[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4915251B2 - Clad welded structure of low alloy steel base metal - Google Patents

Clad welded structure of low alloy steel base metal Download PDF

Info

Publication number
JP4915251B2
JP4915251B2 JP2007049760A JP2007049760A JP4915251B2 JP 4915251 B2 JP4915251 B2 JP 4915251B2 JP 2007049760 A JP2007049760 A JP 2007049760A JP 2007049760 A JP2007049760 A JP 2007049760A JP 4915251 B2 JP4915251 B2 JP 4915251B2
Authority
JP
Japan
Prior art keywords
layer
clad
alloy steel
low alloy
steel base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007049760A
Other languages
Japanese (ja)
Other versions
JP2008212945A (en
Inventor
智誉 山ノ口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007049760A priority Critical patent/JP4915251B2/en
Publication of JP2008212945A publication Critical patent/JP2008212945A/en
Application granted granted Critical
Publication of JP4915251B2 publication Critical patent/JP4915251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、耐PWSCC(Primary Water Stress Corrosion Cracking)性が要求される環境下で使用される低合金鋼母材のクラッド溶接構造に関するものである。   The present invention relates to a clad welded structure of a low alloy steel base material used in an environment where PWSCC (Primary Water Stress Corrosion Cracking) resistance is required.

図2に示すように、加圧水型原子炉の、蒸気発生器23、原子炉圧力容器21、配管22などの一次系炉水(高温高圧の水)と接液する環境下においては、それらを構成する構造材の接液面に防食対策としてクラッド溶接を施している。   As shown in FIG. 2, in a pressurized water reactor, in an environment in contact with primary system reactor water (high-temperature and high-pressure water) such as a steam generator 23, a reactor pressure vessel 21, and a pipe 22, they are configured. Clad welding is applied to the wetted surface of the structural material to prevent corrosion.

例えば、図3に示すように、蒸気発生器23における水室31の底面32などは、これまで、図4に示すように、低合金鋼からなる母材(構造材)11の表面に、Ni−Cr−Fe系合金の溶接金属である52合金(690系Ni基合金とほぼ同じ組成の合金)を溶接してクラッド溶接層(内張り層)16を設けることで、低合金鋼母材11の防食を行っていた。ここで、溶接金属として52合金を用いるのは、PWSCC対策材として優れた特性を有しているためである。   For example, as shown in FIG. 3, the bottom surface 32 of the water chamber 31 in the steam generator 23 has been formed on the surface of the base material (structural material) 11 made of low alloy steel as shown in FIG. -By welding a 52 alloy (alloy having almost the same composition as a 690 Ni-base alloy) which is a weld metal of a Cr-Fe alloy, a clad weld layer (lining layer) 16 is provided, so that the low alloy steel base material 11 It was anticorrosive. Here, the reason why the 52 alloy is used as the weld metal is that it has excellent characteristics as a PWSCC countermeasure material.

特開平5−293661号公報JP-A-5-293661

ところで、52合金はPWSCC対策材として優れている一方、低合金鋼からなる低合金鋼母材11の表面に52合金のクラッド溶接層16を溶接した場合、その溶接部において、凝固割れ、遅れ割れ、再熱割れ等が生じるおそれがある。従来は、このような割れが生じた場合、溶接不良箇所の溶接領域を除去し、再度溶接をやり直すことで、健全な溶接部を得ていた。   By the way, while 52 alloy is excellent as a PWSCC countermeasure material, when the clad weld layer 16 of 52 alloy is welded to the surface of the low alloy steel base material 11 made of low alloy steel, solidification cracking and delayed cracking occur in the welded portion. There is a risk of reheat cracking. Conventionally, when such a crack occurs, a sound welded part has been obtained by removing the welded area of the poorly welded part and re-welding again.

しかしながら、低合金鋼母材11に溶接熱を何度も入熱することは、熱影響部の弊害があるため、加圧水型原子炉の一次冷却系機器(放射性環境下)の構造材として、あまり好ましいことではない。また、健全な溶接部を得るためには、入熱管理やパージ(ガスシールド)などを厳しく管理するといった高度な溶接技術が必要であるため、やり直しに手間と時間を要する。   However, repeatedly applying welding heat to the low alloy steel base material 11 has a negative effect on the heat-affected zone, so it is not suitable as a structural material for primary cooling system equipment (under a radioactive environment) in a pressurized water reactor. It is not preferable. In addition, in order to obtain a sound welded portion, it is necessary to use advanced welding techniques such as strict management of heat input and purge (gas shield).

そこで本発明の目的は、溶接施工性に優れ、かつ、耐PWSCC性にも優れた低合金鋼母材のクラッド溶接構造を提供することにある。   Accordingly, an object of the present invention is to provide a clad welded structure of a low alloy steel base material which is excellent in welding workability and excellent in PWSCC resistance.

上記目的を達成するために、請求項1の発明は、加圧水型原子炉の一次系炉水と接液させて使用すべく、低合金鋼からなる母材の表面に、Ni−Cr−Fe系合金の溶接金属によるクラッド溶接層を設けたクラッド溶接構造において、上記低合金鋼母材の表面に、上記Ni−Cr−Fe系合金の溶接金属である82合金を溶接して内層側クラッド溶接層を設け、その内層側クラッド溶接層の上に、上記Ni−Cr−Fe系合金の溶接金属である52合金を溶接して外層側クラッド溶接層を設けたことを特徴とする低合金鋼母材のクラッド溶接構造である。 In order to achieve the above-mentioned object, the invention of claim 1 is directed to a Ni—Cr—Fe system on the surface of a base material made of low alloy steel so as to be used in contact with the primary system water of a pressurized water reactor. In a clad weld structure provided with a clad weld layer made of an alloy weld metal, an inner layer side clad weld layer is formed by welding 82 alloy, which is a weld metal of the Ni-Cr-Fe alloy , to the surface of the low alloy steel base material. A low-alloy steel base material characterized in that an outer-layer-side clad weld layer is provided on the inner-layer-side clad weld layer by welding 52 alloy, which is a weld metal of the Ni-Cr-Fe-based alloy. This is a clad welded structure.

請求項2の発明は、上記低合金鋼母材の厚さを1としたとき、上記内層側クラッド溶接層の厚さが0.02〜0.06、上記外層側クラッド溶接層の厚さが0.08〜0.12である請求項1記載の低合金鋼母材のクラッド溶接構造である。   In the invention of claim 2, when the thickness of the low alloy steel base material is 1, the thickness of the inner layer side cladding weld layer is 0.02 to 0.06, and the thickness of the outer layer side clad weld layer is The clad welded structure of a low alloy steel base material according to claim 1, which is 0.08 to 0.12.

請求項3の発明は、上記低合金鋼母材を構成する低合金鋼がSA508である請求項1又は2記載の低合金鋼母材のクラッド溶接構造である。   The invention of claim 3 is the clad weld structure of the low alloy steel base material according to claim 1 or 2, wherein the low alloy steel constituting the low alloy steel base material is SA508.

本発明によれば、低合金鋼母材の表面に、82合金を溶接して内層側クラッド溶接層を設け、その内層側クラッド溶接層の上に、52合金を溶接して外層側クラッド溶接層を設けたことで、溶接施工性に優れ、かつ、耐PWSCC性にも優れた低合金鋼母材のクラッド溶接構造を得ることができる。   According to the present invention, the inner layer side clad weld layer is provided by welding 82 alloy on the surface of the low alloy steel base material, and the outer layer side clad weld layer is welded on the inner layer side clad weld layer. By providing the above, it is possible to obtain a clad welded structure of a low alloy steel base material which is excellent in welding workability and excellent in PWSCC resistance.

以下、本発明の実施の形態を添付図面に基いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係る低合金鋼母材のクラッド溶接構造は、図1(c)に示すように、低合金鋼からなる母材11の表面(溶接面)に、82合金13を溶接して内層側クラッド溶接層14を設け、その内層側クラッド溶接層14の上に、52合金15を溶接して外層側クラッド溶接層16を設けたものである。また、低合金鋼母材11の厚さを1としたとき、内層側クラッド溶接層14の厚さは0.02〜0.06、好ましくは0.025〜0.05、外層側クラッド溶接層16の厚さは0.08〜0.12、好ましくは0.1前後とされる。ここで言う「内層側」とは低合金鋼母材11に近い側、「外層側」とは低合金鋼母材11から離れた側を示している。また、「表面」とは、母材11(例えば容器や管など)の内面を示している。   As shown in FIG. 1 (c), the clad welded structure of the low alloy steel base material according to a preferred embodiment of the present invention is formed on the surface (welded surface) of the base material 11 made of low alloy steel with the 82 alloy 13 Is welded to provide an inner-layer-side clad weld layer 14, and an outer-layer-side clad weld layer 16 is provided on the inner-layer-side clad weld layer 14 by welding 52 alloy 15. Moreover, when the thickness of the low alloy steel base material 11 is 1, the thickness of the inner layer side cladding weld layer 14 is 0.02 to 0.06, preferably 0.025 to 0.05, and the outer layer side cladding weld layer. The thickness of 16 is 0.08 to 0.12, preferably about 0.1. Here, the “inner layer side” indicates the side close to the low alloy steel base material 11, and the “outer layer side” indicates the side away from the low alloy steel base material 11. The “surface” indicates the inner surface of the base material 11 (for example, a container or a tube).

82合金13は、600系Ni基合金(例えば、インコネル600(登録商標))とほぼ同じ組成のNi−Cr−Fe系合金、また、52合金15は、690系Ni基合金(例えば、インコネル690(登録商標))とほぼ同じ組成のNi−Cr−Fe系合金であり、52合金15は、82合金13よりもCr含有量を多くし、耐食性を高めたものである。   The 82 alloy 13 is a Ni—Cr—Fe alloy having almost the same composition as a 600-based Ni-based alloy (for example, Inconel 600 (registered trademark)), and the 52 alloy 15 is a 690-based Ni-based alloy (for example, Inconel 690). (Registered Trademark)) is a Ni—Cr—Fe alloy having almost the same composition as that of the alloy 52, and the 52 alloy 15 has a higher Cr content than the 82 alloy 13 and has improved corrosion resistance.

低合金鋼母材11の構成材は、最終的にその表面をクラッド溶接して防食層を形成するため、圧力(加圧された一次系炉水)に対する強度のみあれば十分である。このため、低合金鋼母材11の構成材としては、ステンレス鋼よりも強度が高く、安価な低合金鋼が好ましく、例えば、SA508(ASME(米国機械学会)規格)などが挙げられる。SA508の他にも、原子炉用低合金鋼として慣用的に用いられている鋼材は全て適用可能である。   Since the constituent material of the low alloy steel base material 11 is finally clad welded to form an anticorrosion layer, it is sufficient that it has only strength against pressure (pressurized primary system reactor water). For this reason, as a constituent material of the low alloy steel base material 11, a low alloy steel having higher strength and lower cost than stainless steel is preferable, and examples thereof include SA508 (ASME (American Society of Mechanical Engineers) standard). In addition to SA508, all steel materials conventionally used as low alloy steels for nuclear reactors are applicable.

次に、本実施の形態に係る低合金鋼母材のクラッド溶接構造の形成方法を説明する。   Next, a method for forming a clad welded structure of a low alloy steel base material according to the present embodiment will be described.

先ず、低合金鋼母材11として、例えば、図3に示した蒸気発生器23における水室31の底面32を構成する構造材を準備する。この構造材は、例えば、強度に優れたSA508(ASME規格)で構成される。   First, as the low alloy steel base material 11, for example, a structural material constituting the bottom surface 32 of the water chamber 31 in the steam generator 23 shown in FIG. 3 is prepared. This structural material is composed of, for example, SA508 (ASME standard) having excellent strength.

その後、図1(a)に示すように、低合金鋼母材11の表面(図中では上面)全面に、溶接材として82合金13、TIG溶接機12を用いてクラッド溶接を行う。低合金鋼母材11を構成する構造材は、例えば、直径が4m程度もある大型の部材なので、その底面32はほぼ平面である。このため、溶接材としては、棒状(ワイヤ状)のものよりは平板状(シート状)のものを用いることが好ましい。また、クラッド溶接を行う際、溶接対象物が小さい場合、低合金鋼母材11を固定し、TIG溶接機12を回転、移動させてもよいが、溶接対象物が大きい場合、TIG溶接機12は固定し、低合金鋼母材11の方を回転、移動させることが好ましい。   Thereafter, as shown in FIG. 1A, clad welding is performed on the entire surface (the upper surface in the drawing) of the low alloy steel base material 11 using a 82 alloy 13 as a welding material and a TIG welding machine 12. Since the structural material constituting the low alloy steel base material 11 is a large member having a diameter of about 4 m, for example, the bottom surface 32 is substantially flat. For this reason, as a welding material, it is preferable to use the thing of a flat plate shape (sheet shape) rather than a rod shape (wire shape). Further, when performing the clad welding, if the welding object is small, the low alloy steel base material 11 may be fixed and the TIG welding machine 12 may be rotated and moved. However, if the welding object is large, the TIG welding machine 12 may be used. Is fixed and the low alloy steel base material 11 is preferably rotated and moved.

このクラッド溶接により、82合金13を溶融させ、低合金鋼母材11の表面に溶け込ませ、低合金鋼母材11の表面全面に、82合金13の溶融・凝固部(ビード)である内層側クラッド溶接層14を設ける。内層側クラッド溶接層14を構成する溶融・凝固部の層数は1層で十分である。   By this clad welding, the 82 alloy 13 is melted and melted into the surface of the low alloy steel base material 11, and the inner layer side that is a melting and solidifying portion (bead) of the 82 alloy 13 is formed on the entire surface of the low alloy steel base material 11. A clad weld layer 14 is provided. One layer is sufficient for the number of the melted / solidified portions constituting the inner-layer-side clad weld layer 14.

次に、図1(b)に示すように、内層側クラッド溶接層14の上に、溶接材として52合金15、TIG溶接機12を用いて同様にクラッド溶接を行う。これにより、52合金15を溶融させ、内層側クラッド溶接層14の表面に溶け込ませ、内層側クラッド溶接層14の表面全面に、52合金15の溶融・凝固部である外層側クラッド溶接層16を設ける。外層側クラッド溶接層16を構成する溶融・凝固部の積層数は、目的とする厚さに応じて適宜調整し、外層側クラッド溶接層16の厚さは、溶融・凝固部の積層数によって調整する。例えば、SA508からなる低合金鋼母材11の厚さを約40mmとした場合、82合金13からなる内層側クラッド溶接層14の厚さは約1〜2mm、52合金15からなる外層側クラッド溶接層16の厚さは約4mmに調整する。   Next, as shown in FIG. 1B, clad welding is similarly performed on the inner-layer-side clad weld layer 14 using a 52 alloy 15 and a TIG welder 12 as welding materials. As a result, the 52 alloy 15 is melted and melted into the surface of the inner layer side cladding weld layer 14, and the outer layer side clad weld layer 16, which is a melting / solidified portion of the 52 alloy 15, is formed on the entire surface of the inner layer side clad weld layer 14. Provide. The number of layers of the melted / solidified portion constituting the outer layer side clad weld layer 16 is appropriately adjusted according to the target thickness, and the thickness of the outer layer side clad weld layer 16 is adjusted by the number of layers of the melted / solidified portion. To do. For example, when the thickness of the low alloy steel base material 11 made of SA508 is about 40 mm, the thickness of the inner layer side clad weld layer 14 made of 82 alloy 13 is about 1 to 2 mm, and the outer layer side clad weld made of 52 alloy 15 The thickness of layer 16 is adjusted to about 4 mm.

その後、適宜、外層側クラッド溶接層16の表面をグラインダ等の研削工具により研削して表面を滑らかにし、図1(c)に示すように、本実施の形態に係る低合金鋼母材のクラッド溶接構造が得られる。この研削は、内層側クラッド溶接層14に対して行ってもよい。   Thereafter, the surface of the outer-layer-side clad weld layer 16 is appropriately ground with a grinding tool such as a grinder to smooth the surface, and as shown in FIG. 1C, the clad of the low alloy steel base material according to the present embodiment A welded structure is obtained. This grinding may be performed on the inner-side clad weld layer 14.

82合金13からなる内層側クラッド溶接層14は、52合金15からなる外層側クラッド溶接層16と異なり、低合金鋼母材11に対する溶接性は良好である。このため、低合金鋼母材11の表面に内層側クラッド溶接層14をクラッド溶接する際に、その溶接部に凝固割れ、遅れ割れ、再熱割れ等が発生するおそれはない。また、82合金13と52合金15は、組成はやや異なるものの同じNi−Cr−Fe系合金であることから、内層側クラッド溶接層14に対する外層側クラッド溶接層16の溶接性は良好である。このため、内層側クラッド溶接層14上に外層側クラッド溶接層16をクラッド溶接する際にも、その溶接部に凝固割れ、遅れ割れ、再熱割れ等が発生するおそれはない。   Unlike the outer clad weld layer 16 made of 52 alloy 15, the inner clad weld layer 14 made of 82 alloy 13 has good weldability to the low alloy steel base material 11. For this reason, when the inner layer side clad weld layer 14 is clad welded to the surface of the low alloy steel base material 11, there is no possibility that solidification cracks, delayed cracks, reheat cracks, etc. will occur in the welds. Moreover, since the 82 alloy 13 and the 52 alloy 15 are the same Ni-Cr-Fe type alloys although the compositions are somewhat different, the weldability of the outer-layer-side clad weld layer 16 to the inner-layer-side clad weld layer 14 is good. For this reason, even when the outer-layer-side clad weld layer 16 is clad-welded on the inner-layer-side clad weld layer 14, there is no possibility that solidification cracks, delayed cracks, reheat cracks, etc. will occur in the welded portion.

このようなクラッド溶接構造を採用することで、低合金鋼母材11の表面に防食層(耐PWSCC層)をクラッド溶接する際に、各種割れが発生せず、溶接をやり直す必要がなくなる(又は殆どなくなる)ため、溶接施工性に優れたクラッド溶接構造を得ることができる。   By adopting such a clad welding structure, when clad welding the anticorrosion layer (PWSCC layer) to the surface of the low alloy steel base material 11, various cracks do not occur and it is not necessary to repeat the welding (or Therefore, a clad weld structure with excellent weldability can be obtained.

また、低合金鋼母材11の表面にクラッド溶接を行う際、特に一層目のクラッド溶接を行う際、溶接をやり直すことがなく、溶接部毎の溶接熱の入熱は1回で済む。このため、低合金鋼母材11に対する熱影響部の弊害が少なくなり、また、溶接層のクラッド溶接品質を大幅に向上させることができる。その結果、PWR型原子力発電所の中で重要な機器である一次冷却系機器の信頼性をより確かなものにすることができる。   Further, when clad welding is performed on the surface of the low alloy steel base material 11, particularly when the first layer clad welding is performed, welding is not repeated and only one heat input of the welding heat is required for each welded portion. For this reason, the adverse effect of the heat-affected zone on the low alloy steel base material 11 is reduced, and the clad weld quality of the weld layer can be greatly improved. As a result, the reliability of the primary cooling system equipment, which is an important equipment in the PWR nuclear power plant, can be further ensured.

さらに、低合金鋼母材11の表面に設ける防食層(耐PWSCC層)は、PWSCC対策材として優れた特性を有する52合金15の外層側クラッド溶接層16であるため、耐PWSCC性に優れたクラッド溶接構造となる。   Furthermore, since the anticorrosion layer (PWSCC layer) provided on the surface of the low alloy steel base material 11 is the outer layer side clad weld layer 16 of the 52 alloy 15 having excellent characteristics as a PWSCC countermeasure material, it is excellent in PWSCC resistance. It becomes a clad weld structure.

また、低合金鋼母材11を構成するSA508は、溶接割れが発生しやすい鋼であるため、入熱管理やパージ(ガスシールド)などの溶接条件を厳しく管理する必要があり、高度な溶接技術を必要とする。しかしながら、本実施の形態に係る低合金鋼母材のクラッド溶接構造を形成するために、新たな溶接技術は特別に必要とせず、既に確立された慣用の溶接技術を適用することができる。このため、新規の設備投資を必要とせず、既存の溶接設備を利用することができ、コスト上昇を抑えることができる。   In addition, SA508, which constitutes the low alloy steel base material 11, is a steel that is susceptible to weld cracking. Therefore, it is necessary to strictly manage welding conditions such as heat input management and purge (gas shield), and advanced welding technology. Need. However, in order to form the clad welded structure of the low alloy steel base material according to the present embodiment, a new welding technique is not particularly required, and an already established conventional welding technique can be applied. For this reason, a new capital investment is not required, the existing welding equipment can be used, and a cost increase can be suppressed.

本発明の好適一実施の形態に係る低合金鋼母材のクラッド溶接構造を示す横断面図である。図1(a)は内層側クラッド溶接層の形成状態を説明するための図、図1(b)は外層側クラッド溶接層の形成状態を説明するための図、図1(c)はクラッド溶接後の低合金鋼母材の横断面図である。It is a cross-sectional view showing a clad weld structure of a low alloy steel base material according to a preferred embodiment of the present invention. FIG. 1A is a diagram for explaining the formation state of the inner-layer-side clad weld layer, FIG. 1B is a diagram for explaining the formation state of the outer-layer-side clad weld layer, and FIG. 1C is a clad weld. It is a cross-sectional view of the subsequent low alloy steel base material. 加圧水型原子炉における原子炉格納容器内の模式図である。It is a schematic diagram in the reactor containment vessel in a pressurized water reactor. 蒸気発生器の部分断面図である。It is a fragmentary sectional view of a steam generator. 従来の低合金鋼母材のクラッド溶接構造を示す横断面図である。It is a cross-sectional view which shows the clad welding structure of the conventional low alloy steel base material.

符号の説明Explanation of symbols

11 低合金鋼母材
13 82合金(溶接材)
14 内層側クラッド溶接層
15 52合金(溶接材)
16 外層側クラッド溶接層
11 Low alloy steel base material 13 82 alloy (welding material)
14 Inner layer side clad weld layer 15 52 alloy (welding material)
16 Outer layer side cladding weld layer

Claims (3)

加圧水型原子炉の一次系炉水と接液させて使用すべく、低合金鋼からなる母材の表面に、Ni−Cr−Fe系合金の溶接金属によるクラッド溶接層を設けたクラッド溶接構造において、上記低合金鋼母材の表面に、上記Ni−Cr−Fe系合金の溶接金属である82合金を溶接して内層側クラッド溶接層を設け、その内層側クラッド溶接層の上に、上記Ni−Cr−Fe系合金の溶接金属である52合金を溶接して外層側クラッド溶接層を設けたことを特徴とする低合金鋼母材のクラッド溶接構造。 In a clad welding structure in which a clad weld layer made of a weld metal of a Ni-Cr-Fe alloy is provided on the surface of a base material made of low alloy steel to be used in contact with the primary water of a pressurized water reactor . , the surface of the low alloy steel base metal, the inner side cladding welding layer is provided by welding a 82 alloy is a weld metal of the Ni-Cr-Fe-based alloy, on the inner side cladding welding layer, said Ni A clad welded structure of a low alloy steel base material, wherein an outer clad weld layer is provided by welding 52 alloy which is a weld metal of a Cr—Fe alloy . 上記低合金鋼母材の厚さを1としたとき、上記内層側クラッド溶接層の厚さが0.02〜0.06、上記外層側クラッド溶接層の厚さが0.08〜0.12である請求項1記載の低合金鋼母材のクラッド溶接構造。   When the thickness of the low alloy steel base material is 1, the thickness of the inner layer side clad weld layer is 0.02 to 0.06, and the thickness of the outer layer side clad weld layer is 0.08 to 0.12. The clad welded structure of a low alloy steel base material according to claim 1. 上記低合金鋼母材を構成する低合金鋼がSA508である請求項1又は2記載の低合金鋼母材のクラッド溶接構造。   The low alloy steel base metal clad welded structure according to claim 1 or 2, wherein the low alloy steel constituting the low alloy steel base material is SA508.
JP2007049760A 2007-02-28 2007-02-28 Clad welded structure of low alloy steel base metal Expired - Fee Related JP4915251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049760A JP4915251B2 (en) 2007-02-28 2007-02-28 Clad welded structure of low alloy steel base metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049760A JP4915251B2 (en) 2007-02-28 2007-02-28 Clad welded structure of low alloy steel base metal

Publications (2)

Publication Number Publication Date
JP2008212945A JP2008212945A (en) 2008-09-18
JP4915251B2 true JP4915251B2 (en) 2012-04-11

Family

ID=39833616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049760A Expired - Fee Related JP4915251B2 (en) 2007-02-28 2007-02-28 Clad welded structure of low alloy steel base metal

Country Status (1)

Country Link
JP (1) JP4915251B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304392B2 (en) * 2009-03-31 2013-10-02 株式会社Ihi Dissimilar joint structure and manufacturing method thereof
JP5260410B2 (en) * 2009-05-29 2013-08-14 日立Geニュークリア・エナジー株式会社 Method and apparatus for preventive maintenance of in-furnace equipment
US20120223057A1 (en) * 2011-03-02 2012-09-06 Lucian Iordache Gas tungsten arc welding using flux coated electrodes
JP5940247B2 (en) * 2011-03-18 2016-06-29 三菱重工業株式会社 Welding structure and welding method
JP5829534B2 (en) * 2012-01-24 2015-12-09 三菱重工業株式会社 Welding method
JPWO2013161667A1 (en) * 2012-04-26 2015-12-24 株式会社Ihi Pressure vessel overlay welding method and pressure vessel
JP6186658B2 (en) 2013-11-29 2017-08-30 三菱重工業株式会社 Welded structure design method and welded structure manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671579A (en) * 1979-11-14 1981-06-15 Babcock Hitachi Kk Build up welding method
JPS62275511A (en) * 1986-02-17 1987-11-30 Kawasaki Steel Corp Hot rolling roll having excellent wear resistance and its manufacture
JPH05293661A (en) * 1992-04-20 1993-11-09 Nippon Steel Corp Production of clad steel tube excellent in corrosion resistance
JP2002331382A (en) * 2001-05-01 2002-11-19 Japan Steel Works Ltd:The Inner face lining method for cylindrical part

Also Published As

Publication number Publication date
JP2008212945A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
JP2011161459A (en) Method of welding material with high-corrosion resistance
EP2552639B1 (en) Nickel-based alloy, welding consumable formed from the said alloy and use of the consumable in a welding process.
US20080054050A1 (en) Method for Producing a Welded Connection and Method for Repairing a Welded Connection
JP5304392B2 (en) Dissimilar joint structure and manufacturing method thereof
Jeong et al. Evaluation and control of liquation cracking susceptibility for CM247LC superalloy weld heat-affected zone via visualization-based varestraint test
JP2013158774A (en) Welding method, weld bonding structure and stainless steel welded structure
US20220063019A1 (en) Improvements in the welding of pipes
JP5963187B2 (en) Anti-corrosion repair method for nozzle welds
Kiser et al. Nickel alloy welding requirements for nuclear service
JP4929096B2 (en) Overlay welding method for piping
JP2002219585A (en) Structure and repairing method therefor
Yamamoto et al. Guidelines for repair welding of pressure equipment in refineries and chemical plants
JP2006088226A (en) Welding of vessel internals with noble metal technology
JP2015110233A (en) Laser welding method
JP6581777B2 (en) Welded joint structure and welded joint method
Cofie et al. Effectiveness of stainless steel buffer layer to address hot cracking during weld overlay repair of dissimilar metal alloy 82/182 welds with stainless steel piping
Zhang et al. All-positional flux cored wire with lower trace element contents and improved ambient temperature toughness for welding P91 steels
WO2018139327A1 (en) Diffusion-bonded body welding method
Matsuoka et al. Development of welding methods for dissimilar joint of Alloy 690 and stainless steel for PWR components
Eun et al. Welding and Heat Treatment Requirements in Shop and Field
KR20240109457A (en) Method of connecting reactor nozzle and pipe in nuclear power plant
Pope et al. Industrial Application of Local Vacuum Electron Beam Welding for Nuclear Reactor Components
Dey Development of Welding Procedures for Critical Applications in Nuclear and Fossil Power Plants.
JP2000230996A (en) Repair method for nuclear reactor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees