ電機株式会社 | Water solvent generation method for generating aqueous solvent for aqueous solution preparation, and water solvent generator for generating water solvent |
-
2006
- 2006-04-07 JP JP2006105906A patent/JP4929430B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007275778A (en) | 2007-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4929430B2 (en) | Electrolyzed water production apparatus and electrolyzed water production method | |
JP3716042B2 (en) | Acid water production method and electrolytic cell | |
RU2119802C1 (en) | Device for performing electrochemical treatment of liquid media | |
JP5640266B1 (en) | Electrolyzed water production apparatus and electrolyzed water production method using the same | |
US20090266706A1 (en) | High electric field electrolysis cell | |
US20060169575A1 (en) | Manufacturing method of oxidative water to be employed for sterilization | |
MXPA03007923A (en) | Method and apparatus for producing negative and positive oxidative reductive potential (orp) water. | |
JPH09262583A (en) | Preparation of acidic water and alkaline water | |
RU2142917C1 (en) | Method and device for electrochemical treatment of water | |
WO2004080901A1 (en) | Process for producing mixed electrolytic water | |
JP2001286868A (en) | Method of producing electrolytic water and electrolytic water | |
JP4597263B1 (en) | Electrolyzed water production apparatus and electrolyzed water production method using the same | |
JP6171047B1 (en) | Electrolyzed water production apparatus and operation method thereof | |
JP4641003B2 (en) | Electrolyzed water generation method and electrolyzed water generator | |
RU2297980C1 (en) | Method of the electroactivation of the water solutions | |
JP2000005757A (en) | Economical production of electrolytic sterilizing water | |
JP5019422B2 (en) | Domestic water supply method and apparatus | |
JP6847477B1 (en) | Electrolyzed water production equipment and method for producing electrolyzed water using this | |
JP4101081B2 (en) | Desalination and desalination method for seawater and the like using an alkaline ionized water generator and its apparatus | |
JP4251059B2 (en) | Bactericidal electrolyzed water production equipment | |
RU2157793C1 (en) | Method of preparing disinfecting neutral anolite solution neutral anolite | |
KR101644275B1 (en) | Electrolysis device and water treatment method using the device | |
JP4181170B2 (en) | Drinking electrolyzed water and method for producing the same | |
JPH09239364A (en) | Electrolyzer and ionic water producing device | |
US20240174533A1 (en) | Electrolyzed water production apparatus, and electrolyzed water production method using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20111111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4929430 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |