[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4925405B2 - Method for manufacturing connection structure - Google Patents

Method for manufacturing connection structure Download PDF

Info

Publication number
JP4925405B2
JP4925405B2 JP2005289524A JP2005289524A JP4925405B2 JP 4925405 B2 JP4925405 B2 JP 4925405B2 JP 2005289524 A JP2005289524 A JP 2005289524A JP 2005289524 A JP2005289524 A JP 2005289524A JP 4925405 B2 JP4925405 B2 JP 4925405B2
Authority
JP
Japan
Prior art keywords
connection
conductive particles
particles
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005289524A
Other languages
Japanese (ja)
Other versions
JP2007103545A (en
Inventor
章 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2005289524A priority Critical patent/JP4925405B2/en
Publication of JP2007103545A publication Critical patent/JP2007103545A/en
Application granted granted Critical
Publication of JP4925405B2 publication Critical patent/JP4925405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

本発明は、微細回路接続性、接続信頼性に優れた接続構造体及び該接続構造体の製造方法に関する。   The present invention relates to a connection structure excellent in fine circuit connectivity and connection reliability and a method for manufacturing the connection structure.

これまで、LSIチップを微細回路に接続した接続構造体に関して、接続性改良、短絡防止、接続信頼性向上のために、種々の接続材料、および、接続構造体構成の検討がなされている。例えば、接続基板の接続電極以外の部分に樹脂膜を形成し、接続電極部分に金属ボールを配し、対応する電極位置を合わせて、LSIチップを加圧加熱することにより、金属ボールを介して電気的接続を形成し、同時に樹脂膜を硬化させる方法(特許文献1)、流動性の無いフィルムに孔を開け、導電性粒子を固定した樹脂フィルムを介して、接続基板の接続電極と対応するLSI電極を接続させる方法(特許文献2,3,4、5参照)が公知である。   Up to now, regarding connection structures in which LSI chips are connected to fine circuits, various connection materials and connection structure configurations have been studied in order to improve connectivity, prevent short circuits, and improve connection reliability. For example, a resin film is formed on a part other than the connection electrode of the connection board, a metal ball is arranged on the connection electrode part, the corresponding electrode position is aligned, and the LSI chip is pressed and heated, thereby causing the A method of forming an electrical connection and simultaneously curing a resin film (Patent Document 1), corresponding to a connection electrode of a connection board through a resin film in which holes are formed in a non-flowable film and conductive particles are fixed. A method of connecting LSI electrodes (see Patent Documents 2, 3, 4, and 5) is known.

また、異方導電性フィルムを用いて接続する方法は、多数の微細回路を良好な接続性、絶縁性を確保しつつ、一括接続できるためよく用いられる。この方法に関しては、例えば、例えば、導電性粒子の表面を電気絶縁性樹脂で被覆した異方導電性フィルムを用いる方法(特許文献6参照)、導電性粒子を含む層と含まない層を積層した異方導電性フィルムを用いて、隣接する回路間の短絡を防止する方法(特許文献7、8参照)が公知である。   Moreover, the method of connecting using an anisotropic conductive film is often used because a large number of fine circuits can be connected together while ensuring good connectivity and insulation. Regarding this method, for example, a method using an anisotropic conductive film in which the surface of conductive particles is coated with an electrically insulating resin (see Patent Document 6), a layer containing conductive particles and a layer not containing the conductive particles are laminated. A method for preventing a short circuit between adjacent circuits using an anisotropic conductive film (see Patent Documents 7 and 8) is known.

しかしながら、接続部分に合わせて接続材料を配置する方法は、多数かつ微細な接続に関しては、製造技術上に制約があり、接続性、絶縁性、信頼性を全て満たすことには限界があった。また、樹脂フィルムの如き流動しないフィルムに導電性粒子を固定し、接続粒子数を確保して、かつ、電極間における導電性粒子の凝集による短絡を防止しようとする従来技術においては、フィルムによる導電性粒子固定と接着剤等によるLSIチップの固定とを機能分離しているため、樹脂フィルムの界面剥離、吸湿、等の問題が発生しうるため、接続性と信頼性を同時に満足しうるものではなかった。また、絶縁被覆導電性粒子を用いた異方導電性フィルム、あるいは、導電性粒子を含む層と含まない層を積層して成る異方導電性フィルムを用いる従来技術においては、接続時の導電性粒子流動によって発生する、接続端子の凝集粒子詰まりを完全に抑制できず、接続性、絶縁性を両立できるものではなかった   However, the method of arranging the connection material in accordance with the connection portion has a limitation in manufacturing technology with respect to a large number of fine connections, and there is a limit to satisfy all of the connectivity, insulation, and reliability. Further, in the prior art in which conductive particles are fixed to a non-flowing film such as a resin film, the number of connected particles is ensured, and a short circuit due to aggregation of the conductive particles between the electrodes is prevented, the conductivity of the film is reduced. Since the functional particle separation of the adhesive particle fixing and the LSI chip fixing with an adhesive or the like may occur, problems such as interfacial peeling of the resin film, moisture absorption, etc. may occur, so it is not possible to satisfy both connectivity and reliability at the same time There wasn't. In addition, in the prior art using an anisotropic conductive film using insulating coated conductive particles, or an anisotropic conductive film formed by laminating a layer containing conductive particles and a layer not containing conductive particles, the conductivity at the time of connection is It was not possible to completely suppress the clogging of clogged particles in the connection terminals caused by particle flow, and it was not possible to achieve both connectivity and insulation.

特開2004−63770号公報JP 2004-63770 A 特許第3360772号Japanese Patent No. 3360772 特開2000−133050号公報JP 2000-1333050 A 特開2003−31281号公報JP 2003-3281 A 特開2003−60333号公報JP 2003-60333 A 特公平7−99644号公報Japanese Patent Publication No. 7-99644 特開平6−45024号公報JP-A-6-45024 特開2003−49152号公報JP 2003-49152 A

本発明は、チップ外周部に接続バンプを配列したLSIチップを異方導電性フィルムで接続基板に接続した接続構造体に関して、回路間の絶縁性を損なうことなく、良好な電気的接続性、および信頼性を実現する接続構造体、および、その製造方法を提供することを目的とする。   The present invention relates to a connection structure in which an LSI chip in which connection bumps are arranged on the outer periphery of the chip is connected to a connection substrate with an anisotropic conductive film, good electrical connectivity without impairing insulation between circuits, and It is an object of the present invention to provide a connection structure that realizes reliability and a manufacturing method thereof.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、導電性粒子が、接続部分にある特定の範囲の標準偏差で存在し、ある特定の範囲内に、ある特定割合以上の導電性粒子とは接触せずに存在していることを特徴とする接続構造体を用いることによって、上記課題を解決できることを見出した。
すなわち、本発明は以下に記載する通りのものである。
As a result of intensive studies to solve the above problems, the present inventor has conductive particles present in a standard deviation of a specific range in the connection portion, and within a specific range, a certain ratio or more. It has been found that the above-described problems can be solved by using a connection structure characterized by existing without contact with conductive particles.
That is, the present invention is as described below.

(1)チップ外周部に接続バンプを配列したLSIチップを少なくとも硬化剤、硬化性の絶縁性樹脂、導電性粒子からなる異方導電性フィルムで接続基板に接続してなり、接続バンプの接続部分に存在する導電性粒子の個数の標準偏差が1.45以上であり、該接続部分に存在する導電性粒子の平均個数の10%以下又は2のうち大きい方より小さく、かつ接続バンプの内側部分に存在する導電性粒子の個数の93%以上が単独で存在し、且つ、接続基板面側に存在し、前記接続バンプの接続部分、及び接続バンプの内側部分に存在する導電性粒子が、貴金属被覆された樹脂粒子、貴金属被覆された金属粒子、金属粒子、貴金属被覆された合金粒子、及び合金粒子からなる群から選ばれる少なくとも1種の導電性粒子であって、その平均粒径が1〜10μmであり、前記接続バンプの面積が500μm から10000μm の範囲である接続構造体を製造する方法であって、チップ外周部に接続バンプを配列したLSIチップと接続基板との間に、少なくとも硬化剤、硬化性の絶縁性樹脂、導電性粒子からなる異方導電性フィルムを介在させて、該LSIチップと接続基板とを押圧し、樹脂を硬化させることによりLSIチップと接続基板とを接続する接続構造体の製造方法であって、該異方導電性フィルムとして、フィルムの片側表面から厚み方向に向かって導電性粒子の平均粒径の1.5倍以内の領域中に導電性粒子の個数の90%以上が単独に存在しており、かつ、近接する導電性粒子の平均粒子間隔は、導電性粒子の平均粒径の0.5倍以上5倍以下である異方導電性フィルムを用いることを特徴とする接続構造体の製造方法。
(2)前記硬化性の絶縁樹脂が熱硬化性樹脂であり、異方導電性フィルムに含まれる成分の中で最もガラス転移温度の高い成分のガラス転移温度の0.5倍から2.5倍の範囲かつ220℃以下の最高到達温度で加熱圧着し、かつ加熱圧着時間の50%以上の時間範囲において最高到達温度に達していることを特徴とする()に記載の接続構造体の製造方法。
(1) An LSI chip in which connection bumps are arranged on the outer periphery of the chip is connected to the connection substrate with at least a curing agent, a curable insulating resin, and an anisotropic conductive film made of conductive particles. The standard deviation of the number of conductive particles present in the connection portion is 1.45 or more, 10% or less of the average number of conductive particles present in the connection portion, or smaller than the larger of the two, and the inner portion of the connection bump 93% or more of the number of conductive particles present in the substrate is present alone and present on the connection substrate surface side, and the conductive particles present on the connection portion of the connection bump and the inner portion of the connection bump are precious metals. At least one conductive particle selected from the group consisting of coated resin particles, noble metal-coated metal particles, metal particles, noble metal-coated alloy particles, and alloy particles, the average particle diameter thereof Is 1 to 10 [mu] m, the connection structure area of the connection bump is in the range of 500 [mu] m 2 of 10000 2 A process for producing, between the LSI chip and the connection board having an array of connection bumps to the tip outer peripheral portion The LSI chip and the connection substrate by pressing the LSI chip and the connection substrate by interposing an anisotropic conductive film composed of at least a curing agent, a curable insulating resin, and conductive particles, and curing the resin. A method of manufacturing a connection structure for connecting a conductive film in an area within 1.5 times the average particle diameter of conductive particles from one surface of the film toward the thickness direction as the anisotropic conductive film. 90% or more of the number of particles is present alone, and the average particle interval between adjacent conductive particles is 0.5 to 5 times the average particle size of the conductive particles. Phi A method for manufacturing a connection structure, characterized by using a rum.
(2) The curable insulating resin is a thermosetting resin, and is 0.5 to 2.5 times the glass transition temperature of the component having the highest glass transition temperature among the components contained in the anisotropic conductive film. The connection structure according to ( 1 ), which is heat-bonded at a maximum temperature of 220 ° C. or less and reaches a maximum temperature in a time range of 50% or more of the heat-bonding time. Method.

本発明の接続構造体は、隣接する接続端子間の良好な絶縁特性を有し、かつ接続した接続端子間の良好な電気的接続性、良好な信頼性を有する。すなわち、接続面の方向には、ある特定の標準偏差をもって導電性粒子を配し、チップ下のバンプの内側部分の導電性粒子の93%以上が単独、かつ、接続基板面に存在することにより、良好な信頼性を確保することが出来る。   The connection structure of the present invention has good insulation characteristics between adjacent connection terminals, and has good electrical connectivity and good reliability between connected connection terminals. That is, the conductive particles are arranged with a certain standard deviation in the direction of the connection surface, and 93% or more of the conductive particles in the inner part of the bump under the chip are present alone and on the connection substrate surface. Good reliability can be ensured.

以下、本発明について具体的に説明する。
まず、本発明の接続構造体における導電性粒子について説明する。
導電性粒子としては、貴金属被覆された樹脂粒子、貴金属被覆された金属粒子、金属粒子、貴金属被覆された合金粒子、及び合金粒子の中から選ばれた1種以上を用いることが好ましい。貴金属被覆された樹脂粒子としては、ポリスチレン、ベンゾグアナミン、ポリメチルメタアクリレート等の球状粒子にニッケル、および金をこの順に被覆したものを用いることが好ましい。
Hereinafter, the present invention will be specifically described.
First, the conductive particles in the connection structure of the present invention will be described.
As the conductive particles, it is preferable to use at least one selected from resin particles coated with noble metal, metal particles coated with noble metal, metal particles, alloy particles coated with noble metal, and alloy particles. As the resin particles coated with the noble metal, it is preferable to use those obtained by coating spherical particles such as polystyrene, benzoguanamine, and polymethyl methacrylate with nickel and gold in this order.

接続する微細接続端子(バンプ)硬度に応じて、より柔軟な樹脂粒子を用いて貴金属被覆された樹脂粒子を形成することができる。
接続するバンプ硬度がビッカース硬度で50Hv未満である場合は、ポリメタアクリレート樹脂等の柔軟な樹脂粒子を用いることが好ましい。また、バンプ硬度が50Hv以上である場合は、ベンゾグアナミン樹脂等の硬質樹脂粒子を用いることが好ましい。
Resin particles coated with a noble metal can be formed using softer resin particles according to the hardness of the fine connection terminal (bump) to be connected.
When the bump hardness to be connected is less than 50 Hv in terms of Vickers hardness, it is preferable to use flexible resin particles such as polymethacrylate resin. Moreover, when bump hardness is 50 Hv or more, it is preferable to use hard resin particles, such as a benzoguanamine resin.

貴金属被覆された金属粒子としては、ニッケル、銅等の金属粒子に金、パラジウム、ロジウム等の貴金属を最外層に被覆したものを用いることが好ましい。被覆する方法としては、蒸着法、スパッタリング法等の薄膜形成法、乾式ブレンド法によるコーティング法、無電解めっき法、電解めっき法等の湿式法を用いることができる。量産性の点から、無電解めっき法が好ましい。   As the metal particles coated with the noble metal, it is preferable to use a metal particle such as nickel or copper coated with a noble metal such as gold, palladium or rhodium on the outermost layer. As a coating method, a thin film forming method such as a vapor deposition method or a sputtering method, a coating method using a dry blend method, a wet method such as an electroless plating method or an electrolytic plating method can be used. From the viewpoint of mass productivity, the electroless plating method is preferable.

金属粒子としては、銀、銅、ニッケル等の金属から選ばれるものを用いることが好ましい。合金粒子としては、融点が150℃以上500℃以下のものが好ましく、さらには150℃以上350℃以下の低融点合金粒子を用いることがより好ましい。融点が500℃以下であると、接続端子間に金属結合を形成することも可能であり、接続信頼性の点から好ましい。また、耐熱接続信頼性の観点から、融点が150℃以上であることが好ましい。   As the metal particles, those selected from metals such as silver, copper and nickel are preferably used. The alloy particles preferably have a melting point of 150 ° C. or more and 500 ° C. or less, and more preferably low melting point alloy particles having a melting point of 150 ° C. or more and 350 ° C. or less. When the melting point is 500 ° C. or less, a metal bond can be formed between the connection terminals, which is preferable from the viewpoint of connection reliability. Moreover, it is preferable that melting | fusing point is 150 degreeC or more from a viewpoint of heat-resistant connection reliability.

貴金属被覆された合金粒子としては、例えば、金、銀、銅、ニッケル、錫、亜鉛、ビスマス、インジウム等から選ばれた2種以上からなる合金粒子に上記方法等を用いて貴金属被覆したものを用いることができる。   As the alloy particles coated with the noble metal, for example, alloy particles composed of two or more kinds selected from gold, silver, copper, nickel, tin, zinc, bismuth, indium, etc. are coated with the noble metal using the above method or the like. Can be used.

合金粒子としては、例えば、金、銀、銅、ニッケル、錫、亜鉛、ビスマス、インジウム等から選ばれた2種以上からなる合金粒子が好ましい。融点が150℃以上500℃以下の合金粒子を用いる場合は、予め粒子表面にフラックス等を被覆しておくことが好ましい。いわゆるフラックスを用いることにより、表面の酸化物等を取り除くことができ好ましい。フラックスとしては、アビエチン酸等の脂肪酸等を用いることができる。   As the alloy particles, for example, alloy particles composed of two or more selected from gold, silver, copper, nickel, tin, zinc, bismuth, indium and the like are preferable. When alloy particles having a melting point of 150 ° C. or higher and 500 ° C. or lower are used, it is preferable to coat the particle surface with a flux or the like in advance. It is preferable to use a so-called flux because the surface oxides can be removed. As the flux, fatty acids such as abietic acid can be used.

導電性粒子の平均粒径と最大粒径の比は2以下であることが好ましく、1.5以下であることがより好ましい。該導電性粒子の粒度分布はより狭いほうが好ましく、該導電性粒子の粒径分布の幾何標準偏差は、1.2〜2.5であることが好ましく、1.2〜1.4であることが特に好ましい。幾何標準偏差が上記値であると粒径のバラツキが小さくなる。通常、接続する2端子間に一定のギャップが存在する場合には、粒径が揃っているほど、導電性粒子が有効に機能すると考えられる。   The ratio of the average particle size to the maximum particle size of the conductive particles is preferably 2 or less, and more preferably 1.5 or less. The particle size distribution of the conductive particles is preferably narrower, and the geometric standard deviation of the particle size distribution of the conductive particles is preferably 1.2 to 2.5, and preferably 1.2 to 1.4. Is particularly preferred. When the geometric standard deviation is the above value, the variation in particle size is reduced. Usually, when a certain gap exists between two terminals to be connected, it is considered that the conductive particles function more effectively as the particle diameters become uniform.

粒度分布の幾何標準偏差とは、粒度分布のσ値(累積84.13%の粒径値)を累積50%の粒径値で除した値である。粒度分布のグラフの横軸に粒径(対数)を設定し、縦軸に累積値(%、累積個数比、対数)を設定すると粒径分布はほぼ直線になり、粒径分布は対数正規分布に従う。累積値とは全粒子数に対して、ある粒径以下の粒子の個数比を示したもので、%で表す。粒径分布のシャープさはσ(累積84.13%の粒径値)と平均粒径(累積50%の粒径値)の比で表現される。σ値は実測値あるいは、前述グラフのプロット値からの読み取り値である。   The geometric standard deviation of the particle size distribution is a value obtained by dividing the σ value of the particle size distribution (particle size value of 84.13% cumulative) by the particle size value of 50% cumulative. When the particle size distribution (logarithm) is set on the horizontal axis of the particle size distribution graph and the cumulative value (%, cumulative number ratio, logarithm) is set on the vertical axis, the particle size distribution is almost linear, and the particle size distribution is lognormal distribution. Follow. The cumulative value indicates the number ratio of particles having a certain particle size or less with respect to the total number of particles, and is expressed in%. The sharpness of the particle size distribution is expressed by the ratio of σ (the cumulative particle size value of 84.13%) and the average particle size (the cumulative particle size value of 50%). The σ value is an actual measurement value or a read value from the plot value of the graph.

平均粒径及び粒度分布は、公知の方法、装置を用いて測定することができ、湿式粒度分布計、レーザー式粒度分布計等を用いることができる。あるいは、電子顕微鏡等で粒子を観察し、平均粒径、粒度分布を算出しても構わない。本発明の平均粒径及び粒度分布はレーザー式粒度分布計により求めることが出来る。
導電性粒子の平均粒径は1〜10μmであることが好ましく、2〜6μmであることがさらに好ましい。絶縁性の観点から10μm以下が好ましく、接続端子等の高さバラツキ等の影響を受けにくく、また、電気的接続性の観点から1μm以上が好ましい。
The average particle size and particle size distribution can be measured using a known method and apparatus, and a wet particle size distribution meter, a laser particle size distribution meter, or the like can be used. Alternatively, the average particle size and particle size distribution may be calculated by observing the particles with an electron microscope or the like. The average particle size and particle size distribution of the present invention can be determined by a laser particle size distribution meter.
The average particle size of the conductive particles is preferably 1 to 10 μm, and more preferably 2 to 6 μm. The thickness is preferably 10 μm or less from the viewpoint of insulation, and is preferably less than 1 μm from the viewpoint of electrical connectivity, and is not easily affected by variations in height of connection terminals and the like.

次いで本発明の接続構造体について説明する。
本発明の接続構造体は、チップ外周部に接続バンプを配列したLSIチップを少なくとも硬化剤、絶縁性樹脂、導電性粒子からなる異方導電性フィルムで接続基板に接続した構造体である。接続バンプの材質としては、金、金合金、錫めっき金等の金系バンプ、あるいは、銅、ニッケル等に金めっきしたバンプを用いることができる。
Next, the connection structure of the present invention will be described.
The connection structure of the present invention is a structure in which an LSI chip having connection bumps arranged on the outer periphery of the chip is connected to a connection substrate with an anisotropic conductive film made of at least a curing agent, an insulating resin, and conductive particles. As the material of the connection bump, gold-based bumps such as gold, gold alloy, tin-plated gold, or bumps plated with gold on copper, nickel or the like can be used.

接続バンプの配列としては、四角形のバンプを一列に配したストレート型、一個置きにバンプとギャップをずらして、複数列配置した千鳥型を用いることができる。
各接続バンプの面積は、500μmから10000μmの範囲にあることが好ましく、1000μmから5000μmにあることがより好ましい。接続部分の導電性粒子の個数を確保し、信頼性を向上させるという観点から500μm以上が好ましい。
As the arrangement of the connection bumps, a straight type in which square bumps are arranged in a row, or a staggered type in which a plurality of rows are arranged by shifting the bumps and gaps every other bump can be used.
Area of each connection bump is preferably in the range of 500 [mu] m 2 of 10000 2, and more preferably from 1000 .mu.m 2 to 5000 .mu.m 2. From the viewpoint of securing the number of conductive particles in the connecting portion and improving the reliability, 500 μm 2 or more is preferable.

本発明の接続構造体に用いる接続基板は、裏面よりチップ下部分を確認できる透明基板であることが好ましい。例えば、ガラス基板、ポリイミド、ポリエチレンテレフタレート、ポリエーテルスルホン等の樹脂フィルム基板である。
接続基板の接続電極は、透明電極であることが好ましい。例えば、インジウム錫酸化物、インジウム亜鉛酸化物等である。その他、金属系の接続電極を用いることもできる。
The connection substrate used in the connection structure of the present invention is preferably a transparent substrate from which the lower part of the chip can be confirmed from the back surface. For example, it is a resin film substrate such as a glass substrate, polyimide, polyethylene terephthalate, or polyethersulfone.
The connection electrode of the connection substrate is preferably a transparent electrode. For example, indium tin oxide and indium zinc oxide. In addition, a metal connection electrode can also be used.

本発明の接続構造体の接続バンプ部分に存在する導電性粒子の平均個数はバンプ1個当たりの平均で5個以上200個以下が好ましい。接続信頼性の観点から5個以上であることが好ましく、圧着接続時の荷重の観点から200個以下が好ましい。より好ましくは、10個から100個の範囲である。   The average number of conductive particles present in the connection bump portion of the connection structure of the present invention is preferably 5 or more and 200 or less per bump. The number is preferably 5 or more from the viewpoint of connection reliability, and 200 or less is preferable from the viewpoint of the load during crimping connection. More preferably, it is in the range of 10 to 100.

接続バンプ部分の導電性粒子の個数は、接続構造体の裏面より光学顕微鏡観察、あるいはレーザー顕微鏡観察等により測定することができる。透明でない、金属系の接続電極の場合は、金属電極に開口部を設けたダミー電極を複数個配し、その部分の接続バンプ部分の導電性粒子の個数から、導電性粒子の平均個数およびその標準偏差を求めることができる。また、金属系の接続電極であっても、フィルム基板の場合は、導電性粒子部分の窪みを裏面観察可能であれば、そのまま用いることができる。
本発明の接続構造体の接続バンプ部分の導電性粒子の個数の標準偏差は、導電性粒子の平均個数の10%以下あるいは2のうち大きい方より小さいことが好ましく、より好ましくは、2より小さいことが好ましい。
The number of conductive particles in the connection bump portion can be measured from the back surface of the connection structure by optical microscope observation, laser microscope observation, or the like. In the case of a metal-based connection electrode that is not transparent, a plurality of dummy electrodes having openings formed in the metal electrode are arranged, and the average number of conductive particles and the number of conductive particles are determined from the number of conductive particles in the connection bump portion of the portion. Standard deviation can be determined. Moreover, even if it is a metal type connection electrode, in the case of a film substrate, if the back surface observation of the hollow of an electroconductive particle part is possible, it can use as it is.
The standard deviation of the number of conductive particles in the connection bump portion of the connection structure of the present invention is preferably 10% or less of the average number of conductive particles or less than the larger of 2, more preferably less than 2. It is preferable.

本発明の接続構造体は、チップ外周部に形成された接続バンプの内側部分に存在する導電性粒子の個数の93%以上が単独で存在するようにする。また、導電性粒子の個数の95%以上が単独で存在することがより好ましい。さらに、導電性粒子の個数の93%以上より好ましくは95%以上が接続基板面側に存在していることが好ましい。
本発明において、チップ外周部に形成された接続バンプの内側部分とは、全ての端子の一端によって囲まれた最も面積の狭い部分を指す。
本発明において「導電性粒子が単独に存在する」とは、導電性粒子同士が凝集せずに各々独立して存在することを意味する。以下、この意味で「単独に存在する」、「単独粒子」なる表現を用いることがある。
In the connection structure of the present invention, 93% or more of the number of conductive particles existing in the inner part of the connection bump formed on the outer periphery of the chip is present alone. Further, it is more preferable that 95% or more of the number of conductive particles exist alone. Furthermore, it is preferable that 93% or more, more preferably 95% or more of the number of conductive particles exists on the connection substrate surface side.
In the present invention, the inner portion of the connection bump formed on the outer periphery of the chip refers to a portion having the smallest area surrounded by one end of all terminals.
In the present invention, “the conductive particles are present alone” means that the conductive particles are present independently without agglomeration. Hereinafter, the expressions “exist alone” and “single particle” may be used in this sense.

チップ内側部分の均一性が保たれ、外部からの水分浸入等あるいは、熱履歴による膨張収縮時等における局所的な欠陥発生を抑制するという観点から、内側部分の導電性粒子の90%以上が単独かつ接続基板面側に存在することが好ましい。
本発明において、接続基板面側とは、接続基板面から導電性粒子の平均粒子の1.5倍以内の領域を指す。
90% or more of the conductive particles in the inner part are independent from the viewpoint of maintaining uniformity of the inner part of the chip and suppressing the occurrence of local defects at the time of expansion and shrinkage due to thermal history or the like. And it is preferable that it exists in the connection board | substrate surface side.
In the present invention, the connection substrate surface side means a region within 1.5 times the average particle size of the conductive particles from the connection substrate surface.

本発明の接続構造体において、接続構造体の厚み方向に対して、導電性粒子の存在している位置は、焦点方向の変位を測定できるレーザー顕微鏡により測定することができる。またこのとき同時に、導電性粒子が他の導電性粒子と接触せずに存在している個数を測定することもできる。前記レーザー顕微鏡を用いて焦点方向の変位を測定する場合、その変位測定分解能は0.1μm以下であることが好ましく、0.01μm以下であることが特に好ましい。   In the connection structure of the present invention, the position where the conductive particles are present with respect to the thickness direction of the connection structure can be measured by a laser microscope capable of measuring the displacement in the focal direction. At the same time, it is also possible to measure the number of conductive particles that exist without contacting other conductive particles. When the displacement in the focal direction is measured using the laser microscope, the displacement measurement resolution is preferably 0.1 μm or less, and particularly preferably 0.01 μm or less.

本発明の接続構造体の製造方法は、公知の方法を組み合わせても差し支えない。好ましくは、少なくとも硬化剤、硬化性の絶縁性樹脂、導電性粒子からなる異方導電性フィルムにより接続することが好ましい。より好ましくは、予め異方導電性フィルム中の導電性粒子が90%以上単独かつ、片側表面付近に存在する異方導電性フィルムを用い、これをチップ外周部に接続バンプを配列したLSIチップと接続基板との間に介在させて、該LSIチップと接続基板とを押圧し、樹脂を硬化させることによりLSIチップと接続基板とを接続(電気的かつ機械的に接続)する。この時、異方導電性フィルムの導電性粒子存在面側を接続基板面側にして接続することが好ましい。
チップ外周部に接続バンプを配列したLSIチップを異方導電性フィルムで接続する場合、接続後において、外周部に形成された接続バンプの内側部分の単位面積当たりの導電性粒子の個数が、接続前の異方導電性フィルムの単位面積当たりの導電性粒子の個数の0.8倍以上、より好ましくは0.9倍以上であることが好ましい。接続時の導電性粒子流れ出しによる短絡(バンプ間の凝集による短絡)、あるいは、流れ出した導電性粒子の偏在化による局所的な不均一箇所の発生を抑制する観点から、接続後のチップ内側部分の導電性粒子の個数が0.8倍以上であることが好ましい。
The manufacturing method of the connection structure of the present invention may be combined with known methods. Preferably, it is preferable to connect with an anisotropic conductive film made of at least a curing agent, a curable insulating resin, and conductive particles. More preferably, an anisotropic conductive film in which 90% or more of the conductive particles in the anisotropic conductive film are previously present on the surface of one side is used, and this is used as an LSI chip in which connection bumps are arranged on the outer periphery of the chip. The LSI chip and the connection substrate are pressed between the connection substrate and the LSI chip and the connection substrate are pressed to cure the resin, thereby connecting (electrically and mechanically connecting) the LSI chip and the connection substrate. At this time, it is preferable that the anisotropic conductive film is connected with the conductive particle existing surface side of the anisotropic conductive film being the connection substrate surface side.
When connecting an LSI chip with connection bumps on the outer periphery of the chip with an anisotropic conductive film, the number of conductive particles per unit area of the inner part of the connection bump formed on the outer periphery after connection is The number of conductive particles per unit area of the previous anisotropic conductive film is 0.8 times or more, more preferably 0.9 times or more. From the viewpoint of suppressing the occurrence of local non-uniformity due to the short circuit due to the flow of conductive particles at the time of connection (short circuit due to aggregation between bumps) or the uneven distribution of the conductive particles that have flowed out, The number of conductive particles is preferably 0.8 times or more.

また、本発明の接続構造体を製造する際、異方導電性フィルムを用いて加熱圧着する場合は、異方導電性フィルムに含まれる成分の中で最もガラス転移温度の高い成分のガラス転移温度の0.5倍から2.5倍の範囲かつ220℃以下の最高到達温度で加熱圧着することが好ましい。より好ましくは、1倍から2倍の範囲である。本発明において、ガラス転移温度は、摂氏で表される。接続時の樹脂流動による導電性粒子の不均一化を防止する観点から、最もガラス転移温度の高い成分のガラス転移温度の2.5倍以下、かつ220℃以下であることが好ましい。加熱圧着接続時のボイド抑制、剥離防止の観点から、0.5倍以上であることが好ましい。   Moreover, when manufacturing the connection structure of the present invention, in the case of thermocompression bonding using an anisotropic conductive film, the glass transition temperature of the component having the highest glass transition temperature among the components contained in the anisotropic conductive film. It is preferable to perform thermocompression bonding in the range of 0.5 to 2.5 times the maximum and 220 ° C. or lower. More preferably, it is in the range of 1 to 2 times. In the present invention, the glass transition temperature is expressed in degrees Celsius. From the viewpoint of preventing non-uniformity of the conductive particles due to resin flow at the time of connection, it is preferably 2.5 times or less of the glass transition temperature of the component having the highest glass transition temperature and 220 ° C. or less. From the viewpoint of suppressing voids and preventing peeling at the time of thermocompression bonding, it is preferably 0.5 times or more.

加熱圧着時間の50%以上の範囲において、最高到達温度に達していることが好ましく、より好ましくは80%以上である。加熱圧着時間は3秒から60秒の範囲であることが好ましく、より好ましくは5秒から20秒の範囲である。
ガラス転移温度の測定方法としては、公知の方法を用いることができる。具体的には、TMA―50熱機械分析装置(島津製作所製)を用いて昇温速度10℃/分の条件で測定することができる。
In the range of 50% or more of the thermocompression bonding time, it is preferable that the maximum temperature is reached, more preferably 80% or more. The thermocompression bonding time is preferably in the range of 3 to 60 seconds, more preferably in the range of 5 to 20 seconds.
As a method for measuring the glass transition temperature, a known method can be used. Specifically, it can be measured using a TMA-50 thermomechanical analyzer (manufactured by Shimadzu Corporation) at a temperature rising rate of 10 ° C./min.

本発明に用いる異方導電性接着フィルムを例示する。
該異方導電性フィルムに用いる硬化性の絶縁性樹脂としては、熱硬化性樹脂、光硬化性樹脂、光及び熱硬化性樹脂、電子線硬化性樹脂等を用いることができる。取り扱いの容易さから、熱硬化性の絶縁性樹脂を用いることが好ましい。熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂等を用いることができるが、エポキシ樹脂が特に好ましい。
The anisotropic conductive adhesive film used for this invention is illustrated.
As the curable insulating resin used for the anisotropic conductive film, a thermosetting resin, a photocurable resin, light and thermosetting resin, an electron beam curable resin, or the like can be used. In view of ease of handling, it is preferable to use a thermosetting insulating resin. As the thermosetting resin, an epoxy resin, an acrylic resin, or the like can be used, and an epoxy resin is particularly preferable.

エポキシ樹脂は、1分子中に2個以上のエポキシ基を有する化合物であり、グリシジルエーテル基、グリシジルエステル基、脂環式エポキシ基を有する化合物、分子内の二重結合をエポキシ化した化合物が好ましい。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂あるいは、それらの変性エポキシ樹脂を用いることができる。   The epoxy resin is a compound having two or more epoxy groups in one molecule, and is preferably a compound having a glycidyl ether group, a glycidyl ester group or an alicyclic epoxy group, or a compound obtained by epoxidizing a double bond in the molecule. . Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, novolac phenol type epoxy resin, or modified epoxy resins thereof can be used.

本発明に用いる硬化剤は、前記硬化性の絶縁性樹脂を硬化できるものであればよい。硬化性の絶縁性樹脂として熱硬化性樹脂を用いる場合は、100℃以上で熱硬化性樹脂と反応し、硬化できるものが好ましい。エポキシ樹脂の場合は、保存性の点から、潜在性硬化剤であることが好ましく、例えば、イミダゾール系硬化剤、カプセル型イミダゾール系硬化剤、カチオン系硬化剤、ラジカル系硬化剤、ルイス酸系硬化剤、アミンイミド系硬化剤、ポリアミン塩系硬化剤、ヒドラジド系硬化剤等を用いることができる。保存性、低温反応性の点から、カプセル型のイミダゾール系硬化剤が好ましい。   The curing agent used in the present invention may be any one that can cure the curable insulating resin. When a thermosetting resin is used as the curable insulating resin, a resin that can be cured by reacting with the thermosetting resin at 100 ° C. or higher is preferable. In the case of an epoxy resin, a latent curing agent is preferable from the viewpoint of storage stability. For example, an imidazole curing agent, a capsule type imidazole curing agent, a cationic curing agent, a radical curing agent, a Lewis acid curing agent. An agent, an amine imide curing agent, a polyamine salt curing agent, a hydrazide curing agent, and the like can be used. From the viewpoint of storage stability and low-temperature reactivity, capsule-type imidazole curing agents are preferred.

該異方導電性フィルムには、硬化剤及び硬化性の絶縁性樹脂以外に、熱可塑性樹脂等を配合しても構わない。熱可塑性樹脂を配合することにより、容易にシート状に形成することが出来る。この場合の配合量は、硬化剤及び硬化性の絶縁性樹脂を合わせた成分100質量部に対して200質量部以下であることが好ましく、100質量部以下であることが特に好ましい。   In addition to the curing agent and the curable insulating resin, the anisotropic conductive film may contain a thermoplastic resin or the like. By blending a thermoplastic resin, it can be easily formed into a sheet. In this case, the blending amount is preferably 200 parts by mass or less, particularly preferably 100 parts by mass or less, based on 100 parts by mass of the components including the curing agent and the curable insulating resin.

本発明の硬化性の絶縁性樹脂に配合できる熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アルキル化セルロース樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、ポリエチレンテレフタレート樹脂等であり、それらから選ばれる1種または2種以上の樹脂を組み合わせても差し支えない。これらの樹脂の中、水酸基、カルボキシル基等の極性基を有する樹脂は、接着強度の点から好ましい。また、熱可塑性樹脂は、ガラス転移温度が80℃以上300℃以下である熱可塑性樹脂を1種以上含むことが好ましい。   Thermoplastic resins that can be blended with the curable insulating resin of the present invention include phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, styrene resin, urethane resin, polyethylene terephthalate resin, etc. There may be a combination of one or more resins selected from them. Among these resins, a resin having a polar group such as a hydroxyl group or a carboxyl group is preferable from the viewpoint of adhesive strength. Moreover, it is preferable that a thermoplastic resin contains 1 or more types of thermoplastic resins whose glass transition temperature is 80 degreeC or more and 300 degrees C or less.

本発明の異方導電性フィルムには、上記構成成分に添加剤を配合しても差し支えない。異方導電性フィルムと被着物との密着性を向上させるために、添加剤として、カップリング剤を配合することができる。該カップリング剤としては、シランカップリング剤、チタンカップリング剤、アルミカップリング剤等を用いることができるが、シランカップリング剤が好ましい。該シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メルカプトトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、β−アミノエチル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン等を用いることができる。   In the anisotropic conductive film of the present invention, an additive may be blended with the above constituent components. In order to improve the adhesion between the anisotropic conductive film and the adherend, a coupling agent can be blended as an additive. As the coupling agent, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, or the like can be used, and a silane coupling agent is preferable. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptotrimethoxysilane, γ-aminopropyltrimethoxysilane, β-aminoethyl-γ- Aminopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, and the like can be used.

該カップリング剤の配合量は硬化剤および硬化性の絶縁性樹脂を合わせた成分100質量部に対して、0.01質量部から1質量部が好ましい。密着性向上の観点から0.01質量部以上が好ましく、信頼性の観点から1質量部以下が好ましい。   The blending amount of the coupling agent is preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the components including the curing agent and the curable insulating resin. 0.01 mass part or more is preferable from a viewpoint of adhesive improvement, and 1 mass part or less is preferable from a reliability viewpoint.

本発明の接続構造体の製造には、予め異方導電性フィルム中の導電性粒子が90%以上単独かつ、片側表面付近に存在する異方導電性フィルムを用いることが好ましい。該異方導電性フィルムの例について説明する。該異方導電性フィルムは、例えば、異方導電性フィルムの片側表面から厚み方向に沿って導電性粒子の平均粒径の1.5倍以内の領域中に導電性粒子の個数の90%以上が単独で存在していることが好ましく、95%以上が単独で存在していることがより好ましい。   For the production of the connection structure of the present invention, it is preferable to use an anisotropic conductive film in which 90% or more of the conductive particles in the anisotropic conductive film are present in the vicinity of one surface in advance. An example of the anisotropic conductive film will be described. The anisotropic conductive film is, for example, 90% or more of the number of conductive particles in a region within 1.5 times the average particle diameter of the conductive particles along the thickness direction from one surface of the anisotropic conductive film. Is preferably present alone, more preferably 95% or more is present alone.

さらに該異方導電性フィルムにおいて、近接する導電性粒子同士の平均粒子間隔は、導電性粒子の平均粒径の0.5倍以上5倍以下であることが好ましい。より好ましくは、20μm以下で、かつ平均粒径の0.5倍以上3倍以下である。接続時の粒子流動による粒子凝集の防止、及び絶縁性確保の観点から、平均粒径の0.5倍以上であることが好ましく、微細接続の観点から平均粒径の5倍以下が好ましい。   Furthermore, in the anisotropic conductive film, it is preferable that the average particle interval between adjacent conductive particles is 0.5 to 5 times the average particle size of the conductive particles. More preferably, the average particle size is 20 μm or less and 0.5 to 3 times the average particle size. From the viewpoint of preventing particle aggregation due to particle flow at the time of connection and ensuring insulation, the average particle diameter is preferably 0.5 times or more, and from the viewpoint of fine connection, it is preferably 5 times or less of the average particle diameter.

本発明において、近接する導電性粒子とは、任意の導電性粒子を選定し、該導電性粒子に最も近い6個の導電性粒子を言う。近接する導電性粒子との平均粒子間隔の求め方は以下の通りである。
まず、異方導電性フィルムを、導電性粒子が存在する面側から光学顕微鏡で拡大した写真を撮影する。次に、任意の20個の導電性粒子を選定し、そのそれぞれの導電性粒子に最も近い6個の導電性粒子との距離を測定し、全体の平均値を求めて、平均粒子間隔とする。
In the present invention, the adjacent conductive particles are selected from arbitrary conductive particles and refer to six conductive particles closest to the conductive particles. The method for obtaining the average particle spacing between adjacent conductive particles is as follows.
First, a photograph of the anisotropic conductive film is taken with an optical microscope from the surface side where the conductive particles are present. Next, arbitrary 20 conductive particles are selected, the distance from the 6 conductive particles closest to the respective conductive particles is measured, the average value of the whole is obtained, and the average particle interval is obtained. .

異方導電性フィルムの厚みは10μm以上、30μm以下であることが好ましく、15μm以上25μm以下であることがより好ましい。機械的接続強度の観点から10μm以上が好ましく、接続時の粒子流動による接続粒子数減少を防止する観点から30μm以下であることが好ましい。   The thickness of the anisotropic conductive film is preferably 10 μm or more and 30 μm or less, and more preferably 15 μm or more and 25 μm or less. From the viewpoint of mechanical connection strength, it is preferably 10 μm or more, and from the viewpoint of preventing a decrease in the number of connected particles due to particle flow during connection, it is preferably 30 μm or less.

次に、本発明における導電性粒子が他の導電性粒子と接触せずに存在している異方導電性フィルムの製造方法について例示する。
該異方導電性フィルムの製造方法としては、2軸延伸可能なフィルム又はシート上に、粘着層を形成し、その上に導電性粒子を単層配列し、それらを延伸することにより、該導電性粒子を分散配列させ、延伸した状態を保った状態で導電性粒子を少なくとも硬化剤及び硬化性の絶縁性樹脂からなる接着シートに転写させる方法が好ましい。
Next, a method for producing an anisotropic conductive film in which the conductive particles in the present invention are present without contacting with other conductive particles will be exemplified.
As the method for producing the anisotropic conductive film, an adhesive layer is formed on a biaxially stretchable film or sheet, conductive particles are arranged in a single layer on the film, and the conductive particles are stretched. It is preferable to disperse and arrange the conductive particles and transfer the conductive particles to an adhesive sheet made of at least a curing agent and a curable insulating resin while maintaining the stretched state.

2軸延伸可能なフィルムとしては、公知の樹脂フィルム等を用いることができるが、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂等の単独あるいは共重合体等、又は、ニトリルゴム、ブタジエンゴム、シリコーンゴム等のゴムシート等の柔軟で延伸可能な樹脂フィルムを用いることが好ましい。ポリプロピレン樹脂、ポリエステル樹脂が特に好ましい。延伸後の収縮率は10%以下であることが好ましい。   As the biaxially stretchable film, a known resin film or the like can be used, but a polyethylene resin, a polypropylene resin, a polyester resin, a polyvinyl butyral resin, a polyvinyl alcohol resin, a polyvinylidene chloride resin alone or a copolymer, etc. Alternatively, it is preferable to use a flexible and stretchable resin film such as a rubber sheet such as nitrile rubber, butadiene rubber, or silicone rubber. Polypropylene resin and polyester resin are particularly preferable. The shrinkage after stretching is preferably 10% or less.

2軸延伸可能なフィルム上に導電性粒子を単層配列し、固定する方法としては、公知の方法を用いることができる。例えば、少なくとも熱可塑性樹脂を含む粘着層を該2軸延伸可能なフィルム上に形成し、その上に導電性粒子を接触させて付着させ、ゴムロール等で荷重をかけて単層で配列する方法を採ることができる。この場合、隙間無く充填するためには、付着−ロール操作を数回繰り返す方法が好ましい。球状の導電性粒子の場合、最密充填が最も安定した構造なので比較的容易に充填することができる。あるいは、該2軸延伸可能なフィルム上に粘着剤を塗布して接着層を形成し、その上に導電性粒子を付着させ、必要なら数回付着を繰り返し、単層で配列させる方法等を用いることができる。   As a method for arranging and fixing conductive particles on a biaxially stretchable film, a known method can be used. For example, a method in which an adhesive layer containing at least a thermoplastic resin is formed on the biaxially stretchable film, conductive particles are brought into contact therewith and adhered, and a single layer is arranged by applying a load with a rubber roll or the like. Can be taken. In this case, a method of repeating the adhesion-roll operation several times is preferable for filling without gaps. In the case of spherical conductive particles, since the closest packing is the most stable structure, it can be filled relatively easily. Alternatively, an adhesive is formed on the biaxially stretchable film to form an adhesive layer, and conductive particles are adhered on the adhesive layer. If necessary, the adhesion is repeated several times, and a method of arranging in a single layer is used. be able to.

導電性粒子を単層配列させた2軸延伸可能なフィルムを延伸させる方法としては、公知の方法を用いることができるが、均一分散配列という点から、2軸延伸装置を用いることが好ましい。粒子間隔の点から延伸度合いは、50%以上、400%以下であることが好ましく、100%以上、300%以下であることがより好ましい。なお、100%延伸するとは、延伸方向に沿って延伸した部分の長さが延伸前の長さの100%であることを言う。延伸方向は、任意であるが、延伸角度が90°の2軸延伸が好ましく、同時延伸が好ましい。2軸延伸の場合、各方向の延伸度合いは同じであっても異なっていても構わない。   As a method for stretching a biaxially stretchable film in which conductive particles are arranged in a single layer, a known method can be used, but a biaxial stretching device is preferably used from the viewpoint of uniform dispersion alignment. From the viewpoint of particle spacing, the degree of stretching is preferably 50% or more and 400% or less, and more preferably 100% or more and 300% or less. In addition, 100% stretching means that the length of the portion stretched along the stretching direction is 100% of the length before stretching. The stretching direction is arbitrary, but biaxial stretching with a stretching angle of 90 ° is preferable, and simultaneous stretching is preferable. In the case of biaxial stretching, the degree of stretching in each direction may be the same or different.

2軸延伸装置としては、同時2軸連続延伸装置が好ましい。
同時2軸連続延伸装置としては、公知のものを使用することができるが、長辺側をチャック金具で固定し、それらの間隔を縦横同時に延伸することにより連続延伸するテンター型延伸機が好ましい。延伸度を調整する方式としては、スクリュー方式、パンタグラフ方式を用いることが可能だが、調整の精度の観点から、パンタグラフ方式がより好ましい。加熱しながら延伸する場合は、延伸部分の手前に予熱ゾーンを設けて、延伸部分の後方に熱固定ゾーンを設けることが好ましい。
As the biaxial stretching apparatus, a simultaneous biaxial continuous stretching apparatus is preferable.
As the simultaneous biaxial continuous stretching apparatus, a known one can be used, but a tenter type stretching machine that continuously stretches by fixing the long side with a chuck fitting and simultaneously stretching the distance in the vertical and horizontal directions is preferable. As a method for adjusting the degree of stretching, a screw method or a pantograph method can be used, but a pantograph method is more preferable from the viewpoint of accuracy of adjustment. When stretching while heating, it is preferable to provide a preheating zone before the stretched portion and a heat setting zone behind the stretched portion.

本発明の異方導電性フィルムは、少なくとも硬化剤、硬化性の絶縁性樹脂、及び導電性粒子からなる単層のフィルムであってもよいし、さらに該フィルムに導電性粒子を含まず少なくとも絶縁性樹脂を含む樹脂シートを積層した複層のフィルムであっても構わない。   The anisotropic conductive film of the present invention may be a single-layer film composed of at least a curing agent, a curable insulating resin, and conductive particles, and the film does not contain conductive particles and is at least insulated. A multilayer film in which resin sheets containing a conductive resin are laminated may be used.

粘着層に使用する粘着剤は、公知のものを使用することができるが、加熱しながら2軸延伸する場合は、非熱架橋性の粘着剤を用いることが好ましい。具体的には、天然ゴム系粘着剤、合成ゴム系粘着剤、合成樹脂エマルジョン系粘着剤、シリコーン系粘着剤、エチレン−酢酸ビニル共重合体粘着剤等を単独で、又は組み合わせて用いることができる。延伸前の導電性粒子保持性、延伸時の導電性粒子分散の均一性、延伸後の導電性粒子の転写性の観点から、天然ゴム系粘着剤をアクリレートでグラフト重合した粘着剤が特に好ましい。さらに、加熱延伸時の均一性の点から、延伸前に延伸温度以下で1分間から5分間加熱処理することが好ましい。   As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer, a known one can be used, but when biaxial stretching is performed while heating, it is preferable to use a non-thermal crosslinkable pressure-sensitive adhesive. Specifically, natural rubber-based adhesives, synthetic rubber-based adhesives, synthetic resin emulsion-based adhesives, silicone-based adhesives, ethylene-vinyl acetate copolymer adhesives, and the like can be used alone or in combination. . From the viewpoint of conductive particle retention before stretching, uniformity of conductive particle dispersion during stretching, and transferability of conductive particles after stretching, a pressure-sensitive adhesive obtained by graft polymerization of a natural rubber-based pressure-sensitive adhesive with acrylate is particularly preferable. Furthermore, it is preferable to heat-process for 1 minute to 5 minutes below extending | stretching temperature before extending | stretching from the point of the uniformity at the time of heating extending | stretching.

粘着層の厚みは、使用する導電性粒子の平均粒径の1/50から3倍の範囲が好ましく、1/10から2倍の範囲がより好ましい。導電性粒子付着時及び延伸時に導電性粒子を保持する観点から、粘着層の厚みは該導電性粒子の平均粒径の1/50以上が好ましく、延伸後の接着シートへの粒子転写の観点から3倍以下が好ましい。粘着層形成方法としては、溶剤又は水に分散又は溶解したものを、グラビアコーター、ダイコーター、ナイフコーター、バーコーター、スプレーコート等の公知の方法で塗布し、乾燥する方法を用いることができる。ホットメルトタイプの粘着剤を使用する場合は、無溶剤でロールコートすることができる。   The thickness of the adhesive layer is preferably in the range of 1/50 to 3 times the average particle diameter of the conductive particles used, and more preferably in the range of 1/10 to 2 times. From the viewpoint of holding the conductive particles at the time of adhesion and stretching of the conductive particles, the thickness of the adhesive layer is preferably 1/50 or more of the average particle diameter of the conductive particles, from the viewpoint of particle transfer to the adhesive sheet after stretching. 3 times or less is preferable. As the method for forming the adhesive layer, a method in which a dispersion or solution in a solvent or water is applied and dried by a known method such as a gravure coater, a die coater, a knife coater, a bar coater, or a spray coat can be used. When a hot-melt type pressure-sensitive adhesive is used, it can be roll-coated without a solvent.

該導電性粒子を粘着層に塗布するにあたっては、ほぼ隙間無く単層で配列すること(密集充填)が好ましい。密集充填する方法としては、前述の、2軸延伸可能なフィルム上に導電性粒子を分散配列し、固定する方法を用いることができる。なお、密集充填とは、充填された粒子間の平均粒子間隔が、平均粒径の1/2以下であるように充填することをいうものとする。より好ましくは、充填された粒子間の平均粒子間隔が、平均粒径の1/5以下である。   In applying the conductive particles to the adhesive layer, it is preferable that the conductive particles are arranged in a single layer with almost no gap (dense packing). As a method for dense packing, the above-described method of dispersing and arranging conductive particles on a biaxially stretchable film can be used. In addition, close packing means filling so that the average particle | grain space | interval between the filled particles may be 1/2 or less of an average particle diameter. More preferably, the average particle interval between the filled particles is 1/5 or less of the average particle size.

2軸延伸後のフィルムの膜厚は、転写する接着性シート及び接着性シートのベースフィルムの膜厚を合計した厚みの1/10から1倍であることが好ましく、1/5から1/2であることが特に好ましい。延伸後のフィルムのハンドリング性の観点から、1/10以上であることが好ましく、延伸後の接着性フィルムへの粒子転写の観点から1倍以下であることが好ましい。   The film thickness of the biaxially stretched film is preferably 1/10 to 1 times the total thickness of the adhesive sheet to be transferred and the base film of the adhesive sheet, and 1/5 to 1/2. It is particularly preferred that From the viewpoint of handling properties of the stretched film, it is preferably 1/10 or more, and from the viewpoint of particle transfer to the adhesive film after stretching, it is preferably 1 time or less.

本発明の接続構造体を構成する電子回路部品としては、液晶ディスプレイ機器、プラズマディスプレイ機器、エレクトロルミネッセンスディスプレイ機器等の表示機器の配線板接続用途および、それら機器のLSI等の電子部品実装用途、その他の機器の配線基板接続部分、LSI等の電子部品実装用途に使用することができる。上記表示機器の中でも、信頼性を必要とされるプラズマディスプレイ機器、エレクトロルミネッセンスディスプレイ機器に用いるのが好ましい。
次に、実施例および比較例によって本発明を説明する。
The electronic circuit components constituting the connection structure of the present invention include wiring board connection applications for display devices such as liquid crystal display devices, plasma display devices, electroluminescence display devices, and electronic device mounting applications such as LSIs for these devices, and others. Can be used for mounting electronic circuit parts such as wiring board connection parts of LSIs and LSIs. Among the display devices, it is preferably used for plasma display devices and electroluminescence display devices that require reliability.
Next, the present invention will be described with reference to examples and comparative examples.

(接続構造体作製方法)
縦横が1.6mm×15.1mmのシリコン片(厚み0.5mm)全面に酸化膜を形成後、外辺部から40μm内側に横74.5μm、縦120μmのアルミ薄膜(1000Å)をそれぞれが0.1μm間隔になるように長辺側に各々175個、短辺側に各々16個形成する。それらアルミ薄膜上に12μm間隔になるように横28μm、縦70μmの金バンプ(厚み15μm)をそれぞれ2個ずつ形成するために、それぞれの金バンプ配置個所の外周部から6.0μm内側に横10μm、縦60μmの開口部を残す以外の部分に酸化ケイ素の保護膜を常法により前記開口部以外の全面に形成する。その後、前記金バンプを形成し、試験チップとする。
(Connection structure manufacturing method)
After an oxide film is formed on the entire surface of a silicon piece (thickness 0.5 mm) of 1.6 mm × 15.1 mm in length and width, an aluminum thin film (1000 mm) having a width of 74.5 μm and a length of 120 μm is 40 μm inside from the outer side. 175 pieces are formed on the long side and 16 pieces are formed on the short side, respectively, so as to have an interval of 1 μm. In order to form two gold bumps (thickness 15 μm) each having a width of 28 μm and a length of 70 μm on the aluminum thin film so as to have an interval of 12 μm, a width of 10 μm inside 6.0 μm from the outer peripheral portion of each gold bump placement location. Then, a protective film of silicon oxide is formed on the entire surface other than the opening by a conventional method except for leaving the opening having a length of 60 μm. Thereafter, the gold bump is formed to obtain a test chip.

厚み0.7mmの無アルカリガラス上に前記アルミ薄膜上の金バンプが隣接するアルミ薄膜上の金バンプと対になる位置関係で接続されるようにインジウムスズ酸化物膜(1500Å)の接続パッド(横68μm、縦100μm)を形成する。20個の金バンプが接続される毎に前記接続パッドにインジウムスズ酸化物薄膜の引き出し配線を形成する(この引き出し配線が接続抵抗測定部分となる。)。
また、別の辺に前記アルミ薄膜上の2個の金バンプがそれぞれ接続されるような位置関係にインジウムスズ酸化物膜(1500Å)の接続パッド(横68μm、縦100μm)を形成する。前記接続パッドを1個おきに5個接続できるようにインジウムスズ酸化物薄膜の接続配線を形成し、さらにそれらと対になり、櫛型パターンを形成するように1個おきに5個接続できるようにインジウムスズ酸化物薄膜の接続配線を形成する。それぞれの接続配線にインジウム錫酸化物薄膜の引出し配線を形成する(この引き出し配線が絶縁抵抗測定部分となる。)。
A connection pad of an indium tin oxide film (1500 mm) so that gold bumps on the aluminum thin film are connected to a gold bump on the adjacent aluminum thin film on a non-alkali glass having a thickness of 0.7 mm so as to be paired with each other. Width 68 μm, length 100 μm). Each time 20 gold bumps are connected, an indium tin oxide thin film lead wire is formed on the connection pad (this lead wire serves as a connection resistance measurement portion).
In addition, a connection pad (68 μm wide, 100 μm long) of an indium tin oxide film (1500 mm) is formed in such a positional relationship that two gold bumps on the aluminum thin film are connected to different sides. The connection wiring of the indium tin oxide thin film is formed so that every five of the connection pads can be connected, and further, every five of the connection pads can be connected so as to form a comb pattern. The connection wiring of the indium tin oxide thin film is formed. A lead wire of an indium tin oxide thin film is formed on each connection wire (this lead wire becomes an insulation resistance measurement part).

それぞれの引出し配線上はアルミニウム−チタン薄膜(チタン1%、3000Å)を形成し、接続基板とする。前記接続基板上に、前記接続パッドがすべて覆われるように、幅2mm、長さ17mmの異方導電性接着シートの該導電性粒子の存在する側を仮張りし、2.5mm幅の圧着ヘッドを用いて、80℃、0.3MPa、3秒間加圧した後、ポリエチレンテレフタレートのベースフィルムを剥離する。そこへ、前記接続パッドと金バンプの位置が合うように試験チップを載せ、所定の温度で5秒間2.0MPa加圧圧着する。
加熱圧着時の温度条件に関しては、異方導電性フィルムと接続基板の間に熱電対を配し、上記と同様にして加圧圧着し、圧着時の温度測定を行い、最高到達温度、及び最高到達温度に到達するまでの時間を測定する。
圧着後、前記引出し配線間(金バンプ20個のデイジーチェイン)の抵抗値を四端子法の抵抗計で抵抗測定し、接続抵抗値とする。
また、対になった引き出し配線間の抵抗測定し、絶縁抵抗値とする。
An aluminum-titanium thin film (titanium 1%, 3000 mm) is formed on each lead-out wiring to form a connection substrate. A 2.5 mm wide pressure-bonding head is provided by temporarily stretching the side of the anisotropic conductive adhesive sheet having a width of 2 mm and a length of 17 mm where the conductive particles are present so that the connection pads are all covered on the connection substrate. After pressing at 80 ° C., 0.3 MPa for 3 seconds, the polyethylene terephthalate base film is peeled off. A test chip is placed there so that the positions of the connection pads and the gold bumps are matched, and pressure bonding with 2.0 MPa is performed at a predetermined temperature for 5 seconds.
Regarding the temperature conditions at the time of thermocompression bonding, a thermocouple is arranged between the anisotropic conductive film and the connection substrate, pressure bonding is performed in the same manner as described above, temperature measurement at the time of crimping is performed, and the maximum temperature reached and the maximum Measure the time to reach the final temperature.
After the crimping, the resistance value between the lead wires (daisy chain of 20 gold bumps) is measured with a four-terminal resistance meter to obtain a connection resistance value.
In addition, the resistance between the paired lead wires is measured to obtain an insulation resistance value.

この絶縁抵抗試験基板を85℃、85%相対湿度中に保持しながら、定電圧定電流電源を用いて、対になる引き出し配線間に25Vの直流電圧を印加する。この配線間の絶縁抵抗を5分間毎に測定し、絶縁抵抗値が10MΩ以下になるまでの時間を測定し、その値を絶縁低下時間とする。この絶縁低下時間が240時間未満の場合を×、240時間以上の場合を○とする。   While maintaining this insulation resistance test substrate at 85 ° C. and 85% relative humidity, a DC voltage of 25 V is applied between the pair of lead wires using a constant voltage constant current power source. The insulation resistance between the wires is measured every 5 minutes, the time until the insulation resistance value becomes 10 MΩ or less is measured, and the value is defined as the insulation decrease time. The case where the insulation decrease time is less than 240 hours is indicated as x, and the case where the insulation decrease time is 240 hours or more is indicated as ◯.

[実施例1]
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)38g、ナフタレン型エポキシ樹脂(エポキシ当量136、半固形)34g、γ−グリシドキシプロピルトリメトキシシラン0.06gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とする。マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径7μm、活性温度125℃)28g、前記固形分50%溶液に配合分散させる。その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、60℃で15分間送風乾燥し、膜厚24μmのフィルム状の接着シートを得た。
厚さ100μmの無延伸ポリプロピレンフィルム上に、粘着層として天然ゴム−メチルメタアクリレートのグラフト共重合体接着剤を2μmの厚みを塗布したものに平均粒径3.0μmの金めっきプラスチック粒子(導電性粒子)をほぼ隙間無く単層塗布した。すなわち、該導電性粒子を該フィルム幅より大きい容器内に数層以上の厚みになるよう敷き詰めたものを用意し、該導電性粒子に対して粘着剤の塗布面を下向きにして押し付けて付着させ、その後過剰な粒子を軟質ゴムからなるスクレバーで掻き落とした。
この操作を2回繰り返すことにより、隙間無く単層塗布した導電性粒子付着フィルムを得た。この導電性粒子付着フィルムを乾燥機中で、100℃、3分間加熱処理した。
このフィルムを2軸延伸装置(東洋精機製X6H−S、パンタグラフ方式のコーナーストレッチ型の2軸延伸装置)を用いて縦横にそれぞれ10個のチャックを用いて固定し150℃、120秒間予熱し、その後5%/秒の速度で100%延伸して固定した。その後、この延伸フィルムに前記接着シートをラミネートした後、剥離し、異方導電性フィルムを得た。
[Example 1]
38 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), 34 g of naphthalene type epoxy resin (epoxy equivalent 136, semi-solid), 0.06 g of γ-glycidoxypropyltrimethoxysilane, mixed solvent of ethyl acetate-toluene Dissolve in (mixing ratio 1: 1) to obtain a 50% solid content solution. A liquid epoxy resin containing a microcapsule type latent imidazole curing agent (average particle diameter of microcapsule 7 μm, active temperature 125 ° C.) 28 g is mixed and dispersed in the 50% solid content solution. Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film, and air-dried at 60 degreeC for 15 minute (s), and obtained the film-like adhesive sheet of film thickness of 24 micrometers.
Gold-plated plastic particles having an average particle size of 3.0 μm (conductivity) obtained by applying a natural rubber-methyl methacrylate graft copolymer adhesive as an adhesive layer to a thickness of 2 μm on an unstretched polypropylene film having a thickness of 100 μm. The particles were applied in a single layer with almost no gap. That is, the conductive particles are prepared in a container having a thickness of several layers or more in a container larger than the film width, and the adhesive particles are pressed and adhered to the conductive particles with the application surface of the adhesive facing downward. Then, excess particles were scraped off with a scrubber made of soft rubber.
By repeating this operation twice, a conductive particle adhesion film coated with a single layer without a gap was obtained. This conductive particle adhesion film was heat-treated at 100 ° C. for 3 minutes in a dryer.
This film was fixed with 10 chucks in the vertical and horizontal directions using a biaxial stretching device (X6H-S, manufactured by Toyo Seiki, pantograph type corner stretching type biaxial stretching device), preheated at 150 ° C. for 120 seconds, Thereafter, the film was stretched and fixed by 100% at a speed of 5% / second. Then, after laminating the adhesive sheet on the stretched film, it was peeled off to obtain an anisotropic conductive film.

光学顕微鏡観察の結果、導電性粒子100個のうち99%が単独粒子であった。また、平均粒子間隔は4.23μmであった。10000μmあたりの導電性粒子の個数は、283個であった。
このようにして得た異方導電性フィルムを用いて、200℃の接続温度になるように前記接続構造体作製法と同様にして、圧着して接続構造体を得た。加熱圧着時間は5秒であった。このときの最高到達温度は、200℃であり、最高到達温度に到達するまでの時間は0.4秒であった。
接続バンプ上(20箇所)の導電性粒子の平均個数は、18.4個であり、標準偏差は1.57、8.5%であった。
また、外周部に形成された接続バンプの内側に存在する導電性粒子の95%が単独粒子であった。99%が接続基板面側に存在した。10000μmあたりの導電性粒子の個数は、256個であり、これは、異方導電性フィルムの0.9倍であった。
As a result of observation with an optical microscope, 99% of 100 conductive particles were single particles. The average particle spacing was 4.23 μm. The number of conductive particles per 10,000 μm 2 was 283.
Using the anisotropic conductive film thus obtained, a connection structure was obtained by pressure bonding in the same manner as in the connection structure manufacturing method so that the connection temperature was 200 ° C. The thermocompression bonding time was 5 seconds. The maximum temperature reached at this time was 200 ° C., and the time required to reach the maximum temperature was 0.4 seconds.
The average number of conductive particles on the connection bumps (20 locations) was 18.4, and the standard deviation was 1.57 and 8.5%.
In addition, 95% of the conductive particles existing inside the connection bumps formed on the outer peripheral portion were single particles. 99% was present on the connection substrate surface side. The number of conductive particles per 10,000 μm 2 was 256, which was 0.9 times that of the anisotropic conductive film.

[実施例2]
フェノキシ樹脂(ガラス転移温度85℃、数平均分子量12000)41g、ビスフェノールA型エポキシ樹脂(エポキシ当量240、半固形)28g、γ−グリシドキシプロピルトリエトキシシラン0.1gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とする。マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径7μm、活性温度125℃)31g、前記固形分50%溶液に配合分散させる。その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、60℃で15分間送風乾燥し、膜厚23μmのフィルム状の接着シートを得た。
厚さ75μmの無延伸ポリプロピレンフィルム上に天然ゴム−メチルメタアクリレートのグラフト共重合体接着剤を3μm塗布したものに平均粒径3.2μmの金めっき銅粒子を実施例1と同様の方法によりほぼ隙間無く単層塗布した導電性粒子付着フィルムを得た。この導電性粒子付着フィルムを乾燥機中で、100℃、3分間加熱処理した
[Example 2]
41 g of phenoxy resin (glass transition temperature 85 ° C., number average molecular weight 12000), 28 g of bisphenol A type epoxy resin (epoxy equivalent 240, semi-solid), 0.1 g of γ-glycidoxypropyltriethoxysilane mixed with ethyl acetate-toluene Dissolve in a solvent (mixing ratio 1: 1) to obtain a 50% solid content solution. A liquid epoxy resin containing a microcapsule-type latent imidazole curing agent (average particle diameter of microcapsule 7 μm, active temperature 125 ° C.) 31 g is mixed and dispersed in the 50% solid content solution. Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film, air-dried at 60 degreeC for 15 minute (s), and the film-form adhesive sheet of 23-micrometer-thickness was obtained.
A gold-plated copper particle having an average particle diameter of 3.2 μm was applied to a non-stretched polypropylene film having a thickness of 75 μm coated with 3 μm of a natural rubber-methyl methacrylate graft copolymer adhesive by the same method as in Example 1. A conductive particle adhesion film coated with a single layer without a gap was obtained. This conductive particle adhesion film was heat-treated in a dryer at 100 ° C. for 3 minutes.

このフィルムを実施例1と同様の方法により2軸延伸装置を用いて縦横にそれぞれ150%延伸して固定した。その後、この延伸フィルムに前記接着シートをラミネートした後、剥離し、異方導電性接着シートを得た。
光学顕微鏡観察の結果、導電性粒子100個のうち98%が単独粒子であった。また、平均粒子間隔は6.72μmであった。10000μmあたりの導電性粒子の個数は、176個であった。
This film was fixed by stretching 150% in the longitudinal and lateral directions using a biaxial stretching apparatus in the same manner as in Example 1. Then, after laminating the adhesive sheet on the stretched film, it was peeled off to obtain an anisotropic conductive adhesive sheet.
As a result of observation with an optical microscope, 98% of 100 conductive particles were single particles. Further, the average particle interval was 6.72 μm. The number of conductive particles per 10,000 μm 2 was 176.

このようにして得た異方導電性フィルムを用いて、200℃の接続温度で前記接続構造体作製方法と同様にして、5秒間圧着して接続構造体を得た。このときの最高到達温度は、200℃であり、最高到達温度に到達するまでの時間は0.5秒であった。接続バンプ上(20箇所)の導電性粒子の平均個数は、10.4個であり、標準偏差は1.45、13.9%であった。
また、外周部に形成された接続バンプの内側に存在する導電性粒子の96%が単独粒子であった。98%が接続基板面側に存在した。10000μmあたりの導電性粒子の個数は、161個であり、これは、異方導電性フィルムの0.92倍であった。
Using the anisotropic conductive film thus obtained, a connection structure was obtained by pressure bonding for 5 seconds at a connection temperature of 200 ° C. in the same manner as in the connection structure manufacturing method. The maximum temperature reached at this time was 200 ° C., and the time required to reach the maximum temperature was 0.5 seconds. The average number of conductive particles on the connection bumps (20 locations) was 10.4, and the standard deviations were 1.45 and 13.9%.
In addition, 96% of the conductive particles existing inside the connection bump formed on the outer peripheral portion were single particles. 98% was present on the connection substrate surface side. The number of conductive particles per 10,000 μm 2 was 161, which was 0.92 times that of the anisotropic conductive film.

[比較例1]
実施例1と同様にして、異方導電性フィルムを得た。光学顕微鏡観察の結果、導電性粒子100個のうち99%が単独粒子であった。また、平均粒子間隔は4.22μmであった。10000μmあたりの導電性粒子の個数は、285個であった。
このようにして得た異方導電性フィルムを用いて、280℃の接続温度で前記接続抵抗値測定法と同様にして、5秒間圧着して接続構造体を得た。このときの最高到達温度は、280℃であり、最高到達温度に到達するまでの時間は3秒であった。接続バンプ上(20箇所)の導電性粒子の平均個数は、14.4個であり、標準偏差は3.43であった。
これは、23.8%であった。65%が接続基板面側に存在した。
また、外周部に形成された接続バンプの内側に存在する導電性粒子の75%が単独粒子であった。10000μmあたりの導電性粒子の個数は、215個であり、これは、異方導電性フィルムの0.75倍であった。
[Comparative Example 1]
In the same manner as in Example 1, an anisotropic conductive film was obtained. As a result of observation with an optical microscope, 99% of 100 conductive particles were single particles. Further, the average particle interval was 4.22 μm. The number of conductive particles per 10,000 μm 2 was 285.
Using the anisotropic conductive film thus obtained, a connection structure was obtained by pressure bonding for 5 seconds at a connection temperature of 280 ° C. in the same manner as in the connection resistance measurement method. The maximum temperature reached at this time was 280 ° C., and the time required to reach the maximum temperature was 3 seconds. The average number of conductive particles on the connection bumps (20 locations) was 14.4, and the standard deviation was 3.43.
This was 23.8%. 65% was present on the connection substrate surface side.
In addition, 75% of the conductive particles existing inside the connection bumps formed on the outer periphery were single particles. The number of conductive particles per 10,000 μm 2 was 215, which was 0.75 times that of the anisotropic conductive film.

[比較例2]
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)37g、ビスフェノールA型エポキシ樹脂(エポキシ当量190、25℃粘度、14000mPa・S)26g、γ−グリシドキシプロピルトリメトキシシラン0.3gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とする。
マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)37g、平均粒径3.0μmの金めっきプラスチック粒子2.0gを前記固形分50%溶液に配合分散させる。
その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、60℃で15分間送風乾燥し、膜厚25μmのフィルム状の異方導電性接着シートを得た。
[Comparative Example 2]
Acetic acid containing 37 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), bisphenol A type epoxy resin (epoxy equivalent 190, 25 ° C. viscosity, 14000 mPa · S) 26 g, and γ-glycidoxypropyltrimethoxysilane 0.3 g Dissolve in a mixed solvent of ethyl-toluene (mixing ratio 1: 1) to obtain a 50% solid content solution.
37 g of liquid epoxy resin containing microcapsule type latent imidazole curing agent (average particle size of microcapsule 5 μm, active temperature 125 ° C.) and 2.0 g of gold-plated plastic particles having an average particle size of 3.0 μm are mixed with 50% solid content. Mix and disperse in the solution.
Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film, air-dried at 60 degreeC for 15 minute (s), and the film-form anisotropic conductive adhesive sheet of 25-micrometer-thickness was obtained.

得られた異方導電性接着シートの導電性粒子のうち、無作為に100個を選び、レーザー式の変位計を用いて、異方導電性接着シート表面からの距離を測定した。その結果、導電性粒子は異方導電性接着シートの膜厚方向においてランダムに存在することがわかった。また、測定した導電性粒子100個のうち79%が単独粒子であった。 10000μmあたりの導電性粒子の個数は、160個であった。
このようにして得た異方導電性フィルムを用いて、270℃の接続温度で前記接続抵抗値測定法と同様にして、5秒間加熱圧着して接続構造体を得た。このときの最高到達温度は、270℃であり、最高到達温度に到達するまでの時間は0.5秒であった。接続バンプ上(20箇所)の導電性粒子の平均個数は、8.1個であり、標準偏差は3.23であった。これは、39.9%であった。また、外周部に形成された接続バンプの内側に存在する導電性粒子の71%が単独粒子であった。77%が接続基板面側に存在した。10000μmあたりの導電性粒子の個数は、101個であり、これは、異方導電性フィルムの0.63倍であった。
Of the conductive particles of the obtained anisotropic conductive adhesive sheet, 100 particles were randomly selected, and the distance from the anisotropic conductive adhesive sheet surface was measured using a laser displacement meter. As a result, it was found that the conductive particles exist randomly in the film thickness direction of the anisotropic conductive adhesive sheet. Moreover, 79% of 100 measured conductive particles were single particles. The number of conductive particles per 10,000 μm 2 was 160.
Using the anisotropic conductive film thus obtained, a connection structure was obtained by thermocompression bonding at a connection temperature of 270 ° C. for 5 seconds in the same manner as in the connection resistance measurement method. The maximum temperature reached at this time was 270 ° C., and the time required to reach the maximum temperature was 0.5 seconds. The average number of conductive particles on the connection bumps (20 locations) was 8.1, and the standard deviation was 3.23. This was 39.9%. In addition, 71% of the conductive particles existing inside the connection bumps formed on the outer peripheral portion were single particles. 77% was present on the connection substrate surface side. The number of conductive particles per 10,000 μm 2 was 101, which was 0.63 times that of the anisotropic conductive film.

実施例及び比較例の接続構造体の接続抵抗値及び絶縁試験結果を表1に示す。表1から明らかなように、本発明の異方導電性接着シートは、非常に優れた絶縁信頼性を示す。   Table 1 shows connection resistance values and insulation test results of the connection structures of Examples and Comparative Examples. As is clear from Table 1, the anisotropic conductive adhesive sheet of the present invention exhibits very excellent insulation reliability.

Figure 0004925405
Figure 0004925405

本発明の接続構造体は、低接続抵抗、高絶縁信頼性を示し、微細回路接続が求められる高精細なディスプレイ装置等の接続構造体として好適である。   The connection structure of the present invention exhibits low connection resistance and high insulation reliability, and is suitable as a connection structure for a high-definition display device or the like that requires fine circuit connection.

本発明の接続構造体の構造を示す概略図である。It is the schematic which shows the structure of the connection structure of this invention.

符号の説明Explanation of symbols

1 接続バンプ
2 導電性粒子
1 Connection bump 2 Conductive particles

Claims (2)

チップ外周部に接続バンプを配列したLSIチップを少なくとも硬化剤、硬化性の絶縁性樹脂、導電性粒子からなる異方導電性フィルムで接続基板に接続してなり、接続バンプの接続部分に存在する導電性粒子の個数の標準偏差が1.45以上であり、該接続部分に存在する導電性粒子の平均個数の10%以下又は2のうち大きい方より小さく、かつ接続バンプの内側部分に存在する導電性粒子の個数の93%以上が単独で存在し、且つ、接続基板面側に存在し、前記接続バンプの接続部分、及び接続バンプの内側部分に存在する導電性粒子が、貴金属被覆された樹脂粒子、貴金属被覆された金属粒子、金属粒子、貴金属被覆された合金粒子、及び合金粒子からなる群から選ばれる少なくとも1種の導電性粒子であって、その平均粒径が1〜10μmであり、前記接続バンプの面積が500μm から10000μm の範囲である接続構造体を製造する方法であって、チップ外周部に接続バンプを配列したLSIチップと接続基板との間に、少なくとも硬化剤、硬化性の絶縁性樹脂、導電性粒子からなる異方導電性フィルムを介在させて、該LSIチップと接続基板とを押圧し、樹脂を硬化させることによりLSIチップと接続基板とを接続する接続構造体の製造方法であって、該異方導電性フィルムとして、フィルムの片側表面から厚み方向に向かって導電性粒子の平均粒径の1.5倍以内の領域中に導電性粒子の個数の90%以上が単独に存在しており、かつ、近接する導電性粒子の平均粒子間隔は、導電性粒子の平均粒径の0.5倍以上5倍以下である異方導電性フィルムを用いることを特徴とする接続構造体の製造方法。 An LSI chip in which connection bumps are arranged on the outer periphery of the chip is connected to the connection substrate with at least a curing agent, a curable insulating resin, and an anisotropic conductive film made of conductive particles, and is present at the connection portion of the connection bump. The standard deviation of the number of conductive particles is 1.45 or more, 10% or less of the average number of conductive particles present in the connection portion, or smaller than the larger one of the two, and exists in the inner portion of the connection bump. 93% or more of the number of conductive particles is present alone and present on the connection substrate surface side, and the conductive particles present on the connection portion of the connection bump and the inner portion of the connection bump are coated with a noble metal. Resin particles, noble metal-coated metal particles, metal particles, noble metal-coated alloy particles, and at least one conductive particle selected from the group consisting of alloy particles, the average particle diameter of which is 1 to Is 0 .mu.m, the area of the connection bump A method of manufacturing a connection structure in the range of 500 [mu] m 2 of 10000 2, between the LSI chip and the connection board having an array of connection bumps to the chip outer periphery, at least The LSI chip and the connection board are connected by pressing the LSI chip and the connection board, and curing the resin, with an anisotropic conductive film made of a curing agent, a curable insulating resin, and conductive particles interposed. A method of manufacturing a connection structure, wherein the anisotropic conductive film has conductive particles in a region within 1.5 times the average particle size of the conductive particles from one surface of the film toward the thickness direction. An anisotropic conductive film in which 90% or more of the number is present alone and the average particle interval between adjacent conductive particles is 0.5 to 5 times the average particle size of the conductive particles. A method for producing a connection structure, characterized by being used. 前記硬化性の絶縁樹脂が熱硬化性樹脂であり、異方導電性フィルムに含まれる成分の中で最もガラス転移温度の高い成分のガラス転移温度の0.5倍から2.5倍の範囲かつ220℃以下の最高到達温度で加熱圧着し、かつ加熱圧着時間の50%以上の時間範囲において最高到達温度に達していることを特徴とする請求項1に記載の接続構造体の製造方法。   The curable insulating resin is a thermosetting resin, and ranges from 0.5 to 2.5 times the glass transition temperature of the component having the highest glass transition temperature among the components contained in the anisotropic conductive film; The method for producing a connection structure according to claim 1, wherein the thermocompression bonding is performed at a maximum temperature of 220 ° C or less, and the maximum temperature is reached in a time range of 50% or more of the thermocompression bonding time.
JP2005289524A 2005-10-03 2005-10-03 Method for manufacturing connection structure Active JP4925405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289524A JP4925405B2 (en) 2005-10-03 2005-10-03 Method for manufacturing connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289524A JP4925405B2 (en) 2005-10-03 2005-10-03 Method for manufacturing connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011053968A Division JP5370694B2 (en) 2011-03-11 2011-03-11 Connection structure

Publications (2)

Publication Number Publication Date
JP2007103545A JP2007103545A (en) 2007-04-19
JP4925405B2 true JP4925405B2 (en) 2012-04-25

Family

ID=38030211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289524A Active JP4925405B2 (en) 2005-10-03 2005-10-03 Method for manufacturing connection structure

Country Status (1)

Country Link
JP (1) JP4925405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147049B2 (en) * 2007-07-25 2013-02-20 旭化成イーマテリアルズ株式会社 Anisotropic conductive film
CN113381210A (en) 2015-03-09 2021-09-10 昭和电工材料株式会社 Method for manufacturing connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001586A1 (en) * 2001-06-20 2003-01-03 Toray Engineering Co., Ltd. Mounting method and device
JP2005209767A (en) * 2004-01-21 2005-08-04 Tohoku Pioneer Corp Electronic module, electronic device equipped therewith, and method for checking pressure bonding connection in electronic module

Also Published As

Publication number Publication date
JP2007103545A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5057594B2 (en) Conductive particle adhesion film
JP4890053B2 (en) Anisotropic conductive film for microcircuit inspection
JP4993880B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
KR101193757B1 (en) Anisotropic conductive film, method for producing the same, and joined structure using the same
WO2013089199A1 (en) Semiconductor chip with attached anisotropic electroconductive film, semiconductor wafer with attached anisotropic electroconductive film, and semiconductor device
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
JP5225766B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP4925405B2 (en) Method for manufacturing connection structure
JP5152815B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP5370694B2 (en) Connection structure
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4994653B2 (en) Anisotropic conductive adhesive sheet
JP5445558B2 (en) Anisotropic conductive adhesive sheet and connection method
JP2007224112A (en) Anisotropic conductive adhesive sheet and method for producing the same
JP4958417B2 (en) Conductive particle transfer sheet and connection structure
JP4766943B2 (en) CIRCUIT ADHESIVE SHEET AND METHOD FOR MANUFACTURING THE SAME
JP4197026B2 (en) Multi-chip mounting method
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JP5164257B2 (en) Method for manufacturing connection structure
JP2013045737A (en) Anisotropic conductive film, connection structure and method of manufacturing connection structure
JP4337941B2 (en) Multi-chip mounting method
JP2014062257A (en) Anisotropic electroconductive adhesive sheet and connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250