JP4917221B2 - Method for producing polylactic acid foamed particle molded body - Google Patents
Method for producing polylactic acid foamed particle molded body Download PDFInfo
- Publication number
- JP4917221B2 JP4917221B2 JP2001255114A JP2001255114A JP4917221B2 JP 4917221 B2 JP4917221 B2 JP 4917221B2 JP 2001255114 A JP2001255114 A JP 2001255114A JP 2001255114 A JP2001255114 A JP 2001255114A JP 4917221 B2 JP4917221 B2 JP 4917221B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- polylactic acid
- foamed
- expanded particles
- expanded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Biological Depolymerization Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、微生物分解性を有するポリ乳酸発泡粒子成形体の製造方法に関する。更に詳しくは発泡粒子同士の融着性に優れ、密度ばらつきの小さい、均一な機械的物性を有するポリ乳酸発泡粒子成形体の製造方法に関する。
【0002】
【従来の技術】
ポリスチレン、ポリエチレン、ポリプロピレン等の樹脂からなる発泡粒子成形体は包装用緩衝材、農産箱、魚箱、自動車部材、建築材料、土木材料等幅広く使用されている。しかしながら、これらの発泡粒子成形体は使用後、自然環境下で放置された場合に微生物により殆ど分解されないためごみ散乱による環境破壊の問題を引き起こす虞がある。
一方、微生物により分解される樹脂の研究もなされており、これまでに例えば外科用の縫合糸としてポリ乳酸からなる微生物分解性樹脂等が実用化され長年の実績をおさめている。また、近年、ポリ乳酸の原料である乳酸がとうもろこし等を原材料として発酵法によって大量且つ安価に製造できるようになってきている。
そこで、実用性、人体安全性、微生物分解性において実績をおさめているポリ乳酸からなる発泡体が望まれてきている。
ポリ乳酸からなる発泡体に関する先行技術としては、特表平5−508669号、特開平4−304244号、特開平5−139435号、特開平5−140361号、特開平9−263651号等の押出発泡体に関するもの、特開平5−170965号、特開平5−170966号、特開2000−136261号等の発泡粒子に関するものが挙げられる。
上記ポリ乳酸発泡体に関する先行技術において特に発泡粒子に関するものは形状的な制約を比較的受けずに所望の形状の発泡体を得ることができ、軽量性、緩衝性、断熱性などの目的に応じた物性設計も容易であるため実用性のあるものとして特に有望である。
【0003】
【発明が解決しようとする課題】
しかし、従来のポリ乳酸からなる発泡粒子成形体は、発泡性樹脂粒子を金型内に充填し、熱風により該樹脂粒子を発泡させると同時に粒子同士を相互に融着したものであるため、発泡粒子成形体の部分部分の密度のばらつきが大きく、発泡粒子同士の融着性が不充分なものであり、機械的物性に劣るものであった。そこで、本発明は、部分部分の密度ばらつきが小さく、発泡粒子同士の融着性に優れ、均一な機械的物性を有するポリ乳酸発泡粒子成形体の製造方法を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するためにポリ乳酸発泡粒子成形体の製造方法について鋭意検討した結果、本発明を完成するに至った。即ち、本発明によれば、以下に示すポリ乳酸発泡粒子成形体の製造方法が提供される。
(1)融解熱量が0.1J/gを超える結晶性ポリ乳酸を主成分とする樹脂から形成された発泡粒子を型内成形して発泡粒子成形体を製造する方法であって、 該発泡粒子の見かけ密度が0.015〜0.3g/cm 3 であると共に、平均気泡径が10〜500μmであり、 該発泡粒子が0.7〜4mol/(1,000g発泡粒子)の気体を含み、該発泡粒子を型内に充填した後に加熱媒体により該発泡粒子を加熱し、融着させることを特徴とするポリ乳酸発泡粒子成形体の製造方法。
(2)該発泡粒子の内圧が2.2〜4.5kgf/cm 2 であることを特徴とする(1)に記載のポリ乳酸発泡粒子成形体の製造方法。
(3)該発泡粒子を型内に5〜70%の圧縮率となるように充填することを特徴とする(1)又は(2)に記載のポリ乳酸発泡粒子成形体の製造方法。
(4)該ポリ乳酸が、ポリ乳酸をゲル化処理したものである前記(1)〜(3)のいずれかに記載のポリ乳酸発泡粒子成形体の製造方法。
(5)該気体が二酸化炭素である前記(1)〜(4)のいずれかに記載のポリ乳酸発泡粒子成形体の製造方法。
【0005】
【発明の実施の形態】
本発明において、成形材料として用いるポリ乳酸を主成分とする樹脂から形成された発泡粒子(以下、単に発泡粒子ともいう)は、ポリ乳酸を主成分とする樹脂を基材樹脂として作製された発泡用樹脂粒子を発泡させることにより製造される。
前記基材樹脂の主成分となるポリ乳酸とは、重合に供するモノマーの重量に換算して、乳酸成分を50重量%以上含むポリマーを言う。このようなものには、例えば、(1)乳酸の重合体、(2)乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、(3)乳酸と脂肪族多価アルコールと脂肪族多価カルボン酸とのコポリマー、(4)乳酸と他の脂肪族多価カルボン酸とのコポリマー、(5)前記(1)〜(4)の何れかの組み合わせによる混合物等が包含される。
【0006】
本発明においては、ポリ乳酸に対して、脂肪族エステル成分を少なくとも35モル%含む生分解性脂肪族ポリエステルを混合することができる。この場合の脂肪族ポリエステルには、ヒドロキシ酸重縮合物、ラクトンの開環重合物、多価アルコール成分と多価カルボン酸成分との重縮合物等が包含される。ヒドロキシ酸重縮合物としては、ヒドロキシ酪酸の重縮合物等が挙げられ、ラクトンの開環重合物としては、ポリカプロラクトン等が挙げられ、多価アルコール成分と多価カルボン酸成分との重縮合体としては、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリ(ブチレンアジペート/テレフタレート)等が挙げられる。
ポリ乳酸に対する生分解性脂肪族ポリエステルの混合割合は、両者の合計量に対して、50重量%以下、好ましくは5〜30重量%である。
【0007】
本発明において、ポリ乳酸発泡成形体に耐熱性が要求される場合には、ポリ乳酸としては、ガラス転移温度(Tg)が高いものか、融点(Tm)が高い結晶性のものを用いるのが好ましい。
本発明では、そのガラス転移温度が50〜65℃、更には55〜65であるか、又はその融点が130〜180℃、更には140〜180であるものの使用が好ましい。
本発明において基材樹脂の融点及びガラス転移温度はJIS K 7121−1987に準拠して測定する。
基材樹脂の融点は、示差走査熱量測定によって得られる第2回目のDSC曲線から得られる、ピーク頂点の温度である。
基材樹脂のガラス転移温度は、示差走査熱量測定によって得られる第2回目のDSC曲線から得られる、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の中間点ガラス転移温度とする。
前記ポリ乳酸の示差走査熱量測定によって得られる第2回目のDSC曲線とは、基材樹脂1〜5mgを、示差走査熱量計によって10℃/分の昇温速度で200℃まで昇温し(ここで、得られるDSC曲線を第1回目のDSC曲線という。)、次いで、200℃から10℃/分の降温速度で0℃まで降温する。その後、再度10℃/分の昇温速度で200℃まで昇温して得られるDSC曲線を第2回目のDSC曲線をいう。
また、該基材樹脂にピーク頂点の温度が2つ以上現れる場合には、高温度側を融点とする。
【0008】
上記乳酸の重合体の具体例としては、L−乳酸、D−乳酸、DL−乳酸又はそれらの混合物、又は、それらの環状2量体であるL−ラクチド、D−ラクチド、DL−ラクチド、又はそれらの混合物からなる単量体又は2量体の重合物を挙げることができる。
【0009】
本発明において使用されるポリ乳酸の製造方法の具体例としては、例えば、乳酸又は乳酸と脂肪族ヒドロキシカルボン酸の混合物を原料として、直接脱水重縮合する方法(例えば、米国特許第5,310,865号に示されている製造方法)、乳酸の環状二量体(ラクチド)を重合する開環重合法(例えば、米国特許2,758,987号に開示されている製造方法)、乳酸と脂肪族ヒドロキシカルボン酸の環状2量体、例えば、ラクチドやグリコリドとε−カプロラクトンを、触媒の存在下にて重合する開環重合法(例えば、米国特許4,057,537号に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸の混合物を、直接脱水重縮合する方法(例えば、米国特許第5,428,126号に開示されている製造方法)、ポリ乳酸と脂肪族二価アルコールと脂肪族二塩基酸とポリマーを、有機溶媒存在下に縮合する方法(例えば、欧州特許公報第0712880 A2号に開示されている製造方法)、乳酸を触媒の存在下、脱水重縮合反応を行うことによりポリエステル重合体を製造するに際し、少なくとも一部の工程で、固相重合を行う方法、等を挙げることができるが、その製造方法は、特に限定されない。また、少量のグリセリンのような脂肪族多価アルコール、ブタンテトラカルボン酸のような脂肪族多塩基酸、多糖類等のような多価アルコール類を共存させて、共重合させても良く、又ジイソシアネート化合物等のような結合剤(高分子鎖延長剤)を用いて分子量を上げてもよい。
【0010】
ポリ乳酸には、結晶性及び非結晶性のものが包含されるが、本発明においては得られる発泡粒子の成形体の耐熱性の点から結晶性のものが使用される。非結晶性のものを用いる場合には特に、あらかじめゲル化処理したものを用いるのが得られる発泡粒子の型内成形性の点から好ましい。ポリ乳酸をゲル化処理するには、そのポリ乳酸又はこれを主成分とする樹脂をゲル化処理すればよい。この場合のゲル化処理には、従来公知の各種の方法、例えば、有機過酸化物を用いる方法、電子線架橋方法、シラン架橋方法、ポリイソシアネート架橋方法等が包含される。本発明で発泡剤を含浸させるポリ乳酸において、その結晶化度は、好ましくは20%以下、更に好ましくは10%以下である。尚、上記結晶化度は理学電気工業(株)製のX線回析装置にて測定し、得られたチャートの結晶ピーク面積と総ピーク面積との比率から求められる。また、本発明で用いるゲル化処理したポリ乳酸において、そのゲル分率は5〜100%、好ましくは10〜90%、更に好ましくは20〜80%である。
【0011】
本発明で用いる発泡粒子を製造する方法としては、従来公知の方法が採用できる。
本発明において、発泡粒子を好ましく製造するには、先ず、基材樹脂粒子を作る。この基材樹脂粒子は、従来公知の方法で作ることができ、例えば、基材樹脂を押出機で溶融混練した後、ストランド状に押出し、冷却後、適宜の長さに切断するか又はストランドを適宜長さに切断後冷却することによって得ることができる。基材樹脂粒子の1個当りの重量は、0.05〜10mg、好ましくは1〜4mgにするのがよい。粒子重量が前記範囲より小さくなると、その樹脂粒子の製造が困難になる。
樹脂粒子の形状は特に制約されず、柱状(ペレット状)の他、球形状、棒状等の各種の形状であることができる。
【0012】
尚、基材樹脂を押出機で溶融混練しストランド状に押出す工程において、基材樹脂が吸湿性を有するものの場合、基材樹脂を予め乾燥させておくことが好ましい。多量の水分を保有した樹脂を押出し機に投入すると、発泡用の樹脂粒子に発泡粒子の気泡の均一性に悪影響を及ぼす気泡が混入したり、押出機で溶融混練する場合に基材樹脂の物性低下が起こりメルトフローレイト(MFR)が極端に大きくなってしまう虞がある。
樹脂の劣化を抑制するために、ベント口付き押出し機を使用して、真空吸引して基材樹脂から水分を除去する方法も採用できる。
また、押出温度条件についても基材樹脂のMFRが極端に大きくならないように条件を設定する。
【0013】
次に、前記のように得られる発泡用樹脂粒子には、発泡剤を含浸させた後、発泡させる。
この場合の樹脂粒子に発泡剤を含浸させた後発泡させる方法としては、樹脂粒子に密閉容器内で発泡剤を含浸させて発泡性樹脂粒子を得た後、これらを密閉容器から取出し、その樹脂粒子を加熱軟化させて発泡させる方法を好ましく採用できる。また、他の方法として、樹脂粒子を密閉容器内において発泡剤の存在下で分散媒に分散させるとともに、その内容物を加熱して樹脂粒子を軟化させてその粒子内に発泡剤を含浸させ、次いで容器の一端を開放し、容器内圧力を発泡剤の蒸気圧以上の圧力に保持しながら粒子と分散媒とを同時に容器内よりも低圧の雰囲気(通常は大気圧下)に放出して発泡させる発泡方法、あらかじめ分解型発泡剤を樹脂粒子中に練り込んでおきその樹脂粒子を発泡剤の分解温度以上に加熱して発泡させる方法等を用いることもできる。
【0014】
押出し機により発泡粒子を得る方法を採用する場合には、基材樹脂を押出し機を使用して溶融させると共に、発泡剤と混練して発泡性溶融混練物とし、次いでストランド状に押出し発泡させると共に、冷却後適宜の長さに切断するか又はストランドを適宜長さに切断後冷却することによって発泡粒子を製造することができる。
【0015】
前記基材樹脂は、例えば、黒、灰色、茶色、青色、緑色等の着色顔料又は染料を添加して着色したものであってもよい。着色した基材樹脂を用いれば、着色された発泡粒子及び成形体を得ることができる。
着色剤としては、有機系、無機系の顔料、染料などが挙げられる。このような、顔料及び染料としては、従来公知の各種のものを用いることができる。
また、基材樹脂には、気泡調整剤として、例えばタルク、炭酸カルシウム、ホウ砂、ほう酸亜鉛、水酸化アルミニウム等の無機物をあらかじめ添加することができる。基材樹脂に着色顔料、染料又は無機物等の添加剤を添加する場合は、添加剤をそのまま基材樹脂に練り込むこともできるが、通常は分散性等を考慮して添加剤のマスターバッチを作り、それと基材樹脂とを混練することが好ましい。着色顔料又は染料の添加量は着色の色によっても異なるが、通常、基材樹脂100重量部に対して0.001〜5重量部とするのが好ましい。無機物を基材樹脂に添加することにより、発泡倍率の向上効果を得ることができる。
また、本発明では、難燃剤、帯電防止剤、耐候剤、増粘剤等の添加剤の混合も可能である。
【0016】
尚、製品が使用後に廃棄されることを想定すると、顔料及び気泡調整剤等添加剤の高濃度添加は好ましくない。
また、発泡用樹脂粒子を経て発泡粒子を得る場合、得られた発泡用樹脂粒子はは加水分解が進行しないような環境下で保存することが好ましい。また、発泡粒子においても同様に加水分解が進行しないような環境下で保存することが好ましい。
【0017】
上記発泡粒子を得るに際して用いられる発泡剤としては、従来公知のもの、例えば、プロパン、ブタン、ヘキサン、シクロブタン、シクロヘキサン、トリクロロフロロメタン、ジクロロジフロロメタン、クロロフロロメタン、トリフロロメタン、1,1,1,2−テトラフロロエタン、1−クロロ−1,1−ジフロロエタン、1,1−ジフロロエタン、1−クロロ−1,2,2,2−テトラフロロエタン等の有機系の物理発泡剤や、窒素、二酸化炭素、アルゴン、空気等の無機系の物理発泡剤が用いられるが、なかでもオゾン層の破壊がなく且つ安価な無機系の物理発泡剤が好ましく、特に窒素、二酸化炭素、空気が好ましい。本発明においては、発泡剤の使用量に対して、より小さな見掛け密度の発泡粒子が得られる点から二酸化炭素が更に好ましい。
【0018】
予め、発泡用樹脂粒子を作り、該発泡用樹脂粒子に発泡剤を含浸させる場合、密閉容器内に樹脂粒子を入れ、発泡剤を、5〜100kgf/cm2Gの圧力範囲になるように密閉容器内に圧入すればよい。発泡剤の使用量は、所望する発泡粒子の見かけ密度と発泡温度との関係から適宜選定される。
【0019】
また、発泡用樹脂粒子を密閉容器に入れ、これに発泡剤を所定の時間接触させて粒子内に発泡剤を含浸させ、その後密閉容器内から樹脂粒子を取出し発泡性樹脂粒子を得る方法において、その発泡剤の含浸は基材樹脂のガラス転移温度以下の温度で実施することが好ましい。発泡剤の含浸温度は、好ましくは5〜60℃、更に好ましくは5〜40℃である。また、その含浸時の発泡剤の圧力は、目的とする発泡粒子の発泡倍率によっても変わってくるが、通常は5〜100kgf/cm2Gであり、含浸時間は10分間〜24時間である。特に、発泡剤に二酸化炭素を使用する場合においては、その二酸化炭素の含浸量は通常2.5〜30重量%、好ましくは3〜20重量%となるように実施することが好ましい。
なお、この場合の二酸化炭素の含浸量は次式で表される。
【数1】
二酸化炭素含浸量(重量%)=A/(A+B)×100
A:樹脂粒子に含浸した二酸化炭素の重量
B:二酸化炭素含浸前の樹脂粒子の重量
【0020】
上式におけるAは二酸化炭素含浸樹脂粒子の重量から二酸化炭素含浸前の樹脂粒子の重量を差し引くことによって求められる。尚、該含浸量を算出するための上記のいずれの重量も0.0001gの位まで計測するものとする。
発泡剤を含浸した発泡性樹脂粒子を加熱発泡させるための加熱媒体としては、水蒸気、加熱調整した空気や窒素等が挙げられるが、通常は水蒸気が用いられる。発泡性樹脂粒子を加熱し発泡させる方法としては、従来公知の方法が採用できるが、通常は容器内に発泡性樹脂粒子を充填し水蒸気を導入して発泡させる。尚、密閉容器にはわずかに内部の圧力をリークさせる開孔弁が備わっていると、容器内の空気が排除でき、密度が均一な発泡粒子が得られ易い。
発泡剤が含浸している樹脂粒子を加熱する際の温度、すなわち発泡温度は、通常、基材樹脂の(ガラス転移温度−30℃)〜(ガラス転移温度+60℃)、好ましくは(ガラス転移温度−20℃)〜(ガラス転移温度+40℃)である。発泡温度が前記範囲より低いと、十分な発泡が起こり難く、また前記範囲より高いと発泡粒子の独立気泡率が低下してしまい良好な成形体が得られにくいといった問題が発生する。
【0021】
本発明における発泡粒子は、その見かけ密度が0.015〜0.3g/cm3であり、0.015〜0.2g/cm3であることが好ましい。密度が前記範囲より大きい場合は、発泡粒子の密度のばらつきが大きくなり易く、型内にて加熱成形する際の発泡粒子の膨張性、融着性のばらつきに繋がり得られる発泡粒子成形体の物性低下の虞がある。一方、前記範囲より小さい場合、発泡倍率が比較的高いために、成形収縮率が大きな成形体となる虞れがある。
【0022】
本明細書において発泡粒子の見かけ密度は、23℃のエタノールの入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて2日放置した500個以上の発泡粒子(発泡粒子群の重量W1)を金網などを使用して沈めて、エタノール水位上昇分より読みとられる発泡粒子群の容積V1(cm3)にてメスシリンダーに入れた発泡粒子群の重量W1(g)を割り算することにより求める(W1/V1)。
また、本発明の発泡粒子の嵩密度は0.01〜0.2g/cm3であることが好ましく、0.01〜0.12g/cm3であることがより好ましい。
【0023】
本明細書において発泡粒子の嵩密度は、空のメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて2日放置した500個以上の発泡粒子(発泡粒子群の重量W2)を入れたときメスシリンダーの目盛りが示す容積V2(cm3)にてメスシリンダーに入れた発泡粒子群の重量W2(g)を割り算することにより求める(W2/V2)。
【0024】
更に、本発明における発泡粒子の平均気泡径は、10〜500μmであり、好ましくは30〜400μmである。該気泡径が前記範囲より小さいと、本発明の加熱成形時において膜強度が弱すぎるために破泡等が生じ、養生回復性の悪い成形体となる。また、該気泡径が前記範囲より大きいと加熱発泡時において膜強度が強すぎるために、十分な膨張が生じず、表面平滑性の劣った成形体となってしまう。
本明細書において発泡粒子の平均気泡径は、発泡粒子を略二分割し、その発泡粒子断面に存在する全ての気泡の最大径を求め、この操作を10個以上の発泡粒子について行ない、求められた該最大径の算術平均値をもって平均気泡径とする。
【0025】
本発明において発泡粒子成形体を製造するには、発泡粒子を型内に好ましくは5〜70%、より好ましくは15〜70%更に好ましくは30〜70%の圧縮率となるように充填した後に、加熱媒体により該発泡粒子を加熱して成形を行う。特に、融解熱量が、0.1J/gを超えるポリ乳酸を主成分とする樹脂から形成された発泡粒子の場合は、15〜70%の圧縮率となるように型内に充填して加熱成形することが好ましい。この加熱成形により発泡粒子は相互に強く融着し、一体となった密度ばらつきが小さく、外観良好な発泡成形体を与える。この場合の成形用の型としては慣用の金型や特開2000−15708号等に記載の連続成形装置にしようされてるスチールベルトが用いられる。また、加熱手段としては、通常スチーム加熱が用いられ、その加熱温度は発泡粒子表面が溶融する温度であればよい。本発明では、成形の際に、発泡粒子を型内に5〜70%の圧縮率となるように充填する。ポリ乳酸が結晶性の場合は特に、圧縮率が5%未満では、成形体の融着性が劣ると共に表面平滑性が劣った成形体となる虞がある。一方で、70%を超えると、成形体内部の融着性が劣りやすくなり、また発泡製品の特徴である軽量化の主旨から外れてしまう。また、圧縮装置設備上の困難性を伴う。
【0026】
本発明で言う圧縮率は、以下のように表される。圧縮率は、型の内容積と型内に充填される発泡粒子の大気中の嵩容積との関係で表すことができる。
【数2】
圧縮率(%)=(A−B)×100/A (2)
A:型内に充填された発泡粒子の大気中での嵩容積(cm3)
B:型の内容積(cm3)
上式におけるAは型内に充填された発泡粒子の重量(g)を該発泡粒子の嵩密度(g/cm3)にて割り算することにより求められる。
【0027】
本発明において前記圧縮率となるように発泡粒子を特に金型内に充填する場合において、従来公知の充填方法が採用できる。このような方法としては、例えば、1)クラッキング法、2)加圧充填法、3)圧縮充填法などが挙げられる。
1)クラッキング法は、原料ビーズ容器およびキャビテイ内を大気圧に連通し開放した状態で、インジェクタにより原料ビーズを機械的に搬送して充填した後、型締めする方法である。2)加圧充填法は、原料ビーズ容器内を0.2〜1.5kg/cm2G程度に加圧し、チャンバを通じて大気圧に開放した状態のキャビテイ内に、その差圧を利用して搬送して充填する方法である。3)圧縮充填法は、原料ビーズ容器内の圧力pを加圧充填法より高めの圧力にて加圧し、一方のチャンバ内を加圧して、ベントホールを通じて連通しているキャビテイ内圧力p1の差圧(p−p1)を変化させて、原料ビーズを搬送して充填する方法であり、原料ビーズが圧縮された状態で送られるので、充填性に優れる。
【0028】
本発明では、上記の圧縮率となるように発泡粒子を型内に充填する方法と併せて型内に供する発泡粒子に予め空気、窒素、二酸化炭素等の無機ガス、特に二酸化炭素を気体として含ませておくことが好ましい。又、ブタン等の有機ガスも使用できる。気体を付与した発泡粒子を成形用発泡粒子として用いることにより、発泡粒子の成形時の膨張性、該粒子相互の融着性、成形体の型形状再現性及び寸法安定性が向上する。該気体は、0.7〜4mol/(1000g発泡粒子)の範囲内で付与する。
【0029】
尚、本明細書において、発泡粒子の気体量(mol/1000g発泡粒子)は以下のように求められる。
【数3】
前記式中の気体増加量(g)は次のように求める。
成形機に充填される気体を付与することにより内部圧力が高められた発泡粒子を500個以上取り出して60秒以内に相対湿度50%、23℃の大気圧下の恒温室に移動し、その恒温室内の秤に乗せ、該発泡粒子を取り出して120秒後の重量を読み取る。このときの重量をQ(g)とする。次に、該発泡粒子を相対湿度50%、23℃の大気圧下の同恒温室内にて240時間放置する。発泡粒子内の高い圧力の気体は時間の経過とともに気泡膜を透過して外部に抜け出すため発泡粒子の重量はそれに伴って減少し、240時間後では平衡に達しているため実質的にその重量は安定している。上記240時間後の該発泡粒子の重量を同恒温室内にて測定し、このときの重量をS(g)とする。上記のいずれの重量も0.0001gの位まで読み取るものとする。この測定で得られたQ(g)とS(g)の差を(5)式中の気体増加量(g)とする。
また、本発明において発泡粒子成形体を得る為の他の方法として、0.7〜4mol/(1000g発泡粒子)の気体を含む発泡粒子を圧縮せず又は圧縮率を5%未満として型内に従来公知の方法により充填した後に、加熱媒体により該発泡粒子を加熱し、融着させる方法も挙げられる。発泡粒子が0.7〜4mol/(1000g発泡粒子)の気体を含むことにより、発泡粒子から成形体を得る際の発泡粒子の膨張性、該粒子相互の融着性、成形体の型形状再現性及び寸法安定性が向上する。特に融解熱量が0.1J/gを超えるポリ乳酸を主成分とする樹脂から形成された発泡粒子の場合は、1〜4mol/(1000g発泡粒子)、更に1.5〜4mol/(1000g発泡粒子)の範囲内で気体を含むことが好ましい。該気体量が0.7mol/(1000g発泡粒子)未満の場合は、本発明の目的とする所期の効果が十分達成できない虞れがあり、一方、4mol/(1000g発泡粒子)を超える場合は、該発泡粒子と得る上での設備上の困難性が伴う。
尚、型内に供する該発泡粒子に含まれる気体としては、前述した気体と同様に空気、窒素、二酸化炭素等の無機ガス、又はブタン等の有機ガスが挙げられ、無機ガス、特に二酸化炭素が好ましい。
【0030】
また、上述の本発明方法は結晶性を示すポリ乳酸発泡粒子を型内成形する上で極めて有効であり融着性、外観良好な成形体を得ることができる。尚、本明細書において結晶性を示すポリ乳酸発泡粒子とは示差走査熱量測定による融解熱量が0.1J/gを超える、更に1J/g以上、特に5J/g以上のポリ乳酸を主成分とするポリ乳酸発泡粒子(融解熱量の上限はおおむね100J/gである)のことである。
また、本明細書において示差走査熱量測定による融解熱量:ΔH(J/g)はJIS K7122−1987に準拠して測定され、発泡粒子又は樹脂粒子1〜3mgを示差走査熱量計によって10℃/分の昇温速度で200℃まで昇温した後、10℃/分降温速度で0℃まで降温し、再度10℃/分の昇温速度で200℃まで昇温したときに得られるDSC曲線の吸熱ピーク面積から求められる。
本発明による発泡粒子成形体の形状は特に制約されず、その形状は、例えば、容器状、板状、筒体状、柱状、シート状、ブロック状等の各種の形状であることができる。本発明の発泡粒子成形体は、好ましくは密度0.01〜0.2g/cm3のものであり、寸法安定性、表面平滑性において優れたものである。
【0031】
本明細書において発泡粒子成形体の密度(g/cm3)は、成形体の外形寸法から求められる体積VM(cm3)にて成形体重量WM(g)を割り算する(WM/VM)ことにより求められる値である。
【0032】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0033】
実施例1〜実施例5
結晶性ポリ乳酸((株)島津製作所製ラクティ9030)とタルクとを押出機にて溶融混練した後、ストランド状に押出し、次いでこのストランドを約25℃の水中で急冷固化させた後に切断して、直径約1.3mm、長さ約1.9mm、1個当たり約3mgの樹脂粒子を得た。なお、タルクは2000ppmとなるように添加した。
次に、5Lの内容積を有するオートクレーブを10℃に調整した後、この樹脂粒子1000gを投入した。炭酸ガスを圧力調整弁を介してオートクレーブ内に圧入し、オートクレーブ内の圧力が表1に示す圧力になるように調整し、15時間保持した。次に、オートクレーブ内の炭酸ガスを抜き出した後、樹脂粒子を取出した。この樹脂粒子の炭酸ガス含浸量を表1に示す。
この炭酸ガスが含浸した樹脂粒子を、密閉容器内に充填した後、水蒸気を導入して表1に示す温度に加熱し、膨張発泡した発泡粒子を得た。この発泡粒子の密度を表1に示す。
得られた発泡粒子を密閉容器内に充填し、20℃の雰囲気温度条件下で表2に示す気体にて発泡粒子を加圧することにより該気体を発泡粒子に付与した。発泡粒子の気体含浸量を表2に示す。次いで気体を付与した発泡粒子を200×250×10mmの金型に表2に示す圧縮率になるように充填し、表2に示す温度の水蒸気で加熱成形した。得られた成形体は30℃で24時間養生した。得られた発泡粒子成形体の密度を表2に示す。
【0034】
【表1】
【0035】
【表2】
【0036】
尚、表1に示した発泡粒子の内部圧力は下記式により算出される。
【数4】
(但し、増加気体量は前記(3)式の増加気体量と同様に求められる内部圧力測定時の発泡粒子重量と加圧処理する前の発泡粒子重量との差を示し、Tは雰囲気絶対温度、発泡粒子内の気体体積は下記式により算出される値である。また、気体分子量は付与した気体がCO2の場合44(g/モル)、空気の場合28.9(g/モル)とした。)
【数5】
【0037】
参考例1、2、4、比較例1
非結晶性ポリ乳酸((株)島津製作所製ラクティ9800、Tg:53℃)とタルクとポリイソシアネート化合物(ミリオネートMR−200:日本ポリウレタン工業(株)製)とを二軸押出機を用いてシリンダー温度180℃で溶融混練した後、ストランド状に押出し、次いでこのストランドを約20℃の水中で急冷固化させた後に切断して、直径約1.3mm、長さ約1.9mm、1個当たり約3mgの樹脂粒子を得た。なお、タルクは1重量%、ポリイソシアネート化合物は3重量%となるように添加した。この場合のポリイソシアネートは、化合物名ポリメチレンポリフェニルポリイソシアネートである。得られた樹脂粒子を約30℃、相対湿度約50%の雰囲気下に30日間保管した。上記保管後の樹脂粒子のゲル分率は53%であった。次に、5Lの内容積を有するオートクレーブに樹脂粒子100重量部、水300重量部、酸化アルミニウム0.5重量部、ドデシルベンゼンスルホン酸ナトリウム0.06重量部を仕込み、攪拌しながら110℃まで加熱して昇温し、二酸化炭素をオートクレーブ内圧力が4MPaになるまで注入し含浸させた。その後、同温度で20分間保持した後、オートクレーブの一端を開放して、オートクレーブ内に窒素ガスを導入してオートクレーブ内圧力を維持しながら内容物を大気圧下に放出して樹脂粒子を発泡させた。この発泡粒子の見掛け密度は0.148g/cm3であった。尚、発泡粒子のゲル分率は60%であった。得られた発泡粒子を密閉容器内に充填し、20℃の雰囲気温度条件下で二酸化炭素にて加圧し、二酸化炭素を含浸させて表2に示す気体含浸量の発泡粒子とした。この発泡粒子を200×250×10mmの金型に表2に示す圧縮率となるように充填し、118℃の水蒸気で加熱成形した。実施例にて得られた成形体は30℃で24時間養生した。得られた発泡粒子成形体は融着性の良好なもので、表2に示す密度を有し、ゲル分率が60%のものであった。
参考例3
攪拌しながら120℃まで加熱して昇温して、二酸化炭素をオートクレーブ内圧力が4MPaになるまで注入し含浸させることにより、二酸化炭素含浸温度を120℃とし、同温度で20分間保持した後、オートクレーブの一端を開放することにより発泡温度を120℃とした以外は参考例4と同様にして発泡粒子を得た(発泡粒子のゲル分率60%)。得られた発泡粒子を200×250×10mmの金型に充填し、118℃の水蒸気で加熱成形した。得られた成形体は30℃で24時間養生した。得られた発泡粒子成形体は融着性の良好なもので、密度0.105g/cm3を有し、ゲル分率60%のものであった。
なお、前記ゲル分率は以下のようにして測定されたものである。(ゲル分率の測定)本明細書における樹脂粒子及び発泡粒子のゲル分率の測定は、次のように測定される。樹脂粒子又は発泡粒子約1gをサンプルとし、サンプル重量W2を秤量する。次に秤量したサンプルと100mlのクロロホルムを150mlのフラスコに入れ、大気圧下で10時間、62℃の条件にて加熱環流した後、得られた加熱処理物が十分に熱い50℃以上の状態のうちに200メッシュの金網を有する吸引濾過装置を用いて濾過処理する。得られた金網上の濾過処理物を80℃のオーブン中で30〜40トールの条件下にて8時間乾燥する。この際に得られた乾燥物重量W1を測定する。この重量W1のサンプル重量W2に対する重量比の百分率(W1/W2)×100%をゲル分率とする。発泡粒子成形体のゲル分率の測定は、成形体表面を含まないように縦5mm×横5mm×高さ5mmの直方体を複数切り出し、測定用のサンプルとした以外は発泡粒子の場合と同様にして測定される。
【0038】
【発明の効果】
本発明の製造方法によれば、部分部分の密度ばらつきが小さく、発泡粒子同士の融着性、表面平滑性に優れ、均一な機械的物性を有するポリ乳酸発泡粒子成形体が得られる。
本発明によって得られる発泡粒子成形体は、寸法安定性、外観、緩衝性及び機械的強度に優れ、緩衝材、包装資材等として好適に使用されると共に、生分解性を有しているためその後の廃棄処分が容易となるなどその産業的意義は多大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a molded article of polylactic acid foamed particles having microbial degradability. More particularly, the present invention relates to a method for producing a polylactic acid foamed particle molded body having excellent mechanical properties between foamed particles, small density variation, and uniform mechanical properties.
[0002]
[Prior art]
Foamed particle molded bodies made of resins such as polystyrene, polyethylene, and polypropylene are widely used for packaging cushioning materials, agricultural boxes, fish boxes, automobile members, building materials, civil engineering materials, and the like. However, since these foamed particle molded bodies are hardly decomposed by microorganisms when left in a natural environment after use, there is a risk of causing environmental destruction problems due to dust scattering.
On the other hand, studies have been made on resins that can be decomposed by microorganisms. To date, for example, a biodegradable resin made of polylactic acid has been put into practical use as a surgical suture, and has been used for many years. In recent years, lactic acid, which is a raw material of polylactic acid, can be produced in large quantities and at low cost by fermentation using corn and the like as raw materials.
Therefore, there has been a demand for a foam made of polylactic acid that has a proven record in practicality, human safety and microbial degradability.
As prior art relating to foams made of polylactic acid, there are extrusions such as JP-T-5-508669, JP-A-4-304244, JP-A-5-139435, JP-A-5-140361, JP-A-9-263651, etc. Examples relating to foams and those relating to expanded particles such as JP-A-5-170965, JP-A-5-170966, JP-A-2000-136261 and the like can be mentioned.
In the prior art related to the above-mentioned polylactic acid foam, particularly those related to foamed particles can obtain a foam having a desired shape without being relatively restricted in shape, and according to purposes such as lightness, shock-absorbing property, and heat insulation. Therefore, it is particularly promising as being practical because it is easy to design physical properties.
[0003]
[Problems to be solved by the invention]
However, the conventional foamed particle molded body made of polylactic acid is one in which foamable resin particles are filled in a mold and the resin particles are foamed by hot air and at the same time the particles are fused together. The variation in the density of the part of the particle molded body was large, the fusion property between the expanded particles was insufficient, and the mechanical properties were inferior. Then, this invention makes it the subject to provide the manufacturing method of the polylactic acid foamed particle molded object which has the small density dispersion | variation of a partial part, is excellent in the meltability of expanded particles, and has a uniform mechanical property.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors diligently studied a method for producing a polylactic acid foamed particle molded body, and as a result, the present invention has been completed. That is, according to this invention, the manufacturing method of the polylactic acid foamed particle molding shown below is provided.
(1)Crystallinity with heat of fusion exceeding 0.1 J / gExpanded particles formed from a resin based on polylactic acidA method for producing a foamed particle molded body by in-mold molding, The apparent density of the expanded particles is 0.015 to 0.3 g / cm 3 In addition, the average cell diameter is 10 to 500 μm, the expanded particles contain 0.7 to 4 mol / (1,000 g expanded particles) of gas, and the expanded particles are placed in the mold.A method for producing a molded body of polylactic acid foamed particles, wherein the foamed particles are heated and fused with a heating medium after filling.
(2)The internal pressure of the expanded particles is 2.2 to 4.5 kgf / cm 2 (1) The method for producing a polylactic acid foamed particle molded body according to (1).
(3)The method for producing a molded article of polylactic acid foamed particles according to (1) or (2), wherein the foamed particles are filled into a mold so as to have a compression rate of 5 to 70%.
(4) The method for producing a molded article of polylactic acid expanded particles according to any one of (1) to (3), wherein the polylactic acid is obtained by gelling polylactic acid.
(5) The gas is carbon dioxideAny of (1) to (4)The manufacturing method of the polylactic acid foamed-particle molded object as described in 2.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, foamed particles formed from a resin mainly composed of polylactic acid used as a molding material (hereinafter also simply referred to as foamed particles) are foams produced using a resin based on polylactic acid as a base resin. It is manufactured by foaming resin particles.
The polylactic acid which is the main component of the base resin refers to a polymer containing 50% by weight or more of a lactic acid component in terms of the weight of the monomer to be polymerized. For example, (1) a polymer of lactic acid, (2) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, and (3) lactic acid, an aliphatic polyhydric alcohol, and an aliphatic polycarboxylic acid. (4) a copolymer of lactic acid and another aliphatic polyvalent carboxylic acid, (5) a mixture of any one of (1) to (4) above, and the like.
[0006]
In the present invention, a biodegradable aliphatic polyester containing at least 35 mol% of an aliphatic ester component can be mixed with polylactic acid. The aliphatic polyester in this case includes a hydroxy acid polycondensate, a lactone ring-opening polymer, a polycondensate of a polyhydric alcohol component and a polycarboxylic acid component, and the like. Examples of the hydroxy acid polycondensate include a polycondensate of hydroxybutyric acid, and examples of the lactone ring-opening polymer include polycaprolactone, and a polycondensate of a polyhydric alcohol component and a polycarboxylic acid component. Examples thereof include polybutylene succinate, polybutylene succinate adipate, poly (butylene adipate / terephthalate), and the like.
The mixing ratio of the biodegradable aliphatic polyester to the polylactic acid is 50% by weight or less, preferably 5 to 30% by weight, based on the total amount of both.
[0007]
In the present invention, when the polylactic acid foamed molded product is required to have heat resistance, it is preferable to use a polylactic acid having a high glass transition temperature (Tg) or a crystalline material having a high melting point (Tm). preferable.
In the present invention, it is preferable to use those having a glass transition temperature of 50 to 65 ° C, more preferably 55 to 65, or a melting point of 130 to 180 ° C, more preferably 140 to 180.
In the present invention, the melting point and glass transition temperature of the base resin are measured according to JIS K 7121-1987.
The melting point of the base resin is the peak apex temperature obtained from the second DSC curve obtained by differential scanning calorimetry.
The glass transition temperature of the base resin is obtained from the second DSC curve obtained by differential scanning calorimetry, a straight line that is equidistant from the extended straight line of each baseline in the vertical axis direction, and a step shape of the glass transition. The midpoint glass transition temperature at the point where the curve of the changing portion intersects.
The second DSC curve obtained by differential scanning calorimetry of the polylactic acid is that the base resin 1-5 mg is heated up to 200 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter (here Then, the obtained DSC curve is referred to as the first DSC curve.) Then, the temperature is lowered from 200 ° C. to 0 ° C. at a temperature lowering rate of 10 ° C./min. Thereafter, the DSC curve obtained by raising the temperature again to 200 ° C. at a rate of temperature increase of 10 ° C./min is the second DSC curve.
Moreover, when two or more peak peak temperatures appear in the base resin, the higher temperature side is defined as the melting point.
[0008]
Specific examples of the polymer of lactic acid include L-lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof, or L-lactide, D-lactide, DL-lactide, which is a cyclic dimer thereof, or A monomer or a dimer polymer composed of a mixture thereof can be exemplified.
[0009]
Specific examples of the method for producing polylactic acid used in the present invention include, for example, direct dehydration polycondensation using lactic acid or a mixture of lactic acid and aliphatic hydroxycarboxylic acid as a raw material (for example, US Pat. No. 5,310, 865), a ring-opening polymerization method for polymerizing a cyclic dimer (lactide) of lactic acid (for example, a production method disclosed in US Pat. No. 2,758,987), lactic acid and fat Ring-opening polymerization method in which a cyclic dimer of an aromatic hydroxycarboxylic acid such as lactide or glycolide and ε-caprolactone is polymerized in the presence of a catalyst (for example, the production disclosed in US Pat. No. 4,057,537) Process), a process of direct dehydration polycondensation of a mixture of lactic acid, aliphatic dihydric alcohol and aliphatic dibasic acid (for example, the production disclosed in US Pat. No. 5,428,126). Method), a method of condensing polylactic acid, aliphatic dihydric alcohol, aliphatic dibasic acid and polymer in the presence of an organic solvent (for example, the production method disclosed in European Patent Publication No. 071880 A2), lactic acid In producing a polyester polymer by performing a dehydration polycondensation reaction in the presence of a catalyst, a method of performing solid phase polymerization in at least a part of the steps can be exemplified, but the production method is particularly limited. Not. In addition, a small amount of an aliphatic polyhydric alcohol such as glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, a polyhydric alcohol such as a polysaccharide may be coexisted and copolymerized. The molecular weight may be increased by using a binder (polymer chain extender) such as a diisocyanate compound.
[0010]
PoLilactic acid includes crystalline and non-crystalline ones.In the present invention,From the point of heat resistance of the molded product of the obtained expanded particles, crystallineButuseBe done. In particular, when an amorphous material is used, it is preferable from the viewpoint of in-mold moldability of the obtained foamed particles to use a gelled material in advance. In order to gel the polylactic acid, the polylactic acid or a resin containing the polylactic acid as a main component may be gelled. The gelation treatment in this case includes various conventionally known methods such as a method using an organic peroxide, an electron beam crosslinking method, a silane crosslinking method, a polyisocyanate crosslinking method, and the like. In the polylactic acid impregnated with the foaming agent in the present invention, the crystallinity is preferably 20% or less, more preferably 10% or less. The crystallinity is measured with an X-ray diffraction apparatus manufactured by Rigaku Denki Kogyo Co., Ltd., and is determined from the ratio between the crystal peak area and the total peak area of the obtained chart. In the gelled polylactic acid used in the present invention, the gel fraction is 5 to 100%, preferably 10 to 90%, more preferably 20 to 80%.
[0011]
A conventionally known method can be adopted as a method for producing the expanded particles used in the present invention.
In the present invention, in order to preferably produce expanded particles, first, base resin particles are made. The base resin particles can be produced by a conventionally known method. For example, the base resin is melt-kneaded with an extruder, extruded into a strand, cooled, and then cut into an appropriate length or the strand is cut. It can be obtained by cooling to an appropriate length and then cooling. The weight per base resin particle is 0.05 to 10 mg, preferably 1 to 4 mg. When the particle weight is smaller than the above range, it becomes difficult to produce the resin particles.
The shape of the resin particles is not particularly limited, and may be various shapes such as a spherical shape and a rod shape in addition to a columnar shape (pellet shape).
[0012]
In the step of melt-kneading the base resin with an extruder and extruding it into a strand, it is preferable to dry the base resin in advance if the base resin is hygroscopic. When a resin containing a large amount of water is introduced into the extruder, the foam resin particles may contain bubbles that adversely affect the uniformity of the bubbles in the foam particles, or the properties of the base resin when melted and kneaded with the extruder There exists a possibility that a fall may occur and melt flow rate (MFR) may become extremely large.
In order to suppress the deterioration of the resin, it is also possible to employ a method of removing moisture from the base resin by vacuum suction using an extruder with a vent port.
The extrusion temperature conditions are also set so that the MFR of the base resin does not become extremely large.
[0013]
Next, the foaming resin particles obtained as described above are impregnated with a foaming agent and then foamed.
In this case, the resin particles are impregnated with a foaming agent and then foamed. The resin particles are impregnated with a foaming agent in a sealed container to obtain expandable resin particles, which are then taken out of the sealed container and the resin A method in which the particles are softened by heating and foamed can be preferably employed. As another method, the resin particles are dispersed in a dispersion medium in the presence of a foaming agent in a sealed container, and the contents are heated to soften the resin particles and impregnate the foaming agent in the particles. Next, one end of the container is opened, and while maintaining the internal pressure of the container at a pressure equal to or higher than the vapor pressure of the foaming agent, the particles and the dispersion medium are simultaneously released into an atmosphere at a lower pressure (usually under atmospheric pressure) than in the container to foam For example, a foaming method to be used, a method in which a decomposable foaming agent is kneaded in advance in resin particles, and the resin particles are heated to a temperature equal to or higher than the decomposition temperature of the foaming agent and foamed can be used.
[0014]
When adopting a method of obtaining expanded particles by an extruder, the base resin is melted by using an extruder, kneaded with a foaming agent to form a foamable melt-kneaded product, and then extruded and foamed into a strand shape. The foamed particles can be produced by cutting to an appropriate length after cooling, or by cooling the strand after cutting to an appropriate length.
[0015]
The base resin may be colored by adding a coloring pigment or dye such as black, gray, brown, blue, or green. If the colored base resin is used, colored foamed particles and molded bodies can be obtained.
Examples of the colorant include organic and inorganic pigments and dyes. As such pigments and dyes, various conventionally known pigments can be used.
Moreover, inorganic substances, such as a talc, a calcium carbonate, a borax, zinc borate, aluminum hydroxide, can be previously added to base resin as a bubble regulator, for example. When additives such as color pigments, dyes or inorganic substances are added to the base resin, the additives can be kneaded into the base resin as they are. It is preferable to make it and knead it with the base resin. Although the addition amount of the color pigment or dye varies depending on the color of the color, it is usually preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of the base resin. By adding an inorganic substance to the base resin, an effect of improving the expansion ratio can be obtained.
In the present invention, additives such as flame retardants, antistatic agents, weathering agents and thickeners can be mixed.
[0016]
Assuming that the product is discarded after use, it is not preferable to add additives such as pigments and bubble regulators.
Moreover, when obtaining expanded particles through the expanded resin particles, the obtained expanded resin particles are preferably stored in an environment in which hydrolysis does not proceed. Similarly, the expanded particles are preferably stored in an environment where hydrolysis does not proceed.
[0017]
As the foaming agent used for obtaining the foamed particles, conventionally known ones such as propane, butane, hexane, cyclobutane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,1 Organic physical foaming agents such as 1,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-tetrafluoroethane, Inorganic physical foaming agents such as nitrogen, carbon dioxide, argon, and air are used. Among them, an inorganic physical foaming agent that does not destroy the ozone layer and is inexpensive is preferable, and nitrogen, carbon dioxide, and air are particularly preferable. . In the present invention, carbon dioxide is more preferred from the viewpoint of obtaining foam particles having a smaller apparent density with respect to the amount of foaming agent used.
[0018]
When foaming resin particles are prepared in advance and the foaming resin particles are impregnated with a foaming agent, the resin particles are placed in a sealed container and the foaming agent is added in an amount of 5 to 100 kgf / cm.2What is necessary is just to press-fit in an airtight container so that it may become the pressure range of G. The amount of the foaming agent used is appropriately selected from the relationship between the apparent density of the desired foamed particles and the foaming temperature.
[0019]
Further, in the method of placing the foaming resin particles in a sealed container, bringing the foaming agent into contact with the foaming agent for a predetermined time to impregnate the foam in the particles, and then removing the resin particles from the sealed container to obtain foamable resin particles. The impregnation with the foaming agent is preferably carried out at a temperature lower than the glass transition temperature of the base resin. The impregnation temperature of the foaming agent is preferably 5 to 60 ° C, more preferably 5 to 40 ° C. In addition, the pressure of the foaming agent during the impregnation varies depending on the foaming ratio of the target foamed particles, but is usually 5 to 100 kgf / cm.2G and the impregnation time is 10 minutes to 24 hours. In particular, when carbon dioxide is used for the foaming agent, the carbon dioxide impregnation amount is usually 2.5 to 30% by weight, preferably 3 to 20% by weight.
In this case, the carbon dioxide impregnation amount is expressed by the following equation.
[Expression 1]
Carbon dioxide impregnation amount (% by weight) = A / (A + B) × 100
A: Weight of carbon dioxide impregnated in resin particles
B: Weight of resin particles before carbon dioxide impregnation
[0020]
A in the above formula is obtained by subtracting the weight of the resin particles before impregnation with carbon dioxide from the weight of the carbon dioxide-impregnated resin particles. It should be noted that any of the above weights for calculating the impregnation amount is measured to the order of 0.0001 g.
Examples of the heating medium for heating and foaming the expandable resin particles impregnated with the foaming agent include water vapor, heat-adjusted air, nitrogen, and the like, but usually water vapor is used. As a method of heating and foaming the expandable resin particles, a conventionally known method can be adopted. Usually, the container is filled with expandable resin particles, and steam is introduced to cause foaming. In addition, if the airtight container is provided with an opening valve that slightly leaks the internal pressure, the air in the container can be excluded, and it is easy to obtain expanded particles having a uniform density.
The temperature at which the resin particles impregnated with the foaming agent are heated, that is, the foaming temperature is usually (glass transition temperature-30 ° C.) to (glass transition temperature + 60 ° C.), preferably (glass transition temperature) of the base resin. −20 ° C.) to (glass transition temperature + 40 ° C.). When the foaming temperature is lower than the above range, sufficient foaming is difficult to occur. When the foaming temperature is higher than the above range, the closed cell ratio of the foamed particles is lowered, and it is difficult to obtain a good molded product.
[0021]
The expanded particle in the present invention has an apparent density of 0.015 to 0.3 g / cm.3InR0.015-0.2 g / cm3BePreferGood. When the density is larger than the above range, the variation in the density of the expanded particles tends to be large, and the physical properties of the expanded molded particles that can lead to variations in the expandability and fusion properties of the expanded particles when heat-molded in the mold. There is a risk of decline. On the other hand, when the ratio is smaller than the above range, the foaming ratio is relatively high, and thus there is a possibility that the molded article has a large molding shrinkage.
[0022]
In the present specification, the apparent density of the expanded particles is a graduated cylinder containing ethanol at 23 ° C., and more than 500 expanded particles left in the graduated cylinder for 2 days under the conditions of relative humidity 50%, 23 ° C. and 1 atm. Particles (weight W1 of the expanded particle group) are sunk using a wire mesh or the like, and the volume V1 (cmThree) By dividing the weight W1 (g) of the expanded particle group placed in the graduated cylinder (W1 / V1).
The bulk density of the expanded particles of the present invention is 0.01 to 0.2 g / cm.ThreePreferably, 0.01 to 0.12 g / cmThreeIt is more preferable that
[0023]
In the present specification, the bulk density of the foamed particles is determined by preparing an empty graduated cylinder and leaving it in the graduated cylinder at a relative humidity of 50%, 23 ° C., and 1 atm for 2 days. Volume V2 (cm)Three) By dividing the weight W2 (g) of the expanded particle group placed in the graduated cylinder (W2 / V2).
[0024]
Furthermore, the average cell diameter of the expanded particles in the present invention is 10 to 500 μm, preferably 30 to 400 μm. When the bubble diameter is smaller than the above range, the film strength is too weak at the time of the heat molding of the present invention, resulting in foam breakage or the like, resulting in a molded article with poor curing recovery. On the other hand, if the bubble diameter is larger than the above range, the film strength is too strong at the time of heating and foaming, so that sufficient expansion does not occur and the molded article has poor surface smoothness.
In the present specification, the average cell diameter of the expanded particles is obtained by dividing the expanded particles into approximately two parts, obtaining the maximum diameter of all the bubbles present in the expanded particle cross section, and performing this operation on 10 or more expanded particles. The arithmetic average value of the maximum diameter is defined as the average bubble diameter.
[0025]
In order to produce a foamed particle molded body in the present invention, the foamed particles are placed in a mold.Preferably5-70%,ThanPreferably, the filler is filled so as to have a compression rate of 15 to 70%, more preferably 30 to 70%, and then the foamed particles are heated with a heating medium to perform molding. In particular, in the case of foamed particles formed from a resin mainly composed of polylactic acid having a heat of fusion exceeding 0.1 J / g, it is filled in a mold so as to have a compression rate of 15 to 70%, and is heat-molded. It is preferable to do. By this heat forming, the expanded particles are strongly fused to each other, and the integrated density variation is small, giving a foamed molded article having a good appearance. As a mold for molding in this case, a conventional mold or a steel belt used in a continuous molding apparatus described in JP 2000-15708 is used. As the heating means, steam heating is usually used, and the heating temperature may be a temperature at which the surface of the expanded particles melts. In the present invention, at the time of molding, the foamed particles are filled into the mold so that the compression rate is 5 to 70%. In particular, when the polylactic acid is crystalline, if the compression ratio is less than 5%, there is a possibility that the molded body has a poor fusion property and a surface smoothness. On the other hand, if it exceeds 70%, the fusion property inside the molded product tends to be inferior, and it is out of the gist of weight reduction, which is a characteristic of foamed products. In addition, there is a difficulty in equipment installation.
[0026]
The compression rate referred to in the present invention is expressed as follows. The compressibility can be expressed by the relationship between the inner volume of the mold and the bulk volume in the atmosphere of the expanded particles filled in the mold.
[Expression 2]
Compression rate (%) = (A−B) × 100 / A (2)
A: Bulk volume (cm) in the atmosphere of expanded particles filled in the moldThree)
B: Inner volume of the mold (cmThree)
A in the above formula represents the weight (g) of the expanded particles filled in the mold, and the bulk density (g / cm) of the expanded particles.Three).
[0027]
In the present invention, a conventionally known filling method can be employed particularly when the foamed particles are filled in the mold so as to achieve the compression rate. Examples of such a method include 1) cracking method, 2) pressure filling method, and 3) compression filling method.
1) The cracking method is a method in which the raw material beads are mechanically conveyed and filled by an injector in a state where the raw material bead container and the cavity are opened to communicate with atmospheric pressure, and then the mold is clamped. 2) In the pressure filling method, the inside of the raw material bead container is 0.2 to 1.5 kg / cm.2In this method, the cavity is pressurized to about G and released into the atmospheric pressure through the chamber using the differential pressure. 3) In the compression filling method, the pressure p in the raw material bead container is pressurized at a pressure higher than that in the pressure filling method, the inside of one chamber is pressurized, and the difference in the cavity pressure p1 communicated through the vent hole This is a method of conveying and filling the raw material beads by changing the pressure (p-p1). Since the raw material beads are sent in a compressed state, the filling property is excellent.
[0028]
In the present invention, the foam particles provided in the mold together with the method of filling the foam particles in the mold so as to achieve the above-mentioned compressibility include inorganic gas such as air, nitrogen and carbon dioxide, particularly carbon dioxide as a gas. It is preferable to keep it. An organic gas such as butane can also be used. By using the expanded particles to which gas has been added as the expanded particles for molding, the expandability at the time of forming the expanded particles, the fusion between the particles, the mold shape reproducibility and the dimensional stability of the molded body are improved. The gas is, 0. It is applied within a range of 7 to 4 mol / (1000 g expanded particles).
[0029]
In addition, in this specification, the gas amount (mol / 1000g expanded particle) of an expanded particle is calculated | required as follows.
[Equation 3]
The amount of gas increase (g) in the above formula is determined as follows.
500 or more foamed particles whose internal pressure has been increased by applying a gas filled in the molding machine are taken out and moved to a constant temperature room under an atmospheric pressure of 23% and a relative humidity of 50% within 60 seconds. Place on a balance in the room, take out the foamed particles and read the weight after 120 seconds. The weight at this time is defined as Q (g). Next, the foamed particles are left for 240 hours in the same constant temperature room at a relative humidity of 50% and an atmospheric pressure of 23 ° C. Since the high-pressure gas in the expanded particles permeates the bubble membrane and escapes to the outside as time passes, the weight of the expanded particles decreases accordingly, and after 240 hours, the weight has reached equilibrium. stable. The weight of the expanded particles after 240 hours is measured in the same constant temperature room, and the weight at this time is defined as S (g). Any of the above weights shall be read to the order of 0.0001 g. The difference between Q (g) and S (g) obtained by this measurement is defined as the amount of gas increase (g) in equation (5).
Further, as another method for obtaining a foamed particle molded body in the present invention, foamed particles containing a gas of 0.7 to 4 mol / (1000 g foamed particles) are not compressed or the compression rate is less than 5% in the mold. There is also a method in which the foamed particles are heated and fused by a heating medium after filling by a conventionally known method. When the foamed particles contain a gas of 0.7 to 4 mol / (1000 g foamed particles), the expandability of the foamed particles when the molded product is obtained from the foamed particles, the fusibility between the particles, and the mold shape reproduction of the molded product And dimensional stability are improved. In particular, in the case of expanded particles formed from a resin mainly composed of polylactic acid having a heat of fusion exceeding 0.1 J / g, 1 to 4 mol / (1000 g expanded particles), and further 1.5 to 4 mol / (1000 g expanded particles) It is preferable that gas is included within the range of When the amount of gas is less than 0.7 mol / (1000 g foamed particles), the intended effect of the present invention may not be sufficiently achieved, while when the amount exceeds 4 mol / (1000 g foamed particles). This is accompanied by difficulties in obtaining the foamed particles.
Examples of the gas contained in the expanded particles provided in the mold include air, inorganic gas such as nitrogen and carbon dioxide, or organic gas such as butane, similar to the gas described above, and inorganic gas, particularly carbon dioxide. preferable.
[0030]
In addition, the above-described method of the present invention is extremely effective in molding in-mold polylactic acid expanded particles exhibiting crystallinity, and it is possible to obtain a molded product having good fusion property and appearance. In the present specification, polylactic acid foamed particles exhibiting crystallinity have a heat of fusion of more than 0.1 J / g by differential scanning calorimetry, more preferably 1 J / g or more, particularly 5 J / g or more. Polylactic acid foam particles (the upper limit of the heat of fusion is approximately 100 J / g).
Further, in the present specification, the heat of fusion by differential scanning calorimetry: ΔH (J / g) is measured in accordance with JIS K7122-1987, and 1 to 3 mg of foamed particles or resin particles is 10 ° C./min by a differential scanning calorimeter. The DSC curve endotherm obtained when the temperature was increased to 200 ° C. at a temperature increase rate of 10 ° C./minute, the temperature was decreased to 0 ° C. at a temperature decrease rate of 10 ° C./minute, and was again increased to 200 ° C. It is obtained from the peak area.
The shape of the foamed particle molded body according to the present invention is not particularly limited, and the shape may be various shapes such as a container shape, a plate shape, a cylindrical shape, a column shape, a sheet shape, and a block shape. The foamed particle molded body of the present invention preferably has a density of 0.01 to 0.2 g / cm.ThreeIt is excellent in dimensional stability and surface smoothness.
[0031]
In the present specification, the density (g / cm of the expanded particle molded body)Three) Is the volume VM (cmThree) Is a value obtained by dividing the compact weight WM (g) by (WM / VM).
[0032]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0033]
Examples 1 to 5
Crystalline polylactic acid (Lacty 9030 manufactured by Shimadzu Corporation) and talc are melt-kneaded with an extruder, extruded into a strand, and then the strand is rapidly cooled and solidified in water at about 25 ° C. and then cut. About 1.3 mm in diameter, about 1.9 mm in length, and about 3 mg of resin particles per one piece were obtained. In addition, talc was added so that it might become 2000 ppm.
Next, an autoclave having an internal volume of 5 L was adjusted to 10 ° C., and then 1000 g of the resin particles were added. Carbon dioxide gas was injected into the autoclave through the pressure adjustment valve, and the pressure in the autoclave was adjusted to the pressure shown in Table 1 and maintained for 15 hours. Next, after removing carbon dioxide in the autoclave, resin particles were taken out. Table 1 shows the carbon dioxide impregnation amount of the resin particles.
The resin particles impregnated with the carbon dioxide gas were filled in a sealed container, and then steam was introduced and heated to the temperature shown in Table 1 to obtain expanded and expanded foam particles. Table 1 shows the density of the expanded particles.
The obtained foamed particles were filled in a sealed container, and the foamed particles were pressurized with the gas shown in Table 2 under an atmospheric temperature condition of 20 ° C. to give the gas to the foamed particles. Table 2 shows the gas impregnation amount of the expanded particles. Next, the foamed particles to which the gas was applied were filled in a 200 × 250 × 10 mm mold so as to have a compression rate shown in Table 2, and heat-molded with steam having a temperature shown in Table 2. The obtained molded body was cured at 30 ° C. for 24 hours. The density of the obtained foamed particle molded body is shown in Table 2.
[0034]
[Table 1]
[0035]
[Table 2]
[0036]
The internal pressure of the expanded particles shown in Table 1 is calculated by the following formula.
[Expression 4]
(However, the increased gas amount indicates the difference between the expanded particle weight at the time of measuring the internal pressure and the expanded particle weight before pressure treatment, which is obtained in the same manner as the increased gas amount in the above formula (3). The gas volume in the expanded particles is a value calculated by the following formula: The gas molecular weight is the same as that of the added gas.244 (g / mol) in the case of air and 28.9 (g / mol) in the case of air. )
[Equation 5]
[0037]
Reference examples 1, 2, 4Comparative Example 1
Non-crystalline polylactic acid (Lacty 9800, manufactured by Shimadzu Corporation, Tg: 53 ° C.), talc, and polyisocyanate compound (Millionate MR-200: manufactured by Nippon Polyurethane Industry Co., Ltd.) are cylinders using a twin screw extruder. After melt-kneading at a temperature of 180 ° C., it is extruded into a strand, and then the strand is quenched and solidified in water at about 20 ° C. and then cut to obtain a diameter of about 1.3 mm, a length of about 1.9 mm, and a length of about 1 per piece. 3 mg of resin particles were obtained. The talc was added at 1% by weight and the polyisocyanate compound was added at 3% by weight. The polyisocyanate in this case is the compound name polymethylene polyphenyl polyisocyanate. The obtained resin particles were stored for 30 days in an atmosphere of about 30 ° C. and a relative humidity of about 50%. The gel fraction of the resin particles after the storage was 53%. Next, an autoclave having an internal volume of 5 L is charged with 100 parts by weight of resin particles, 300 parts by weight of water, 0.5 parts by weight of aluminum oxide, and 0.06 parts by weight of sodium dodecylbenzenesulfonate, and heated to 110 ° C. with stirring. The temperature was raised and carbon dioxide was injected and impregnated until the internal pressure of the autoclave reached 4 MPa. Then, after maintaining at the same temperature for 20 minutes, one end of the autoclave is opened, nitrogen gas is introduced into the autoclave, and the contents are released under atmospheric pressure while maintaining the pressure in the autoclave to foam the resin particles. It was. The apparent density of the expanded particles is 0.148 g / cm.3Met. The gel fraction of the expanded particles was 60%. The obtained expanded particles were filled in a sealed container, pressurized with carbon dioxide under an atmospheric temperature condition of 20 ° C., and impregnated with carbon dioxide to obtain expanded particles having a gas impregnation amount shown in Table 2. The foamed particles were filled in a 200 × 250 × 10 mm mold so as to have the compression rate shown in Table 2, and heat molded with steam at 118 ° C. The molded bodies obtained in the examples were cured at 30 ° C. for 24 hours. The obtained foamed particle molded body had good fusion properties, had the density shown in Table 2, and had a gel fraction of 60%.
Reference example 3
After heating to 120 ° C. with stirring and heating, carbon dioxide was injected and impregnated until the internal pressure of the autoclave reached 4 MPa, so that the carbon dioxide impregnation temperature was 120 ° C. and held at the same temperature for 20 minutes, Except for setting the foaming temperature to 120 ° C by opening one end of the autoclaveReference example 4In the same manner, foamed particles were obtained (the gel fraction of the foamed particles was 60%). The obtained foamed particles were filled into a 200 × 250 × 10 mm mold and heat-molded with water vapor at 118 ° C. The obtained molded body was cured at 30 ° C. for 24 hours. The obtained foamed particle molded article has a good fusion property and has a density of 0.105 g / cm.3The gel fraction was 60%.
The gel fraction was measured as follows. (Measurement of gel fraction) The measurement of the gel fraction of the resin particles and the expanded particles in the present specification is measured as follows. Using about 1 g of resin particles or expanded particles as a sample, the sample weight W2 is weighed. Next, a weighed sample and 100 ml of chloroform are placed in a 150 ml flask and heated and refluxed at 62 ° C. for 10 hours under atmospheric pressure. Filtration is performed using a suction filtration device having a 200 mesh wire net. The obtained filtered product on the wire mesh is dried in an oven at 80 ° C. under a condition of 30 to 40 Torr for 8 hours. The dry matter weight W1 obtained at this time is measured. The percentage of the weight ratio of the weight W1 to the sample weight W2 (W1 / W2) × 100% is taken as the gel fraction. The measurement of the gel fraction of the foamed particle molded body is the same as that of the foamed particle except that a plurality of rectangular parallelepipeds of 5 mm in length, 5 mm in width and 5 mm in height are cut out so as not to include the surface of the molded body and used as a measurement sample. Measured.
[0038]
【The invention's effect】
According to the production method of the present invention, it is possible to obtain a polylactic acid foamed particle molded body having a small density variation in the partial portion, excellent fusion property between the foamed particles and surface smoothness, and uniform mechanical properties.
The foamed particle molded body obtained by the present invention is excellent in dimensional stability, appearance, cushioning and mechanical strength, and is suitably used as a cushioning material, packaging material, etc. and has biodegradability thereafter. The industrial significance, such as the easy disposal of wastewater, is enormous.
Claims (5)
該発泡粒子の見かけ密度が0.015〜0.3g/cm 3 であると共に、平均気泡径が10〜500μmであり、
該発泡粒子が0.7〜4mol/(1,000g発泡粒子)の気体を含み、
該発泡粒子を型内に充填した後に加熱媒体により該発泡粒子を加熱し、融着させることを特徴とするポリ乳酸発泡粒子成形体の製造方法。 A method for producing a foamed particle molded body by in-mold molding foamed particles formed from a resin mainly composed of crystalline polylactic acid having a heat of fusion of 5 J / g or more ,
The apparent density of the expanded particles is 0.015 to 0.3 g / cm 3 and the average cell diameter is 10 to 500 μm.
The expanded particles contain 0.7-4 mol / (1,000 g expanded particles) of gas,
A method for producing a molded article of polylactic acid foamed particles , comprising filling the foamed particles in a mold and then heating the foamed particles with a heating medium and fusing them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001255114A JP4917221B2 (en) | 2001-08-24 | 2001-08-24 | Method for producing polylactic acid foamed particle molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001255114A JP4917221B2 (en) | 2001-08-24 | 2001-08-24 | Method for producing polylactic acid foamed particle molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003064213A JP2003064213A (en) | 2003-03-05 |
JP4917221B2 true JP4917221B2 (en) | 2012-04-18 |
Family
ID=19083148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001255114A Expired - Fee Related JP4917221B2 (en) | 2001-08-24 | 2001-08-24 | Method for producing polylactic acid foamed particle molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4917221B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4748698B2 (en) * | 2001-08-30 | 2011-08-17 | 株式会社ジェイエスピー | Method for producing polylactic acid foamable resin particles |
JP4820641B2 (en) * | 2005-12-20 | 2011-11-24 | 積水化成品工業株式会社 | Method for producing foamed polylactic acid resin particles for in-mold foam molding |
NZ552936A (en) * | 2007-01-30 | 2009-09-25 | Biopolymer Network Ltd | Methods of manufacture of polylactic acid foams |
JP2009061754A (en) * | 2007-09-10 | 2009-03-26 | Kaneka Corp | Foam molding machine of thermoplastic resin |
JP2011016941A (en) * | 2009-07-09 | 2011-01-27 | Sekisui Plastics Co Ltd | Manufacturing method for polylactic acid-based resin foam, and polylactic acid-based resin foam |
AU2011206716B2 (en) | 2010-01-14 | 2014-01-30 | Basf Se | Method for producing expandable granulates containing polylactic acid |
CN103827184B (en) * | 2011-09-28 | 2016-01-20 | 株式会社Jsp | Based resin expanded beads and moulded work thereof |
WO2013058056A1 (en) * | 2011-10-18 | 2013-04-25 | 株式会社ジェイエスピー | Method for producing expanded polylactic acid resin particle |
NL1039140C2 (en) * | 2011-10-29 | 2013-05-06 | Synbra Tech Bv | GROWTH SUBSTRATE FOR PLANTS. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2790791B2 (en) * | 1986-09-16 | 1998-08-27 | 鐘淵化学工業株式会社 | Method for producing foamed molded article in polypropylene resin mold |
JP3950557B2 (en) * | 1998-07-30 | 2007-08-01 | 株式会社カネカ | Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom |
JP2000136261A (en) * | 1998-08-28 | 2000-05-16 | Mitsui Chemicals Inc | Foaming particle and production of the same |
-
2001
- 2001-08-24 JP JP2001255114A patent/JP4917221B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003064213A (en) | 2003-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5004247B2 (en) | Polylactic acid expanded particle molded body | |
TWI398471B (en) | Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads | |
JP4289547B2 (en) | Polylactic acid foamed particles and molded product of polylactic acid foamed particles | |
KR101768263B1 (en) | Polylactic acid resin foam particle and polylactic acid resin foam particle molding | |
JP5730856B2 (en) | Polylactic acid composition, foamed molded product thereof and production method | |
EP1947127B1 (en) | Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead | |
EP2940070B1 (en) | Molded article of polylactic acid-based resin expanded beads | |
JP4917221B2 (en) | Method for producing polylactic acid foamed particle molded body | |
KR101728195B1 (en) | Expanded particles of polylactic acid-based resin, and moldings of the expanded particles | |
JP3730805B2 (en) | Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles | |
JP4225477B2 (en) | Method for producing polylactic acid-based resin in-mold foam molded body and polylactic acid-based resin in-mold foam molded body | |
JP5044337B2 (en) | Polylactic acid-based resin expanded particles and the expanded particles molded body | |
JP4748698B2 (en) | Method for producing polylactic acid foamable resin particles | |
JP5620733B2 (en) | Method for producing foamed polylactic acid resin particles | |
JP4697861B2 (en) | Polylactic acid-based resin foamed particles and polylactic acid-based resin in-mold foam molding | |
KR101440217B1 (en) | Polypropylene composition to improve a low temperature impact strength and its articles | |
JP4664106B2 (en) | Method for producing foamed polylactic acid resin particles | |
JP4761421B2 (en) | Method for producing polyester resin foam and method for producing foamable polyester resin material | |
JP4582871B2 (en) | Non-crosslinked resin foamable particles | |
JP2007126539A (en) | Method for producing foamable polylactic acid resin | |
JP5027599B2 (en) | Method for producing expandable polylactic acid resin particles | |
JP4295971B2 (en) | Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles | |
JP4582674B2 (en) | Polyester resin expanded particles and molded articles thereof | |
JP4015487B2 (en) | Polyester resin expanded particles and molded articles thereof | |
JP2009235237A (en) | Molded article of biodegradable foamed particles and their manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040512 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4917221 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |