JP4920199B2 - 希土類含有合金、その製造方法及び熱電変換材料 - Google Patents
希土類含有合金、その製造方法及び熱電変換材料 Download PDFInfo
- Publication number
- JP4920199B2 JP4920199B2 JP2005123536A JP2005123536A JP4920199B2 JP 4920199 B2 JP4920199 B2 JP 4920199B2 JP 2005123536 A JP2005123536 A JP 2005123536A JP 2005123536 A JP2005123536 A JP 2005123536A JP 4920199 B2 JP4920199 B2 JP 4920199B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- containing alloy
- thermoelectric conversion
- thermoelectric
- alloy according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 82
- 229910045601 alloy Inorganic materials 0.000 title claims description 72
- 239000000956 alloy Substances 0.000 title claims description 72
- 150000002910 rare earth metals Chemical class 0.000 title claims description 47
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 46
- 239000000463 material Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000013078 crystal Substances 0.000 claims description 16
- 229910052746 lanthanum Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 14
- 238000005266 casting Methods 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 10
- 229910052745 lead Inorganic materials 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002918 waste heat Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 238000007712 rapid solidification Methods 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000010949 copper Substances 0.000 description 9
- 238000010248 power generation Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- 150000003624 transition metals Chemical group 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910018989 CoSb Inorganic materials 0.000 description 1
- -1 La and Ce Chemical class 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Continuous Casting (AREA)
- Powder Metallurgy (AREA)
Description
ZT=α2T/κρ
で表すことができる。
しかしながら、これらはウィーデマン・フランツ則に示されるように、熱伝導が電子伝導で支配的な場合には理論的に難しいものとなる。
本発明は上記の問題点に鑑み、原料の入手が容易で、大量生産にも適し、熱電変換素子としても十分な性能をもつ新規な希土類合金を提供することを目的とする。
本発明は上記の知見に基づきなされたもので以下の発明からなる。
(1)REx(Fe1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはTi、Zr、Sn、Pbからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)で表される希土類含有合金。
(2)xが0.01≦x≦1かつyが0.01≦y≦0.15の範囲内であることを特徴とする上記(1)に記載の希土類含有合金。
(4) 希土類含有合金の平均厚みが、0.1〜2mmである上記(1)〜(3)のいずれか1項に記載の希土類含有合金。
(6)REx(Co1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはCu、Znからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)で表される希土類含有合金。
(7) xが0.01≦x≦1かつyが0.01≦y≦0.15の範囲内であることを特徴とする上記(6)に記載の希土類含有合金。
(9) 希土類含有合金の平均厚みが、0.1〜2mmである上記(6)〜(8)のいずれか1項に記載の希土類含有合金。
(10) 上記(6)〜(9)の何れか1項に記載の希土類含有合金からなるn型熱電変換材料。
(11)REx(Fe1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはTi、Zr、Sn、Pbからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)に示す組成になるよう原料を秤量し、この原料を不活性ガス雰囲気中で溶解後、1×10 2 ℃/秒以上の冷却速度で急冷凝固することを特徴とする希土類含有合金の製造方法。
(12) 急冷凝固がストリップキャスティング法である上記(11)に記載の希土類含有合金の製造方法。
(14) 急冷凝固がストリップキャスティング法である上記(13)に記載の希土類含有合金の製造方法。
(15) 上記(1)〜(3)の少なくとも1項に記載の希土類含有合金からなるp型熱電変換材料と上記(6)〜(8)の少なくとも1項に記載の希土類含有合金からなるn型熱電変換材料とを組み合わせた熱電変換素子。
(16)上記(15)に記載の熱電変換素子を用いた熱電変換モジュール。
(17)上記(15)に記載の熱電変換モジュールを用いた熱電発電装置。
(18)上記(17)に記載の熱電発電装置を用いた廃熱回収システム。
(19)上記(17)に記載の熱電発電装置を用いた太陽熱利用システム。
(20)上記(17)に記載の熱電発電装置を用いた熱電供給システム。
(21)排ガスを熱源として電気に変換する、上記(17)に記載の熱電発電装置を用いた自動車。
すなわち、本発明によれば、ほぼ均一なフィルドスクッテルダイト系合金を、ストリップキャスト法を用いた鋳造法により大量に簡便に生産できる。
また、希土類金属の中でも資源的な制約が少ないLaやCeを使用しているため、工業的利用価値が高いだけでなく、Pb(鉛)、Te(テルル)等を含まないため、環境負荷低減に有効である。本発明のフィルドスクッテルダイト系合金は、300℃以上の高温域で高い性能を発揮するため、発電量が大きい。さらに、連続製造が可能な急冷鋳造法の採用と粉砕・焼結技術の組み合わせにより、高性能成分であるフィルドスクッテルダイト相のみからなる合金で素子を作成できるので、従来品であるPb−Te系と同等以上の性能を達成でき、高いゼーベック係数と低い電気抵抗を両立することが可能となった。さらに、熱伝導度も低いために熱電変換モジュールをコンパクトにできる。
また、本願発明の好ましい実施態様である熱電変換モジュールは、700℃の高温領域まで使用可能であるので、廃熱利用システムに組み込んだ場合において、熱交換器で回収できる熱量を増加させることができるため、未利用熱量を減らすことができる。すなわち、動作温度を下げるために捨てる熱を減らすことが可能であるために、熱変換効率が大幅に向上し、発電量が顕著に増大する。
コジェネシステムに組み込んだ場合、利用しきれない熱(不要な温水)を電気に変換できることから燃費が向上できるために発電量も大きくなり、熱電発電モジュールの心臓部品として、発電の高効率化に寄与することが可能である。
本発明によって製造された、高性能な熱電素子は工業用各種炉ならびに焼却炉をはじめとする大規模廃熱のみならず、各種コジェネレーション、給湯器、自動車の排ガス、地熱や太陽熱等の自然エネルギー等、小規模ながら未利用な廃熱を熱源として電気に変換する熱電発電モジュールの心臓部品として、発電の高効率化に寄与することが可能となり、地球温暖化対策へも大いに貢献可能である。また、本発明は、ガスセンサ、熱電供給システム、自動車などのいずれについても適用することができる。
また、REx(Co1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはCu、Znからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)に示す組成になるよう原料を秤量し、この原料を不活性ガス雰囲気中で溶解後、急冷凝固することにより製造することができる。
上記二つの急冷方法は図1に示すストリップキャスティング法、その他溶融金属の急冷方法として公知の方法を用いることができる。これらの冷却速度は1400℃から800℃の範囲では1×102 ℃/秒以上が好ましく、より好ましくは1×102 ℃/秒以上、1×104 ℃/秒以下であり、さらに好ましくは、2×102 ℃/秒以上、1×103 ℃/秒以下である。1×102 ℃/秒より遅いと相が分離して粉砕による成分の変動が大きくなり、1×104 ℃/秒より早いとアモルファスとなり粉砕効率が悪化するため好ましくない。
図1において詳細には、坩堝1からタンディシュ2に溶湯6を投入し、この溶湯6をタンディシュ2から回転中の銅ロール3の外周部に供給して急冷し、合金薄片5を得てこれを回収箱4に回収することで目的の希土類含有合金からなる薄片を得ることができる。
このような急冷方法を採用すれば、合金薄片の平均厚みは概ね0.1〜2mm程度となるが、好ましくは、0.2〜0.4mm程度になり、最も好ましい急冷速度を採用することで平均厚みは0.25〜0.35mm程度になる。
本発明の熱電変換素子及びモジュールの製造工程を図2に示す。
図2において素子を製造する場合の詳細は、合金原料を溶解して先のストリップキャスト法に代表される方法で鋳造し、得られた合金薄片を粉砕し、目的の形状に成型し、焼結して焼結体とした後にこの焼結体から切断して薄型の素子を製造することができる。
図2においてモジュールを製造する場合の詳細は、先の説明で得られた素子を用意し、取付基板上に複数の電極を間欠的に形成し、各電極間を電気的に接続するように先の素子においてp型の素子とn型の素子を交互に複数接合し、これらの素子上に先の基板と対になるように他の基板を接合し、対になる上下の基板間に複数の素子が電気的に直列接続された形態の熱電変換素子とし、この熱電変換素子を複数接続してモジュール化することにより熱電交換モジュールを得ることができ、その熱電変換モジュールを備える熱電変換システムを得ることができる。
本願発明の好ましい実施態様である熱電変換素子から製造される、熱電変換モジュールおよび熱電変換システムの構成は特に限定されないが、図3のようなシステムが例示できる。この例の熱電変換システム1Bにおいて、熱電変換素子1Aを構成するp型熱電変換素子19Aおよびn型熱電変換素子19Bは、例えば、電気的に直列、あるいは並列に電極10を介し接続されて熱電変換モジュール1Aを構成している。構成された熱電変換素子1Aの高温接触部側は、絶縁体12を介して、廃熱7側の熱交換器13Aに密着させられている。一方、熱電変換素子1Aの低温接触部側は、絶縁体12を介して冷却水8側の熱交換器13Bに密着させられている。
このようにして構成された熱電変換システム1Bでは、高温接触部側および低温接触部側に接続されたp型熱電変換素子19A、n型熱電変換素子19Bのそれぞれに温度差を発生させて、ゼーベック効果に基づく温度差に応じた電気が熱電変換 により発電されることとなり、導線11から電気を取り出すことができる。
本発明によって製造された、熱電変換システムを採用することで、工業用各種炉ならびに焼却炉をはじめとする大規模廃熱のみならず、各種コジェネレーション、給湯器、自動車の排ガス、地熱や太陽熱等の自然エネルギー等を高効率に利用することが可能となる。
また、本発明はこれまで述べてきた用途の他に、ガスセンサ、熱電供給システム、自動車等にも適用することができる。
ガスセンサに本発明を適用する場合は、一例として触媒物質とガスの反応熱を熱電変換モジュールで電気に変換してガスを検知する構造にすることができる。この構造により発熱量および触媒物質の組み合わせで選択的にガスを検知することができる。特に、有機ガスで誤動作が問題となっている水素センサとしては高い性能を発揮することができる。
熱電供給システムに本発明を適用する場合は、一例として発電のために用いた高温の排ガスをさらに熱電変換装置で電力に変換する構成を採用することで、40%の効率を達成することが可能で商用電力より高い効率を発揮することができる。
自動車に本発明を適用する場合は、一例として排気ガスの熱を電気に変換する構成を採用することで発電機を駆動するための電力を軽減することができ、燃料消費量を少なくすることができる。
(実験例1)
希土類金属としてLaメタル(純度95%以上、残部はCeおよび不可避不純物)を用い、電解鉄(純度99%以上)、Sbメタル(純度99%以上)、および置換用金属M(純度99%以上)を置換率が表1の通りになるように秤量し、1400℃まで0.1MPaのAr雰囲気中で溶解させた。その後、図1に示したストリップキャスト鋳造装置を用いて、横幅85mm、150g/sの注湯量で、周速度0.92m/sの水冷銅ロール上に溶湯を注湯し合金薄片を作製した。合金薄片の平均厚さは0.26〜0.28mmであった。溶湯の1400℃から800℃までの冷却速度は約600℃/秒であった。すなわち、1400℃から800℃までの所要時間は約1秒である。
この合金をディスクミルで200μm以下に粉砕したのち、日本ニューマティック社製ジェットミルNPK−100NPにて窒素気流0.5MPaにて粉砕した。このときのd50は2.5〜4.0μmであった。
得られた粉末を酸素濃度300ppm以下に制御されたグローブボックス中の成型機にて15mm×15mm×30mm程度に成形し、アルゴン気流中で780〜820℃で3h保持して焼結体を得た。
この焼結体から4mm×4mm×15mmのブロックを切り出し、アルバック理工社製熱電特性評価装置ZEM−2にてゼーベック係数、電気伝導度を200〜500℃の範囲で測定し、パワーファクターPf=α2/ρを算出した。これらの測定結果のうち、489℃での熱電特性を表1に示す。
表1においてx=1.0、y=0の試料を基準としてパワーファクターが基準より上回った場合には効果有り(○)、基準より下回った場合に効果なし(×)と判定した。
希土類金属としてCeメタル(純度95%以上残部はLaおよび不可避不純物)を用い、Coメタル(純度99%以上)、Sb(純度99%以上)、および置換用金属M(純度99%以上)を置換率が表2の通りになるように秤量し、1400℃まで0.1MPaのAr雰囲気中で溶解させた。その後、図1に示したストリップキャスト鋳造装置を用いて、横幅85mm、150g/sの注湯量で、周速度0.92m/sの水冷銅ロール上に溶湯を注湯し、合金薄片を作製した。平均厚さは実験例1と同様であった。
この合金をディスクミルで200μm以下に粉砕したのち、日本ニューマティック社製ジェットミルNPK−100NPにて窒素気流0.5MPaにて粉砕した。このときのd50は2.5〜4.0μmであった。
得られた粉末を酸素濃度300ppm以下に制御されたグローブボックス中の成型機にて15mm×15mm×30mm程度に成形し、アルゴン気流中で870〜920℃で3h保持して焼結体を得た。
この焼結体から4mm×4mm×15mmのブロックを切り出し、アルバック理工社製熱電特性評価装置ZEM−2にてゼーベック係数、電気伝導度を200〜500℃の範囲で測定し、パワーファクターPf=α2/ρを算出した。これらの測定結果のうち、489℃での熱電特性を表2に示す。
表2において、x=1.0、y=0試料を基準としてパワーファクターが基準より上回った場合には効果有り(○)、基準より下回った場合に効果なし(×)と判定した。
図4に示すp型の素子と図5に示すn型の素子のいずれにおいても温度上昇に伴い、パワーファクターの値が向上する傾向が得られた。
2 タンディッシュ
3 銅ロール
4 回収箱
5 合金薄片
6 溶湯
7 廃熱
8 冷却水
10 電極
11 導線
12 絶縁板
13A 熱交換器
13B 熱交換器
19A p型熱電変換素子
19B n型熱電変換素子
1B 熱電変換システム
Claims (21)
- REx(Fe1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはTi、Zr、Sn、Pbからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)で表される希土類含有合金。
- xが0.01≦x≦1かつyが0.01≦y≦0.15の範囲内であることを特徴とする請求項1に記載の希土類含有合金。
- 結晶構造がフィルドスクッテルダイト型結晶構造であることを特徴とする請求項1または2に記載の希土類含有合金。
- 希土類含有合金の平均厚みが、0.1〜2mmである請求項1〜3のいずれか1項に記載の希土類含有合金。
- 請求項1〜4の何れか1項に記載の希土類含有合金からなるp型熱電変換材料。
- REx(Co1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはCu、Znからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)で表される希土類含有合金。
- xが0.01≦x≦1かつyが0.01≦y≦0.15の範囲内であることを特徴とする請求項6に記載の希土類含有合金。
- 結晶構造がフィルドスクッテルダイト型結晶構造であることを特徴とする請求項6または7に記載の希土類含有合金。
- 希土類含有合金の平均厚みが、0.1〜2mmである請求項6〜8のいずれか1項に記載の希土類含有合金。
- 請求項6〜9の何れか1項に記載の希土類含有合金からなるn型熱電変換材料。
- REx(Fe1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはTi、Zr、Sn、Pbからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)に示す組成になるよう原料を秤量し、この原料を不活性ガス雰囲気中で溶解後、1×102 ℃/秒以上の冷却速度で急冷凝固することを特徴とする希土類含有合金の製造方法。
- 急冷凝固がストリップキャスティング法である請求項11に記載の希土類含有合金の製造方法。
- REx(Co1−yMy)4Sb12(REはLa、Ceのうち少なくとも一種、MはCu、Znからなる群から選ばれた少なくとも一種。0<x≦1、0<y<1)に示す組成になるよう原料を秤量し、この原料を不活性ガス雰囲気中で溶解後、1×102 ℃/秒以上の冷却速度で急冷凝固することを特徴とする希土類含有合金の製造方法。
- 急冷凝固がストリップキャスティング法である請求項13に記載の希土類含有合金の製造方法。
- 請求項1〜3の少なくとも1項に記載の希土類含有合金からなるp型熱電変換材料と請求項6〜8の少なくとも1項に記載の希土類含有合金からなるn型熱電変換材料とを組み合わせた熱電変換素子。
- 請求項15に記載の熱電変換素子を用いた熱電変換モジュール。
- 請求項16に記載の熱電変換モジュールを用いた熱電発電装置。
- 請求項17に記載の熱電発電装置を用いた廃熱回収システム。
- 請求項17に記載の熱電発電装置を用いた太陽熱利用システム。
- 請求項17に記載の熱電発電装置を用いた熱電供給システム。
- 排ガスを熱源として電気に変換する、請求項17に記載の熱電発電装置を用いた自動車。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123536A JP4920199B2 (ja) | 2004-04-21 | 2005-04-21 | 希土類含有合金、その製造方法及び熱電変換材料 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004125153 | 2004-04-21 | ||
JP2004125153 | 2004-04-21 | ||
JP2004246830 | 2004-08-26 | ||
JP2004246830 | 2004-08-26 | ||
JP2005123536A JP4920199B2 (ja) | 2004-04-21 | 2005-04-21 | 希土類含有合金、その製造方法及び熱電変換材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006089847A JP2006089847A (ja) | 2006-04-06 |
JP4920199B2 true JP4920199B2 (ja) | 2012-04-18 |
Family
ID=36231099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005123536A Expired - Fee Related JP4920199B2 (ja) | 2004-04-21 | 2005-04-21 | 希土類含有合金、その製造方法及び熱電変換材料 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4920199B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009093455A1 (ja) * | 2008-01-23 | 2009-07-30 | Furukawa Co., Ltd. | 熱電変換材料および熱電変換モジュール |
KR101105661B1 (ko) * | 2011-05-23 | 2012-01-18 | 동국대학교 산학협력단 | 열전특성을 가지는 액체 화합물을 이용한 P-Type, N-Type의 열전물질 제조방법 및 이를 포함하는 열전 소자 |
JP6314812B2 (ja) * | 2014-01-16 | 2018-04-25 | 株式会社豊田中央研究所 | n型熱電材料 |
JP6317123B2 (ja) | 2014-02-10 | 2018-04-25 | 昭和電工株式会社 | 熱電素子、熱電モジュールおよび熱電素子の製造方法 |
JP2016092174A (ja) * | 2014-11-04 | 2016-05-23 | 古河機械金属株式会社 | 熱電変換材料および熱電変換モジュール |
JP6794732B2 (ja) * | 2015-09-28 | 2020-12-02 | 三菱マテリアル株式会社 | 熱電変換モジュール及び熱電変換装置 |
WO2017057259A1 (ja) * | 2015-09-28 | 2017-04-06 | 三菱マテリアル株式会社 | 熱電変換モジュール及び熱電変換装置 |
JP7394374B2 (ja) * | 2019-06-27 | 2023-12-08 | 株式会社プロテリアル | 熱電変換材料 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003304006A (ja) * | 2002-04-11 | 2003-10-24 | Toshiba Corp | 熱電変換モジュールおよびそれを用いた熱交換器 |
JP4211318B2 (ja) * | 2002-08-13 | 2009-01-21 | 昭和電工株式会社 | フィルドスクッテルダイト系合金、その製造方法および熱電変換素子 |
-
2005
- 2005-04-21 JP JP2005123536A patent/JP4920199B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006089847A (ja) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101087355B1 (ko) | 휴슬러 합금, 반-휴슬러 합금, 채워진 스커테루다이트계합금의 제조 방법, 및 이것을 사용하는 열전변환 시스템 | |
JP2006203186A (ja) | 熱電半導体合金の製造方法および熱電変換モジュールならびに熱電発電装置 | |
EP2242121B1 (en) | Thermoelectric conversion material and thermoelectric conversion module | |
Populoh et al. | High figure of merit in (Ti, Zr, Hf) NiSn half-Heusler alloys | |
JP4291842B2 (ja) | 化合物熱電材料およびその製造方法 | |
JP5636419B2 (ja) | 自己組織化熱電材料 | |
WO2006075571A1 (ja) | 廃熱回収システムおよび熱電変換ユニット | |
JP2005116746A (ja) | 熱電変換材料及びこれを用いた熱電変換素子 | |
JP4920199B2 (ja) | 希土類含有合金、その製造方法及び熱電変換材料 | |
JP4865531B2 (ja) | Yb−AE−Fe−Co−Sb(AE:Ca、Sr、Ba、Ag)系熱電変換材料 | |
JP2004119648A (ja) | p型熱電変換材料及びそれを用いた熱電変換素子 | |
JP3607249B2 (ja) | 熱電変換材料およびそれを用いた熱電変換素子 | |
WO2004001864A1 (ja) | β-二珪化鉄系熱電変換材料および熱電変換素子 | |
CN101245426A (zh) | 一种制备半哈斯勒热电化合物的方法 | |
CN103320666B (zh) | Ag-In-Zn-Se四元热电半导体及其制备工艺 | |
JP5201691B2 (ja) | 酸素を含有した金属間化合物熱電変換材料並びに熱電変換素子乃至熱電変換モジュール | |
JP2013161948A (ja) | 熱電変換素子及び熱電変換素子の製造方法 | |
JP2006086512A (ja) | フィルドスクッテルダイト系合金を用いた熱電変換システム。 | |
JP2008016610A (ja) | Zn−Sb系熱電変換材料及びZn−Sb系熱電変換材料の製造方法 | |
JP5090939B2 (ja) | p型熱電変換材料 | |
JPWO2007108176A1 (ja) | 熱電変換材料 | |
JP2008007825A (ja) | Yb−Fe−Co−Sb系熱電変換材料 | |
JP6632218B2 (ja) | クラスレート化合物ならびに熱電変換材料およびその製造方法 | |
JP2012069968A (ja) | n−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法 | |
JP4380606B2 (ja) | n型熱電変換材料および熱電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150210 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |