[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4915472B2 - Electrostatic occupant detection device - Google Patents

Electrostatic occupant detection device Download PDF

Info

Publication number
JP4915472B2
JP4915472B2 JP2010276812A JP2010276812A JP4915472B2 JP 4915472 B2 JP4915472 B2 JP 4915472B2 JP 2010276812 A JP2010276812 A JP 2010276812A JP 2010276812 A JP2010276812 A JP 2010276812A JP 4915472 B2 JP4915472 B2 JP 4915472B2
Authority
JP
Japan
Prior art keywords
electrode
occupant
main electrode
sub
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010276812A
Other languages
Japanese (ja)
Other versions
JP2011095267A (en
Inventor
孝治 大高
山中  正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010276812A priority Critical patent/JP4915472B2/en
Publication of JP2011095267A publication Critical patent/JP2011095267A/en
Application granted granted Critical
Publication of JP4915472B2 publication Critical patent/JP4915472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Seats For Vehicles (AREA)

Description

本発明は、車両において、乗員のシートへの着席を検知する静電式乗員検知装置に関する。   The present invention relates to an electrostatic occupant detection device for detecting seating of an occupant on a seat in a vehicle.

静電式乗員検知装置は、マット状の静電センサと乗員検知ECU(電子制御ユニット)とを備えている。このうち、静電センサは、シート内部に配置したメイン電極と車両ボディとの間に発生させた微弱電界の乱れを、電流あるいは電圧として出力するものである(例えば、特許文献1参照)。   The electrostatic occupant detection device includes a mat-shaped electrostatic sensor and an occupant detection ECU (electronic control unit). Among these, the electrostatic sensor outputs a disturbance of a weak electric field generated between the main electrode disposed inside the seat and the vehicle body as a current or a voltage (see, for example, Patent Document 1).

例えば、シートが空席の場合、静電センサの一対の電極間には、空気が介挿されることになる。また、シートにCRS(Child Restraint System、年少者拘束システム)が搭載されている場合、静電センサの一対の電極間には、CRSが介挿されることになる。また、シートに乗員が搭載している場合、静電センサの一対の電極間には、乗員の人体が介挿されることになる。   For example, when the seat is empty, air is interposed between the pair of electrodes of the electrostatic sensor. Further, when a CRS (Child Restraint System) is mounted on the sheet, the CRS is interposed between a pair of electrodes of the electrostatic sensor. When the occupant is mounted on the seat, the occupant's human body is interposed between the pair of electrodes of the electrostatic sensor.

ここで、空気の比誘電率は、約1である。また、材質にも依るがCRSの比誘電率は、約2〜5である。更に、人体の比誘電率は、約50である。このように、空気、CRS、人体の比誘電率は、それぞれ異なる。従って、介挿物の種類により、静電センサの一対の電極間の静電容量も異なる。   Here, the relative dielectric constant of air is about 1. Further, although it depends on the material, the relative dielectric constant of CRS is about 2 to 5. Furthermore, the relative dielectric constant of the human body is about 50. Thus, the relative dielectric constants of air, CRS, and human body are different. Therefore, the capacitance between the pair of electrodes of the electrostatic sensor varies depending on the type of the insertion object.

この静電容量の差異により発生する電極間の微弱電界の乱れを電流あるいは電圧として出力し、この出力された電流値又は電圧値に基づいて、乗員検知ECUが乗員判別を行っている。即ち、乗員検知ECUは、シートが空席か、シートにCRSが搭載されているか、シートに大人が着座しているか、を判別している。また、エアバックECUは、乗員検知ECUの判別結果に基づき、袋体の展開許可/禁止を決定する。具体的には、シートが空席の場合又はシートにCRSが装着されている場合は、袋体を展開禁止状態とする。一方、シートに大人が着座している場合は、袋体を展開許可状態とする。   The disturbance of the weak electric field between the electrodes caused by the difference in capacitance is output as current or voltage, and the occupant detection ECU performs occupant discrimination based on the output current value or voltage value. That is, the occupant detection ECU determines whether the seat is vacant, whether a CRS is mounted on the seat, or whether an adult is seated on the seat. Further, the airbag ECU determines whether or not to deploy the bag body based on the determination result of the occupant detection ECU. Specifically, when the seat is vacant or when the CRS is attached to the seat, the bag body is set in a development prohibited state. On the other hand, when an adult is seated on the seat, the bag body is set in a deployment-permitted state.

また、シートの被水を検知し、シートに乗員が着座している場合と、シートが空席である場合との区別をより明確にした静電センサが公開されている(例えば、特許文献2参照)。   In addition, an electrostatic sensor has been disclosed in which the wetness of the seat is detected and the distinction between the case where the occupant is seated on the seat and the case where the seat is empty is clarified (see, for example, Patent Document 2). ).

シートが被水した場合、水の比誘電率が約80であるため、人体の比誘電率よりも大きく、乗員判別が困難になる。このため、静電センサに新たに被水検知用のサブ電極を設け、サブ電極と乗員判別用のシート内部に配置したメイン電極との間の微弱電界の乱れを、電流あるいは電圧として出力することで被水判別を可能としている。   When the sheet is flooded, the relative permittivity of water is about 80, which is larger than the relative permittivity of the human body, and occupant discrimination becomes difficult. For this reason, a sub-electrode for detecting moisture is newly provided in the electrostatic sensor, and the disturbance of the weak electric field between the sub-electrode and the main electrode arranged inside the occupant discrimination seat is output as a current or a voltage. In this way, it is possible to distinguish water exposure.

また、シートが空席時において、乗員判別に用いられる一対の電極間に流れる電流を低減し、シートに乗員が搭乗した場合に当該一対の電極間に流れる電流を明確に検知できる静電センサも公開されている(例えば、特許文献3参照)。この場合、静電センサに新たに容量低減用のガード電極を設けている。   Also disclosed is an electrostatic sensor that reduces the current that flows between a pair of electrodes used for occupant discrimination when the seat is empty and that can clearly detect the current that flows between the pair of electrodes when the occupant gets on the seat. (For example, see Patent Document 3). In this case, a guard electrode for reducing capacitance is newly provided in the electrostatic sensor.

更に、この容量低減用のガード電極と乗員判別用のシート内部に配置したメイン電極との間に形成されるコンデンサの故障を、その間に流れる電流を検出し、検出された電流値に基づいて検知している(例えば、特許文献4参照)。   Furthermore, a failure of a capacitor formed between the guard electrode for reducing the capacity and the main electrode disposed inside the occupant discrimination seat is detected based on the detected current value. (For example, refer to Patent Document 4).

これら構成の従来の静電センサは、所定の電極間に発生する微弱電界の乱れを、電流あるいは電圧として出力するものである。つまり、シートへの乗員の着座の有無、乗員の識別、被水及び故障の有無等に応じた電極間の電界状況に応じて異なったレベルの電流あるいは電圧が発生する。そして、その電流値あるいは電圧値(以下、「電流値等」と略称する)に基づいて、乗員、被水、及び故障の判別を行っている。   The conventional electrostatic sensor having such a configuration outputs a disturbance of a weak electric field generated between predetermined electrodes as a current or a voltage. In other words, different levels of current or voltage are generated according to the state of the electric field between the electrodes depending on whether the passenger is seated on the seat, whether the passenger is identified, whether the vehicle is wet, whether there is a failure, or the like. Then, based on the current value or voltage value (hereinafter abbreviated as “current value etc.”), the occupant, the water exposure, and the failure are determined.

この電流値等は、所定の電極間の静電容量成分とともに、静電センサを構成する回路の抵抗成分が関係した値として出力される。即ち、静電センサにおいて、所定の電極間の電流値等を検出する場合、その電流値等は、回路の抵抗成分の影響を受けた値として検出される。この抵抗成分には、所定の電極間に介在する人(乗員)、水、及び空気等による抵抗値が含まれる。これは、厳密には、人体及び水等は、電気の等価回路で表すと、抵抗とコンデンサの並列回路に相当するからである。   This current value and the like are output as a value related to the resistance component of the circuit constituting the electrostatic sensor together with the capacitance component between the predetermined electrodes. That is, in the electrostatic sensor, when a current value between predetermined electrodes is detected, the current value is detected as a value affected by the resistance component of the circuit. This resistance component includes a resistance value caused by a person (occupant), water, air, or the like interposed between predetermined electrodes. Strictly speaking, this is because the human body, water, and the like correspond to a parallel circuit of a resistor and a capacitor in terms of an electric equivalent circuit.

従って、静電センサにおいて、所定の電極間に流れる電流を検出し、その電流値の大小によって乗員等を判別する場合、検出された電流値は、厳密には所定の電極間を構成する抵抗とコンデンサの並列回路を流れた電流を含む値となる。この電流値をそのまま判別要素とした乗員等の判別では、その精度には限界がある。つまり、乗員等の判別に用いる電流値等は、純粋な電極間の静電容量を判別要素としていないので、必ずしも的確に判別できるとは限らなかった。   Therefore, in the electrostatic sensor, when the current flowing between the predetermined electrodes is detected and the occupant or the like is discriminated based on the magnitude of the current value, the detected current value is strictly a resistance constituting the predetermined electrode. The value includes the current that flows through the parallel circuit of the capacitor. There is a limit to the accuracy of occupant discrimination using this current value as a discrimination factor. That is, the current value used for discriminating an occupant or the like is not always discriminable accurately because the capacitance between pure electrodes is not a discriminating factor.

そこで、乗員等の判別精度を向上させることができる従来技術として、例えば特許文献5に記載の静電容量式乗員検知センサがある。このセンサは、交流電圧を発生する電源部と、車両のシートの座面部に配置されるメイン電極と、電源部とメイン電極とを接続するメイン配線部と、車両接地部に導通するシートフレームとメイン電極との間に当該メイン電極に離隔して対向配置され、シートフレームとメイン電極との間に電界が形成されるのを排除するガード電極と、インピーダンス算出部と、実虚成分算出部と、判別部とを備えて構成されている。   Therefore, as a conventional technique that can improve the discrimination accuracy of an occupant or the like, for example, there is a capacitance type occupant detection sensor described in Patent Document 5. The sensor includes a power supply unit that generates an AC voltage, a main electrode that is disposed on a seat surface portion of a vehicle seat, a main wiring unit that connects the power supply unit and the main electrode, and a seat frame that is electrically connected to the vehicle grounding unit. A guard electrode that is spaced from and is opposed to the main electrode and eliminates the formation of an electric field between the seat frame and the main electrode, an impedance calculation unit, and a real / imaginary component calculation unit; And a determination unit.

インピーダンス算出部は、乗員検知モードにおいて、電源部からメイン配線部とメイン電極と車両ボディまでのインピーダンスを算出する。実虚成分算出部は、その算出されたインピーダンスに基づき当該インピーダンスの実数部及び虚数部を算出する。判別部は、その算出されたインピーダンスの内の虚数部に基づいてシートの乗員を判別するようになっている。   The impedance calculation unit calculates the impedance from the power supply unit to the main wiring unit, the main electrode, and the vehicle body in the passenger detection mode. The real imaginary component calculation unit calculates a real part and an imaginary part of the impedance based on the calculated impedance. The discriminating unit discriminates the occupant of the seat based on the imaginary part of the calculated impedance.

この構成において、電源部がメイン配線部を介してメイン電極に交流電圧を印加し、メイン電極と車両ボディとの間に電界を発生させ、この際に、インピーダンス算出部で、電源部からメイン配線部とメイン電極と車両ボディまで(以下、乗員検知回路と称す)のインピーダンスを算出する。更に実虚成分算出部で、その算出されたインピーダンスの実数部及び虚数部を算出する。この虚数部は、乗員検知回路において、メイン電極と車両ボディとの間に人体等により構成される抵抗とコンデンサの並列回路のうち当該コンデンサの静電容量成分に相当する。従って、インピーダンスの虚数部に基づき判別部でシートの乗員を判別する。   In this configuration, the power supply unit applies an AC voltage to the main electrode via the main wiring unit, and generates an electric field between the main electrode and the vehicle body. At this time, the impedance calculation unit performs the main wiring from the power supply unit. The impedance up to the head, the main electrode, and the vehicle body (hereinafter referred to as an occupant detection circuit) is calculated. Further, the real and imaginary component calculation unit calculates a real part and an imaginary part of the calculated impedance. This imaginary part corresponds to the capacitance component of the capacitor in a parallel circuit of a resistor and a capacitor constituted by a human body or the like between the main electrode and the vehicle body in the occupant detection circuit. Therefore, the occupant of the seat is determined by the determination unit based on the imaginary part of the impedance.

このように電極間の静電容量成分に相当するインピーダンスの虚数部を判別要素としているので、より正確な両電極間の静電容量成分を算出することができ、これによって乗員等の判別精度の向上が可能となっている。   Since the imaginary part of the impedance corresponding to the capacitance component between the electrodes is used as a discriminating element in this way, it is possible to calculate a more accurate capacitance component between both electrodes. Improvement is possible.

特開平11−271463号公報Japanese Patent Laid-Open No. 11-271463 特開2006−27591号公報JP 2006-27591 A 特開2006−201129号公報JP 2006-201129 A 特開2006−242907号公報Japanese Patent Laid-Open No. 2006-242907 特開2008−111809号公報JP 2008-111809 A

しかし、上記の特許文献5においては、車両毎に、静電式乗員検知装置の構成要素である静電センサの感度並びに零点にバラツキがあるため、車両毎に乗員等の判別精度にバラツキが生じるという問題がある。   However, in the above-mentioned Patent Document 5, the sensitivity and zero point of the electrostatic sensor, which is a component of the electrostatic occupant detection device, vary from vehicle to vehicle. There is a problem.

本発明は、このような課題に鑑みてなされたものであり、車両毎の静電センサの感度並びに零点のバラツキを無くすことによって、車両毎の乗員等の判別精度のバラツキを無くすことができる静電式乗員検知装置を提供することを目的とする。   The present invention has been made in view of such problems, and by eliminating the sensitivity of the electrostatic sensor for each vehicle and the variation of the zero point, the variation in the discrimination accuracy of the occupant and the like for each vehicle can be eliminated. An object is to provide an electric occupant detection device.

上記目的を達成するためになされた請求項1に記載の発明は、車両のシートの座面部に互いに離隔状態に配置されたメイン電極及びサブ電極と、これらメイン電極及びサブ電極と車両接地に導通するシートフレームとの間に当該メイン電極及びサブ電極に隔離して対向配置されたガード電極とを有する静電センサと、前記静電センサに交流電圧信号を印加する信号源と、この信号源の交流電圧信号が前記メイン電極、前記サブ電極及び前記ガード電極に選択的又は全てに印加されるように切り換える切換部と、前記メイン電極、前記サブ電極及び前記ガード電極の個々と前記信号源との間に前記切換部を介して接続された複数の抵抗器と、これら抵抗器を介した前記メイン電極、前記サブ電極及び前記ガード電極への交流電圧信号の印加時に各抵抗器の両端に発生する電位差を選択する選択手段と、この選択手段で選択された電位差による電圧値を検出する検出手段とを有するセンサ特性計測部と、前記検出手段で検出された電圧値のうち前記メイン電極及び前記サブ電極に接続された各抵抗器の両端の電位差から得た各電圧値を加算し、この加算値を乗員判定のための乗員判定データとする演算制御手段とを備えることを特徴とする。   In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that a main electrode and a sub-electrode disposed on a seating surface portion of a vehicle seat are separated from each other, and the main electrode and the sub-electrode are electrically connected to the vehicle ground. An electrostatic sensor having a guard electrode disposed opposite to and separated from the main electrode and the sub electrode, a signal source for applying an AC voltage signal to the electrostatic sensor, and a A switching unit for switching so that an AC voltage signal is selectively or fully applied to the main electrode, the sub electrode, and the guard electrode; and each of the main electrode, the sub electrode, and the guard electrode, and the signal source. A plurality of resistors connected via the switching unit in between, and when applying an AC voltage signal to the main electrode, the sub electrode and the guard electrode via the resistors A sensor characteristic measuring section having a selection means for selecting a potential difference generated at both ends of the resistor, a detection means for detecting a voltage value due to the potential difference selected by the selection means, and a voltage value detected by the detection means. Computation control means is provided for adding each voltage value obtained from a potential difference between both ends of each resistor connected to the main electrode and the sub electrode, and using the added value as occupant determination data for occupant determination. It is characterized by.

この構成によれば、乗員判定データは、メイン電極とサブ電極の双方を合わせた面積の電極で乗員の静電容量を検出した値と等価となるので、S/Nが向上し、乗員判定を有利とすることができる。   According to this configuration, the occupant determination data is equivalent to a value obtained by detecting the capacitance of the occupant with an electrode having the area of both the main electrode and the sub electrode, so that the S / N is improved and the occupant determination is performed. Can be advantageous.

請求項2に記載の発明は、前記センサ特性計測部は、前記メイン電極及び前記ガード電極に前記交流電圧信号が印加されるように前記切換部を切り換え、前記選択手段で当該メイン電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第1の電圧値として記憶し、次に、前記メイン電極に前記交流電圧信号が未印加状態としたのち前記サブ電極に前記交流電圧信号が印加されるように前記切換部を切り換え、前記選択手段で当該サブ電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第2の電圧値として記憶し、前記演算制御手段は、前記記憶された第1及び第2の電圧値を加算し、この加算値を乗員判定のための乗員判定データとすることを特徴とする。   According to a second aspect of the present invention, the sensor characteristic measurement unit switches the switching unit so that the AC voltage signal is applied to the main electrode and the guard electrode, and is connected to the main electrode by the selection unit. The potential difference between both ends of the resistor is selected, the voltage value at which the selected potential difference is detected by the detection means is stored as the first voltage value by the calculation control means, and then the AC is stored in the main electrode. After the voltage signal is not applied, the switching unit is switched so that the AC voltage signal is applied to the sub electrode, and the selection means selects the potential difference between both ends of the resistor connected to the sub electrode. The calculation control means stores the voltage value detected by the detection means as the second voltage value, and the calculation control means adds the stored first and second voltage values. And Characterized by the additional value the passenger determination data for occupancy determination.

この構成によれば、センサ特性計測部によってメイン電極の静電容量に応じた第1の電圧値を選択して演算制御手段に記憶し、次に、サブ電極の静電容量に応じた第2の電圧値を選択して演算制御手段に記憶する。そして、演算制御手段で第1及び第2の電圧値を加算して乗員判定データとする。従って、メイン電極とサブ電極の双方を合わせた広い面積の電極で乗員の静電容量を検出した値と等価な乗員判定データを得ることができるので、S/Nが向上し、乗員判定を有利とすることができる。   According to this configuration, the sensor characteristic measuring unit selects the first voltage value corresponding to the capacitance of the main electrode and stores it in the arithmetic control means, and then the second voltage corresponding to the capacitance of the sub electrode. Is selected and stored in the calculation control means. Then, the arithmetic control means adds the first and second voltage values to obtain occupant determination data. Accordingly, occupant determination data equivalent to a value obtained by detecting the occupant's capacitance can be obtained with an electrode having a wide area including both the main electrode and the sub electrode, so that S / N is improved and occupant determination is advantageous. It can be.

請求項3に記載の発明は、前記センサ特性計測部は、前記メイン電極、前記サブ電極及び前記ガード電極の全てに前記交流電圧信号が印加されるように前記切換部を切り換え、前記選択手段で当該メイン電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第1の電圧値として記憶し、また、前記選択手段で当該サブ電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第2の電圧値として記憶し、前記演算制御手段は、前記記憶された第1及び第2の電圧値を加算し、この加算値を乗員判定のための乗員判定データとすることを特徴とする。   According to a third aspect of the present invention, the sensor characteristic measuring unit switches the switching unit so that the AC voltage signal is applied to all of the main electrode, the sub electrode, and the guard electrode, and the selection unit The potential difference between both ends of the resistor connected to the main electrode is selected, and the operation control means stores the voltage value detected by the detection means as the first voltage value. The selection means selects a potential difference between both ends of the resistor connected to the sub-electrode, and the calculation control means stores the voltage value detected by the detection means as the second voltage value. The arithmetic control means adds the stored first and second voltage values and uses the added value as occupant determination data for occupant determination.

この構成によれば、センサ特性計測部によって前記メイン電極、前記サブ電極及び前記ガード電極の全てに前記交流電圧信号が印加されるようにした後、メイン電極及びサブ電極の個々の静電容量に応じた第1及び第2の電圧値を選択し、演算制御手段で第1及び第2の電圧値を加算して乗員判定データとするようにした。従って、メイン電極及びサブ電極への交流電圧信号印加の切り替えを行なわなくてもよいので、その分、手順を簡略化することができる。   According to this configuration, the AC voltage signal is applied to all of the main electrode, the sub electrode, and the guard electrode by the sensor characteristic measuring unit, and then the individual capacitances of the main electrode and the sub electrode are set. The corresponding first and second voltage values are selected, and the operation control means adds the first and second voltage values to obtain occupant determination data. Therefore, it is not necessary to switch the application of the AC voltage signal to the main electrode and the sub electrode, and the procedure can be simplified accordingly.

本発明の第1の実施形態に係る静電式乗員検知装置の調整システムの構成を示すブロック図である。It is a block diagram which shows the structure of the adjustment system of the electrostatic occupant detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る静電式乗員検知装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an electrostatic occupant detection device according to a first embodiment of the present invention. 検出物の等価回路図である。It is an equivalent circuit diagram of a detected object. 静電センサのメイン電極、サブ電極及びガード電極の信号の位相を示す図である。It is a figure which shows the phase of the signal of the main electrode of a electrostatic sensor, a sub electrode, and a guard electrode. 静電式乗員検知装置における静電センサの測定時の各信号波形を示す図である。It is a figure which shows each signal waveform at the time of the measurement of the electrostatic sensor in an electrostatic occupant detection apparatus. センサ特性計測部の切換部による静電センサのメイン電極、サブ電極及びガード電極の選択状態を示す図である。It is a figure which shows the selection state of the main electrode of the electrostatic sensor by the switching part of a sensor characteristic measurement part, a sub electrode, and a guard electrode. 静電式乗員検知装置の測定感度の演算及び感度補正値の演算の方法の説明図である。It is explanatory drawing of the method of the calculation of the measurement sensitivity of an electrostatic occupant detection apparatus, and the calculation of a sensitivity correction value. 静電式乗員検知装置に記憶された感度補正値を用いた測定負荷の演算の説明図である。It is explanatory drawing of calculation of the measurement load using the sensitivity correction value memorize | stored in the electrostatic occupant detection apparatus. 零点オフセット調整値を求める際の説明図である。It is explanatory drawing at the time of calculating | requiring a zero point offset adjustment value. 本発明の第2の実施形態に係る静電式乗員検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electrostatic occupant detection apparatus which concerns on the 2nd Embodiment of this invention. (a)静電センサの電極パターンの平面図、(b)メイン電極又はガード電極の電極パターンの平面図、(c)サブ電極の電極パターンの平面図、(d)(a)に示すA1−A2断面図である。(A) Plan view of electrode pattern of electrostatic sensor, (b) Plan view of electrode pattern of main electrode or guard electrode, (c) Plan view of electrode pattern of sub electrode, (d) A1- shown in (a) It is A2 sectional drawing. 第2の実施形態の静電式乗員検知装置において乗員等の判定を行う場合の第1の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the 1st operation | movement in the case of determining a passenger | crew etc. in the electrostatic occupant detection apparatus of 2nd Embodiment. 第2の実施形態の静電式乗員検知装置において乗員等の判定を行う場合の第2の動作を説明するためのフローチャートである。It is a flowchart for demonstrating 2nd operation | movement in the case of determining a passenger | crew etc. in the electrostatic occupant detection apparatus of 2nd Embodiment.

以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る静電式乗員検知装置の調整システムの構成を示すブロック図である。図1に示す静電式乗員検知装置の調整システム10は、乗員検知ECU(演算制御手段)11と、調整装置21とを備えて構成されている。乗員検知ECU11は、調整装置21が接続される切換部13、電流検出抵抗器RS及び正弦波(交流電圧信号)を調整装置21へ供給する信号源VSGを有して構成されたセンサ特性計測部14と、CPU15と、不揮発性メモリとしてのEPROM16とを備えて構成されている。
Embodiments of the present invention will be described below with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
(First embodiment)
FIG. 1 is a block diagram showing a configuration of an adjustment system for an electrostatic occupant detection device according to a first embodiment of the present invention. An adjustment system 10 for an electrostatic occupant detection device shown in FIG. 1 includes an occupant detection ECU (arithmetic control means) 11 and an adjustment device 21. The occupant detection ECU 11 includes a switching unit 13 to which the adjustment device 21 is connected, a current detection resistor RS, and a signal source VSG that supplies a sine wave (AC voltage signal) to the adjustment device 21. 14, a CPU 15, and an E 2 PROM 16 as a nonvolatile memory.

調整装置21は、図2に示す静電センサ31をセンサ特性計測部14に接続する前に静電センサ31の感度のバラツキを無くすために用いるものである。   The adjusting device 21 is used to eliminate variations in sensitivity of the electrostatic sensor 31 before connecting the electrostatic sensor 31 shown in FIG. 2 to the sensor characteristic measuring unit 14.

ここで、図2に示す静電式乗員検知装置30による乗員、被水(又は被液)の判別方法について説明しておく。図2に示す車両のシート33は、乗員が着席する座面部34と、乗員が背中をもたれる背もたれ部35とを備えている。そして、座面部34の底部には、車両ボディ36に導通する座部シートフレーム34aが備えられている。また、背もたれ部35には、車両ボディ36に導通する背部シートフレーム35aが備えられている。   Here, a method for discriminating the occupant and the water (or liquid) by the electrostatic occupant detection device 30 shown in FIG. 2 will be described. The vehicle seat 33 shown in FIG. 2 includes a seat surface portion 34 on which an occupant sits and a backrest portion 35 on which the occupant rests. A seat portion seat frame 34 a that is electrically connected to the vehicle body 36 is provided at the bottom of the seat surface portion 34. Further, the backrest portion 35 is provided with a back seat frame 35 a that is electrically connected to the vehicle body 36.

静電式乗員検知装置30は、静電センサ31と、乗員検知ECU11とを備えて構成されている。静電センサ31は、座面部34の内部において、座部シートフレーム34aに離隔して対向配置されている。また、静電センサ31は、座面部34の上部の図示せぬ表皮とクッションとの間に配置され、表皮側にメイン電極31aとサブ電極31cとを備え、クッション側にガード電極31bを備えている。   The electrostatic occupant detection device 30 includes an electrostatic sensor 31 and an occupant detection ECU 11. The electrostatic sensor 31 is disposed opposite to the seat portion seat frame 34 a inside the seat surface portion 34. The electrostatic sensor 31 is disposed between an upper skin (not shown) and the cushion on the upper portion of the seat portion 34, and includes a main electrode 31a and a sub electrode 31c on the skin side, and a guard electrode 31b on the cushion side. Yes.

サブ電極31cは、メイン電極31aと離隔し、メイン電極31aに隣り合うように配置されている。ガード電極31bは、メイン電極31aに離隔して対向配置され、且つ、メイン電極31aと座部シートフレーム34aとの間に配置されている。なお、静電センサ31とセンサ特性計測部14とは、ワイヤハーネス等のコネクタ配線部37で接続されている。   The sub electrode 31c is spaced apart from the main electrode 31a and is disposed adjacent to the main electrode 31a. The guard electrode 31b is disposed to face and separate from the main electrode 31a, and is disposed between the main electrode 31a and the seat portion seat frame 34a. The electrostatic sensor 31 and the sensor characteristic measurement unit 14 are connected by a connector wiring unit 37 such as a wire harness.

このような構成の静電式乗員検知装置30により検知される人体、被水等の検出物の等価回路は、図3に示すように、抵抗(実数項:コンダクタンス)RMXと容量(虚数項:サセプタンス)CMXの並列回路で示される。従って、静電容量を検出するというよりも、実際には図4に示すように、実数項Rと虚数項Cを持ったインピーダンスZを検出していることとなる。   As shown in FIG. 3, an equivalent circuit of a detection object such as a human body or water that is detected by the electrostatic occupant detection device 30 having such a configuration has a resistance (real number: conductance) RMX and a capacitance (imaginary number: Susceptance) CMX parallel circuit. Therefore, rather than detecting the capacitance, actually the impedance Z having the real term R and the imaginary term C is detected as shown in FIG.

この検出物に、信号源VSGから図5(a)にVSGで示す正弦波を印加すると、検出物のインピーダンスに応じて、電流検出抵抗器RSに電位差が発生する。ここで、検出物のインピーダンスに実数項のみが存在する場合、電流検出抵抗器RSに発生した電位差には、信号源VSGに対して位相進み成分が含まれず、信号源VSGと同位相の(b)に示す実数項サンプリングタイミングにより、電流検出抵抗器RSに発生した電位差を抽出すると、(d)に示すような実数項のみの大きさに応じた出力が得られる。   When a sine wave indicated by VSG in FIG. 5A is applied from the signal source VSG to the detected object, a potential difference is generated in the current detection resistor RS according to the impedance of the detected object. Here, when only the real term exists in the impedance of the detected object, the potential difference generated in the current detection resistor RS does not include a phase advance component with respect to the signal source VSG, and (b When the potential difference generated in the current detection resistor RS is extracted at the real term sampling timing shown in (), an output corresponding to the magnitude of only the real term as shown in (d) is obtained.

また、検出物のインピーダンスに虚数項のみが存在する場合は、電流検出抵抗器RSに発生した電位差に、信号源VSGに対して位相進み成分が含まれ、信号源VSGに対して、(c)に示す90°進んだ虚数項サンプリングタイミングにより、電流検出抵抗に発生した電位差を抽出すると、(e)に示すような虚数項のみの大きさに応じた出力が得られる。実際の検出物は、実数項と虚数項とから成る為、上記の様な位相を持ったインピーダンスとして計測され、このインピーダンスに応じて乗員等の判定を実施する。   When only the imaginary term exists in the impedance of the detected object, the potential difference generated in the current detection resistor RS includes a phase advance component with respect to the signal source VSG, and (c) with respect to the signal source VSG. When the potential difference generated in the current detection resistor is extracted at the imaginary term sampling timing advanced by 90 ° as shown in FIG. 5B, an output corresponding to the magnitude of only the imaginary term as shown in (e) is obtained. Since an actual detected object is composed of a real term and an imaginary term, it is measured as an impedance having the above-described phase, and a passenger or the like is determined according to this impedance.

このようにセンサ特性計測部14の切換部13を切換えて、静電センサ31から発生する電気力線により静電容量を測定する。つまり、上記における信号源VSGからの供給信号(正弦波)に応じて電流検出抵抗器RSに流れる電流を、電圧に変換して行われる。乗員の判別は、図6(a)に示すように切換部13がメイン電極31aとガード電極31bを選択する状態となった場合に、メイン電極31aと車両GND(グランド)間に発生する静電容量で判別され、図6(b)に示すサブ電極31cとガード電極31bを選択する状態となった場合に、サブ電極31cと車両GND(グランド)間に発生する静電容量で判別される。更に、図6(c)に示すように切換部13がメイン電極31a、ガード電極31b及びサブ電極31cを選択する状態となった場合に、メイン電極31aとサブ電極31c間に発生する静電容量でシート33への被水が判別される。   In this way, the switching unit 13 of the sensor characteristic measuring unit 14 is switched, and the capacitance is measured by the electric lines of force generated from the electrostatic sensor 31. That is, the current flowing through the current detection resistor RS according to the supply signal (sine wave) from the signal source VSG is converted into a voltage. As shown in FIG. 6 (a), the occupant is discriminated by the electrostatic force generated between the main electrode 31a and the vehicle GND (ground) when the switching unit 13 is in a state of selecting the main electrode 31a and the guard electrode 31b. When the sub-electrode 31c and the guard electrode 31b shown in FIG. 6B are selected, the capacitance is discriminated by the capacitance generated between the sub-electrode 31c and the vehicle GND (ground). Further, as shown in FIG. 6C, when the switching unit 13 is in a state of selecting the main electrode 31a, the guard electrode 31b, and the sub electrode 31c, the capacitance generated between the main electrode 31a and the sub electrode 31c. Thus, the wetness of the sheet 33 is determined.

このように検出物体のインピーダンスZを計測し、そのインピーダンスZから検出物体が無い(空席)か、CRSであるか、子供であるか、大人であるかを判定し、アブソーバ展開及び非展開であるかの判定結果をアブソーバECUに送信する。このアブソーバECUでは、その判定結果をもとに、車両が衝突した際の衝突判定結果とともに、助手席アブソーバの展開/非展開制御を行う。   In this way, the impedance Z of the detection object is measured, and from the impedance Z, it is determined whether there is no detection object (vacant seat), CRS, child, or adult, and the absorber is expanded or not expanded. Is sent to the absorber ECU. The absorber ECU performs the deployment / non-deployment control of the passenger seat absorber together with the collision determination result when the vehicle collides based on the determination result.

次に、このように静電センサ31での測定が行われる前に、図1に示すように、調整装置21をセンサ特性計測部14に接続して感度を得る方法について説明する。調整装置21は、抵抗器RとコンデンサCの並列回路により計測値が定められた負荷回路ScL,ScH,Sc3,Sc4が、オン/オフのスイッチSL,SH,S3,S4を介して切換部13に接続されて構成されている。   Next, a method for obtaining sensitivity by connecting the adjusting device 21 to the sensor characteristic measuring unit 14 as shown in FIG. 1 before the measurement by the electrostatic sensor 31 is performed will be described. In the adjusting device 21, the load circuit ScL, ScH, Sc3, Sc4, whose measured values are determined by a parallel circuit of a resistor R and a capacitor C, is switched via an on / off switch SL, SH, S3, S4. Connected to and configured.

この調整装置21をセンサ特性計測部14の切換部13に接続する。センサ特性計測部14を乗員判定動作で通常動作させ、第1に負荷回路ScL,Sc3,Sc4をオンさせて、この際の計測値を読み込む。つまり、図7に示すように、負荷回路ScL,Sc3,Sc4のオン時の第1の調整負荷C1(又はR1)[pF(Ohm)]に応じた第1のECU測定値V1[V]を読み込む。第2に負荷回路ScH、Sc3、Sc4をオンさせて、この際の測定値を読み込む。つまり、負荷回路ScH,Sc3,Sc4のオン時の第2の調整負荷C2(又はR2)[pF(Ohm)]に応じた第2のECU測定値V2[V]を読み込む。   This adjusting device 21 is connected to the switching unit 13 of the sensor characteristic measuring unit 14. The sensor characteristic measurement unit 14 is normally operated by the occupant determination operation, and first, the load circuits ScL, Sc3, and Sc4 are turned on, and the measured values at this time are read. That is, as shown in FIG. 7, the first ECU measurement value V1 [V] corresponding to the first adjustment load C1 (or R1) [pF (Ohm)] when the load circuits ScL, Sc3, and Sc4 are on is obtained. Read. Second, the load circuits ScH, Sc3, and Sc4 are turned on, and the measured values at this time are read. That is, the second ECU measurement value V2 [V] corresponding to the second adjustment load C2 (or R2) [pF (Ohm)] when the load circuits ScH, Sc3, and Sc4 are on is read.

次に、CPU15で、それら読み込まれた第1及び第2のECU測定値V1,V2を、次式(1)に当てはめて測定感度sを演算する。   Next, the CPU 15 calculates the measurement sensitivity s by applying the read first and second ECU measurement values V1 and V2 to the following equation (1).

(C2−C1)/(V2−V1)=s[pF/V] …(1)
次に、測定感度sと理想感度iとから感度補正値kを次式(2)に当てはめて演算する。
(C2-C1) / (V2-V1) = s [pF / V] (1)
Next, the sensitivity correction value k is calculated from the measurement sensitivity s and the ideal sensitivity i by applying the following equation (2).

i/s=k …(2)
この得られた感度補正値kを、EPROM16に記憶する。
i / s = k (2)
The obtained sensitivity correction value k is stored in the E 2 PROM 16.

この記憶された感度補正値kを用いる場合は、静電センサ31がセンサ特性計測部14に接続された状態において、図8に示すように、ECU測定値Vmeasを計測し、次式(3)に示すように演算を行って測定負荷Cmeasを求める。   When the stored sensitivity correction value k is used, the ECU measurement value Vmeas is measured as shown in FIG. 8 in a state where the electrostatic sensor 31 is connected to the sensor characteristic measurement unit 14, and the following equation (3) The measurement load Cmeas is obtained by performing calculation as shown in FIG.

Cmeas=Vmeas×i×k …(3)
なお、負荷回路ScL及びScHは、感度の傾きを調整するに当たって、インピーダンス検出ダイナミックレンジの上限と下限に出来る限り近い値に設定されるようになっている。また、調整装置21においては、調整装置21側の配線等への浮遊容量負荷によって、精度低下が考えられる。この対策として調整装置21の負荷を調整プロセス毎に毎回測定し、その測定値をもって感度を算出すれば、更に精度の向上を図ることが可能となる。
Cmeas = Vmeas × i × k (3)
Note that the load circuits ScL and ScH are set to values as close as possible to the upper and lower limits of the impedance detection dynamic range when adjusting the slope of sensitivity. Further, in the adjusting device 21, the accuracy can be lowered due to the stray capacitance load on the wiring or the like on the adjusting device 21 side. As a countermeasure, if the load of the adjustment device 21 is measured every adjustment process and the sensitivity is calculated from the measured value, the accuracy can be further improved.

次に、静電センサ31に何も載置されていない状態でセンサ特性計測部14を乗員判定動作で通常動作させ、図9に示すように、零点出力を零点オフセット調整値Emptyとして測定値を読み込む。この測定値を零点オフセット調整値Emptyとして、EPROM16に記憶する。この記憶された零点オフセット調整値Emptyは、上述した測定負荷Cmeasを求める際に用いて零点の調整を行う。 Next, the sensor characteristic measurement unit 14 is normally operated by the occupant determination operation in a state where nothing is placed on the electrostatic sensor 31, and as shown in FIG. 9, the measured value is obtained with the zero point output as the zero point offset adjustment value Empty. Read. This measured value is stored in the E 2 PROM 16 as the zero point offset adjustment value Empty. The stored zero offset adjustment value Empty is used when the above-described measurement load Cmeas is obtained to adjust the zero.

このように第1の実施形態によれば、まず、静電式乗員検知装置30は、車両のシート33の座面部34に互いに離隔状態に配置されたメイン電極31a及びサブ電極31cと、これらメイン電極31a及びサブ電極31cと車両接地に導通する座部シートフレーム34aとの間に当該メイン電極31a及びサブ電極31cに隔離して対向配置されたガード電極31bとを有する静電センサ31と、この静電センサ31に交流電圧信号を印加する信号源VSG並びにその印加による静電センサ31のインピーダンスに応じた電位差を発生する電流検出抵抗器RSを有するセンサ特性計測部14とを備える。   As described above, according to the first embodiment, first, the electrostatic occupant detection device 30 includes the main electrode 31a and the sub electrode 31c that are arranged on the seat surface portion 34 of the seat 33 of the vehicle so as to be separated from each other. An electrostatic sensor 31 having a guard electrode 31b disposed opposite to and separated from the main electrode 31a and the sub electrode 31c between the electrode 31a and the sub electrode 31c and a seat seat frame 34a that is electrically connected to the vehicle ground; The sensor characteristic measuring unit 14 includes a signal source VSG that applies an AC voltage signal to the electrostatic sensor 31 and a current detection resistor RS that generates a potential difference corresponding to the impedance of the electrostatic sensor 31 due to the application.

このような構成において、静電センサ31に代え、電流検出抵抗器RSとコンデンサの並列回路により各々異なる計測値が定められた複数の負荷回路ScL,ScH,Sc3,Sc4を、スイッチSL,SH,S3,S4を介してセンサ特性計測部14に接続する。次に、スイッチSL,S3,S4にて複数の負荷回路のうち所定の負荷回路群ScL,Sc3,Sc4がセンサ特性計測部14に接続される状態とし、この際にセンサ特性計測部14の信号源VSGから交流電圧信号を負荷回路群ScL,Sc3,Sc4に印加して電流検出抵抗器RSに発生する電位差である第1の計測値V1をCPU15に読み込む。   In such a configuration, instead of the electrostatic sensor 31, a plurality of load circuits ScL, ScH, Sc3, Sc4, each of which has a different measurement value determined by a parallel circuit of a current detection resistor RS and a capacitor, are connected to the switches SL, SH, The sensor characteristic measuring unit 14 is connected via S3 and S4. Next, a predetermined load circuit group ScL, Sc3, Sc4 among the plurality of load circuits is connected to the sensor characteristic measuring unit 14 by the switches SL, S3, S4. An AC voltage signal is applied from the source VSG to the load circuit groups ScL, Sc3, and Sc4, and a first measured value V1 that is a potential difference generated in the current detection resistor RS is read into the CPU 15.

次に、上記の負荷回路群よりも高負荷となるようにスイッチにて負荷回路群ScH,Sc3,Sc4がセンサ特性計測部14に接続される状態とし、この際に当該センサ特性計測部14の信号源VSGから交流電圧信号を当該負荷回路群ScH,Sc3,Sc4に印加して電流検出抵抗器RSに発生する電位差である第2の計測値V2をCPU15に読み込む。   Next, the load circuit groups ScH, Sc3, and Sc4 are connected to the sensor characteristic measurement unit 14 with a switch so that the load is higher than that of the load circuit group. At this time, the sensor characteristic measurement unit 14 An AC voltage signal is applied from the signal source VSG to the load circuit groups ScH, Sc3, and Sc4, and a second measured value V2 that is a potential difference generated in the current detection resistor RS is read into the CPU 15.

次に、CPU15にて第1及び第2の計測値V1,V2を用いて測定感度の演算を行い、この測定感度と理想感度とから感度補正値を求め、この感度補正値をEPROM16に記憶するようにした。 Next, the CPU 15 calculates the measurement sensitivity using the first and second measurement values V1 and V2, obtains a sensitivity correction value from the measurement sensitivity and the ideal sensitivity, and stores the sensitivity correction value in the E 2 PROM 16. I remembered it.

これによって、車両毎に静電センサ31の感度補正値を記憶することができるので、車両毎の静電センサ31の感度のバラツキを無くすことができる。従って、車両毎の乗員等の判別精度のバラツキを無くすことができる。   As a result, the sensitivity correction value of the electrostatic sensor 31 can be stored for each vehicle, so that variations in sensitivity of the electrostatic sensor 31 for each vehicle can be eliminated. Therefore, it is possible to eliminate variations in the discrimination accuracy of passengers or the like for each vehicle.

また、センサ特性計測部14に静電センサ31が接続されている状態において、静電センサ31に何も載置されていない状態とし、この際にセンサ特性計測部14の信号源VSGから交流電圧信号を印加して電流検出抵抗器RSに発生する電位差を零点オフセット調整値としてEPROM16に記憶するようにした。 Further, in a state where the electrostatic sensor 31 is connected to the sensor characteristic measuring unit 14, nothing is placed on the electrostatic sensor 31. At this time, an AC voltage is applied from the signal source VSG of the sensor characteristic measuring unit 14. A potential difference generated in the current detection resistor RS by applying a signal is stored in the E 2 PROM 16 as a zero offset adjustment value.

これによって、不揮発性メモリに零点オフセット調整値を記憶することができるので、センサ特性計測部14での測定毎にその零点オフセット調整値で零点を補正することができる。   As a result, the zero point offset adjustment value can be stored in the non-volatile memory, so that the zero point can be corrected with the zero point offset adjustment value for each measurement by the sensor characteristic measurement unit 14.

また、センサ特性計測部14に静電センサ31が接続されている状態において、センサ特性計測部14の信号源VSGから交流電圧信号を静電センサ31に印加して電流検出抵抗器RSに電位差が発生した際に、CPU15は、その発生した電位差に、理想感度及びEPROM16に記憶された感度補正値を乗算して負荷を演算するようにした。 Further, in a state where the electrostatic sensor 31 is connected to the sensor characteristic measuring unit 14, an AC voltage signal is applied to the electrostatic sensor 31 from the signal source VSG of the sensor characteristic measuring unit 14 to cause a potential difference in the current detection resistor RS. When generated, the CPU 15 calculates the load by multiplying the generated potential difference by the ideal sensitivity and the sensitivity correction value stored in the E 2 PROM 16.

これによって、センサ特性計測部14の信号源VSGから静電センサ31への交流電圧信号の印加時に電流検出抵抗器RSに電位差が発生した際に、この電位差に理想感度及び予め記憶された感度補正値を乗算して適正な負荷を求めることができる。従って、車両毎の静電センサ31の感度のバラツキを無くすことができ、これによって、車両毎の乗員等の判別精度のバラツキを無くすことができる。   As a result, when a potential difference is generated in the current detection resistor RS when an AC voltage signal is applied from the signal source VSG of the sensor characteristic measuring unit 14 to the electrostatic sensor 31, an ideal sensitivity and a sensitivity correction stored in advance are stored in the potential difference. The appropriate load can be obtained by multiplying the values. Therefore, it is possible to eliminate variations in sensitivity of the electrostatic sensor 31 for each vehicle, and thereby it is possible to eliminate variations in the discrimination accuracy of passengers and the like for each vehicle.

以上から、車両に搭載した通常の製品動作における、乗員判定のインピーダンス測定値に対して、前述の感度と零点から補正をかけることで、センサ特性計測部14の初期バラツキをキャンセルし、初期バラツキのキャンセルの為に必要な素子をセンサ特性計測部14に増やす事無く、精度の高いインピーダンス計測が可能となる。
(第2の実施形態)
図10は、本発明の第2の実施形態に係る静電式乗員検知装置の構成を示すブロック図である。図10に示す静電センサ31は、電極パターンが例えば図11(a)に示す平面図の様になっており、A1−A2断面が(d)に示す構造となっている。また、(b)の平面図がメイン電極31a又はガード電極31bの電極パターン、(c)に示す平面図がサブ電極31cの電極パターンである。
From the above, the initial variation of the sensor characteristic measurement unit 14 is canceled by correcting the impedance measurement value of the occupant determination in the normal product operation mounted on the vehicle from the sensitivity and the zero point, and the initial variation Impedance measurement can be performed with high accuracy without increasing the number of elements necessary for cancellation to the sensor characteristic measurement unit 14.
(Second Embodiment)
FIG. 10 is a block diagram illustrating a configuration of an electrostatic occupant detection device according to the second embodiment of the present invention. The electrostatic sensor 31 shown in FIG. 10 has an electrode pattern as shown in, for example, a plan view shown in FIG. 11A, and a cross section A1-A2 shown in FIG. Further, the plan view of (b) is the electrode pattern of the main electrode 31a or the guard electrode 31b, and the plan view of (c) is the electrode pattern of the sub electrode 31c.

本来、静電センサ31で乗員の静電容量を検出する場合、メイン電極31aの平面上の面積が広い程、信号対雑音比であるS/Nが向上し、乗員判定に有利となる。しかし、実際には車両シート搭載上の面積の制限や、被水判定のためのサブ電極31c設置のためにメイン電極31aの面積が狭くなる。   Originally, when detecting the electrostatic capacity of an occupant with the electrostatic sensor 31, the S / N, which is the signal-to-noise ratio, increases as the area of the main electrode 31a on the plane increases, which is advantageous for occupant determination. However, in actuality, the area of the main electrode 31a becomes narrow due to the limitation of the area for mounting the vehicle seat and the installation of the sub electrode 31c for determining the water exposure.

そこで第2の実施形態では、図10に示す静電式乗員検知装置40の乗員検知ECU11−1によって、メイン電極31aで検出される乗員の静電容量の測定値と、サブ電極31cで検出される乗員の静電容量の測定値とを加算し、この加算値を乗員の静電容量の測定値とするようにした。これによって、等価的に乗員検知のための静電センサ31の面積が大きくなるようにした。   Therefore, in the second embodiment, the occupant detection ECU 11-1 of the electrostatic occupant detection device 40 shown in FIG. 10 detects the measured value of the occupant capacitance detected by the main electrode 31a and the sub electrode 31c. The measured value of the occupant's capacitance was added and this added value was used as the measured value of the occupant's capacitance. As a result, the area of the electrostatic sensor 31 for passenger detection is equivalently increased.

乗員検知ECU11−1は、センサ特性計測部14−1、CPU15及びEPROM16を備え、センサ特性計測部14−1が、メイン電極接続スイッチ13a、ガード電極接続スイッチ13b及びサブ電極接続スイッチ13cを有する切換部13と、これらスイッチ13a〜13cに接続された電流検出抵抗器RSa,RSb,RScと、これら電流検出抵抗器RSa〜RScに接続されたドライバとしてのオペアンプ42a,42b,42cと、これらオペアンプ42a〜42cの非反転入力端子に接続された信号源VSGと、各電流検出抵抗器RSa〜RScの各々の両端に接続され、何れかの両端を選択するマルチプレクサ43と、マルチプレクサ43で選択された電流検出抵抗器(RSa〜RScの何れか)に流れる電流を検出する電流検出部44と、電流検出部44で検出された電流値を電圧値に変換する電圧変換部45とを備えて構成されている。 The occupant detection ECU 11-1 includes a sensor characteristic measurement unit 14-1, a CPU 15, and an E 2 PROM 16, and the sensor characteristic measurement unit 14-1 includes a main electrode connection switch 13a, a guard electrode connection switch 13b, and a sub electrode connection switch 13c. A switching unit 13 having current switches, current detection resistors RSa, RSb, RSc connected to the switches 13a-13c, operational amplifiers 42a, 42b, 42c as drivers connected to the current detection resistors RSa-RSc, and The signal source VSG connected to the non-inverting input terminals of the operational amplifiers 42a to 42c, the both ends of each of the current detection resistors RSa to RSc, a multiplexer 43 that selects one of the both ends, and the multiplexer 43 selects The current flowing through the current detection resistor (any one of RSa to RSc) is detected. A current detection unit 44 which is configured by a voltage converter 45 for converting the current value detected by the current detector 44 into a voltage value.

この構成では、メイン電極接続スイッチ13a、ガード電極接続スイッチ13b及びサブ電極接続スイッチ13cを任意にオンとして信号源VSGから正弦波を、各オペアンプ42a〜42c及び各電流検出抵抗器RSa〜RScを介して静電センサ31に印加すると、静電センサ31に載置された乗員のインピーダンスに応じて、各電流検出抵抗器RSa〜RScに電位差が発生する。これらの電位差をマルチプレクサ43で順次選択して電流検出部44へ出力し、これにより電流検出部44で検出される電流値を電圧変換部45で電圧値に変換する。これによってメイン電極31a並びにサブ電極31cで検出される静電容量が電圧値として測定されるようになっている。更に、このメイン電極31aの静電容量の測定値とサブ電極31cの静電容量の測定値とをCPU15で加算し、この加算値を乗員判定データとするようになっている。但し、サブ電極接続スイッチ13cは、サブ電極31cを電流検出抵抗器RScに接続/切断するオン/オフの動作と、サブ電極31cを車両GNDに接続する動作とを行うようになっている。   In this configuration, the main electrode connection switch 13a, the guard electrode connection switch 13b, and the sub electrode connection switch 13c are arbitrarily turned on to generate a sine wave from the signal source VSG via the operational amplifiers 42a to 42c and the current detection resistors RSa to RSc. When applied to the electrostatic sensor 31, a potential difference is generated in each of the current detection resistors RSa to RSc according to the impedance of the occupant placed on the electrostatic sensor 31. These potential differences are sequentially selected by the multiplexer 43 and output to the current detector 44, whereby the current value detected by the current detector 44 is converted into a voltage value by the voltage converter 45. Thereby, the electrostatic capacitance detected by the main electrode 31a and the sub electrode 31c is measured as a voltage value. Further, the measured value of the capacitance of the main electrode 31a and the measured value of the capacitance of the sub electrode 31c are added by the CPU 15, and this added value is used as occupant determination data. However, the sub electrode connection switch 13c performs an on / off operation for connecting / disconnecting the sub electrode 31c to / from the current detection resistor RSc and an operation for connecting the sub electrode 31c to the vehicle GND.

次に、このような構成の静電式乗員検知装置40によって、乗員等の判定を行う場合の第1の動作を図12に示すフローチャートを参照して説明する。但し、静電センサ31の上に乗員が座っているものとする。   Next, a first operation in the case where a determination of an occupant or the like is performed by the electrostatic occupant detection device 40 having such a configuration will be described with reference to a flowchart shown in FIG. However, it is assumed that an occupant is sitting on the electrostatic sensor 31.

まず、ステップS1において、メイン電極接続スイッチ13aをオンとし、ステップS2において、ガード電極接続スイッチ13bをオンとする。この状態で、ステップS3及びS4において、信号源VSGから正弦波をメイン電極31a及びガード電極31bへ印加すると、メイン電極31aと車両GND間に発生する静電容量で乗員が判別される状態となる。   First, in step S1, the main electrode connection switch 13a is turned on, and in step S2, the guard electrode connection switch 13b is turned on. In this state, when a sine wave is applied from the signal source VSG to the main electrode 31a and the guard electrode 31b in steps S3 and S4, the occupant is determined by the capacitance generated between the main electrode 31a and the vehicle GND. .

ステップS5において、マルチプレクサ43をメイン電極31aに接続された電流検出抵抗器RSaの両端電位差を検出する状態に切り換える。これによって、メイン電極31aで検出された乗員の静電容量に対応する電流値が電流検出部44で検出され、この電流値が電圧変換部45で電圧値に変換される。この電圧値は、ステップS6において、CPU15でメイン電極31aの静電容量の測定値M1とされて記憶される。   In step S5, the multiplexer 43 is switched to a state in which the potential difference between both ends of the current detection resistor RSa connected to the main electrode 31a is detected. As a result, a current value corresponding to the passenger's capacitance detected by the main electrode 31 a is detected by the current detection unit 44, and this current value is converted into a voltage value by the voltage conversion unit 45. In step S6, this voltage value is stored as a measured value M1 of the capacitance of the main electrode 31a by the CPU 15.

次に、ステップS7において、メイン電極接続スイッチ13aをオフとし、ステップS8において、サブ電極接続スイッチ13cをオンとする。この際、上記ステップS3で信号源VSGから正弦波が出力状態とされているので、サブ電極31cと車両GND間に発生する静電容量で乗員が判別される状態となる。   Next, in step S7, the main electrode connection switch 13a is turned off, and in step S8, the sub electrode connection switch 13c is turned on. At this time, since the sine wave is output from the signal source VSG in step S3, the occupant is determined by the capacitance generated between the sub electrode 31c and the vehicle GND.

ステップS9において、マルチプレクサ43をサブ電極31cに接続された電流検出抵抗器RScの両端電位差を検出する状態に切り換える。これによって、サブ電極31cで検出された乗員の静電容量に対応する電流値が電流検出部44で検出され、この電流値が電圧変換部45で電圧値に変換される。この電圧値は、ステップS10において、CP15でサブ電極31cの静電容量の測定値S1とされて記憶される。   In step S9, the multiplexer 43 is switched to a state in which the potential difference between both ends of the current detection resistor RSc connected to the sub electrode 31c is detected. As a result, a current value corresponding to the passenger's capacitance detected by the sub-electrode 31 c is detected by the current detection unit 44, and this current value is converted into a voltage value by the voltage conversion unit 45. In step S10, this voltage value is stored as a measured value S1 of the capacitance of the sub-electrode 31c at CP15.

そして、ステップS11において、CPU15でメイン電極31aの静電容量の測定値M1とサブ電極31cの静電容量の測定値S1とが加算され、この加算値が乗員判定データとされる。この乗員判定データによって乗員の判別が行なわれる。   In step S11, the CPU 15 adds the measured value M1 of the capacitance of the main electrode 31a and the measured value S1 of the capacitance of the sub electrode 31c, and uses this added value as occupant determination data. An occupant is determined based on the occupant determination data.

次に、ステップS12において、メイン電極接続スイッチ13aをオンとし、ステップS13において、サブ電極接続スイッチ13cでサブ電極31cを車両GNDに接続する。これによって、メイン電極31aとサブ電極31c間に発生する静電容量で車両シートへの被水が判別される状態となる。   Next, in step S12, the main electrode connection switch 13a is turned on, and in step S13, the sub electrode 31c is connected to the vehicle GND by the sub electrode connection switch 13c. Thus, the vehicle seat is discriminated by the capacitance generated between the main electrode 31a and the sub electrode 31c.

ステップS14において、マルチプレクサ43をメイン電極31aに接続された電流検出抵抗器RSaの両端電位差を検出する状態に切り換える。これによって、ステップS15において、メイン電極31aで検出された乗員の静電容量に対応する電流値が電流検出部44で検出され、この電流値が電圧変換部45で電圧値に変換される。この電圧値がCPU15においてメイン電極31aの静電容量の測定値と認識され、この測定値で被水(被液)判定が行なわれる。この後、ステップS16においてメイン電極接続スイッチ13aをオフ、ステップS17においてガード電極接続スイッチ13bをオフ、ステップS18においてサブ電極接続スイッチ13cをオフとする。これで乗員等の判定が終了する。   In step S14, the multiplexer 43 is switched to a state in which the potential difference between both ends of the current detection resistor RSa connected to the main electrode 31a is detected. As a result, in step S15, a current value corresponding to the occupant capacitance detected by the main electrode 31a is detected by the current detection unit 44, and this current value is converted into a voltage value by the voltage conversion unit 45. This voltage value is recognized by the CPU 15 as a measured value of the capacitance of the main electrode 31a, and water measurement (liquid application) is determined based on this measurement value. Thereafter, the main electrode connection switch 13a is turned off in step S16, the guard electrode connection switch 13b is turned off in step S17, and the sub electrode connection switch 13c is turned off in step S18. This completes the determination of an occupant or the like.

次に、乗員等の判定を行う場合の第1の動作と異なる第2の動作を図13に示すフローチャートを参照して説明する。   Next, a second operation different from the first operation in the case of determining the passenger or the like will be described with reference to the flowchart shown in FIG.

まず、ステップS21において、メイン電極接続スイッチ13aをオンとし、ステップS22において、ガード電極接続スイッチ13bをオンとし、ステップS23において、サブ電極接続スイッチ13cをオンとする。この状態で、ステップS24〜S26において、信号源VSGから正弦波をメイン電極31a、ガード電極31b及びガード電極31bへ印加する。   First, in step S21, the main electrode connection switch 13a is turned on. In step S22, the guard electrode connection switch 13b is turned on. In step S23, the sub electrode connection switch 13c is turned on. In this state, in steps S24 to S26, a sine wave is applied from the signal source VSG to the main electrode 31a, the guard electrode 31b, and the guard electrode 31b.

ステップS27において、マルチプレクサ43をメイン電極31aに接続された電流検出抵抗器RSaの両端電位差を検出する状態に切り換える。これによって、メイン電極31aで検出された乗員の静電容量に対応する電流値が電流検出部44で検出され、この電流値が電圧変換部45で電圧値に変換される。この電圧値は、ステップS28において、CPU15でメイン電極31aの静電容量の測定値M1とされて記憶される。   In step S27, the multiplexer 43 is switched to a state in which the potential difference between both ends of the current detection resistor RSa connected to the main electrode 31a is detected. As a result, a current value corresponding to the passenger's capacitance detected by the main electrode 31 a is detected by the current detection unit 44, and this current value is converted into a voltage value by the voltage conversion unit 45. In step S28, this voltage value is stored as the measured value M1 of the capacitance of the main electrode 31a by the CPU 15.

次に、ステップS29において、マルチプレクサ43をサブ電極31cに接続された電流検出抵抗器RScの両端電位差を検出する状態に切り換える。これによって、サブ電極31cで検出された乗員の静電容量に対応する電流値が電流検出部44で検出され、この電流値が電圧変換部45で電圧値に変換される。この電圧値は、ステップS30において、CPU15でサブ電極31cの静電容量の測定値S1とされて記憶される。   Next, in step S29, the multiplexer 43 is switched to a state in which the potential difference between both ends of the current detection resistor RSc connected to the sub electrode 31c is detected. As a result, a current value corresponding to the passenger's capacitance detected by the sub-electrode 31 c is detected by the current detection unit 44, and this current value is converted into a voltage value by the voltage conversion unit 45. In step S30, this voltage value is stored as the measured value S1 of the capacitance of the sub electrode 31c by the CPU 15.

そして、ステップS31において、CPU15でメイン電極31aの静電容量の測定値M1とサブ電極31cの静電容量の測定値S1とが加算され、この加算値が乗員判定データとされる。この乗員判定データによって乗員の判別が行なわれる。   In step S31, the CPU 15 adds the capacitance measurement value M1 of the main electrode 31a and the capacitance measurement value S1 of the sub electrode 31c, and this added value is used as occupant determination data. An occupant is determined based on the occupant determination data.

次に、ステップS32において、サブ電極接続スイッチ13cでサブ電極31cを車両GNDに接続する。これによって、メイン電極31aとサブ電極31c間に発生する静電容量で車両シートへの被水が判別される状態となる。   Next, in step S32, the sub electrode 31c is connected to the vehicle GND by the sub electrode connection switch 13c. Thus, the vehicle seat is discriminated by the capacitance generated between the main electrode 31a and the sub electrode 31c.

ステップS33において、マルチプレクサ43をメイン電極31aに接続された電流検出抵抗器RSaの両端電位差を検出する状態に切り換える。これによって、ステップS34において、メイン電極31aで検出された乗員の静電容量に対応する電流値が電流検出部44で検出され、この電流値が電圧変換部45で電圧値に変換される。この電圧値がCPU15においてメイン電極31aの静電容量の測定値と認識され、この測定値で被水(被液)判定が行なわれる。この後、ステップS35においてメイン電極接続スイッチ13aをオフ、ステップS36においてガード電極接続スイッチ13bをオフ、ステップS37においてサブ電極接続スイッチ13cをオフとする。これで乗員等の判定が終了する。   In step S33, the multiplexer 43 is switched to a state in which the potential difference between both ends of the current detection resistor RSa connected to the main electrode 31a is detected. As a result, in step S34, a current value corresponding to the passenger's capacitance detected by the main electrode 31a is detected by the current detection unit 44, and this current value is converted into a voltage value by the voltage conversion unit 45. This voltage value is recognized by the CPU 15 as a measured value of the capacitance of the main electrode 31a, and water measurement (liquid application) is determined based on this measurement value. Thereafter, the main electrode connection switch 13a is turned off in step S35, the guard electrode connection switch 13b is turned off in step S36, and the sub electrode connection switch 13c is turned off in step S37. This completes the determination of an occupant or the like.

このように第2の実施形態の静電式乗員検知装置40は、車両のシート33の座面部34に互いに離隔状態に配置されたメイン電極31a及びサブ電極31cと、これらメイン電極31a及びサブ電極31cと車両接地に導通する座部シートフレーム34aとの間に当該メイン電極31a及びサブ電極31cに隔離して対向配置されたガード電極31bとを有する静電センサ31と、センサ特性計測部14−1と、演算制御手段としてのCPU15とを備えている。   As described above, the electrostatic occupant detection device 40 according to the second embodiment includes the main electrode 31a and the sub electrode 31c that are spaced apart from each other on the seat surface portion 34 of the vehicle seat 33, and the main electrode 31a and the sub electrode. An electrostatic sensor 31 having a guard electrode 31b disposed so as to be opposed to the main electrode 31a and the sub electrode 31c between the seat portion seat frame 34a that is electrically connected to the vehicle ground, and a sensor characteristic measuring unit 14- 1 and a CPU 15 as a calculation control means.

センサ特性計測部14−1は、静電センサ31に交流電圧信号を印加する信号源VSGと、この信号源VSGの正弦波がメイン電極31a、サブ電極31c及びガード電極31bに選択的又は全てに印加されるように切り換える切換部13と、メイン電極31a、サブ電極31c及びガード電極31bの個々と信号源VSGとの間に切換部13を介して接続された複数の電流検出抵抗器RSa〜RScと、これら電流検出抵抗器RSa〜RScを介したメイン電極31a、サブ電極31c及びガード電極31bへの正弦波の印加時に各電流検出抵抗器RSa〜RScの両端に発生する電位差を選択する選択手段としてのマルチプレクサ43と、このマルチプレクサ43で選択された電位差による電圧値を検出する検出手段としての電流検出部44及び電圧変換部45とを有して構成した。   The sensor characteristic measurement unit 14-1 selectively or entirely applies a signal source VSG for applying an AC voltage signal to the electrostatic sensor 31 and a sine wave of the signal source VSG to the main electrode 31a, the sub electrode 31c, and the guard electrode 31b. A plurality of current detection resistors RSa to RSc connected via the switching unit 13 between the switching unit 13 that switches to be applied and each of the main electrode 31a, the sub electrode 31c, and the guard electrode 31b and the signal source VSG. And means for selecting a potential difference generated at both ends of each of the current detection resistors RSa to RSc when a sine wave is applied to the main electrode 31a, the sub electrode 31c, and the guard electrode 31b via the current detection resistors RSa to RSc. And a current detection unit as detection means for detecting a voltage value due to a potential difference selected by the multiplexer 43 It was configured with 4 and a voltage converter 45.

CPU15が、電圧変換部45で得られる電圧値のうちメイン電極31a及びサブ電極31cに接続された各電流検出抵抗器RSa,RScの両端の電位差から得た各電圧値を加算し、この加算値を乗員判定のための乗員判定データとするようにした。従って、乗員判定データは、メイン電極31aとサブ電極31cの双方を合わせた面積の電極で乗員の静電容量を検出した値と等価となるので、S/Nが向上し、乗員判定を有利とすることができる。更に説明すると、静電センサ31の乗員の静電容量を検出する電極の面積を等価的に広くしたので、広い面積の電極で乗員の静電容量が検出されていることと同等の効果がある。   The CPU 15 adds each voltage value obtained from the potential difference between both ends of each of the current detection resistors RSa and RSc connected to the main electrode 31a and the sub electrode 31c among the voltage values obtained by the voltage conversion unit 45, and this added value Is used as occupant determination data for occupant determination. Therefore, the occupant determination data is equivalent to a value obtained by detecting the occupant's capacitance with an electrode having a combined area of both the main electrode 31a and the sub electrode 31c, so that the S / N is improved and the occupant determination is advantageous. can do. More specifically, since the area of the electrode for detecting the capacitance of the occupant of the electrostatic sensor 31 is equivalently widened, there is an effect equivalent to that the capacitance of the occupant is detected by a large area electrode. .

また、センサ特性計測部14−1によってメイン電極31aの静電容量に応じた第1の電圧値M1を選択してCPU15に記憶し、次に、サブ電極31cの静電容量に応じた第2の電圧値S1を選択してCPU15に記憶する。そして、CPU15で第1及び第2の電圧値M1,S1を加算して乗員判定データとするようにした。従って、メイン電極31aとサブ電極31cの双方を合わせた広い面積の電極で乗員の静電容量を検出した値と等価な乗員判定データを得ることができるので、S/Nが向上し、乗員判定を有利とすることができる。   Further, the sensor characteristic measuring unit 14-1 selects the first voltage value M1 corresponding to the capacitance of the main electrode 31a and stores it in the CPU 15, and then the second voltage corresponding to the capacitance of the sub electrode 31c. Is selected and stored in the CPU 15. Then, the CPU 15 adds the first and second voltage values M1 and S1 to obtain occupant determination data. Accordingly, occupant determination data equivalent to a value obtained by detecting the occupant's capacitance can be obtained with a large area electrode including both the main electrode 31a and the sub electrode 31c, so that the S / N is improved and the occupant determination is improved. Can be advantageous.

更に、センサ特性計測部14−1によってメイン電極31a、サブ電極31c及びガード電極の全てに正弦波が印加されるようにした後、メイン電極31a及びサブ電極31cの個々の静電容量に応じた第1及び第2の電圧値M1,S1を選択し、CPU15で第1及び第2の電圧値M1,S1を加算して乗員判定データとするようにした。従って、メイン電極31a及びサブ電極31cへの交流電圧信号印加の切り替えを行なわなくてもよいので、その分、手順を簡略化することができる。   Furthermore, after the sensor characteristic measurement unit 14-1 applies a sine wave to all of the main electrode 31a, the sub electrode 31c, and the guard electrode, the sensor characteristic measurement unit 14-1 responds to the individual capacitances of the main electrode 31a and the sub electrode 31c. The first and second voltage values M1 and S1 are selected, and the CPU 15 adds the first and second voltage values M1 and S1 to obtain passenger determination data. Therefore, it is not necessary to switch the application of the AC voltage signal to the main electrode 31a and the sub electrode 31c, and the procedure can be simplified accordingly.

10 静電式乗員検知装置の調整システム
11,11−1 乗員検知ECU
12 調整装置
13 切換部
14 センサ特性計測部
15 CPU
16 EPROM
21 調整装置
30 静電式乗員検知装置
31 静電センサ
31a メイン電極
31b ガード電極
31c サブ電極
33 シート
34 座面部
34a 座部シートフレーム
35 背もたれ部
35a 背部シートフレーム
36 車両ボディ
37 コネクタ配線部
42a〜42c オペアンプ
43 マルチプレクサ
44 電流検出部
45 電圧変換部
RS,RSa,RSb,RSc 電流検出抵抗器
VSG 信号源
10. Adjustment system for electrostatic occupant detection device 11, 11-1 occupant detection ECU
12 adjusting device 13 switching unit 14 sensor characteristic measuring unit 15 CPU
16 E 2 PROM
DESCRIPTION OF SYMBOLS 21 Adjustment apparatus 30 Electrostatic occupant detection apparatus 31 Electrostatic sensor 31a Main electrode 31b Guard electrode 31c Sub electrode 33 Seat 34 Seat surface part 34a Seat part seat frame 35 Backrest part 35a Back part seat frame 36 Vehicle body 37 Connector wiring part 42a-42c Operational amplifier 43 Multiplexer 44 Current detection unit 45 Voltage conversion unit RS, RSa, RSb, RSc Current detection resistor VSG Signal source

Claims (3)

車両のシートの座面部に互いに離隔状態に配置されたメイン電極及びサブ電極と、これらメイン電極及びサブ電極と車両接地に導通するシートフレームとの間に当該メイン電極及びサブ電極に隔離して対向配置されたガード電極とを有する静電センサと、
前記静電センサに交流電圧信号を印加する信号源と、この信号源の交流電圧信号が前記メイン電極、前記サブ電極及び前記ガード電極に選択的又は全てに印加されるように切り換える切換部と、前記メイン電極、前記サブ電極及び前記ガード電極の個々と前記信号源との間に前記切換部を介して接続された複数の抵抗器と、これら抵抗器を介した前記メイン電極、前記サブ電極及び前記ガード電極への交流電圧信号の印加時に各抵抗器の両端に発生する電位差を選択する選択手段と、この選択手段で選択された電位差による電圧値を検出する検出手段とを有するセンサ特性計測部と、
前記検出手段で検出された電圧値のうち前記メイン電極及び前記サブ電極に接続された各抵抗器の両端の電位差から得た各電圧値を加算し、この加算値を乗員判定のための乗員判定データとする演算制御手段と
を備えることを特徴とする静電式乗員検知装置。
A main electrode and a sub electrode arranged on a seat surface portion of a vehicle seat so as to be separated from each other, and between the main electrode and the sub electrode and a seat frame conducting to the vehicle ground, the main electrode and the sub electrode are separated from each other and face each other. An electrostatic sensor having a guard electrode disposed;
A signal source that applies an AC voltage signal to the electrostatic sensor, and a switching unit that switches the AC voltage signal of the signal source to be selectively or fully applied to the main electrode, the sub electrode, and the guard electrode; A plurality of resistors connected via the switching unit between each of the main electrode, the sub electrode, and the guard electrode and the signal source, and the main electrode, the sub electrode, and the A sensor characteristic measurement unit having selection means for selecting a potential difference generated at both ends of each resistor when an AC voltage signal is applied to the guard electrode, and detection means for detecting a voltage value due to the potential difference selected by the selection means When,
Among the voltage values detected by the detection means, add each voltage value obtained from the potential difference between both ends of each resistor connected to the main electrode and the sub electrode, and this added value is determined as an occupant determination for occupant determination An electrostatic occupant detection device comprising: an arithmetic control means for data.
前記センサ特性計測部は、前記メイン電極及び前記ガード電極に前記交流電圧信号が印加されるように前記切換部を切り換え、前記選択手段で当該メイン電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第1の電圧値として記憶し、次に、前記メイン電極に前記交流電圧信号が未印加状態としたのち前記サブ電極に前記交流電圧信号が印加されるように前記切換部を切り換え、前記選択手段で当該サブ電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第2の電圧値として記憶し、前記演算制御手段は、前記記憶された第1及び第2の電圧値を加算し、この加算値を乗員判定のための乗員判定データとすることを特徴とする請求項1に記載の静電式乗員検知装置。   The sensor characteristic measurement unit switches the switching unit so that the AC voltage signal is applied to the main electrode and the guard electrode, and the selection unit selects a potential difference between both ends of the resistor connected to the main electrode. Then, the calculation control unit stores the voltage value detected by the selected potential difference by the detection unit as the first voltage value, and then the AC voltage signal is not applied to the main electrode. The switching unit is switched so that the AC voltage signal is applied to the sub-electrode, the potential difference between both ends of the resistor connected to the sub-electrode is selected by the selection unit, and the selected potential difference is the detection unit. The calculation control means stores the voltage value detected in step 2 as the second voltage value, and the calculation control means adds the stored first and second voltage values, and uses this addition value for occupant determination. The Electrostatic occupant detecting apparatus according to claim 1, characterized in that the occupant determination data. 前記センサ特性計測部は、前記メイン電極、前記サブ電極及び前記ガード電極の全てに前記交流電圧信号が印加されるように前記切換部を切り換え、前記選択手段で当該メイン電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第1の電圧値として記憶し、また、前記選択手段で当該サブ電極に接続された抵抗器の両端の電位差を選択し、この選択された電位差が前記検出手段で検出された電圧値を前記演算制御手段が第2の電圧値として記憶し、前記演算制御手段は、前記記憶された第1及び第2の電圧値を加算し、この加算値を乗員判定のための乗員判定データとすることを特徴とする請求項1に記載の静電式乗員検知装置。   The sensor characteristic measurement unit switches the switching unit so that the AC voltage signal is applied to all of the main electrode, the sub electrode, and the guard electrode, and a resistor connected to the main electrode by the selection unit The voltage difference detected by the detection means is stored as the first voltage value by the calculation control means, and is connected to the sub-electrode by the selection means. The potential difference between both ends of the resistor is selected, the voltage value at which the selected potential difference is detected by the detection means is stored as the second voltage value, and the calculation control means stores the stored voltage value. 2. The electrostatic occupant detection device according to claim 1, wherein the first and second voltage values are added and the added value is used as occupant determination data for occupant determination.
JP2010276812A 2008-09-19 2010-12-13 Electrostatic occupant detection device Expired - Fee Related JP4915472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276812A JP4915472B2 (en) 2008-09-19 2010-12-13 Electrostatic occupant detection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008241083 2008-09-19
JP2008241083 2008-09-19
JP2010276812A JP4915472B2 (en) 2008-09-19 2010-12-13 Electrostatic occupant detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009116205A Division JP4702471B2 (en) 2008-09-19 2009-05-13 Method for adjusting electrostatic occupant detection device and electrostatic occupant detection device

Publications (2)

Publication Number Publication Date
JP2011095267A JP2011095267A (en) 2011-05-12
JP4915472B2 true JP4915472B2 (en) 2012-04-11

Family

ID=44112298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276812A Expired - Fee Related JP4915472B2 (en) 2008-09-19 2010-12-13 Electrostatic occupant detection device

Country Status (1)

Country Link
JP (1) JP4915472B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152318B2 (en) * 2010-12-22 2013-02-27 株式会社デンソー Occupant detection device, occupant detection method, and vehicle
KR101905961B1 (en) 2016-07-26 2018-11-21 현대자동차주식회사 Occupant classification apparatus
DE112019000888T5 (en) * 2018-02-20 2020-10-29 Iee International Electronics & Engineering S.A. System for earthing and diagnosis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553379B2 (en) * 1998-07-13 2004-08-11 株式会社ホンダエレシス Occupant detection system and occupant detection method
JP4609731B2 (en) * 2006-10-31 2011-01-12 株式会社デンソー Capacitive occupant detection sensor

Also Published As

Publication number Publication date
JP2011095267A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4702471B2 (en) Method for adjusting electrostatic occupant detection device and electrostatic occupant detection device
JP4752956B2 (en) Electrostatic occupant detection device
JP4817026B2 (en) Electrostatic occupant detection device
US8237455B2 (en) Occupant detection system with environmental compensation
US7271730B2 (en) Occupant determination apparatus and occupant determination method
US8519725B2 (en) Hybrid occupant detection system
US6609055B2 (en) Occupant detection system
US6853306B1 (en) Circuit arrangement for measuring the resistance of resistors in a pressure-sensitive resistor mat
JP4817027B2 (en) Electrostatic occupant detection device
US8040241B2 (en) Capacitance-based occupant detection system and occupant protection system
JP5152318B2 (en) Occupant detection device, occupant detection method, and vehicle
US7880480B2 (en) Occupant detection system and method for calibrating
KR101020541B1 (en) Apparatus and method for classifying an occupant in a vehicle
KR20050054835A (en) Vehicle occupant sensing system
US8599004B2 (en) Occupant detection system
JP5561561B2 (en) Electrostatic occupant detection device
JPH11337393A (en) Seat weight measuring apparatus
JP4915472B2 (en) Electrostatic occupant detection device
JP2002048658A (en) Pressure distribution detecting device
US20060144165A1 (en) Method and circuit arrangement for determining an electric measurement value for a resistance element, preferably for determining an electric current that flows through the said resistance element
CN111758039B (en) System for grounding and diagnostics
US20150168469A1 (en) Process and apparatus for capacitive seat occupant sensing for motor vehicles
JP2015152307A (en) Electrostatic capacitance type occupant detecting sensor
US20110190980A1 (en) Occupant detection system and method
US20100315090A1 (en) Electrostatic sensor and occupant detecting device having the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4915472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees