[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4928297B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP4928297B2
JP4928297B2 JP2007034760A JP2007034760A JP4928297B2 JP 4928297 B2 JP4928297 B2 JP 4928297B2 JP 2007034760 A JP2007034760 A JP 2007034760A JP 2007034760 A JP2007034760 A JP 2007034760A JP 4928297 B2 JP4928297 B2 JP 4928297B2
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
optical element
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007034760A
Other languages
Japanese (ja)
Other versions
JP2008197534A (en
JP2008197534A5 (en
Inventor
薫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007034760A priority Critical patent/JP4928297B2/en
Publication of JP2008197534A publication Critical patent/JP2008197534A/en
Publication of JP2008197534A5 publication Critical patent/JP2008197534A5/ja
Application granted granted Critical
Publication of JP4928297B2 publication Critical patent/JP4928297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明はズームレンズ及びそれを有する撮像装置に関し、放送用テレビカメラ、ビデオカメラ、デジタルスチルカメラ、銀塩写真用カメラ等に好適なものである。   The present invention relates to a zoom lens and an image pickup apparatus having the same, and is suitable for broadcasting television cameras, video cameras, digital still cameras, silver salt photography cameras, and the like.

近年、テレビカメラ、銀塩フィルム用カメラ、デジタルカメラ、ビデオカメラ等の撮像装置には、高ズーム比でしかも高い光学性能を有したズームレンズが要望されている。   2. Description of the Related Art In recent years, zoom lenses having a high zoom ratio and high optical performance have been demanded for imaging devices such as television cameras, silver salt film cameras, digital cameras, and video cameras.

このうち、放送用のカラーテレビカメラ等の撮像装置では撮像手段の前方(物体側)に色分解光学系や各種のフィルターを配置するため、長いバックフォーカスを有するズームレンズであることが要望されている。   Among these, in an imaging apparatus such as a color television camera for broadcasting, since a color separation optical system and various filters are arranged in front of the imaging means (object side), a zoom lens having a long back focus is desired. Yes.

高ズーム比でバックフォーカスの長いズームレンズとして、最も物体側に正の屈折力のレンズ群を配置したポジティブリード型の4群ズームレンズが知られている。   As a zoom lens having a high zoom ratio and a long back focus, a positive lead type four-group zoom lens in which a lens group having a positive refractive power is disposed closest to the object side is known.

この4群ズームレンズは、物体側から像側へ順に合焦用レンズ群を含む正の屈折力の第1レンズ群、変倍用の負の屈折力の第2レンズ群、変倍に伴う像面変動を補正するための正又は負の屈折力の第3レンズ群、結像用の正の屈折力の第4レンズ群より成っている。   The four-group zoom lens includes a first lens group having a positive refractive power including a focusing lens group in order from the object side to the image side, a second lens group having a negative refractive power for zooming, and an image accompanying zooming. The third lens group has a positive or negative refractive power for correcting surface fluctuations, and the fourth lens group has a positive refractive power for imaging.

このポジティプタイプの4群ズームレンズにおいて、光学系中に、回折光学素子を配置して色収差の補正を行い、高性能化を図ったズームレンズが知られている(特許文献1〜4)。   In this positive type four-group zoom lens, zoom lenses are known in which a diffractive optical element is arranged in an optical system to correct chromatic aberration to achieve high performance (Patent Documents 1 to 4).

特許文献1は、第1レンズ群中に回折光学素子を用いた、ズーム比5程度のズームレンズを開示している。   Patent Document 1 discloses a zoom lens having a zoom ratio of about 5 using a diffractive optical element in the first lens group.

特許文献2は、第1レンズ群中に回折光学素子を用いた、ズーム比21程度のズームレンズを開示している。   Patent Document 2 discloses a zoom lens having a zoom ratio of about 21 using a diffractive optical element in the first lens group.

特許文献3では、第2レンズ群または第3レンズ群に回折光学素子を用いて、色収差を軽減した、ズーム比10倍程度のズームレンズを開示している。   Patent Document 3 discloses a zoom lens having a zoom ratio of about 10 times in which chromatic aberration is reduced by using a diffractive optical element in the second lens group or the third lens group.

特許文献4では、第3レンズ群に回折光学素子を用いた、ズーム比10倍程度のズームレンズを開示している。
特開2000−221402号公報 特開2003−287678号公報 米国特許5268790号明細書 特開平11−311743号公報
Patent Document 4 discloses a zoom lens using a diffractive optical element for the third lens group and having a zoom ratio of about 10 times.
JP 2000-221402 A JP 2003-287678 A US Pat. No. 5,268,790 Japanese Patent Application Laid-Open No. 11-311743

ズームレンズの一部に回折光学素子を用いると、色収差の補正が容易になり、高ズーム比で高い光学性能を有したズームレンズを得るのが容易となる。   When a diffractive optical element is used as a part of the zoom lens, chromatic aberration can be easily corrected, and it becomes easy to obtain a zoom lens having a high zoom ratio and high optical performance.

しかしながら、回折光学素子を単にレンズ系中に設けても、その位置やパワー、そして、それを含むレンズ群のレンズ構成等を適切に設定しないと色収差を良好に補正した高い光学性能のズームレンズを得ることは難しい。   However, even if a diffractive optical element is simply provided in the lens system, a zoom lens with high optical performance that corrects chromatic aberration well can be obtained unless the position, power, and lens configuration of the lens group including the diffractive optical element are appropriately set. Difficult to get.

例えば、前述したポジティブリード型の4群ズームレンズでは、高ズーム比になるにつれて望遠端において第1レンズ群から球面収差や色収差等の諸収差が多く発生してくる。   For example, in the positive lead type four-group zoom lens described above, various aberrations such as spherical aberration and chromatic aberration occur from the first lens group at the telephoto end as the zoom ratio becomes higher.

このため、高ズーム比化を図りつつ、高い光学性能を得るには第1レンズ群のレンズ構成を適切に設定し、望遠側において、色収差や球面収差の諸収差を良好に補正することが重要になってくる。   For this reason, in order to obtain high optical performance while achieving a high zoom ratio, it is important to appropriately set the lens configuration of the first lens group and to properly correct various aberrations such as chromatic aberration and spherical aberration on the telephoto side. It becomes.

特に第1レンズ群のレンズ構成が適切でないと、回折光学素子を用いても、ズーミングによる収差変動、例えば、色収差、球面収差、ハロコマ収差、球面収差の色差等の変動を少なくし、高ズーム比で高性能化のズームレンズを得るのが困難となる。   In particular, if the lens configuration of the first lens group is not appropriate, even if a diffractive optical element is used, fluctuations in aberrations due to zooming, such as chromatic aberration, spherical aberration, halocoma aberration, and chromatic differences in spherical aberration, are reduced, resulting in a high zoom ratio. Therefore, it is difficult to obtain a high-performance zoom lens.

本発明は、高ズーム比で、広角端から望遠端における全ズーム範囲にわたり色収差を良好に補正し、全ズーム範囲において高い光学性能を有するズームレンズ及びそれを有する撮像装置の提供を目的とする。   An object of the present invention is to provide a zoom lens having a high zoom ratio and excellently correcting chromatic aberration over the entire zoom range from the wide-angle end to the telephoto end, and having a high optical performance in the entire zoom range, and an image pickup apparatus having the same.

本発明のズームレンズは、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、該第1レンズ群は、少なくとも1つの回折光学素子を有しており、該回折光学素子の回折部の焦点距離をfDOE、全系の望遠端における焦点距離をf、該第1レンズ群に含まれる正レンズの材料のアッベ数の平均値をνG1+avとするとき、
0.02<f/fDOE<0.2
30<νG1+av<80
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power , and a positive lens having a positive refractive power. The first lens group includes at least one diffractive optical element. The focal length of the diffractive portion of the diffractive optical element is f DOE , and the focal length at the telephoto end of the entire system is When the average value of the Abbe number of the material of the positive lens included in the first lens group is ν G1 + av , f T
0.02 <f T / f DOE <0.2
30 <ν G1 + av <80
It satisfies the following conditional expression.

本発明によれば、全ズーム範囲において高い光学性能を持ったズームレンズ及びそれを有する撮像装置を得られる。   According to the present invention, it is possible to obtain a zoom lens having high optical performance in the entire zoom range and an imaging apparatus having the same.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

本発明のズームレンズは、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、負の屈折力の第3レンズ群、後方レンズ群を有している。   The zoom lens of the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a rear lens group. is doing.

第1レンズ群はズーミングに際して固定のレンズ群である。 The first lens group is a fixed lens group during zooming.

第1レンズ群は、少なくとも1つの回折光学素子を有している。   The first lens group has at least one diffractive optical element.

又第1レンズ群はフォーカスに際して固定の第1aレンズ群と無限遠物体から至近物体へのフォーカスに際して物体側へ移動する第1bレンズ群を有している。   The first lens group has a fixed 1a lens group for focusing and a 1b lens group that moves to the object side for focusing from an object at infinity to a close object.

第2レンズ群は、広角端(短焦点距離端)から望遠端(長焦点距離端)へのズーミングに際して、像側へ単調に移動するレンズ群である。第3レンズ群は、物体側へ移動し、変倍に伴う像面変動を補正するレンズ群である。後方レンズ群は、ズーミングに際して固定の結像作用をする正の屈折力の第4レンズ群を有している。   The second lens group is a lens group that moves monotonously to the image side during zooming from the wide-angle end (short focal length end) to the telephoto end (long focal length end). The third lens group is a lens group that moves to the object side and corrects image plane fluctuations accompanying zooming. The rear lens group includes a fourth lens group having a positive refractive power that has a fixed imaging function during zooming.

図1は、本発明の実施例1のズームレンズの広角端におけるレンズ断面図である。   FIG. 1 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the first exemplary embodiment of the present invention.

図2、図3、図4はそれぞれ実施例1のズームレンズの無限遠物体のときの広角端、中間のズーム位置、望遠端における縦収差図である。   2, 3, and 4 are longitudinal aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end when the zoom lens of Example 1 is an object at infinity, respectively.

実施例1は、広角端の画角が58°、望遠端の画角が1.8°のズーム比35のズームレンズである。   Example 1 is a zoom lens having a zoom ratio of 35 with a field angle of 58 ° at the wide-angle end and a field angle of 1.8 ° at the telephoto end.

図5は、本発明の実施例2のズームレンズの広角端におけるレンズ断面図である。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the second embodiment of the present invention.

図6、図7、図8はそれぞれ実施例2のズームレンズの無限遠物体のときの広角端、中間のズーム位置、望遠端における縦収差図である。   6, 7, and 8 are longitudinal aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, when the zoom lens of Example 2 is an object at infinity.

実施例2は、広角端の画角が63.4°、望遠端の画角が1.54°のズーム比46のズームレンズである。   The second embodiment is a zoom lens having a zoom ratio of 46 with a field angle of 63.4 ° at the wide-angle end and a field angle of 1.54 ° at the telephoto end.

図9は、本発明の実施例3のズームレンズの広角端におけるレンズ断面図である。   FIG. 9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 3 of the present invention.

図10、図11、図12はそれぞれ実施例3のズームレンズの無限遠物体のときの広角端、中間のズーム位置、望遠端における縦収差図である。   10, 11, and 12 are longitudinal aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, when the zoom lens of Example 3 is an object at infinity.

実施例3は、広角端の画角が60.2°、望遠端の画角が3.4°、ズーム比19.5のズームレンズである。   Example 3 is a zoom lens having an angle of view of 60.2 ° at the wide-angle end, an angle of view of 3.4 ° at the telephoto end, and a zoom ratio of 19.5.

図13は、本発明の実施例4のズームレンズの広角端におけるレンズ断面図である。   FIG. 13 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 4 of the present invention.

図14、図15、図16はそれぞれ実施例4のズームレンズの無限遠物体のときの広角端、中間のズーム位置、望遠端における縦収差図である。   FIGS. 14, 15, and 16 are longitudinal aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, when the zoom lens of Example 4 is an object at infinity.

実施例4は、広角端の画角が20.8°、望遠端の画角が1.4°、ズーム比15のズームレンズである。   Example 4 is a zoom lens having a field angle of 20.8 ° at the wide-angle end, a field angle of 1.4 ° at the telephoto end, and a zoom ratio of 15.

図17は、本発明の実施例5のズームレンズの広角端におけるレンズ断面図である。   FIG. 17 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 5 of the present invention.

図18、図19、図20はそれぞれ実施例5のズームレンズの無限遠物体のときの広角端、中間のズーム位置、望遠端における縦収差図である。   FIGS. 18, 19 and 20 are longitudinal aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, when the zoom lens of Example 5 is an object at infinity.

実施例5は、広角端の画角が20.8°、望遠端の画角が1.06°、ズーム比20のズームレンズである。   The fifth exemplary embodiment is a zoom lens in which the angle of view at the wide-angle end is 20.8 °, the angle of view at the telephoto end is 1.06 °, and the zoom ratio is 20.

図21は、従来の参考例1としてのズームレンズの広角端におけるレンズ断面図である。   FIG. 21 is a lens cross-sectional view at the wide-angle end of a zoom lens as a conventional reference example 1.

図22、図23、図24は、従来の参考例1のズームレンズの無限遠物体のときの広角端、中間ズーム位置、望遠端における縦収差図である。   FIGS. 22, 23, and 24 are longitudinal aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end when the zoom lens of the conventional reference example 1 is an object at infinity.

図25は、本発明に係る回折光学素子の説明図である。   FIG. 25 is an explanatory diagram of a diffractive optical element according to the present invention.

図26は、本発明に係る回折光学素子の波長依存特性の説明図である。   FIG. 26 is an explanatory diagram of wavelength-dependent characteristics of the diffractive optical element according to the present invention.

図27は、本発明に係る回折光学素子の説明図である。   FIG. 27 is an explanatory diagram of a diffractive optical element according to the present invention.

図28は、本発明に係る回折光学素子の波長依存特性の説明図である。   FIG. 28 is an explanatory diagram of the wavelength dependence characteristics of the diffractive optical element according to the present invention.

図29は、本発明に係る回折光学素子の説明図である。   FIG. 29 is an explanatory diagram of a diffractive optical element according to the present invention.

図30は、本発明の撮像装置の要部概略図である。   FIG. 30 is a schematic diagram of a main part of the imaging apparatus of the present invention.

レンズ断面図において、L1はズーミングに際して固定の正の屈折力の第1レンズ群である。L2はズーミング時に可動の負の屈折力の第2レンズ群(バリエータレンズ群)である。L3はズーミング時に可動であり、変倍に伴う像面位置の変動を補正する正の屈折力の第3レンズ群(コンベンセーターレンズ群)である。   In the lens cross-sectional view, L1 is a first lens unit having a positive refractive power that is fixed during zooming. L2 is a second lens group (variator lens group) having negative refractive power that is movable during zooming. L3 is a third lens group (conventional sweater lens group) having a positive refractive power that is movable during zooming and corrects a change in image plane position due to zooming.

SPは開口絞りであり、第3レンズ群L3の像側に配置されている。L4は結像のための後方レンズ群(リレーレンズ群)である。Pは色分解プリズムや光学フィルターであり、硝子ブロックとして示している。IPは像面であり、固体撮像素子(光電変換素子)の撮像面に相当している。Aは回折部である。   SP is an aperture stop, which is disposed on the image side of the third lens unit L3. L4 is a rear lens group (relay lens group) for image formation. P is a color separation prism or optical filter, and is shown as a glass block. IP is an image plane and corresponds to the imaging plane of a solid-state imaging device (photoelectric conversion device). A is a diffraction part.

収差図において、e、g、F、Cは順に、e線、g線、F線、C線である。M、Sはメリディオナル像面、サジタル像面、倍率色収差はg線、C線、F線によってあらわしている。fnoはFナンバー、ωは半画角である。   In the aberration diagrams, e, g, F, and C are, in order, e-line, g-line, F-line, and C-line. M and S are meridional image surfaces, sagittal image surfaces, and lateral chromatic aberration is represented by g-line, C-line, and F-line. fno is an F number, and ω is a half angle of view.

すべての収差図において、球面収差は0.4mm、非点収差は0.4mm、歪曲は5%、横収差は、0.05mmのスケールで描かれている。   In all the aberration diagrams, the spherical aberration is drawn on a scale of 0.4 mm, the astigmatism is 0.4 mm, the distortion is 5%, and the lateral aberration is drawn on a scale of 0.05 mm.

尚、以下の各実施例において広角端と望遠端は変倍用の第2レンズ群L2が機構上光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。   In the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the second lens unit L2 for zooming is positioned at both ends of a range in which the mechanism can move on the optical axis.

次に各実施例の特徴について説明する。   Next, features of each embodiment will be described.

広角端から望遠端へのズーミングに際して、第1レンズ群L1と第4レンズ群L4は固定(不動)である。第2レンズ群L2が像側に移動することにより主な変倍を行い、第3レンズ群L3が物体側に凸状の軌跡で往復運動をすることによって変倍に伴う像点の移動を補正している。   During zooming from the wide-angle end to the telephoto end, the first lens unit L1 and the fourth lens unit L4 are fixed (non-moving). The second lens unit L2 moves toward the image side to perform main zooming, and the third lens unit L3 reciprocates along a convex locus on the object side to correct image point movement accompanying zooming. is doing.

第1レンズ群L1は、一部の屈折力のあるレンズ群を移動することにより、フォーカスを行っている。   The first lens unit L1 performs focusing by moving some lens units having refractive power.

実施例1〜3において、第1レンズ群L1は第1aレンズ群L1aと第1bレンズ群L1bを有している。そして、被写体距離が無限遠物体から至近物体へ移動した際に、第1aレンズ群L1aは不動で、第1bレンズ群L1bを物体側に繰り出すことによってフォーカス(合焦)を行う。   In Examples 1 to 3, the first lens unit L1 includes a 1a lens unit L1a and a 1b lens unit L1b. When the subject distance moves from an object at infinity to a close object, the first-a lens unit L1a does not move, and the first-b lens unit L1b is moved out toward the object side to perform focusing.

また実施例4、5において、第1レンズ群L1は第1aレンズ群L1a、第1bレンズ群L1b、第1cレンズ群L1Cを有している。被写体距離が無限遠物体から至近物体へ移動した際に、第1aレンズ群L1aと第1cレンズ群L1cは不動で、第1bレンズ群L1bを物体側に繰り出すことによってフォーカスを行う。   In Examples 4 and 5, the first lens unit L1 includes a 1a lens unit L1a, a 1b lens unit L1b, and a 1c lens unit L1C. When the subject distance moves from an infinite object to a close object, the 1a lens unit L1a and the 1c lens unit L1c do not move, and focusing is performed by extending the 1b lens unit L1b to the object side.

一般にこのような4群構成のズームレンズにおいて、望遠端の焦点距離を長くし大口径化を図ろうとすると、第1レンズ群L1の有効径が著しく増大してくる。これは軸上光線の入射高が増加するためであり、これが原因となってズーミングや合焦(フォーカス)に際して球面収差や色収差をはじめとする諸収差の発生量が増大してくる。一般にこのときの諸収差を良好に補正するために各レンズ群のレンズ枚数を増やして設計の自由度を増加させると、レンズ系全体が大型化し高重量となってくる。   In general, in such a four-group zoom lens, when the focal length at the telephoto end is increased to increase the aperture, the effective diameter of the first lens unit L1 increases significantly. This is because the incident height of the axial ray increases, and this causes an increase in the amount of various aberrations including spherical aberration and chromatic aberration during zooming and focusing. Generally, if the number of lenses in each lens group is increased to increase the degree of design freedom in order to satisfactorily correct various aberrations at this time, the entire lens system becomes larger and heavier.

そこで、各実施例では、このように軸上光線の入射高が一番高くなる第1レンズ群L1に回折光学素子を配置している。これにより、第1レンズ群L1で発生する諸収差、特に色収差を良好に補正している。さらに第1レンズ群L1で発生する色収差補正の分担を、回折光学素子の効果が大きくなるように使用している。これにより、第1レンズ群L1中の正レンズに使用する硝材に自由度が増え、低比重の硝材を選ぶことができるようにして、諸収差の補正を良好に行っている。   Therefore, in each embodiment, the diffractive optical element is arranged in the first lens unit L1 in which the incident height of the axial ray is highest as described above. Thereby, various aberrations generated in the first lens unit L1, particularly chromatic aberration, are corrected well. Further, the chromatic aberration correction generated in the first lens unit L1 is used so that the effect of the diffractive optical element is increased. This increases the degree of freedom in the glass material used for the positive lens in the first lens unit L1, and allows the selection of a glass material with a low specific gravity so that various aberrations are corrected well.

回折部が設けられている第1レンズ群L1のレンズ構成は次のとおりである。   The lens configuration of the first lens unit L1 provided with the diffractive portion is as follows.

図1の実施例1において第1aレンズ群L1aは、負レンズと正レンズより成り、該負レンズの像側の面に回折部が形成されている。第1bレンズ群L1bは3つの正レンズより成っている。   In Example 1 of FIG. 1, the first-a lens unit L1a includes a negative lens and a positive lens, and a diffractive portion is formed on the image side surface of the negative lens. The 1b lens unit L1b is composed of three positive lenses.

図5の実施例2において、第1aレンズ群L1aは、負レンズと正レンズより成っている。第1bレンズ群L1bは3つの正レンズよりなっている。   In Example 2 of FIG. 5, the first-a lens unit L1a includes a negative lens and a positive lens. The 1b lens group L1b is composed of three positive lenses.

このうち物体側から第1番目の正レンズの像側の面に回折部が形成されている。   Among these, the diffraction part is formed on the image side surface of the first positive lens from the object side.

図9の実施例3において、第1aレンズ群L1aは、負レンズと正レンズの接合レンズより成っている。第1bレンズ群L1bは2つの正レンズより成っている。   In Example 3 of FIG. 9, the first-a lens unit L1a is composed of a cemented lens of a negative lens and a positive lens. The 1b lens unit L1b is composed of two positive lenses.

このうち物体側から第1番目の正レンズの像側の面に回折部が形成されている。   Among these, the diffraction part is formed on the image side surface of the first positive lens from the object side.

図13の実施例4において、第1aレンズ群L1aは、正レンズ、負レンズと正レンズの接合レンズより成っている。第1bレンズ群L1bは2つの正レンズより成っている。第1cレンズ群L1cは、1つの負レンズより成り、該負レンズの物体側の面に回折部が形成されている。   In Example 4 of FIG. 13, the first-a lens unit L1a includes a positive lens, and a cemented lens of a negative lens and a positive lens. The 1b lens unit L1b is composed of two positive lenses. The first c lens unit L1c includes one negative lens, and a diffractive portion is formed on the object side surface of the negative lens.

図17の実施例5において、第1aレンズ群L1aは、正レンズ、負レンズと正レンズの接合レンズより成っている。第1bレンズ群L1bは正レンズ、正レンズと負レンズの接合レンズより成っている。物体側の正レンズの物体側の面に回折部が形成されている。第1cレンズ群L1cは、正レンズと負レンズの接合レンズより成っている。   In Example 5 of FIG. 17, the first-a lens unit L1a is composed of a positive lens and a cemented lens of a negative lens and a positive lens. The 1b lens unit L1b includes a positive lens and a cemented lens of a positive lens and a negative lens. A diffractive portion is formed on the object side surface of the object side positive lens. The first c lens unit L1c includes a cemented lens of a positive lens and a negative lens.

各実施例において、回折光学素子の回折部の焦点距離をfDOEとする。全系の望遠端における焦点距離をfとする。第1レンズ群L1に含まれる正レンズの材料のアッベ数の平均値をνG1+avとする。このとき、
0.02<f/fDOE<0.2 ・・・(1)
30<νG1+av<80 ・・・(2)
なる条件式を満足している。
In each embodiment, the focal length of the diffractive portion of the diffractive optical element is defined as f DOE . Let f T be the focal length at the telephoto end of the entire system. The average value of the Abbe number of the material of the positive lens included in the first lens unit L1 is ν G1 + av . At this time,
0.02 <f T / f DOE <0.2 (1)
30 <ν G1 + av <80 (2)
The following conditional expression is satisfied.

尚、各実施例において回折部とは、基板(平板又はレンズ)上に設けた1以上の回折格子をいう。又回折光学素子とは1以上の回折格子より成る回折部を基板(平板又はレンズ)上に設けた素子をいう。   In each embodiment, the diffractive portion refers to one or more diffraction gratings provided on a substrate (a flat plate or a lens). A diffractive optical element refers to an element in which a diffractive portion composed of one or more diffraction gratings is provided on a substrate (flat plate or lens).

又回折部の屈折力(パワー=焦点距離の逆数)φDは次の如く求められる。   The refractive power (power = reciprocal of focal length) φD of the diffractive portion is obtained as follows.

回折部の回折格子の形状を、基準波長(e線)をλ、光軸からの距離をH、位相をφ(H)とし、
φ(H)=(2π・m/λ)・(C・H+C・H+・・C2i・H2i
・・・(a)
なる式で表したとき、2次項の係数Cより、屈折力φDは、
φD=−2・C
となる。
The shape of the diffraction grating of the diffractive portion is defined such that the reference wavelength (e-line) is λ 0 , the distance from the optical axis is H, and the phase is φ (H).
φ (H) = (2π · m / λ 0 ) · (C 2 · H 2 + C 4 · H 4 + ·· C 2i · H 2i )
... (a)
From the coefficient C 2 of the secondary term, the refractive power φD is
φD = -2 · C 2
It becomes.

即ち、
DOE=−1/(2・C
で表される。
That is,
f DOE = -1 / (2 · C 2 )
It is represented by

条件式(1)は、前述した4群構成のズームレンズにおいて、諸収差の良好な補正と光学系全体の大きさとをバランス良く保つためのものである。   Conditional expression (1) is for maintaining good correction of various aberrations and the overall size of the optical system in a well-balanced manner in the above-described four-group zoom lens.

条件式(1)の上限値を超えると回折部のパワーが強くなりすぎて、色収差が補正過剰となってしまう。一方条件式(1)の下限値を超えてしまうと回折部のパワーが弱くなりすぎるため、望遠端において色収差を回折部だけでは補正することが難しくなる。このため、色収差の補正に蛍石などの異常分散性の高い硝材が必要となってしまうので良くない。   If the upper limit value of conditional expression (1) is exceeded, the power of the diffraction part becomes too strong, and chromatic aberration is overcorrected. On the other hand, if the lower limit value of conditional expression (1) is exceeded, the power of the diffractive portion becomes too weak, and it becomes difficult to correct chromatic aberration at the telephoto end only by the diffractive portion. For this reason, a glass material with high anomalous dispersion such as fluorite is required for correcting chromatic aberration, which is not good.

各実施例において、更なる光学性能の向上のためには条件式(1)の数値範囲を次のようにすることが好ましい。   In each embodiment, it is preferable to set the numerical range of conditional expression (1) as follows in order to further improve the optical performance.

0.02<f/fDOE<0.15 ・・・(1a)
また、更なる光学性能の向上のためには条件式(1a)の数値範囲は次のようにすることが好ましい。
0.02 <f T / f DOE <0.15 (1a)
In order to further improve the optical performance, it is preferable that the numerical range of the conditional expression (1a) is as follows.

0.02<f/fDOE<0.1 ・・・(1b)
条件式(2)は、第1レンズ群L1中の正レンズの材料のアッベ数の平均値に関する。
0.02 <f T / f DOE <0.1 (1b)
Conditional expression (2) relates to the average value of the Abbe number of the material of the positive lens in the first lens unit L1.

条件式(2)の上限値を超えてしまうと、異常分散性の高い硝材を使用することになるため、比重が大きい硝材が必要となり、重量が増加してしまう。またこれらの硝材は一般的に屈折率が低い硝材であるので、球面収差の補正が難しくなる。   If the upper limit of conditional expression (2) is exceeded, a glass material with high anomalous dispersion is used, so that a glass material with a large specific gravity is required and the weight increases. In addition, since these glass materials are generally glass materials having a low refractive index, it is difficult to correct spherical aberration.

一方条件式(2)の下限値を超えてしまうと、高分散材料ばかりを使用することになるため、回折部で補正可能な色収差のバランスを維持することが難しくなってしまう。よって回折部を色収差の補正に有効に使用することが難しくなる。   On the other hand, if the lower limit value of conditional expression (2) is exceeded, only a highly dispersed material is used, and it becomes difficult to maintain the balance of chromatic aberration that can be corrected by the diffraction section. Therefore, it becomes difficult to effectively use the diffraction part for correcting chromatic aberration.

また、更なる光学性能の向上のためには条件式(2)の数値範囲は次のようにすることが好ましい。   In order to further improve the optical performance, it is preferable that the numerical range of the conditional expression (2) is as follows.

40<νG1+av<71 ・・・(2a)
また、更なる光学性能の向上のためには条件式(2a)の数値範囲は次のようにすることが好ましい。
40 <ν G1 + av <71 (2a)
In order to further improve the optical performance, the numerical range of the conditional expression (2a) is preferably set as follows.

50<νG1+av<71 ・・・(2b)
各実施例によれば、以上のように各構成要件を特定することによって、高ズーム比でありながら全ズーム域に渡って色収差の補正が良好で高画質の画像が得られる。
50 <ν G1 + av <71 (2b)
According to each embodiment, by specifying each component as described above, it is possible to obtain a high-quality image with good chromatic aberration correction over the entire zoom range while having a high zoom ratio.

特に、第1レンズ群L1に回折光学素子を用いることで良好な光学性能を維持すること、ズーミング時に発生する軸上色収差の変動を効果的に補正することができる。   In particular, by using a diffractive optical element for the first lens unit L1, it is possible to maintain good optical performance and to effectively correct fluctuations in axial chromatic aberration that occur during zooming.

また条件式(1)および(2)を満足することにより、ズーミング時に発生する色収差の補正を回折光学素子が効果的に担っている。これにより、蛍石等の異常分散性硝材を使用することなく良好な光学特性を維持し、低比重硝材の使用やレンズ枚数を削減することができて全体を軽量にすることが容易になる。   Further, by satisfying the conditional expressions (1) and (2), the diffractive optical element is effectively responsible for correcting chromatic aberration that occurs during zooming. Accordingly, good optical characteristics can be maintained without using an anomalous dispersive glass material such as fluorite, the use of a low specific gravity glass material and the number of lenses can be reduced, and the overall weight can be easily reduced.

各実施例のズームレンズにおいて、更に高ズーム比で良好なる光学性能を得るためには、以下の条件式を満足するのがより好ましい。これによれば、条件式に対応した効果が得られる。   In the zoom lens of each embodiment, in order to obtain good optical performance at a higher zoom ratio, it is more preferable to satisfy the following conditional expression. According to this, an effect corresponding to the conditional expression can be obtained.

第1レンズ群L1の焦点距離をfとする。このとき、
0.1<f/f<0.5 ・・・(3)
なる条件式を満足することである。
The focal length of the first lens unit L1 and f 1. At this time,
0.1 <f 1 / f T < 0.5 ··· (3)
The following conditional expression is satisfied.

第1レンズ群L1は望遠端側での収差変動に大きく影響する。このため、条件式(3)の下限値を超えて第1レンズ群L1の屈折力が強くなりすぎると、全長の短縮には有利となるが、望遠端において球面収差や色収差が悪化してくる。逆に上限値を超えると高ズーム比を確保するのに必要な第2レンズ群L2の移動量が大きくなりすぎて全系の小型化が困難になる。   The first lens unit L1 greatly affects aberration fluctuations on the telephoto end side. For this reason, if the refractive power of the first lens unit L1 becomes too strong beyond the lower limit value of conditional expression (3), it is advantageous for shortening the total length, but spherical aberration and chromatic aberration become worse at the telephoto end. . On the other hand, if the upper limit is exceeded, the amount of movement of the second lens unit L2 necessary to ensure a high zoom ratio becomes too large, making it difficult to downsize the entire system.

また更に望ましくは条件式(3)の数値範囲を
0.15<f/f<0.45 ・・・(3a)
とすることで、更なる全系の小型化と高性能化が容易になる。
More preferably, the numerical range of the conditional expression (3) is 0.15 <f 1 / f T <0.45 (3a)
This facilitates further downsizing and higher performance of the entire system.

第3レンズ群L3と後方レンズ群L4との間には開口絞りSPが設けられている。   An aperture stop SP is provided between the third lens unit L3 and the rear lens unit L4.

これは、開口絞りSPを大きな変倍作用を行うレンズ群よりも像側に置くことにより、射出瞳位置がズーミングによらず、常に遠くの一定の位置に保つことが容易となる。   This is because it is easy to keep the exit pupil position at a constant position far away from the zooming by placing the aperture stop SP on the image side of the lens group that performs a large zooming action.

故に、例えば撮像部に、3板プリズムに代表される色分解系や、撮像素子に入射角度によって特性が変化するCCDやCMOSを用いるカラーカメラ等に用いる場合に、カラーシェーディングによる画質の劣化が起こりにくくなる。   Therefore, for example, when the imaging unit is used in a color separation system represented by a three-plate prism, or a color camera using a CCD or CMOS whose characteristics change depending on the incident angle, the image quality is deteriorated due to color shading. It becomes difficult.

回折部には、それ自体に非球面の効果を持たせても良い。各実施例の回折部の位相の式(a)において、光軸からの距離hの4乗の項の係数C4以降の高次の項に値を持たせることによって、これがなされる。   The diffraction part itself may have an aspherical effect. In the phase equation (a) of the diffraction part of each embodiment, this is done by giving a value to the higher-order terms after the coefficient C4 of the fourth power term of the distance h from the optical axis.

これにより、上記で述べた、色収差以外の非球面効果に加え、回折格子による非球面効果は、波長により異なるため、特に望遠側において、球面収差の色差変動を補正することが容易になる。   As a result, in addition to the aspherical effects other than chromatic aberration described above, the aspherical effect due to the diffraction grating varies depending on the wavelength, so that it becomes easy to correct the chromatic difference variation of the spherical aberration, particularly on the telephoto side.

ここで、各実施例のズームレンズで用いた回折光学素子の構成について説明する。   Here, the configuration of the diffractive optical element used in the zoom lens of each embodiment will be described.

第1レンズ群L1中に配置される回折光学素子を構成する回折部は、光軸に対して回転対称な回折格子より成っている。   The diffractive portion constituting the diffractive optical element disposed in the first lens unit L1 is composed of a diffraction grating that is rotationally symmetric with respect to the optical axis.

図25は回折光学素子1の回折部の一部拡大断面図であり、基板(透明基板)2上に1つの層よりなる回折格子(回折部)3を設けている。図26は、この回折光学素子1の回折効率の特性を示す図である。図26において横軸は波長を表し、縦軸は回折効率を表している。なお、回折効率は全透過光束に対する回折光の光量の割合であり、格子境界面での反射光などは説明が複雑になるのでここでは考慮していない。   FIG. 25 is a partially enlarged cross-sectional view of the diffractive portion of the diffractive optical element 1, and a diffraction grating (diffractive portion) 3 composed of one layer is provided on a substrate (transparent substrate) 2. FIG. 26 is a diagram showing the characteristics of the diffraction efficiency of the diffractive optical element 1. In FIG. 26, the horizontal axis represents the wavelength, and the vertical axis represents the diffraction efficiency. Note that the diffraction efficiency is the ratio of the amount of diffracted light to the total transmitted light beam, and the reflected light at the lattice boundary is not considered here because the explanation is complicated.

回折格子3の光学材料は、紫外線硬化樹脂(屈折率nd=1.513、アッベ数νd=51.0)を用い、格子厚d1を1.03μmと設定し、波長530nm、+1次の回折光の回折効率が最も高くなるようにしている。すなわち設計次数が+1次で、設計波長が波長530nmである。図26中において+1次の回折光の回折効率は実線で示している。   The optical material of the diffraction grating 3 is an ultraviolet curable resin (refractive index nd = 1.513, Abbe number νd = 51.0), the grating thickness d1 is set to 1.03 μm, the wavelength is 530 nm, and the + 1st order diffracted light. The diffraction efficiency is made the highest. That is, the design order is + 1st order and the design wavelength is 530 nm. In FIG. 26, the diffraction efficiency of the + 1st order diffracted light is indicated by a solid line.

さらに、図26では設計次数近傍の回折次数(+1次±1次である0次と+2次)の回折効率も併記している。図から分かるように、設計次数での回折効率は設計波長近傍で最も高くなり、それ以外の波長では徐々に低くなる。   Further, in FIG. 26, diffraction efficiency of diffraction orders near the design order (+ 1st order ± 1st order, 0th order and + 2nd order) is also shown. As can be seen from the figure, the diffraction efficiency at the design order is highest near the design wavelength, and gradually decreases at other wavelengths.

この設計次数での回折効率の低下分が他の次数の回折光となり、フレアの要因となる。また、回折光学素子を光学系中の複数箇所に使用した場合には、設計波長以外の波長での回折効率の低下は透過率の低下にもつながることになる。   The decrease in diffraction efficiency at this design order becomes diffracted light of other orders, which causes flare. Further, when the diffractive optical element is used at a plurality of locations in the optical system, a decrease in diffraction efficiency at a wavelength other than the design wavelength leads to a decrease in transmittance.

次に、異なる材料よりなる複数の回折格子を積層した積層型の回折光学素子について説明する。図27は積層型の回折光学素子の一部拡大断面図であり、図28は図27に示す回折光学素子の+1次の回折光の回折効率の波長依存性を表す図である。図27の回折光学素子では、基板102上に紫外線硬化樹脂(屈折率nd=1.499、アッベ数νd=54)からなる第1の回折格子104を形成している。更にその上に第2の回折格子105(屈折率nd=1.598、アッベ数νd=28)を形成している。この材料の組み合わせにおいて、第1の回折格子104の格子厚d1はd1=13.8μm、第2の回折格子105の格子厚d2はd2=10.5μmとしている。   Next, a laminated diffractive optical element in which a plurality of diffraction gratings made of different materials are laminated will be described. FIG. 27 is a partially enlarged cross-sectional view of a laminated diffractive optical element, and FIG. 28 is a diagram showing the wavelength dependence of the diffraction efficiency of + 1st order diffracted light of the diffractive optical element shown in FIG. In the diffractive optical element of FIG. 27, a first diffraction grating 104 made of an ultraviolet curable resin (refractive index nd = 1.499, Abbe number νd = 54) is formed on a substrate 102. Further, a second diffraction grating 105 (refractive index nd = 1.598, Abbe number νd = 28) is formed thereon. In this combination of materials, the grating thickness d1 of the first diffraction grating 104 is d1 = 13.8 μm, and the grating thickness d2 of the second diffraction grating 105 is d2 = 10.5 μm.

図28からも分かるように、積層構造の回折格子を備えた回折光学素子にすることで、設計次数の回折光において使用波長全域(ここでは可視域)で95%以上という高い回折効率を得ている。   As can be seen from FIG. 28, by using a diffractive optical element provided with a diffraction grating having a laminated structure, a high diffraction efficiency of 95% or more is obtained in the entire range of wavelengths used (in this case, the visible region) in the diffracted light of the designed order. Yes.

なお、前述の積層構造の回折光学素子としては、回折格子を構成する材料を紫外線硬化樹脂に限定するものではなく、他のプラスチック材等も使用できるし、基材によっては第1の層を直接基材に形成しても良い。また各格子厚が必ずしも異なる必要はなく、図29のように材料の組み合わせによっては2つの層104と105の格子厚を等しくしても良い。この場合は表面に格子形状が形成されないことになるので、防塵性に優れ、回折光学素子の組立作業性を向上させることができる。更には2つの回折格子104と105を必ずしも密着させる必要はなく、空気層を隔てて2つの回折格子の層を配置しても良い。   The diffractive optical element having the above-described laminated structure is not limited to the material that constitutes the diffraction grating, but other plastic materials may be used. Depending on the substrate, the first layer may be directly You may form in a base material. In addition, the lattice thicknesses are not necessarily different, and the lattice thicknesses of the two layers 104 and 105 may be equal depending on the combination of materials as shown in FIG. In this case, since the lattice shape is not formed on the surface, it is excellent in dust resistance and can improve the assembling workability of the diffractive optical element. Furthermore, the two diffraction gratings 104 and 105 are not necessarily in close contact with each other, and two diffraction grating layers may be arranged with an air layer therebetween.

回折部は光学面の上に施されているが、そのベースは球面又は平面又は非球面でも良い。また、それらの光学面にプラスチックなどの膜を回折部(回折面)として添付する方法である所謂レプリカ非球面で作成しても良い。   Although the diffractive portion is provided on the optical surface, the base thereof may be spherical, flat, or aspheric. Moreover, you may create by what is called a replica aspherical surface which is the method of attaching films | membranes, such as a plastics, to those optical surfaces as a diffraction part (diffraction surface).

回折部は大きな異常分散性を有することから、このように第1レンズ群L1の面に回折部を設けることで、望遠側における軸上色収差、倍率色収差の補正を効果的に行うことが出来る。   Since the diffractive part has a large anomalous dispersion, by providing the diffractive part on the surface of the first lens unit L1 in this way, it is possible to effectively correct axial chromatic aberration and lateral chromatic aberration on the telephoto side.

回折格子の形状は、その2i次項の位相係数をC2iとした時、光軸からの距離Hにおける位相φ(H)は前述した式(a)のように次式で表される。ただしmは回折次数、λは基準波長である。 As for the shape of the diffraction grating, the phase φ (H) at the distance H from the optical axis is expressed by the following equation (a) as described above, where C 2i is the phase coefficient of the 2i-order term. Where m is the diffraction order and λ 0 is the reference wavelength.

Figure 0004928297
Figure 0004928297

一般に、屈折光学系のアッベ数(分散値)νdは、d、C、F線の各波長における屈折力をNd、NC、NFとした時、次式で表される。   In general, the Abbe number (dispersion value) νd of the refractive optical system is expressed by the following equation when the refractive powers at the wavelengths of d, C, and F lines are Nd, NC, and NF.

νd=(Nd−1)/(NF−NC)>0 ・・・(5)
一方、回折部のアッベ数νdはd、C、F線の各波長をλd、λC、λFとした時、
νd=λd/(λF−λC) ・・・(6)
と表され、νd=−3.45となる。
νd = (Nd−1) / (NF-NC)> 0 (5)
On the other hand, when the Abbe number νd of the diffractive portion is set to λd, λC, and λF for the wavelengths of d, C, and F lines,
νd = λd / (λF−λC) (6)
And νd = −3.45.

これにより、任意波長における分散性は、屈折光学系と逆作用を有することを示している。   Thereby, it is shown that the dispersibility at an arbitrary wavelength has a reverse action with respect to the refractive optical system.

また、回折部の基準波長における近軸的な一時回折光(m = 1)の屈折力φは、回折部の位相を表す前式(a)から2次項の係数をC2とした時、φ= −2・Cと表される。 Further, the refractive power φ of the paraxial temporary diffracted light (m = 1) at the reference wavelength of the diffractive portion is φ = when the coefficient of the second-order term is C2 from the previous equation (a) representing the phase of the diffractive portion. represented as -2 · C 2.

さらに、任意波長をλ、基準波長をλとした時、任意波長の基準波長に対する屈折力変化は、次式となる。 Further, when the arbitrary wavelength is λ and the reference wavelength is λ 0 , the refractive power change with respect to the reference wavelength of the arbitrary wavelength is expressed by the following equation.

φ’=(λ/λ)×(−2・C) ・・・(7)
これにより、回折部の特徴として、前式(a)の位相係数C2を変化させることにより、弱い近軸屈折力変化で大きな分散性が得られることが理解できる。
これは色収差以外の諸収差に大きな影響を与えることなく、色収差の補正を行うことを意味している。
φ ′ = (λ / λ 0 ) × (−2 · C 2 ) (7)
Thereby, it can be understood that, as a characteristic of the diffraction part, by changing the phase coefficient C2 of the previous equation (a), a large dispersibility can be obtained with a weak change in the paraxial refractive power.
This means that chromatic aberration is corrected without greatly affecting various aberrations other than chromatic aberration.

また位相係数C以降の高次数の係数については、回折部の光線入射高の変化に対する屈折力変化は非球面と類似した効果を得ることができる。それと同時に、光線入射高の変化に応じて基準波長に対し任意波長の屈折力変化を与えることができる。このため、倍率色収差の補正に有効である。 With respect to the higher order coefficients of the phase coefficient C 4 and later, the refractive power changes to the light incident height of the change in the diffraction unit can obtain the effect similar to aspheric. At the same time, it is possible to change the refractive power at an arbitrary wavelength with respect to the reference wavelength according to the change in the incident light height. Therefore, it is effective for correcting lateral chromatic aberration.

図21は本発明の実施例1のズームタイプと同じで、回折光学素子を有しない従来のズームレンズの広角端におけるレンズ断面図である。   FIG. 21 is a lens cross-sectional view at the wide-angle end of a conventional zoom lens that is the same as the zoom type according to the first embodiment of the present invention and does not have a diffractive optical element.

図22、図23、図24は従来のズームレンズの広角端、中間のズーム位置、望遠端における縦収差図である。   FIGS. 22, 23, and 24 are longitudinal aberration diagrams of the conventional zoom lens at the wide-angle end, the intermediate zoom position, and the telephoto end.

図22〜図24の収差図と、実施例1の図2〜図4の収差図と比較する。望遠端における軸上色収差が回折光学素子を色収差補正に用いた実施例1の方が、蛍石等の異常分散性硝材を使用していないにもかかわらず、同等またはそれ以上に改善されていることがわかる。   The aberration diagrams of FIGS. 22 to 24 and the aberration diagrams of FIGS. 2 to 4 of Example 1 are compared. The axial chromatic aberration at the telephoto end is improved to the same or more in the case of Example 1 in which the diffractive optical element is used for chromatic aberration correction, even though no anomalous dispersion glass material such as fluorite is used. I understand that.

以下に本発明の数値実施例1〜5を示す。各数値実施例において、iは物体側からの面の順序を示し、Riは物体側より第i番目の面の曲率半径、Diは物体側より第i番目と第i+1番目の間隔、Niとνiは第i番目の光学部材の屈折率とアッベ数である。f、fno、2ωはそれぞれ無限遠物体に焦点を合わせたときの全系の焦点距離、Fナンバー、画角を表している。   Numerical examples 1 to 5 of the present invention are shown below. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the i-th surface from the object side, Di is the i-th and i + 1-th distance from the object side, Ni and νi Are the refractive index and Abbe number of the i-th optical member. f, fno, and 2ω represent the focal length, F number, and angle of view of the entire system when focusing on an object at infinity, respectively.

最後の3つの面は、フィルター等のガラスブロックである。   The last three surfaces are glass blocks such as filters.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正、Rを近軸曲率半径、kを離心率、A、B、C、D、Eを各々非球面係数としたとき、   The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the eccentricity, and A, B, C, D, E are each When the aspheric coefficient is used,

Figure 0004928297
Figure 0004928297

なる式で表している。 It is expressed by the following formula.

回折部(回折面)は前述(a)式の位相関数の位相係数を与えることで表している。   The diffraction part (diffraction surface) is represented by giving the phase coefficient of the phase function of the above-mentioned formula (a).

そして、前述の各条件式と数値実施例における諸数値との関係を表6に示す。
(数値実施例1)
f = 10.0 〜 350.0 fno = 2.0 〜 3.8 2ω = 57.6°〜 1.8°
r1= 1464.477 d1= 5.45 n1= 1.84666 ν1= 23.78
回折光学素子 r2= 238.976 d2= 4.84
r3= 510.756 d3= 7.29 n2= 1.48749 ν2= 70.23
r4= -841.863 d4= 9.50
r5= 214.098 d5= 10.64 n3= 1.51633 ν3= 64.14
r6= -429.990 d6= 0.25
r7= 146.162 d7= 8.38 n4= 1.51633 ν4= 64.14
r8= 499.284 d8= 0.25
r9= 81.255 d9= 8.04 n5= 1.57099 ν5= 50.80
r10= 104.145 d10= (可変)
非球面 r11= 137.067 d11= 1.30 n6= 1.81600 ν6= 46.62
r12= 16.216 d12= 6.87
r13= -60.616 d13= 6.58 n7= 1.80518 ν7= 25.42
r14= -18.000 d14= 1.10 n8= 1.81600 ν8= 46.62
r15= -331.167 d15= 0.25
非球面 r16= 193.362 d16= 7.73 n9= 1.66998 ν9= 39.30
r17= -27.677 d17= 3.31 n10= 1.88300 ν10= 40.76
r18= -109.202 d18= (可変)
r19= -45.102 d19= 2.82 n11= 1.79952 ν11= 42.22
r20= 111.214 d20= 3.73 n12= 1.92286 ν12= 18.90
r21= -506.063 d21= (可変)
r22= 0.000 d22= 1.32
r23= 253.440 d23= 6.00 n13= 1.51633 ν13= 64.14
r24= -48.158 d24= 0.20
r25= 128.686 d25= 3.91 n14= 1.51823 ν14= 58.90
r26= -109.638 d26= 0.20
r27= 43.959 d27= 9.30 n15= 1.51633 ν15= 64.14
r28= -59.382 d28= 1.85 n16= 1.88300 ν16= 40.76
r29= 77.789 d29= 43.65
r30= 86.878 d30= 5.87 n17= 1.51823 ν17= 58.90
r31= -63.675 d31= 0.62
r32= 170.425 d32= 1.65 n18= 1.79952 ν18= 42.22
r33= 24.626 d33= 6.72 n19= 1.51823 ν19= 58.90
r34= 438.673 d34= 0.82
r35= 30.405 d35= 8.03 n20= 1.51633 ν20= 64.14
r36= -75.712 d36= 1.33 n21= 1.78590 ν21= 44.20
r37= 94.992 d37= 2.41
r38= 653.143 d38= 1.76 n22= 1.51823 ν22= 58.90
r39= -472.700 d39= 5.16
r40= ∞ d40= 37.50 n23= 1.60342 ν23= 38.03
r41= ∞ d41= 20.25 n24= 1.51633 ν24= 64.14
r42= ∞
Table 6 shows the relationship between the conditional expressions described above and the numerical values in the numerical examples.
(Numerical example 1)
f = 10.0 to 350.0 fno = 2.0 to 3.8 2ω = 57.6 ° to 1.8 °
r1 = 1464.477 d1 = 5.45 n1 = 1.84666 ν1 = 23.78
Diffractive optical element r2 = 238.976 d2 = 4.84
r3 = 510.756 d3 = 7.29 n2 = 1.48749 ν2 = 70.23
r4 = -841.863 d4 = 9.50
r5 = 214.098 d5 = 10.64 n3 = 1.51633 ν3 = 64.14
r6 = -429.990 d6 = 0.25
r7 = 146.162 d7 = 8.38 n4 = 1.51633 ν4 = 64.14
r8 = 499.284 d8 = 0.25
r9 = 81.255 d9 = 8.04 n5 = 1.57099 ν5 = 50.80
r10 = 104.145 d10 = (variable)
Aspherical surface r11 = 137.067 d11 = 1.30 n6 = 1.81600 ν6 = 46.62
r12 = 16.216 d12 = 6.87
r13 = -60.616 d13 = 6.58 n7 = 1.80518 ν7 = 25.42
r14 = -18.000 d14 = 1.10 n8 = 1.81600 ν8 = 46.62
r15 = -331.167 d15 = 0.25
Aspherical surface r16 = 193.362 d16 = 7.73 n9 = 1.66998 ν9 = 39.30
r17 = -27.677 d17 = 3.31 n10 = 1.88300 ν10 = 40.76
r18 = -109.202 d18 = (variable)
r19 = -45.102 d19 = 2.82 n11 = 1.79952 ν11 = 42.22
r20 = 111.214 d20 = 3.73 n12 = 1.92286 ν12 = 18.90
r21 = -506.063 d21 = (variable)
r22 = 0.000 d22 = 1.32
r23 = 253.440 d23 = 6.00 n13 = 1.51633 ν13 = 64.14
r24 = -48.158 d24 = 0.20
r25 = 128.686 d25 = 3.91 n14 = 1.51823 ν14 = 58.90
r26 = -109.638 d26 = 0.20
r27 = 43.959 d27 = 9.30 n15 = 1.51633 ν15 = 64.14
r28 = -59.382 d28 = 1.85 n16 = 1.88300 ν16 = 40.76
r29 = 77.789 d29 = 43.65
r30 = 86.878 d30 = 5.87 n17 = 1.51823 ν17 = 58.90
r31 = -63.675 d31 = 0.62
r32 = 170.425 d32 = 1.65 n18 = 1.79952 ν18 = 42.22
r33 = 24.626 d33 = 6.72 n19 = 1.51823 ν19 = 58.90
r34 = 438.673 d34 = 0.82
r35 = 30.405 d35 = 8.03 n20 = 1.51633 ν20 = 64.14
r36 = -75.712 d36 = 1.33 n21 = 1.78590 ν21 = 44.20
r37 = 94.992 d37 = 2.41
r38 = 653.143 d38 = 1.76 n22 = 1.51823 ν22 = 58.90
r39 = -472.700 d39 = 5.16
r40 = ∞ d40 = 37.50 n23 = 1.60342 ν23 = 38.03
r41 = ∞ d41 = 20.25 n24 = 1.51633 ν24 = 64.14
r42 = ∞

Figure 0004928297
Figure 0004928297

非球面係数
11面 K= 12.86298 A= 0 B= -4.32030×10-6
C= -1.69771×10-8 D= 6.49100×10-11 E= -1.31100×10-18
16面 K= -3.76277 A= 0 B= 1.162499×10-5
C= 3.89743×10-8 D= -9.43000×10-11 E= 3.74400×10-18
位相係数
2面 C2= -4.18426×10-5 C4= 8.353765×10-10
C6= -1.06146×10-13C8= 0

(数値実施例2)
f = 8.9 〜 410.0 fno = 2.0 〜 3.8 2ω = 63.4°〜 1.54°
r1= 596.741 d1= 6.17 n1= 1.83400 ν1= 37.16
r2= 139.043 d2= 1.42
r3= 141.047 d3= 17.00 n2= 1.48749 ν2= 70.23
r4= -1035.398 d4= 12.37
r5= 190.258 d5= 9.00 n3= 1.48749 ν3= 70.23
回折光学素子 r6= 724.127 d6= 0.12
r7= 171.110 d7= 9.00 n4= 1.48749 ν4= 70.23
r8= 498.733 d8= 0.12
r9= 168.400 d9= 10.00 n5= 1.51633 ν5= 64.14
r10= 1401.582 d10= (可変)
非球面 r11= -353.976 d11= 1.80 n6= 1.88300 ν6= 40.76
r12= 27.239 d12= 8.50
r13= -67.583 d13= 5.42 n7= 1.92286 ν7= 21.29
r14= -27.160 d14= 1.50 n8= 1.80400 ν8= 46.57
r15= 100.543 d15= 0.12
r16= 47.753 d16= 5.61 n9= 1.72342 ν9= 37.95
r17= -228.222 d17= 1.50 n10= 1.88300 ν10= 40.76
r18= 188.878 d18= (可変)
r19= -43.394 d19= 5.98 n11= 1.84666 ν11= 23.78
r20= -28.784 d20= 1.50 n12= 1.72916 ν12= 54.68
r21= -137.232 d21= 1.32
r22= -64.459 d22= 1.60 n13= 1.72916 ν13= 54.68
r23= -642.122 d23= (可変)
r24= (絞り) d24= 1.99
r25= 4587.238 d25= 4.72 n14= 1.60300 ν14= 65.44
r26= -65.557 d26= 0.12
r27= 99.677 d27= 8.19 n15= 1.48749 ν15= 70.23
r28= -71.758 d28= 0.66
r29= 145.422 d29= 4.04 n16= 1.69680 ν16= 55.53
r30= -186.666 d30= 2.00
r31= 82.169 d31= 5.97 n17= 1.48749 ν17= 70.23
r32= -61.421 d32= 1.85 n18= 1.80518 ν18= 25.42
r33= -400.086 d33= 4.83
r34= -87.259 d34= 1.65 n19= 1.88300 ν19= 40.76
r35= 192.396 d35= 41.52
r36= 82.172 d36= 3.98 n20= 1.75500 ν20= 52.32
r37= -144.276 d37= 0.78
r38= 49.793 d38= 6.29 n21= 1.84666 ν21= 23.78
r39= -76.111 d39= 1.45 n22= 1.80610 ν22= 33.27
r40= 23.771 d40= 1.50
r41= 31.332 d41= 10.67 n23= 1.48749 ν23= 70.23
r42= -28.121 d42= 1.72 n24= 1.80610 ν24= 33.27
r43= 99.045 d43= 1.11
r44= 113.940 d44= 7.04 n25= 1.48749 ν25= 70.23
r45= -33.773 d45= 0.50
r46= ∞ d46= 33.00 n26= 1.61340 ν26= 44.30
r47= ∞ d47= 13.20 n27= 1.51633 ν27= 64.14
r48= ∞
Aspheric coefficient
11 side K = 12.86298 A = 0 B = -4.32030 × 10 -6
C = -1.69771 × 10 -8 D = 6.49 100 × 10 -11 E = -1.31 100 × 10 -18
16 sides K = -3.76277 A = 0 B = 1.162499 × 10 -5
C = 3.89743 × 10 -8 D = -9.43000 × 10 -11 E = 3.74400 × 10 -18
Phase coefficient
2 sides C 2 = -4.18426 × 10 -5 C 4 = 8.353765 × 10 -10
C 6 = -1.06146 × 10 -13 C 8 = 0

(Numerical example 2)
f = 8.9 to 410.0 fno = 2.0 to 3.8 2ω = 63.4 ° to 1.54 °
r1 = 596.741 d1 = 6.17 n1 = 1.83400 ν1 = 37.16
r2 = 139.043 d2 = 1.42
r3 = 141.047 d3 = 17.00 n2 = 1.48749 ν2 = 70.23
r4 = -1035.398 d4 = 12.37
r5 = 190.258 d5 = 9.00 n3 = 1.48749 ν3 = 70.23
Diffractive optical element r6 = 724.127 d6 = 0.12
r7 = 171.110 d7 = 9.00 n4 = 1.48749 ν4 = 70.23
r8 = 498.733 d8 = 0.12
r9 = 168.400 d9 = 10.00 n5 = 1.51633 ν5 = 64.14
r10 = 1401.582 d10 = (variable)
Aspherical surface r11 = -353.976 d11 = 1.80 n6 = 1.88300 ν6 = 40.76
r12 = 27.239 d12 = 8.50
r13 = -67.583 d13 = 5.42 n7 = 1.92286 ν7 = 21.29
r14 = -27.160 d14 = 1.50 n8 = 1.80400 ν8 = 46.57
r15 = 100.543 d15 = 0.12
r16 = 47.753 d16 = 5.61 n9 = 1.72342 ν9 = 37.95
r17 = -228.222 d17 = 1.50 n10 = 1.88300 ν10 = 40.76
r18 = 188.878 d18 = (variable)
r19 = -43.394 d19 = 5.98 n11 = 1.84666 ν11 = 23.78
r20 = -28.784 d20 = 1.50 n12 = 1.72916 ν12 = 54.68
r21 = -137.232 d21 = 1.32
r22 = -64.459 d22 = 1.60 n13 = 1.72916 ν13 = 54.68
r23 = -642.122 d23 = (variable)
r24 = (Aperture) d24 = 1.99
r25 = 4587.238 d25 = 4.72 n14 = 1.60300 ν14 = 65.44
r26 = -65.557 d26 = 0.12
r27 = 99.677 d27 = 8.19 n15 = 1.48749 ν15 = 70.23
r28 = -71.758 d28 = 0.66
r29 = 145.422 d29 = 4.04 n16 = 1.69680 ν16 = 55.53
r30 = -186.666 d30 = 2.00
r31 = 82.169 d31 = 5.97 n17 = 1.48749 ν17 = 70.23
r32 = -61.421 d32 = 1.85 n18 = 1.80518 ν18 = 25.42
r33 = -400.086 d33 = 4.83
r34 = -87.259 d34 = 1.65 n19 = 1.88300 ν19 = 40.76
r35 = 192.396 d35 = 41.52
r36 = 82.172 d36 = 3.98 n20 = 1.75500 ν20 = 52.32
r37 = -144.276 d37 = 0.78
r38 = 49.793 d38 = 6.29 n21 = 1.84666 ν21 = 23.78
r39 = -76.111 d39 = 1.45 n22 = 1.80610 ν22 = 33.27
r40 = 23.771 d40 = 1.50
r41 = 31.332 d41 = 10.67 n23 = 1.48749 ν23 = 70.23
r42 = -28.121 d42 = 1.72 n24 = 1.80610 ν24 = 33.27
r43 = 99.045 d43 = 1.11
r44 = 113.940 d44 = 7.04 n25 = 1.48749 ν25 = 70.23
r45 = -33.773 d45 = 0.50
r46 = ∞ d46 = 33.00 n26 = 1.61340 ν26 = 44.30
r47 = ∞ d47 = 13.20 n27 = 1.51633 ν27 = 64.14
r48 = ∞

Figure 0004928297
Figure 0004928297

非球面係数
11面 K= -1.05555×10-5 A= 0 B= 6.47916×10-7
C= 0 D= 0 E= 0
位相係数
6面 C2= -3.04767×10-5 C4= 6.56060×10-11
C6= -4.19036×10-14 C8= 0

(数値実施例3)
f = 9.5 〜 185.3 fno = 1.85 〜 2.85 2ω = 60.2°〜 3.4°
r1= 567.528 d1= 3.60 n1= 1.80518 ν1= 25.42
r2= 96.245 d2= 10.78 n2= 1.51633 ν2= 64.14
r3= -518.076 d3= 7.12
r4= 132.845 d4= 6.84 n3= 1.61800 ν3= 63.33
回折光学素子 r5= -482.834 d5= 0.05
r6= 58.604 d6= 6.56 n4= 1.69350 ν4= 50.80
r7= 150.000 d7= (可変)
r8= -1003.352 d8= 1.25 n5= 1.88300 ν5= 40.76
r9= 18.776 d9= 4.87
r10= -61.579 d10= 1.00 n6= 1.81600 ν6= 46.62
r11= 32.913 d11= 1.99
r12= 28.829 d12= 5.64 n7= 1.80518 ν7= 25.42
r13= -34.163 d13= 1.31 n8= 1.78800 ν8= 47.37
r14= 76.628 d14= (可変)
r15= -28.304 d15= 1.05 n9= 1.74320 ν9= 49.34
r16= 34.514 d16= 3.65 n10= 1.80810 ν10= 22.76
r17= 1305.509 d17= (可変)
r18= (絞り) d18= 1.73
r19= -454.502 d19= 3.65 n11= 1.72342 ν11= 37.95
r20= -51.478 d20= 0.18
r21= 154.116 d21= 3.66 n12= 1.52249 ν12= 59.84
r22= -63.366 d22= 0.40
r23= 36.390 d23= 8.07 n13= 1.48749 ν13= 70.23
r24= -34.524 d24= 1.62 n14= 1.83400 ν14= 37.16
r25= 186.891 d25= 21.94
r26= 97.137 d26= 5.83 n15= 1.51823 ν15= 58.90
r27= -43.827 d27= 0.23
r28= 70.596 d28= 1.50 n16= 1.83400 ν16= 37.16
r29= 21.654 d29= 7.16 n17= 1.51823 ν17= 58.90
r30= 477.952 d30= 0.20
r31= 67.728 d31= 7.59 n18= 1.51633 ν18= 64.14
r32= -23.556 d32= 1.30 n19= 1.80400 ν19= 46.57
r33= 74.724 d33= 0.31
r34= 38.089 d34= 6.92 n20= 1.51823 ν20= 58.90
r35= -53.056 d35= 5.00
r36= ∞ d36= 30.00 n21= 1.60342 ν21= 38.03
r37= ∞ d37= 16.20 n22= 1.51633 ν22= 64.14
r38= ∞
Aspheric coefficient
11 sides K = -1.05555 × 10 -5 A = 0 B = 6.47916 × 10 -7
C = 0 D = 0 E = 0
Phase coefficient
6 sides C 2 = -3.04767 × 10 -5 C 4 = 6.56060 × 10 -11
C 6 = -4.19036 × 10 -14 C 8 = 0

(Numerical example 3)
f = 9.5 to 185.3 fno = 1.85 to 2.85 2ω = 60.2 ° to 3.4 °
r1 = 567.528 d1 = 3.60 n1 = 1.80518 ν1 = 25.42
r2 = 96.245 d2 = 10.78 n2 = 1.51633 ν2 = 64.14
r3 = -518.076 d3 = 7.12
r4 = 132.845 d4 = 6.84 n3 = 1.61800 ν3 = 63.33
Diffractive optical element r5 = -482.834 d5 = 0.05
r6 = 58.604 d6 = 6.56 n4 = 1.69350 ν4 = 50.80
r7 = 150.000 d7 = (variable)
r8 = -1003.352 d8 = 1.25 n5 = 1.88300 ν5 = 40.76
r9 = 18.776 d9 = 4.87
r10 = -61.579 d10 = 1.00 n6 = 1.81600 ν6 = 46.62
r11 = 32.913 d11 = 1.99
r12 = 28.829 d12 = 5.64 n7 = 1.80518 ν7 = 25.42
r13 = -34.163 d13 = 1.31 n8 = 1.78800 ν8 = 47.37
r14 = 76.628 d14 = (variable)
r15 = -28.304 d15 = 1.05 n9 = 1.74320 ν9 = 49.34
r16 = 34.514 d16 = 3.65 n10 = 1.80810 ν10 = 22.76
r17 = 1305.509 d17 = (variable)
r18 = (aperture) d18 = 1.73
r19 = -454.502 d19 = 3.65 n11 = 1.72342 ν11 = 37.95
r20 = -51.478 d20 = 0.18
r21 = 154.116 d21 = 3.66 n12 = 1.52249 ν12 = 59.84
r22 = -63.366 d22 = 0.40
r23 = 36.390 d23 = 8.07 n13 = 1.48749 ν13 = 70.23
r24 = -34.524 d24 = 1.62 n14 = 1.83400 ν14 = 37.16
r25 = 186.891 d25 = 21.94
r26 = 97.137 d26 = 5.83 n15 = 1.51823 ν15 = 58.90
r27 = -43.827 d27 = 0.23
r28 = 70.596 d28 = 1.50 n16 = 1.83400 ν16 = 37.16
r29 = 21.654 d29 = 7.16 n17 = 1.51823 ν17 = 58.90
r30 = 477.952 d30 = 0.20
r31 = 67.728 d31 = 7.59 n18 = 1.51633 ν18 = 64.14
r32 = -23.556 d32 = 1.30 n19 = 1.80400 ν19 = 46.57
r33 = 74.724 d33 = 0.31
r34 = 38.089 d34 = 6.92 n20 = 1.51823 ν20 = 58.90
r35 = -53.056 d35 = 5.00
r36 = ∞ d36 = 30.00 n21 = 1.60342 ν21 = 38.03
r37 = ∞ d37 = 16.20 n22 = 1.51633 ν22 = 64.14
r38 = ∞

Figure 0004928297
Figure 0004928297

位相係数
5面 C2= -5.83943×10-5 C4= 3.74402×10-9
C6= 0 C8= 0

(数値実施例4)
f = 30 〜 450 fno = 2.8 〜 5.0 2ω = 20.8°〜 1.4°
r1= 113.637 d1= 11.25 n1= 1.51633 ν1= 64.14
r2= 417.586 d2= 0.15
r3= 131.046 d3= 4.00 n2= 1.74950 ν2= 35.33
r4= 82.652 d4= 16.98 n3= 1.48749 ν3= 70.23
r5= 1035.600 d5= 10.00
r6= 93.683 d6= 8.10 n4= 1.48749 ν4= 70.23
r7= 364.092 d7= 0.42
r8= 145.631 d8= 8.53 n5= 1.84666 ν5= 23.78
r9= 184.518 d9= 9.50
回折光学素子 r10= -64320.670 d10= 4.05 n6= 1.92286 ν6= 21.29
r11= 200.083 d11= (可変)
r12= 34.442 d12= 1.00 n7= 1.88300 ν7= 40.76
r13= 19.562 d13= 3.19
r14= -749.572 d14= 4.59 n8= 1.84666 ν8= 23.78
r15= -17.733 d15= 0.90 n9= 1.88300 ν9= 40.76
r16= 55.535 d16= 0.17
r17= 24.438 d17= 4.48 n10= 1.84666 ν10= 23.78
r18= 27.988 d18= 8.11
r19= -25.168 d19= 0.90 n11= 1.88300 ν11= 40.76
r20= -51.712 d20= (可変)
r21= -41.860 d21= 0.90 n12= 1.71700 ν12= 47.92
r22= 77.672 d22= 1.86 n13= 1.84666 ν13= 23.78
r23= -2875.064 d23= (可変)
r24= (絞り) d24= 0.74
r25= 71.450 d25= 4.95 n14= 1.60311 ν14= 60.64
r26= -46.436 d26= 0.15
r27= 98.053 d27= 5.46 n15= 1.62041 ν15= 60.29
r28= -888.571 d28= 0.15
r29= 60.279 d29= 7.24 n16= 1.48749 ν16= 70.23
r30= -39.608 d30= 1.00 n17= 1.80100 ν17= 34.97
r31= -266.405 d31= 9.14
r32= -41.886 d32= 1.00 n18= 1.75520 ν18= 27.51
r33= -143.407 d33= 38.00
r34= 180.865 d34= 3.08 n19= 1.48749 ν19= 70.23
r35= -35.735 d35= 2.65
r36= 47.355 d36= 5.13 n20= 1.48749 ν20= 70.23
r37= -27.941 d37= 0.80 n21= 1.88300 ν21= 40.76
r38= -859.131 d38= 2.50
r39= -76.546 d39= 0.80 n22= 1.83481 ν22= 42.72
r40= 34.012 d40= 2.04 n23= 1.48749 ν23= 70.23
r41= 57.738 d41= 1.50
r42= 42.009 d42= 6.12 n24= 1.69895 ν24= 30.13
r43= -28.285 d43= 1.00 n25= 1.80610 ν25= 40.92
r44= -50.808 d44= 5.00
r45= ∞ d45= 33.00 n26= 1.60859 ν26= 46.44
r46= ∞ d46= 13.20 n27= 1.51680 ν27= 64.17
r47= ∞ d47=
Phase coefficient
5 sides C 2 = -5.83943 × 10 -5 C 4 = 3.74402 × 10 -9
C 6 = 0 C 8 = 0

(Numerical example 4)
f = 30 to 450 fno = 2.8 to 5.0 2ω = 20.8 ° to 1.4 °
r1 = 113.637 d1 = 11.25 n1 = 1.51633 ν1 = 64.14
r2 = 417.586 d2 = 0.15
r3 = 131.046 d3 = 4.00 n2 = 1.74950 ν2 = 35.33
r4 = 82.652 d4 = 16.98 n3 = 1.48749 ν3 = 70.23
r5 = 1035.600 d5 = 10.00
r6 = 93.683 d6 = 8.10 n4 = 1.48749 ν4 = 70.23
r7 = 364.092 d7 = 0.42
r8 = 145.631 d8 = 8.53 n5 = 1.84666 ν5 = 23.78
r9 = 184.518 d9 = 9.50
Diffractive optical element r10 = -64320.670 d10 = 4.05 n6 = 1.92286 ν6 = 21.29
r11 = 200.083 d11 = (variable)
r12 = 34.442 d12 = 1.00 n7 = 1.88300 ν7 = 40.76
r13 = 19.562 d13 = 3.19
r14 = -749.572 d14 = 4.59 n8 = 1.84666 ν8 = 23.78
r15 = -17.733 d15 = 0.90 n9 = 1.88300 ν9 = 40.76
r16 = 55.535 d16 = 0.17
r17 = 24.438 d17 = 4.48 n10 = 1.84666 ν10 = 23.78
r18 = 27.988 d18 = 8.11
r19 = -25.168 d19 = 0.90 n11 = 1.88300 ν11 = 40.76
r20 = -51.712 d20 = (variable)
r21 = -41.860 d21 = 0.90 n12 = 1.71700 ν12 = 47.92
r22 = 77.672 d22 = 1.86 n13 = 1.84666 ν13 = 23.78
r23 = -2875.064 d23 = (variable)
r24 = (Aperture) d24 = 0.74
r25 = 71.450 d25 = 4.95 n14 = 1.60311 ν14 = 60.64
r26 = -46.436 d26 = 0.15
r27 = 98.053 d27 = 5.46 n15 = 1.62041 ν15 = 60.29
r28 = -888.571 d28 = 0.15
r29 = 60.279 d29 = 7.24 n16 = 1.48749 ν16 = 70.23
r30 = -39.608 d30 = 1.00 n17 = 1.80 100 ν17 = 34.97
r31 = -266.405 d31 = 9.14
r32 = -41.886 d32 = 1.00 n18 = 1.75520 ν18 = 27.51
r33 = -143.407 d33 = 38.00
r34 = 180.865 d34 = 3.08 n19 = 1.48749 ν19 = 70.23
r35 = -35.735 d35 = 2.65
r36 = 47.355 d36 = 5.13 n20 = 1.48749 ν20 = 70.23
r37 = -27.941 d37 = 0.80 n21 = 1.88300 ν21 = 40.76
r38 = -859.131 d38 = 2.50
r39 = -76.546 d39 = 0.80 n22 = 1.83481 ν22 = 42.72
r40 = 34.012 d40 = 2.04 n23 = 1.48749 ν23 = 70.23
r41 = 57.738 d41 = 1.50
r42 = 42.009 d42 = 6.12 n24 = 1.69895 ν24 = 30.13
r43 = -28.285 d43 = 1.00 n25 = 1.80610 ν25 = 40.92
r44 = -50.808 d44 = 5.00
r45 = ∞ d45 = 33.00 n26 = 1.60859 ν26 = 46.44
r46 = ∞ d46 = 13.20 n27 = 1.51680 ν27 = 64.17
r47 = ∞ d47 =

Figure 0004928297
Figure 0004928297

位相係数
10面 C2= -9.22558×10-5 C4= 9.88283×10-9
C6= -3.21136×10-12 C8= 0

(数値実施例5)
f = 30 〜 600 fno = 2.8 〜 5.0 2ω = 20.8°〜 1.06°
r1= 129.531 d1= 12.04 n1= 1.48749 ν1= 70.23
r2= 199.653 d2= 0.15
r3= 135.666 d3= 4.00 n2= 1.84666 ν2= 23.78
r4= 95.801 d4= 21.13 n3= 1.48749 ν3= 70.23
r5= 4674.080 d5= 10.00
回折光学素子 r6= 132.315 d6= 9.38 n4= 1.48749 ν4= 70.23
r7= 379.593 d7= 0.42
r8= 82.832 d8= 16.81 n5= 1.48749 ν5= 70.23
r9= 1636.317 d9= 2.43 n6= 1.72047 ν6= 34.70
r10= 339.484 d10= 7.77
r11= 5178.571 d11= 4.74 n7= 1.92286 ν7= 21.29
r12= -245.720 d12= 2.20 n8= 1.72047 ν8= 34.70
r13= 171.961 d13= (可変)
非球面 r14= 25.345 d14= 1.50 n9= 1.88300 ν9= 40.76
r15= 14.543 d15= 5.50
r16= -125.389 d16= 4.16 n10= 1.92286 ν10= 21.29
r17= -20.114 d17= 0.90 n11= 1.88300 ν11= 40.76
r18= 45.415 d18= 0.17
r19= 23.054 d19= 3.96 n12= 1.92286 ν12= 21.29
r20= 31.043 d20= 4.27
r21= -21.550 d21= 1.20 n13= 1.88300 ν13= 40.76
r22= -50.342 d22= (可変)
r23= -43.932 d23= 1.50 n14= 1.71700 ν14= 47.92
r24= 61.947 d24= 2.32 n15= 1.84666 ν15= 23.78
r25= 528.648 d25= (可変)
r26= (絞り) d26= 0.74
r27= 82.201 d27= 5.90 n16= 1.60311 ν16= 60.64
r28= -49.990 d28= 0.15
r29= 70.827 d29= 5.09 n17= 1.62041 ν17= 60.29
r30= -147.728 d30= 0.15
r31= 49.683 d31= 6.99 n18= 1.48749 ν18= 70.23
r32= -47.260 d32= 1.30 n19= 1.80100 ν19= 34.97
r33= 245.471 d33= 8.70
r34= -56.437 d34= 1.20 n20= 1.75520 ν20= 27.51
r35= -490.165 d35= 38.00
r36= 180.865 d36= 4.28 n21= 1.48749 ν21= 70.23
r37= -35.735 d37= 2.00
r38= 47.355 d38= 5.01 n22= 1.48749 ν22= 70.23
r39= -27.941 d39= 1.00 n23= 1.88300 ν23= 40.76
r40= -859.131 d40= 2.50
r41= -76.546 d41= 1.00 n23= 1.83481 ν23= 42.72
r42= 34.012 d42= 2.04 n24= 1.48749 ν24= 70.23
r43= 57.738 d43= 1.50
r44= 42.009 d44= 4.54 n25= 1.69895 ν25= 30.13
r45= -28.285 d45= 1.00 n26= 1.80610 ν26= 40.92
r46= -72.551 d46= 5.00
r47= ∞ d47= 33.00 n27= 1.60859 ν27= 46.44
r48= ∞ d48= 13.20 n28= 1.51680 ν28= 64.17
r49= ∞
Phase coefficient
10 faces C 2 = -9.22558 × 10 -5 C 4 = 9.88283 × 10 -9
C 6 = -3.21136 × 10 -12 C 8 = 0

(Numerical example 5)
f = 30 to 600 fno = 2.8 to 5.0 2ω = 20.8 ° to 1.06 °
r1 = 129.531 d1 = 12.04 n1 = 1.48749 ν1 = 70.23
r2 = 199.653 d2 = 0.15
r3 = 135.666 d3 = 4.00 n2 = 1.84666 ν2 = 23.78
r4 = 95.801 d4 = 21.13 n3 = 1.48749 ν3 = 70.23
r5 = 4674.080 d5 = 10.00
Diffractive optical element r6 = 132.315 d6 = 9.38 n4 = 1.48749 ν4 = 70.23
r7 = 379.593 d7 = 0.42
r8 = 82.832 d8 = 16.81 n5 = 1.48749 ν5 = 70.23
r9 = 1636.317 d9 = 2.43 n6 = 1.72047 ν6 = 34.70
r10 = 339.484 d10 = 7.77
r11 = 5178.571 d11 = 4.74 n7 = 1.92286 ν7 = 21.29
r12 = -245.720 d12 = 2.20 n8 = 1.72047 ν8 = 34.70
r13 = 171.961 d13 = (variable)
Aspheric surface r14 = 25.345 d14 = 1.50 n9 = 1.88300 ν9 = 40.76
r15 = 14.543 d15 = 5.50
r16 = -125.389 d16 = 4.16 n10 = 1.92286 ν10 = 21.29
r17 = -20.114 d17 = 0.90 n11 = 1.88300 ν11 = 40.76
r18 = 45.415 d18 = 0.17
r19 = 23.054 d19 = 3.96 n12 = 1.92286 ν12 = 21.29
r20 = 31.043 d20 = 4.27
r21 = -21.550 d21 = 1.20 n13 = 1.88300 ν13 = 40.76
r22 = -50.342 d22 = (variable)
r23 = -43.932 d23 = 1.50 n14 = 1.71700 ν14 = 47.92
r24 = 61.947 d24 = 2.32 n15 = 1.84666 ν15 = 23.78
r25 = 528.648 d25 = (variable)
r26 = (aperture) d26 = 0.74
r27 = 82.201 d27 = 5.90 n16 = 1.60311 ν16 = 60.64
r28 = -49.990 d28 = 0.15
r29 = 70.827 d29 = 5.09 n17 = 1.62041 ν17 = 60.29
r30 = -147.728 d30 = 0.15
r31 = 49.683 d31 = 6.99 n18 = 1.48749 ν18 = 70.23
r32 = -47.260 d32 = 1.30 n19 = 1.80100 ν19 = 34.97
r33 = 245.471 d33 = 8.70
r34 = -56.437 d34 = 1.20 n20 = 1.75520 ν20 = 27.51
r35 = -490.165 d35 = 38.00
r36 = 180.865 d36 = 4.28 n21 = 1.48749 ν21 = 70.23
r37 = -35.735 d37 = 2.00
r38 = 47.355 d38 = 5.01 n22 = 1.48749 ν22 = 70.23
r39 = -27.941 d39 = 1.00 n23 = 1.88300 ν23 = 40.76
r40 = -859.131 d40 = 2.50
r41 = -76.546 d41 = 1.00 n23 = 1.83481 ν23 = 42.72
r42 = 34.012 d42 = 2.04 n24 = 1.48749 ν24 = 70.23
r43 = 57.738 d43 = 1.50
r44 = 42.009 d44 = 4.54 n25 = 1.69895 ν25 = 30.13
r45 = -28.285 d45 = 1.00 n26 = 1.80610 ν26 = 40.92
r46 = -72.551 d46 = 5.00
r47 = ∞ d47 = 33.00 n27 = 1.60859 ν27 = 46.44
r48 = ∞ d48 = 13.20 n28 = 1.51680 ν28 = 64.17
r49 = ∞

Figure 0004928297
Figure 0004928297

非球面係数
14面 K= 5.97571×10-7 A= 0 B= 7.60584×10-8
C= 6.08753×10-12 D= 0 E= 0
位相係数
6面 C2= -4.33312×10-5 C4= -5.63727×10-10
C6= -1.35271×10-13 C8= 0
Aspheric coefficient
14 sides K = 5.97571 × 10 -7 A = 0 B = 7.60584 × 10 -8
C = 6.08753 × 10 -12 D = 0 E = 0
Phase coefficient
6 sides C 2 = -4.33312 × 10 -5 C 4 = -5.63727 × 10 -10
C 6 = -1.35271 × 10 -13 C 8 = 0

Figure 0004928297
Figure 0004928297

次に数値実施例1〜5のズームレンズを撮影光学系として用いた撮影装置(テレビカメラシステム)の実施形態を図30を用いて説明する。   Next, an embodiment of a photographing apparatus (television camera system) using the zoom lenses of Numerical Examples 1 to 5 as a photographing optical system will be described with reference to FIG.

図30において、206はズームレンズを含む撮影装置本体、201は数値実施例1〜5のズームレンズによって構成された撮影光学系、202はフィルターや色分解プリズムに相当するガラスブロックを表している。   In FIG. 30, reference numeral 206 denotes a photographing apparatus main body including a zoom lens, 201 denotes a photographing optical system constituted by the zoom lenses of Numerical Examples 1 to 5, and 202 denotes a glass block corresponding to a filter or a color separation prism.

また203は撮影光学系201によって形成される被写体像を受光するCCDなどの固体撮像素子、204、205は撮影装置本体206およびズームレンズ201の制御を司るCPUである。   Reference numeral 203 denotes a solid-state image sensor such as a CCD that receives a subject image formed by the photographing optical system 201, and 204 and 205 denote CPUs that control the photographing apparatus main body 206 and the zoom lens 201.

このように数値実施例1〜5のズームレンズをテレビカメラ等に適用することにより、高い光学性能を有する撮影装置を実現することができる。   Thus, by applying the zoom lenses of Numerical Examples 1 to 5 to a television camera or the like, it is possible to realize a photographing apparatus having high optical performance.

数値実施例1の物体距離無限遠時の広角端におけるレンズ断面図Lens sectional view at the wide-angle end when the object distance is infinite in Numerical Example 1 数値実施例1の物体距離無限遠時、広角端における縦収差図Longitudinal aberration diagram at the wide-angle end when the object distance in Numerical Example 1 is infinite 数値実施例1の物体距離無限遠時、中間のズーム位置における縦収差図Longitudinal aberration diagram at the intermediate zoom position when the object distance in Numerical Example 1 is infinite 数値実施例1の物体距離無限遠時、望遠端における縦収差図Longitudinal aberration diagram at the telephoto end when the object distance in Numerical Example 1 is infinity 数値実施例2の物体距離無限遠時の広角端におけるレンズ断面図Lens sectional view at the wide-angle end when the object distance is infinite in Numerical Example 2 数値実施例2の物体距離無限遠時、広角端における縦収差図Longitudinal aberration diagram at the wide-angle end when the object distance in Numerical Example 2 is infinity 数値実施例2の物体距離無限遠時、中間のズーム位置における縦収差図Longitudinal aberration diagram at intermediate zoom position when the object distance in Numerical Example 2 is infinite 数値実施例2の物体距離無限遠時、望遠端における縦収差図Longitudinal aberration diagram at the telephoto end when the object distance in Numerical Example 2 is infinity 数値実施例3の物体距離無限遠時の広角端におけるレンズ断面図Lens sectional view at the wide-angle end when the object distance is infinite in Numerical Example 3 数値実施例3の物体距離無限遠時、広角端における縦収差図Longitudinal aberration diagram at the wide-angle end when the object distance in Numerical Example 3 is infinity 数値実施例3の物体距離無限遠時、中間のズーム位置における縦収差図Longitudinal aberration diagram at intermediate zoom position when the object distance in Numerical Example 3 is infinity 数値実施例3の物体距離無限遠時、望遠端における縦収差図Longitudinal aberration diagram at the telephoto end when the object distance in Numerical Example 3 is infinity 数値実施例4の物体距離無限遠時の広角端におけるレンズ断面図Lens sectional view at the wide-angle end when the object distance is infinite in Numerical Example 4 数値実施例4の物体距離無限遠時、広角端における縦収差図Longitudinal aberration diagram at the wide-angle end when the object distance in Numerical Example 4 is infinity 数値実施例4の物体距離無限遠時、中間のズーム位置における縦収差図Longitudinal aberration diagram at the intermediate zoom position when the object distance in Numerical Example 4 is infinite 数値実施例4の物体距離無限遠時、望遠端における縦収差図Longitudinal aberration diagram at the telephoto end when the object distance in Numerical Example 4 is infinity 数値実施例5の物体距離無限遠時の広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end when the object distance is infinite in Numerical Example 5 数値実施例5の物体距離無限遠時、広角端における縦収差図Longitudinal aberration diagram at the wide-angle end when the object distance in Numerical Example 5 is infinity 数値実施例5の物体距離無限遠時、中間のズーム位置における縦収差図Longitudinal aberration diagram at the intermediate zoom position when the object distance in Numerical Example 5 is infinity 数値実施例5の物体距離無限遠時、望遠端における縦収差図Longitudinal aberration diagram at the telephoto end when the object distance in Numerical Example 5 is infinity 参考例1の物体距離無限遠時の広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end when the object distance is infinity in Reference Example 1 参考例1の物体距離無限遠時、広角端における縦収差図Longitudinal aberration diagram at the wide-angle end when the object distance in Reference Example 1 is infinite 参考例1の物体距離無限遠時、中間のズーム位置における縦収差図Longitudinal aberration diagram at intermediate zoom position when the object distance is infinity in Reference Example 1 参考例1の物体距離無限遠時、望遠端における縦収差図Longitudinal aberration diagram at the telephoto end when the object distance is infinity in Reference Example 1 単層構造の回折光学素子の断面図Cross section of diffractive optical element with single layer structure 単層構造の回折光学素子の回折効率の説明図Illustration of diffraction efficiency of a diffractive optical element with a single layer structure 積層構造の回折光学素子の断面図Cross-sectional view of a laminated diffractive optical element 構造の回折光学素子の回折効率の説明図Illustration of diffraction efficiency of diffractive optical element with structure 構造の回折光学素子の断面図Cross section of diffractive optical element with structure 本発明の撮像装置の説明図Explanatory drawing of the imaging device of the present invention

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
SP 開口絞り
P 色分解プリズムや光学フィルター
IP 像面
S サジタル像面
M メリディオナル像面
g g線
e e線
F F線
C C線
ω 半画角
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group SP Aperture stop P Color separation prism and optical filter IP Image surface S Sagittal image surface M Meridional image surface g g line e e line F F line C C line ω Half angle of view

Claims (6)

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、該第1レンズ群は、少なくとも1つの回折光学素子を有しており、該回折光学素子の回折部の焦点距離をfDOE、全系の望遠端における焦点距離をf、該第1レンズ群に含まれる正レンズの材料のアッベ数の平均値をνG1+avとするとき、
0.02<f/fDOE<0.2
30<νG1+av<80
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the lens unit includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. The first lens group includes at least one diffractive optical element, the focal length of the diffractive portion of the diffractive optical element is f DOE , the focal length at the telephoto end of the entire system is f T , and the first lens When the average value of the Abbe number of the material of the positive lens included in the group is ν G1 + av ,
0.02 <f T / f DOE <0.2
30 <ν G1 + av <80
A zoom lens satisfying the following conditional expression:
前記第1レンズ群は、ズーミングに際して固定のレンズ群であり、前記第2レンズ群は、広角端から望遠端へのズーミングに際して、像側へ単調に移動するレンズ群であり、前記第3レンズ群は、物体側へ移動し、変倍に伴う像面変動を補正するレンズ群であることを特徴とする請求項1に記載のズームレンズ。   The first lens group is a lens group that is fixed during zooming, and the second lens group is a lens group that monotonously moves to the image side during zooming from the wide-angle end to the telephoto end, and the third lens group 2. The zoom lens according to claim 1, wherein the zoom lens is a lens group that moves toward the object side and corrects image plane fluctuations accompanying zooming. 前記第3レンズ群と前記第4レンズ群との間には開口絞りが設けられていることを特徴とする請求項1又は2に記載のズームレンズ。 The zoom lens according to claim 1, wherein an aperture stop is provided between the third lens group and the fourth lens group. 前記第1レンズ群はフォーカスに際して固定の第1aレンズ群と無限遠物体から至近物体へのフォーカスに際して物体側へ移動する第1bレンズ群を有することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。   The first lens group includes a 1a lens group that is fixed during focusing and a 1b lens group that moves toward the object side during focusing from an object at infinity to a close object. The zoom lens according to item. 前記第1レンズ群の焦点距離をfとするとき、
0.1<f/f<0.5
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。
When the focal length of the first lens group and f 1,
0.1 <f 1 / f T <0.5
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至5のいずれか1項に記載のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子を有することを特徴とする撮像装置。   6. An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2007034760A 2007-02-15 2007-02-15 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4928297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034760A JP4928297B2 (en) 2007-02-15 2007-02-15 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034760A JP4928297B2 (en) 2007-02-15 2007-02-15 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2008197534A JP2008197534A (en) 2008-08-28
JP2008197534A5 JP2008197534A5 (en) 2010-04-02
JP4928297B2 true JP4928297B2 (en) 2012-05-09

Family

ID=39756513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034760A Expired - Fee Related JP4928297B2 (en) 2007-02-15 2007-02-15 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4928297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899582A1 (en) 2014-01-27 2015-07-29 Ricoh Company Ltd. Zoom lens and imaging device using the same background

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5416980B2 (en) 2009-01-30 2014-02-12 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP6256792B2 (en) * 2013-08-09 2018-01-10 株式会社リコー Zoom lens, camera, and portable information terminal device
US9195036B2 (en) 2013-08-09 2015-11-24 Ricoh Company, Ltd. Zoom lens, camera, and portable information device
US9459434B2 (en) 2013-08-28 2016-10-04 Ricoh Company, Ltd. Zoom lens and imaging apparatus
JP6283986B2 (en) * 2013-08-30 2018-02-28 株式会社リコー Zoom lens, imaging device, and video camera for surveillance
JP6270104B2 (en) * 2013-08-28 2018-01-31 株式会社リコー Zoom lens, imaging device, and video camera for surveillance
JP6252103B2 (en) * 2013-10-25 2017-12-27 株式会社リコー Zoom lens and imaging apparatus using the zoom lens
US9470881B2 (en) 2013-10-25 2016-10-18 Ricoh Company, Ltd. Zoom lens and imaging device using zoom lens
JP6307834B2 (en) * 2013-10-25 2018-04-11 株式会社リコー Zoom lens and imaging apparatus using the zoom lens
JP6238123B2 (en) * 2013-11-05 2017-11-29 株式会社リコー Zoom lens and camera
JP6287263B2 (en) * 2014-01-27 2018-03-07 株式会社リコー Zoom lens and imaging apparatus using the zoom lens
JP6291865B2 (en) * 2014-01-27 2018-03-14 株式会社リコー Zoom lens and imaging apparatus using the zoom lens
JP6436687B2 (en) * 2014-08-28 2018-12-12 キヤノン株式会社 Zoom lens and imaging device
CN105676434B (en) * 2016-04-27 2018-08-21 佛山华国光学器材有限公司 A kind of big variable-power optical systems of Penetrating Fog 60X

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221402A (en) * 1999-02-03 2000-08-11 Minolta Co Ltd Lens optical system
JP2003287678A (en) * 2002-03-27 2003-10-10 Fuji Photo Optical Co Ltd Zoom lens
JP2004126396A (en) * 2002-10-04 2004-04-22 Nikon Corp Zoom lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899582A1 (en) 2014-01-27 2015-07-29 Ricoh Company Ltd. Zoom lens and imaging device using the same background

Also Published As

Publication number Publication date
JP2008197534A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4928297B2 (en) Zoom lens and imaging apparatus having the same
JP4898410B2 (en) Zoom lens and imaging apparatus having the same
JP4810133B2 (en) Zoom lens and imaging apparatus having the same
US7864445B2 (en) Zoom lens and image pickup apparatus including the same
JP4845502B2 (en) Optical system and optical apparatus having the same
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP6418732B2 (en) Zoom lens and imaging apparatus having the same
JP4989152B2 (en) Zoom lens and imaging apparatus having the same
JP5253051B2 (en) Zoom lens and imaging apparatus having the same
US7426083B2 (en) Imaging optical system and image capturing apparatus including imaging optical system
US20090180199A1 (en) Zoom lens and image pickup apparatus including the same
JP5028110B2 (en) Zoom lens and imaging apparatus having the same
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP5202025B2 (en) Imaging optical system and imaging apparatus having the same
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JP4794845B2 (en) Zoom lens and imaging apparatus having the same
JP5436091B2 (en) Zoom lens and imaging apparatus having the same
JP4829586B2 (en) Zoom lens and imaging apparatus having the same
JP5028103B2 (en) Zoom lens and imaging apparatus having the same
JP2009037037A (en) Zoom lens and image pickup device having it
JP4776936B2 (en) Zoom lens and imaging apparatus having the same
JP2007003600A (en) Zoom lens and imaging apparatus equipped with same
JP2009098419A (en) Converter lens and zoom lens with the same
JP6808441B2 (en) Zoom lens and imaging device with it
JP5656684B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4928297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees