[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4911197B2 - 直動式燃料噴射弁の制御装置 - Google Patents

直動式燃料噴射弁の制御装置 Download PDF

Info

Publication number
JP4911197B2
JP4911197B2 JP2009131881A JP2009131881A JP4911197B2 JP 4911197 B2 JP4911197 B2 JP 4911197B2 JP 2009131881 A JP2009131881 A JP 2009131881A JP 2009131881 A JP2009131881 A JP 2009131881A JP 4911197 B2 JP4911197 B2 JP 4911197B2
Authority
JP
Japan
Prior art keywords
time
voltage
valve
amount
piezo element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009131881A
Other languages
English (en)
Other versions
JP2010275987A (ja
Inventor
真一 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009131881A priority Critical patent/JP4911197B2/ja
Priority to DE201010017093 priority patent/DE102010017093A1/de
Publication of JP2010275987A publication Critical patent/JP2010275987A/ja
Application granted granted Critical
Publication of JP4911197B2 publication Critical patent/JP4911197B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/704Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with actuator and actuated element moving in different directions, e.g. in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/705Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with means for filling or emptying hydraulic chamber, e.g. for compensating clearance or thermal expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、ピエゾ素子の変位量により弁体を開閉駆動させる直動式燃料噴射弁の制御装置に関する。
内燃機関の燃焼に供する燃料を噴射する噴射弁は、噴孔が形成されたボデー、ボデーに収容されて噴孔を開閉する弁体、及び弁体を駆動させるアクチュエータを備えて構成されるのが一般的である。そして、アクチュエータにピエゾ素子を採用し、ピエゾ素子の変位量を弁体に伝達して、前記変位量により弁体を開閉駆動させる直動式燃料噴射弁が従来より知られている。
この種の噴射弁は、ピエゾ素子へ充電された電荷を放電することでピエゾ素子を伸長させ、その伸長量(変位量)により弁体を開弁作動させている。そして、ピエゾ素子への充電量が多いほど、放電時におけるピエゾ素子の伸長量は増大し、ひいては弁体の開弁リフト量も増大する。すると、弁体が1回開閉することにより噴孔から噴射される噴射量も、増大することとなる。
特開2008−240544号公報
しかしながら、ピエゾ素子の温度特性や、燃料噴射弁の構成部品(例えばボデーや弁体)の形状ばらつき等に起因して、充電量と開弁リフト量との関係がばらつく。その結果、所望の噴射量に対して実際の噴射量がばらつくこととなる。
本発明は、上記課題を解決するためになされたものであり、その目的は、噴射量のばらつき低減を図った直動式燃料噴射弁の制御装置を提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明は、直動式燃料噴射弁を制御対象とした制御装置において、ピエゾ電圧を計測する電圧計測手段と、ピエゾ電圧の波形中に、前記弁体の閉弁作動が完了したことに伴い生じた電圧上昇の発生時期を検出する電圧上昇検出手段と、放電開始から閉弁作動完了までの弁体下降時間を、前記電圧上昇の発生時期に基づき算出する下降時間算出手段と、弁体下降時間を加味して充電量を制御することで、弁体の開弁リフト量を制御する充電量制御手段と、を備えることを特徴とする。
ここで、弁体がボデーのシート面に当接して閉弁作動を完了する時に、弁体がシート面から反力を受ける。するとその反力はピエゾ素子に伝達され、その結果、ピエゾ素子の電極間には圧電効果により電荷が生じ、前記電極間の電圧(以下、「ピエゾ電圧」と呼ぶ)が一時的に上昇する。この電圧上昇を図5(b)中の符号P1に例示する。つまり放電を開始させて閉弁作動を開始させることに伴いピエゾ電圧は低下し、その低下が終了して一定になっている期間中、ピエゾ電圧の波形には符号P1に例示するように一時的に僅かに上昇する波形が現れる。
したがって、その電圧上昇発生時期に基づけば閉弁作動が完了したタイミングを把握することができ、ひいては弁体下降時間を把握することができる。そして、弁体下降時間が長いほど弁体の上昇量(つまり開弁リフト量)は大きい。要するに、ピエゾ電圧の上昇発生時期に基づけば弁体下降時間を把握でき、この弁体下降時間は開弁リフト量と相関性が高いので、上述の如く把握した弁体下降時間を加味して充電量制御すれば、実際の開弁リフト量を所望のリフト量に高精度で近づけることができる。
以上の知見に基づき上記発明では、ピエゾ電圧の波形中に、閉弁作動が完了したことに伴い生じた電圧上昇の発生時期を検出する。そして、その発生時期に基づき算出された弁体下降時間を加味して、ピエゾ素子への充電量(例えば充電期間におけるピエゾ電圧のピーク値)を制御することで、弁体の開弁リフト量を制御する。そのため、開弁リフト量を高精度で制御でき、ひいては噴孔からの噴射量を高精度で制御できる。
請求項2記載の発明では、前記充電量制御手段は、前記ピエゾ素子へ複数回電流を流すことで前記電極間の電圧(ピエゾ電圧)を徐々に上昇させて充電させるとともに、複数回の最後に流す電流の通電時間を前記弁体下降時間に基づき制御することで、前記ピエゾ素子への充電量を制御することを特徴とする。
ここで、ピエゾ素子へ複数回電流を流して充電量を徐々に増大させていくと、充電量増大に伴い弁体の開弁リフト量も徐々に増大していき、その結果、噴射率も徐々に増大していく。そして、内燃機関の燃焼室に燃料を噴射するにあたり、噴射開始直後の噴射率変化は燃焼状態に大きな影響を与えるため、ピエゾ素子へ流す電流が回を重ねる毎に、その電流の通電時間が燃焼状態へ与える影響は小さくなる。したがって、上記発明に反して初回に流す電流の通電時間を、弁体下降時間に基づき制御して充電量を制御しようとすると、燃焼状態が所望の状態と異なってくることが懸念される。
このような懸念に対し、上記発明では、複数回の最後に流す電流の通電時間を弁体下降時間に基づき制御することで、ピエゾ素子への充電量を制御するので、燃焼状態に与える影響を最小限にしつつ噴射量を調整できる。
請求項3記載の発明では、前記電圧上昇検出手段は、前記電圧計測手段により計測された電圧が前記ピエゾ素子の放電終了後に所定の閾値を超えた時期を、前記電圧上昇の発生時期として検出することを特徴とする。そのため、電圧上昇の発生時期の検出を容易に実現できる。
なお、ピークホールド回路等を用いて、ピエゾ素子の放電終了後におけるピエゾ電圧のピーク値の出現時期を検出し、その出現時期を電圧上昇発生時期として検出してもよい。
請求項4記載の発明は、直動式燃料噴射弁を制御対象とした制御装置において、ピエゾ電圧を計測する電圧計測手段と、前記弁体の開弁作動が完了した後にピエゾ電圧の下降速度が所定速度以下又はゼロになった所定時期を検出する下降状態検出手段と、充電開始から開弁作動完了までの弁体上昇時間を、前記所定時期に基づき算出する上昇時間算出手段と、弁体上昇時間を加味して充電量を制御することで、弁体の開弁リフト量を制御する充電量制御手段と、を備えることを特徴とする。
ここで、ピエゾ素子への充電を開始(図8中のt1参照)してピエゾ電圧が所定値にまで上昇すると、ピエゾ素子が伸長し始めるとともに弁体の開弁作動が開始(図8中のt2参照)される。そして、充電開始t1から伸長開始t2までの期間(充電初期)にはピエゾ素子は弁体から反力を受けており、この反力による圧電効果でピエゾ素子には電荷が生じている。したがって、充電初期t1〜t2におけるピエゾ電圧の上昇には、充電による上昇分(充電分)と圧電効果による上昇分(圧電分)とが含まれていると言える。
そして、ピエゾ素子の伸長開始以降(充電初期以降)は、前記反力は徐々に低下していき、弁体が所定リフト量だけ開弁作動して停止した時点(図8中のt4参照)で前記反力はなくなる。よって、充電初期t1〜t2に蓄電された圧電分(図8(b)中の一点鎖線L2参照)は伸長開始t2とともに徐々に低下していき開弁作動停止時点t4でゼロになる。一方、前記充電分は、ピエゾ素子の伸長開始以降(充電初期以降)も上昇し、充電終了時点(図8中のt3参照)で前記充電分の上昇は停止する。
以上により、充電分及び圧電分に起因するピエゾ電圧の変化(図8(b)中の実線参照)は、充電開始t1から終了t3までは主に充電分に依存して上昇し、充電終了t3から開弁作動停止t4までは圧電分L2の低下に伴い徐々に低下していく。そして、開弁作動停止時点t4で圧電分L2の低下が終了し、開弁作動停止t4以降のピエゾ電圧は充電分のみに依存した値で一定となる。
これらの点から本発明者は、「充電終了後にピエゾ電圧の低下が終了した時点と、開弁作動が完了した時点t4とは一致する」との知見を得た。したがって、充電終了後にピエゾ電圧の下降速度が所定速度以下又はゼロになった所定時期に基づけば、開弁作動が完了したタイミングt4を把握することができ、ひいては弁体上昇時間を把握することができる。そして、弁体上昇時間が長いほど弁体の上昇量(つまり開弁リフト量)は大きい。
要するに、充電終了後にピエゾ電圧の下降速度が所定速度以下又はゼロになった所定時期に基づけば、弁体上昇時間を把握でき、この弁体上昇時間は開弁リフト量と相関性が高いので、上述の如く把握した弁体上昇時間を加味して充電量制御すれば、実際の開弁リフト量を所望のリフト量に高精度で近づけることができると言える。
以上の知見に基づき上記発明では、ピエゾ電圧の波形において、充電終了後にピエゾ電圧の下降速度が所定速度以下又はゼロになった所定時期を検出する。そして、その所定時期に基づき算出された弁体上昇時間を加味してピエゾ素子への充電量(例えば充電期間におけるピエゾ電圧のピーク値)を制御することで、弁体の開弁リフト量を制御する。そのため、開弁リフト量を高精度で制御でき、ひいては噴孔からの噴射量を高精度で制御できる。
請求項5記載の発明では、前記充電量制御手段は、前記ピエゾ素子へ複数回電流を流すことで前記電極間の電圧(ピエゾ電圧)を徐々に上昇させて充電させるとともに、複数回の最後に流す電流の通電時間を前記弁体上昇時間に基づき制御することで、前記ピエゾ素子への充電量を制御することを特徴とする。
ここで、ピエゾ素子へ複数回電流を流して充電量を徐々に増大させていくと、充電量増大に伴い弁体の開弁リフト量も徐々に増大していき、その結果、噴射率も徐々に増大していく。そして、内燃機関の燃焼室に燃料を噴射するにあたり、噴射開始直後の噴射率変化は燃焼状態に大きな影響を与えるため、ピエゾ素子へ流す電流が回を重ねる毎に、その電流の通電時間が燃焼状態へ与える影響は低くなる。
したがって、上記発明に反して初回に流す電流の通電時間を、弁体上昇時間に基づき制御して充電量を制御しようとすると、燃焼状態が所望の状態と異なってくることが懸念される。
このような懸念に対し、上記発明では、複数回の最後に流す電流の通電時間を弁体上昇時間に基づき制御することで、ピエゾ素子への充電量を制御するので、燃焼状態に与える影響を最小限にしつつ噴射量を調整できる。
請求項6記載の発明では、前記下降状態検出手段は、前記電圧計測手段により計測された電圧の微分値が前記ピエゾ素子の充電終了後に所定の閾値より低下した時期、又は前記微分値がゼロになった時期を、前記所定時期として検出することを特徴とする。そのため、所定時期の検出を容易に実現できる。
本発明の第1実施形態において、直動式燃料噴射弁を備えた噴射システム全体を示す図。 図1に示す直動式燃料噴射弁の断面図。 図2のピエゾ素子を制御するための、ドライバユニット及びECUの構成を示す図。 図3のドライバユニットによる、ピエゾ素子の操作態様を示すタイムチャート。 第1実施形態において、実リフト量の検出手法を説明するためのタイムチャート。 (a)は、図5に示す上昇時間及び図8に示す下降時間とニードルリフト量との関係を示す図、(b)は、上昇時間及び下降時間とピーク電圧との関係を示す図、(c)は、レール圧とピーク電圧との関係を示す図。 第1実施形態において、直動式燃料噴射弁に対する制御手順を示すフローチャート。 本発明の第2実施形態において、実リフト量の検出手法を説明するためのタイムチャート。 第2実施形態において、直動式燃料噴射弁に対する制御手順を示すフローチャート。
以下、本発明を具体化した各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
(第1実施形態)
図1は、本実施形態にかかる直動式燃料噴射弁の制御装置20,60、及び制御装置20,60の制御対象となる直動式燃料噴射弁(ピエゾインジェクタ10)を示すとともに、ピエゾインジェクタ10が搭載された車両用内燃機関(ディーゼルエンジン)の噴射システム全体を示す図である。
図示されるように、燃料タンク2から汲み上げられた燃料は、高圧燃料ポンプ4により加圧され高圧状態でコモンレール6(蓄圧容器)に供給される。コモンレール6は、高圧燃料ポンプ4から供給される燃料を高圧状態で蓄え、高圧燃料通路8を介してピエゾインジェクタ10に供給する。ピエゾインジェクタ10は、低圧燃料通路12とも接続されており、低圧燃料通路12を介して燃料タンク2に燃料を戻すことが可能となっている。
制御装置20,60は、後述するドライバユニット20及び電子制御装置(ECU60)を備えて構成され、マイクロコンピュータやメモリ等を有するECU60は、内燃機関の出力の制御を行なう。この制御に際しては、ECU60は、コモンレール6内の燃圧を検出する燃圧センサ14の検出結果や、内燃機関のクランク軸の回転角度を検出するクランク角センサ16の検出結果、ユーザによるアクセルペダルの操作量を検出するアクセルセンサ18等、各種センサの検出結果を取り込み、これら検出結果を参照する。
図2に、ピエゾインジェクタ10の構成を示す。
ピエゾインジェクタ10は、複数の部材からなる弁ボデー30a,30b,30c,30dを備え、弁ボデー30dの先端部には、弁ボデー30dの内部とピエゾインジェクタ10の外部とを連通させる噴孔32が形成されている。そして、弁ボデー30d内部には、弁体としてのニードル34、ニードルストッパ36及びバランスピストン38が先端部側から順に配置され、弁ボデー30dの内壁に沿ってその軸方向に変位可能に収納されている。ニードル34と弁ボデー30dの内壁とによって区画形成されるニードル室35と、バランスピストン38の背面側のバランス室39とには、上記高圧燃料通路8から高圧燃料が供給される。
ニードルストッパ36のうち噴孔32の反対側(以下、後方側と呼ぶ)の面と弁ボデー30cの内壁とで形成される背圧室41は、上記低圧燃料通路12と連通しており、背圧室41の低圧燃料は低圧燃料通路12へ排出される。背圧室41には、スプリング40が設けられており、これにより、ニードルストッパ36は、弁ボデー30cの噴孔32側(以下、先端側と呼ぶ)へ押されている。
一方、ニードルストッパ36のうち噴孔32側の面は、弁ボデー30cの内壁とともに第1油密室42を形成している。第1油密室42は、伝達通路44を介して、バランスピストン38よりも噴孔32の反対側に位置する第2油密室46と接続されている。これら第1油密室42、伝達通路44、第2油密室46には、動力を伝達する媒体としての燃料が充填されている。
第2油密室46は、ピエゾピストン48のうち弁ボデー30bの噴孔32側の面と弁ボデー30bの内壁とによって区画形成される空間である。ピエゾピストン48は、その内部に逆止弁50を備えており、低圧燃料通路12から第2油密室46への燃料の供給が可能となっている。また、ピエゾピストン48は、その後方側においてピエゾ素子52と接続されている。
上記ピエゾ素子52は、複数積層されて積層体(ピエゾスタック)を構成しており、これが逆圧電効果により伸縮することによりアクチュエータとして機能する。具体的には、ピエゾ素子52は、容量性の負荷であり、充電されることで伸長し、放電されることで縮小する。ちなみに、本実施形態にかかるピエゾ素子52は、PZT等の圧電材料の圧電素子を利用したものである。
ニードル34を開弁方向に付勢する力には、ニードル室35内の高圧燃料がニードル34を押す力F1、及び第1油密室42内の高圧燃料がニードルストッパ36を後方側に押す力F2がある。一方、ニードル34を閉弁方向に付勢する力には、スプリング40の弾性力G1、背圧室41の低圧燃料がニードルストッパ36を先端側に押す力G2、及びバランス室39内の高圧燃料がバランスピストン38の背面を先端側に押す力G3がある。
そして、ピエゾ素子52に通電が開始されると、ピエゾ素子52の伸長に伴い、ピエゾピストン48が弁ボデー30aの先端方向に変位する。これにより、第2油密室46、伝達通路44及び第1油密室42内の燃圧が上昇する。
すると、先述したニードル34を開弁方向に付勢する力(開弁力F1,F2)が上昇して、閉弁方向に付勢する力(閉弁力G1〜G3)よりも大きくなる。その結果、ニードル34が弁ボデー30dの後方側に変位して開弁作動を開始する。つまり、ニードル34の着座面34aが弁ボデー30dのシート面30eから離れてニードル34がリフトアップする。これにより、弁ボデー30dの内部の高圧燃料が噴孔32を介して外部に噴射される。
一方、ピエゾ素子52の通電後にこれを放電させると、ピエゾ素子52の縮小に伴い、ピエゾピストン48が弁ボデー30aの後方側に変位するため、第2油密室46、伝達通路44及び第1油密室42内の燃圧が低下する。
すると、開弁力F1,F2が低下して閉弁力G1〜G3よりも小さくなる。その結果、ニードル34が弁ボデー30dの噴孔32側に変位し、閉弁作動を開始する。つまり、ニードル34がリフトダウンしてニードル34の着座面34aが弁ボデー30dのシート面30eに着座する。これにより、燃料噴射が終了する。
要するに、ピエゾ素子52の変位量は、第2油密室46、伝達通路44及び第1油密室42の燃料を介して、バランスピストン38、ニードルストッパ36及びニードル34に伝達される。よって、ピエゾ素子52が伸長変位すれば、その伸長量に比例した量だけニードル34がリフトアップし、ピエゾ素子52が縮小変位すれば、その縮小量に比例した量だけニードル34がリフトダウンする。
このピエゾインジェクタ10では、ピエゾ素子52の変位量に応じて、ニードル34のボデー30の後方への変位量であるリフト量が変化する。なお、リフト量はピエゾ素子52の変位量に比例する。このため、ピエゾインジェクタ10の閉弁に対応するリフト量ゼロから最大のリフト量であるフルリフト量までの間で、リフト量を任意に制御することができる。
すなわち、例えばピエゾ素子52の通電によりその電気的な状態量(例えばピエゾ素子52の電極間の電圧(ピエゾ電圧))を操作する際に、同状態量を一定とする期間を設けると、ニードル34は中間のリフト量で停滞する。このため、その後通電制御を再開することで2段階のリフト量を有するリフト制御が可能となる。このように、ピエゾインジェクタ10を用いることで、リフト量を自由に制御することができるために、燃料噴射量のみならず1回の燃料噴射における燃料噴射率波形をも自由に制御することが可能となる。ちなみに、ここで燃料噴射率とは、ピエゾインジェクタ10から噴射される単位時間当たりの燃料量を意味する。
図3に、ピエゾ素子52の駆動回路として機能するドライバユニット20の構成を示す。
図示されるように、バッテリBからドライバユニット20に供給される電力は、まず昇圧回路であるDC/DCコンバータ21に供給される。DC/DCコンバータ21は、バッテリBの電圧(例えば「12V」)を、ピエゾ素子52を充電するための高電圧(例えば「200〜300V」)に昇圧する。
DC/DCコンバータ21の昇圧電圧はコンデンサ22に印加される。コンデンサ22は、その一方の端子がDC/DCコンバータ21側に接続され、また他方の端子が接地されている。そして、DC/DCコンバータ21の昇圧電圧がコンデンサ22に印加されると、コンデンサ22はピエゾ素子52に供給するための電荷を蓄える。
コンデンサ22のうちの高電位となる端子側、すなわち、DC/DCコンバータ21側は、充電スイッチ23と充放電コイル24との直列接続体を介して、ピエゾ素子52の高電位となる端子側に接続されている。そして、ピエゾ素子52の低電位となる端子側は、接地されている。充電スイッチ23と充放電コイル24との間には、放電スイッチ25の一方の端子が接続されており、放電スイッチ25の他方の端子は、接地されている。
放電スイッチ25には、接地側からコンデンサ22及び充放電コイル24間側に向かう方向を順方向とする態様にて、ダイオード26が並列接続されている。このダイオード26は、コンデンサ22、充電スイッチ23、充放電コイル24と共に、ピエゾ素子52を充電するチョッパ回路を構成するものであり、フリーホイーリングダイオードとして機能する。
一方、充電スイッチ23には、放電スイッチ25側からコンデンサ22側へと向かう方向を順方向とする態様にて、ダイオード27が並列接続されている。このダイオード27は、コンデンサ22、充放電コイル24、放電スイッチ25と共に、ピエゾ素子52の電荷を放電するチョッパ回路を構成するものであり、フリーホイーリングダイオードとして機能する。
そして、検出部29により検出された電流値はECU60に入力される。また、上記構成の駆動回路は、コントローラ28により駆動され、コントローラ28はECU60により制御される。詳しくは、ECU60では、内燃機関の運転状態等を検出する各種センサの検出値が入力される。また、上記回路によりピエゾ素子52に印加される電流値は検出部29により検出されてECU60に入力される。ECU60は、これらの検出値に基づきピエゾインジェクタ10の噴射を指令する駆動パルス信号を生成し、コントローラ28に出力する。
コントローラ28では、駆動パルス信号による噴射指令に応じてピエゾ素子52を伸縮させるようピエゾ素子52に駆動電力を印加する。具体的には、コントローラ28(電圧計測手段)は、ノードN1を介して検出されるピエゾ素子52の電圧(ピエゾ電圧)、ノードN2を介して検出されるピエゾ素子52の電流に基づき、充電スイッチ23や放電スイッチ25を操作する。また、この駆動パルス信号に基づき、充電スイッチ23や放電スイッチ25を操作する。駆動パルス信号に応じたこれら各操作は、図4に示す態様にて行なわれる。
図4(a)に駆動パルス信号の出力態様の推移を示し、また、図4(b)に充電スイッチ23の操作態様の推移を示し、図4(c)に放電スイッチ25の操作態様の推移を示し、図4(d)にピエゾ素子52を介して流れる電流(操作電流)の推移を示し、図4(e)にピエゾ素子52の操作電圧の推移を示す。
図示されるように、駆動パルス信号は、論理値が「H」であるパルスオン期間において燃料を噴射させるように指令する信号であり、この論理値「H」の期間を駆動パルス幅tq(ms)と呼ぶ。そして、ピエゾインジェクタ10が噴孔32を1回開閉させることにより噴射される燃料の噴射量Q(mm3/st)は、駆動パルス幅tq及びニードル34のリフト量により制御されることとなる。つまり、駆動パルス幅tqを長くするほど又はリフト量を大きくするほど、噴射量Qは多くなる。
また、駆動パルス信号のパルスが立ち上がって噴射が指令されると、充電スイッチ23のオン・オフ操作によるチョッパ制御により、操作電流を増減させつつピエゾ素子52の充電がなされる。具体的には、充電スイッチ23がオン操作されることによって、コンデンサ22、充電スイッチ23、充放電コイル24、ピエゾ素子52からなる閉ループ回路が形成される。これにより、コンデンサ22の電荷がピエゾ素子52に充電される。このとき、ピエゾ素子52を介して流れる電流量が増加する。一方、充電スイッチ23のオン操作の後、充電スイッチ23がオフ操作されることで、充放電コイル24、ピエゾ素子52、ダイオード26からなる閉ループ回路が形成される。これにより、充放電コイル24のフライホイールエネルギが、ピエゾ素子52に充電される。このとき、ピエゾ素子52を介して流れる電流量が減少する。
上記態様にて充電スイッチ23が操作される降圧チョッパ制御が行なわれることで、ピエゾ素子52が充電され、ピエゾ素子52の高電位となる端子側の電位が上昇する。
一方、駆動パルス信号のパルスが立ち下がって噴射停止が指令されると、放電スイッチ25のオン・オフ操作によるチョッパ制御により、操作電流を増減させつつピエゾ素子52の放電がなされる。具体的には、放電スイッチ25がオン操作されることで、放電スイッチ25、充放電コイル24、ピエゾ素子52によって閉ループ回路が形成される。これにより、ピエゾ素子52が放電される。このとき、ピエゾ素子52を介して流れる電流量が増加する。
更に、放電スイッチ25のオン操作の後、放電スイッチ25がオフ操作されることで、コンデンサ22、ダイオード27、充放電コイル24、ピエゾ素子52によって閉ループ回路が形成される。これにより、充放電コイル24のフライホイールエネルギがコンデンサ22に回収される。
上記態様にて放電スイッチ25が操作される昇圧チョッパ制御が行なわれることで、ピエゾ素子52が放電され、ピエゾ素子52の高電位となる端子側の電位が低下する。
ところで、ピエゾ素子52には温度特性があり、充電量が同じであっても高温であるほど伸長変位量が少なくなる。よって、ピエゾ素子52の環境温度に応じてピエゾ素子52への充電量とピエゾ素子52の変位量との関係が変化する。また、ピエゾインジェクタ10の各部(例えば第2油密室46、伝達通路44及び第1油密室42等)の形状に機差ばらつきが生じることに起因して、前記充電量と変位量との関係がばらつく。また、例えばシート面30eが磨耗する等の経年劣化に起因して、前記充電量と変位量との関係がばらつく。
つまり、上記各種要因によりピエゾ素子52の変位量にばらつきが生じ、ひいてはニードルリフト量もばらつくことが懸念される。そのため、ニードルリフト量により制御される噴射量Qが要求噴射量に対してばらついてしまい、噴射量を高精度で制御できなくなることが懸念される。
この懸念に対し本実施形態では、要求噴射量に対する目標ニードルリフト量を算出し、目標ニードルリフト量にするための充電量(具体的には後述するピエゾ素子のピーク値Vp)となるようドライバユニット20を作動させて充電制御を行う。そして、充電量に対する実際のニードルリフト量(実リフト量)を検出し、実リフト量が目標リフト量に近づくよう、両リフト量の偏差に基づき充電量(ピエゾ電圧のピーク電圧Vp)をフィードバック制御する。
ここで、従来では実リフト量の検出手段がなかったため、上記フィードバック制御の実現は極めて困難であった。これに対し本実施形態では、以下の手法により実リフト量の検出を可能にし、ひいては上記フィードバック制御を可能にしている。以下、実リフト量の検出手法について、図5を用いて説明する。
図5(a)は、ピエゾ素子52を流れる操作電流(図4(d)に相当)の時間変化を示す。図5(b)は、駆動電流に伴い変化するピエゾ素子52の電極間の電圧(ピエゾ電圧)の時間変化を示す。図5(c)は噴射率の時間変化を示し、図5(d)はニードルリフト量の時間変化を示す。なお、ピエゾ素子52の伸長量とニードルリフト量とは比例関係にあるため、図5(d)はピエゾ伸長量を示しているとも言える。
まず、t1時点にて操作電流を流して充電を開始すると、ピエゾ電圧が上昇を開始する(図5(a)(b)参照)。そして、先述した開弁力F1,F2が閉弁力G1〜G3よりも大きくなった時点t2で、ニードル34は開弁作動を開始する(図5(d)参照)。その後、充電終了時点t3にてピエゾ電圧の上昇は停止し、その後のt4時点でニードル34の開弁作動も停止する。
その後、t5時点にて操作電流を流して放電を開始すると、ピエゾ電圧が下降し始めるとともに、ニードル34の閉弁作動も開始される。その後、放電終了時点t6にてピエゾ電圧の下降は停止し、その後のt7時点でニードル34の閉弁作動も停止する。なお、図5(c)に示す噴射率は、ニードルリフト量の変化に追従して、応答遅れをもって変化する。
このような充放電に伴い変化するピエゾ電圧の波形中に、ニードル34の閉弁タイミングt7と同じタイミングで僅かに電圧上昇P1が生じていることを本発明者は見出した。したがって、この電圧上昇P1が生じるタイミング(圧電ピークタイミングt7、電圧上昇発生時期)を検出すれば、閉弁作動が完了したタイミングt7を把握することができる。そして、閉弁作動を開始したタイミングは放電開始時点t5であるため、t5からt7の時間に相当するニードル下降時間T10(弁体下降時間)を取得できる。そして、図6(a)に示すようにニードルリフト量と下降時間T10とは比例関係にあるため、算出した下降時間T10からニードルリフト量を取得できる。
次に、ニードル閉弁タイミングt7と同じタイミングでピエゾ電圧の波形中に電圧上昇P1が生じる理由を以下に説明する。ニードル34がシート面30eに着座して閉弁作動を完了する時点t7で、ニードル34がシート面30eから反力を受ける。するとその反力は、第1油密室42等の燃料を介してピエゾ素子52に伝達され、その結果、ピエゾ素子52の電極間には圧電効果により電荷が生じ、ピエゾ電圧に変化が生じる。この変化が上記電圧上昇P1である。つまり、放電が終了してピエゾ電圧の下降が停止して一定になっている期間中、閉弁作動が完了したタイミングt7でピエゾ電圧は一時的に僅かに上昇して電圧上昇P1が生じる。
以上の知見を鑑み、目標ニードルリフト量にするための充電量(ピーク電圧Vp)となるよう充電制御を行う。ここで、図6(b)に示すようにピーク電圧Vpとニードルリフト量とは比例関係にあるため、本実施形態では目標ニードルリフト量に対応する目標ピーク電圧Vptrgを設定し、その目標ピーク電圧Vptrgを、閉弁作動完了タイミングt7から算出されるニードル下降時間T10に基づき補正する。つまり、充電量に対する実際のニードルリフト量(実リフト量)を検出し、実リフト量が目標リフト量に近づくよう、両リフト量の偏差に基づき充電量(ピエゾ電圧のピーク値Vp)をフィードバック制御する。
次に、目標ピーク電圧Vptrg及び目標下降時間T10trgの算出手順について図7を用いて説明する。図7の処理は、コントローラ28により実行されるものであるが、その一部をECU60が実行するようにしてもよい。
先ず、ステップS10において、エンジン運転状態に基づき要求噴射量Qを算出する。具体的には、クランク角センサ16の検出値から算出されるエンジンの出力軸の回転速度(エンジン回転速度NE)、及びアクセルセンサ18の検出値等から算出されるエンジン負荷に基づき要求噴射量Qを算出する。
続くステップS11では、燃圧センサ14の検出値から算出されるコモンレール6内の燃圧(レール圧Pc)を読み取る。続くステップS12では、ステップS10で算出した要求噴射量Q、及びステップS11で読み取ったレール圧Pcに基づき、先述した目標ピーク電圧Vptrg及び目標ニードル下降時間T10trgを算出する。
具体的には、要求噴射量Q及びレール圧Pcに対する目標ピーク電圧Vptrgの最適値を予め試験等により設定しておき、その設定した目標ピーク電圧Vptrgを、要求噴射量Q及びレール圧Pcに対応づけて作成したマップM1を、ECU60等が有するメモリ(記憶手段)に予め記憶させておく。そして、ステップS10,S11での要求噴射量Q及びレール圧Pcに対応する目標ピーク電圧Vptrgを、前記マップM1を参照して算出する。また、噴射量とレール圧が決まればニードル下降時間T10も一意的に決まるはずであるため、要求噴射量Q及びレール圧Pcに基づき目標ニードル下降時間T10trgを算出する。なお、噴射量及びレール圧と目標ニードル下降時間T10trgとの関係は、予め試験により取得しておきマップ等により記憶させておくことが望ましい。
続くステップS13(充電量制御手段)では、ステップS12で算出した目標ピーク電圧Vptrgに基づき充電制御する。具体的には、図5(b)に示すt3時点でのピーク電圧Vpが目標ピーク電圧Vptrgとなるよう、図4(b)に示すように充電スイッチ23を制御(充電制御)する。
ちなみに、充電初期におけるピエゾ電圧の上昇(図5(b)のt1〜t3参照)には、充電による上昇分(充電分)と圧電効果による上昇分(圧電分)とが含まれていると言える(圧電分については第2実施形態にて詳述)。そして図4(e)のt1〜t3では、充電分及び圧電分のうち充電分のみを示している。
上記充電制御では、図4(b)に示すように、複数回に亘って充電スイッチ23のオンとオフを切り替えることでピエゾ電圧を昇圧させているが、最後に流す電流の通電時間Ton(充電スイッチ23のオン時間)を下降時間T10に基づき制御することで、ピーク電圧Vpが目標ピーク電圧Vptrgとなるよう充電制御する。
続くステップS14(電圧上昇検出手段)では、ノードN1を介して検出されるピエゾ素子52の電圧(ピエゾ電圧)の変化(波形)に基づき、圧電ピークタイミング(ニードル閉弁タイミングt7)を検出する。このピエゾ電圧の波形は、ステップS13に基づき実行された充電制御の後に実行された放電制御に伴い生じた波形である。
具体的には、放電終了時点t6以降の所定期間W1において、予め設定した閾値を超えた時点を閉弁タイミングt7として検出すればよい。或いは、前記所定期間W1において、ピークホールド回路によりピーク値の出現タイミングを検出し、その出現タイミングを閉弁タイミングt7として検出すればよい。
続くステップS15(下降時間算出手段)では、ステップS14にて検出した圧電ピークタイミングt7に基づき、先述したニードル下降時間T10を算出する。具体的には、ステップS14にて検出されたニードル閉弁タイミングt7及び放電開始時点t5に基づき、放電開始時点t5から閉弁タイミングt7までの所要時間を下降時間T10として算出する。
続くステップS16では、ステップS15にて算出した下降時間T10とステップS12で算出した目標下降時間T10trgとの偏差を算出し、当該偏差が、ゼロ或いは所定値以下となっているか否かを判定する。なお、目標下降時間T10trgは、目標ニードルリフト量又は目標ピーク電圧Vptrgに対応する時間である(図6(a)(b)参照)。
そして、T10とT10trgとの偏差がゼロでない又は所定値以下でなければ(S16:NO)、続くステップS17において、前記偏差に基づき目標ピーク電圧Vptrgを補正する。具体的には、(T10−T10trg)≧0であれば、充電量を減少させてリフト量を小さくすべく、目標ピーク電圧Vptrgの値を所定量ΔVp(例えば1V)だけ小さくする。一方、(T10−T10trg)<0であれば、充電量を増大させてリフト量を大きくすべく、目標ピーク電圧Vptrgの値を所定量ΔVpだけ大きくする。
そして、ステップS17にて目標ピーク電圧Vptrgを補正した後、ステップS13〜S15の処理を繰り返し実行し、その結果、T10とT10trgとの偏差がゼロ又は所定値以下になれば(S16:YES)、ステップS18に進む。
ステップS18では、現在のピーク電圧Vp又は目標ピーク電圧Vptrgに基づき、ステップS12で用いるマップM1中の目標ピーク電圧Vptrgの値を補正(フィードバック補正)する。また、その時のレール圧Pcに応じてピーク電圧Vpは異なる値となる。具体的には、図6(c)に示すようにレール圧Pcの上昇に比例してピーク電圧Vpも上昇する。そこで本実施形態では、下降時間T10に加えてレール圧Pcにも基づき目標ピーク電圧Vptrgの値を補正する。
要するに、下降時間T10とピーク電圧Vpとは相関がある(比例関係にある)ことは図6(b)を用いて先述した通りである。よって、マップM1中の目標ピーク電圧Vptrgに相当する下降時間(目標下降時間T10trg)を前記相関から算出することができ、その目標下降時間T10trgがステップS15にて算出した下降時間T10(実下降時間)に近づくよう、両下降時間T10、T10trgの偏差に基づきマップM1中の目標ピーク電圧Vptrgを補正することで、充電量(ピーク電圧Vp)をフィードバック制御する。
或いは、マップM1中に、最後に流す電流の通電時間Tonを目標ピーク電圧Vptrgと併せて記憶させておき、その通電時間Tonの長さを、目標下降時間T10trg及び実下降時間T10の偏差に基づき補正する。
以上により、本実施形態によれば、放電終了時点t6以降の所定期間W1におけるピエゾ電圧波形に基づき、圧電ピークタイミング(ニードル閉弁タイミングt7)を検出し、検出した圧電ピークタイミングt7に基づきニードル下降時間T10を算出する。そして、算出された下降時間T10に基づき、充電期間t1〜t3におけるピーク電圧Vpを制御することで、ニードル34のリフト量を制御する。そのため、ニードル34のリフト量を高精度で制御でき、ひいては噴孔32からの噴射量Qを高精度で制御できる。
例えば、図5(d)中の実線に示す実際のニードルリフト量が、図5(d)中の一点鎖線L1に示す目標ニードルリフト量に比べて低くなっている場合には、実際の下降時間T10は目標下降時間よりも短くなるはずである。そこで本実施形態では、実際の下降時間T10と目標下降時間との偏差に基づきピーク電圧Vp(充電量)を補正するので、ニードル34のリフト量を高精度で制御できる。
また、最後に流す電流の通電時間Tonの長さを、目標下降時間及び実下降時間T10の偏差に基づき補正することで、実ピーク電圧Vpを目標ピーク電圧Vptrgに近づけることができ、ひいては実リフト量を目標リフト量に近づけることができる。
ここで、噴孔32から燃焼室へ燃料を噴射するにあたり、噴射開始直後において噴射率が上昇し始めたときの噴射率変化は燃焼状態に大きな影響を与える。これに対し、噴射率がある程度上昇した後の噴射率変化については燃焼状態へ与える影響が小さくなる。この点を鑑みた本実施形態では、複数回の最後に流す電流の通電時間Tonの長さを、検出したニードル下降時間T10に基づき補正することでピエゾ素子52への充電量をフィードバック制御するので、燃焼状態に与える影響を最小限にしつつ噴射量Qを高精度で制御できる。
(第2実施形態)
上記実施形態では、放電終了時点t6以降のピエゾ電圧の波形中に、ニードル閉弁タイミングt7と同じタイミングで僅かに電圧上昇P1が生じていることに着目して、ニードル下降時間T10を算出し、算出した下降時間T10に基づきピエゾ素子52へのピーク電圧Vp(充電量)をフィードバック制御している。
これに対し本実施形態では、図8に示すように、充電終了時点t3以降にピエゾ電圧の低下が終了したタイミングと、ニードル34の開弁作動が完了した時点t4(つまりニードルリフト量の上昇が停止した時点)とが一致することに着目して、ニードル上昇時間T20(弁体上昇時間)を算出し、算出した上昇時間T20に基づきピエゾ素子52へのピーク電圧Vp(充電量)をフィードバック制御している。なお、ピエゾインジェクタ10及びその制御装置20,60のハード構成については、上記第1実施形態と同じである。
次に、目標ピーク電圧Vptrg及び目標上昇時間T20trgの算出手順について図9を用いて説明する。なお、以下の説明では図7に示す第1実施形態との違いを中心として説明し、図9の処理のうち図7と同じ処理については、同一符号を付してその説明を援用する。
先ず、ステップS10で算出した要求噴射量Q、及びステップS11で読み取ったレール圧Pcに基づき、マップM1を用いて目標ピーク電圧Vptrg及び目標上昇時間T20trgを算出する(S120)。次に、ピーク電圧Vpが目標ピーク電圧Vptrgとなるよう充電制御する(S13)。なお、上記ステップS120において、噴射量とレール圧が決まればニードル上昇時間T20も一意的に決まるはずであるため、要求噴射量Q及びレール圧Pcに基づき目標ニードル上昇時間T20trgを算出する。なお、噴射量及びレール圧と目標ニードル上昇時間T20trgとの関係は、予め試験により取得しておきマップ等により記憶させておくことが望ましい。
次に、ステップS140(下降状態検出手段)において、充電終了時点t3以降にピエゾ電圧の低下が終了したタイミング、つまりピエゾ電圧波形の変極点P2が出現するタイミング(ニードル開弁作動完了時点t4)を検出する。このピエゾ電圧波形は、ステップS13に基づき実行された充電制御の直後に実行された放電制御に伴い生じた波形である。具体的には、充電終了時点t3以降に、ピエゾ電圧波形の微分値が最初にゼロとなった時点を変極点P2の出現タイミングt4(所定時期)として検出すればよい。なお、充電終了時点t3以降に、ピエゾ電圧波形の微分値が最初に閾値を下回って低下した時点を、変極点P2の出現タイミングt4(所定時期)として検出してもよい。
続くステップS150で(上昇時間算出手段)は、ステップS140にて検出した変極点P2の出現タイミングt4に基づき、先述したニードル上昇時間T20を算出する。具体的には、ステップS140にて検出された出現タイミングt4(開弁作動完了時点)及び充電開始時点t1に基づき、充電開始時点t1から開弁作動完了時点t4までの所要時間を上昇時間T20として算出する。
続くステップS160では、ステップS150にて算出した上昇時間T20とステップS120で算出した目標上昇時間T20trgとの偏差を算出し、当該偏差が、ゼロ或いは所定値以下となっているか否かを判定する。なお、目標上昇時間T20trgは、目標ニードルリフト量又は目標ピーク電圧Vptrgに対応する時間である(図6(a)(b)参照)。
そして、T20とT20trgとの偏差がゼロでない又は所定値以下でなければ(S160:NO)、続くステップS170において、前記偏差に基づき目標ピーク電圧Vptrgを補正する。具体的には、(T20−T20trg)≧0であれば、充電量を減少させてリフト量を小さくすべく、目標ピーク電圧Vptrgの値を所定量ΔVp(例えば1V)だけ小さくする。一方、(T20−T20trg)<0であれば、充電量を増大させてリフト量を大きくすべく、目標ピーク電圧Vptrgの値を所定量ΔVpだけ大きくする。
そして、ステップS170にて目標ピーク電圧Vptrgを補正した後、ステップS13〜S150の処理を繰り返し実行し、その結果、T20とT20trgとの偏差がゼロ又は所定値以下になれば(S160:YES)、ステップS180に進む。
ステップS180では、現在のピーク電圧Vp又は目標ピーク電圧Vptrgに基づき、ステップS120で用いるマップM1中の目標ピーク電圧Vptrgの値を補正(フィードバック補正)する。また、その時のレール圧Pcに応じてピーク電圧Vpは異なる値となる(図6(c)参照)。そこで本実施形態では、上昇時間T20に加えてレール圧Pcにも基づき目標ピーク電圧Vptrgの値を補正する。
要するに、図6(a)に示すように上昇時間T20とニードルリフト量とは相関(比例関係)があり、図6(b)に示すように、上昇時間T20とピーク電圧Vpとは相関(比例関係)がある。よって、マップM1中の目標ピーク電圧Vptrgに相当する上昇時間(目標上昇時間T20trg)を前記相関から算出することができ、その目標上昇時間T20trgがステップS150にて算出した上昇時間T20(実上昇時間)に近づくよう、両上昇時間T20、T20trgの偏差に基づきマップM1中の目標ピーク電圧Vptrgを補正することで、充電量(ピーク電圧Vp)をフィードバック制御する。
或いは、マップM1中に、最後に流す電流の通電時間Tonを目標ピーク電圧Vptrgと併せて記憶させておき、その通電時間Tonの長さを、目標上昇時間T20trg及び実上昇時間T20の偏差に基づき補正する。
以上により、本実施形態によれば、充電終了時点t3直後のピエゾ電圧波形に基づき変極点P2の出現タイミングt4(開弁作動完了時点)を検出し、検出した出現タイミングt4に基づきニードル上昇時間T20を算出する。そして、算出された上昇時間T20に基づき、充電期間t1〜t3におけるピーク電圧Vpを制御することで、ニードル34のリフト量を制御する。そのため、ニードル34のリフト量を高精度で制御でき、ひいては噴孔32からの噴射量Qを高精度で制御できる。
例えば、図5(d)中の実線に示す実際のニードルリフト量が、図5(d)中の一点鎖線L1に示す目標ニードルリフト量に比べて低くなっている場合には、実際の下降時間T10は目標下降時間よりも短くなるはずである。そこで本実施形態では、実際の下降時間T10と目標下降時間との偏差に基づきピーク電圧Vp(充電量)を補正するので、ニードル34のリフト量を高精度で制御できる。
また、最後に流す電流の通電時間Tonの長さを、目標上昇時間及び実上昇時間T20の偏差に基づき補正することで、実ピーク電圧Vpを目標ピーク電圧Vptrgに近づけることができ、ひいては実リフト量を目標リフト量に近づけることができる。そして、複数回の最後に流す電流の通電時間Tonの長さを、検出したニードル下降時間T10に基づき補正することでピエゾ素子52への充電量をフィードバック制御するので、上記第1実施形態と同様にして、燃焼状態に与える影響を最小限にしつつ噴射量Qを高精度で制御できる。
(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
・上記各実施形態では、第1油密室42等の燃料を介してピエゾ素子52の変位量をニードル34に伝達させる油密式の直動インジェクタに、本発明の制御装置を適用させている。これに対し、ピエゾ素子52とニードル34とを連結部材により機械的に連結し、連結部材を介して前記変位量をニードル34に伝達させる機械式の直動インジェクタに、本発明の制御装置を適用させてもよい。
・上記各実施形態では、最後に流す電流の通電時間Tonの長さを調整することで、ピーク電圧Vp(充電量)を調整(フィードバック補正)し、ひいては実リフト量を目標リフト量に近づけさせている。このように最後通電時間Tonの長さを調整することに替え、例えば複数回電流を流す際の通電回数を調整する等の手段により充電時間t1〜t3を調整することで、ピーク電圧Vp(充電量)を調整するようにしてもよい。
10…直動式ピエゾインジェクタ、28…コントローラ(電圧計測手段、制御装置)、30a,30b,30c,30d…ボデー、32…噴孔、34…ニードル(弁体)、52…ピエゾ素子、60…ECU(制御装置)、S13…充電量制御手段、S15…下降時間算出手段、S14…電圧上昇検出手段、S140…下降上体検出手段、S150…上昇時間算出手段、t4…変極点P2の出現タイミング(所定時期)、t7…圧電ピークタイミング(電圧上昇P1の発生時期)、T10…ニードル下降時間(弁体下降時間)、T20…ニードル上昇時間(弁体上昇時間)。

Claims (6)

  1. 燃料を噴射する噴孔が形成されたボデー、前記ボデーに収容されて前記噴孔を開閉する弁体、及び充電量又は放電量の大きさに応じて変位するピエゾ素子を備え、前記ピエゾ素子の変位量により前記弁体を開閉駆動させる直動式燃料噴射弁を制御対象とした制御装置において、
    前記ピエゾ素子の電極間の電圧を計測する電圧計測手段と、
    前記電圧計測手段により計測された電圧の波形中に、前記弁体の閉弁作動が完了したことに伴い生じた電圧上昇の発生時期を検出する電圧上昇検出手段と、
    前記ピエゾ素子の放電開始から前記閉弁作動の完了までの弁体下降時間を、前記電圧上昇検出手段により検出された発生時期に基づき算出する下降時間算出手段と、
    前記下降時間算出手段により算出された弁体下降時間を加味して前記ピエゾ素子への充電量を制御することで、前記弁体の開弁リフト量を制御する充電量制御手段と、
    を備えることを特徴とする直動式燃料噴射弁の制御装置。
  2. 前記充電量制御手段は、前記ピエゾ素子へ複数回電流を流すことで前記電極間の電圧を徐々に上昇させて充電させるとともに、複数回の最後に流す電流の通電時間を前記弁体下降時間に基づき制御することで、前記ピエゾ素子への充電量を制御することを特徴とする請求項1に記載の直動式燃料噴射弁の制御装置。
  3. 前記電圧上昇検出手段は、前記電圧計測手段により計測された電圧が前記ピエゾ素子の放電終了後に所定の閾値を超えた時期を、前記電圧上昇の発生時期として検出することを特徴とする請求項1又は2に記載の直動式燃料噴射弁の制御装置。
  4. 燃料を噴射する噴孔が形成されたボデー、前記ボデーに収容されて前記噴孔を開閉する弁体、及び充電量又は放電量の大きさに応じて変位するピエゾ素子を備え、前記ピエゾ素子の変位量により前記弁体を開閉駆動させる直動式燃料噴射弁を制御対象とした制御装置において、
    前記ピエゾ素子の電極間の電圧を計測する電圧計測手段と、
    前記電圧計測手段により計測された電圧の波形において、前記ピエゾ素子への充電終了後にピエゾ電圧の下降速度が所定速度以下又はゼロになった所定時期を検出する下降状態検出手段と、
    前記ピエゾ素子への充電開始から前記弁体の開弁作動の完了までの弁体上昇時間を、前記下降状態検出手段により検出された所定時期に基づき算出する上昇時間算出手段と、
    前記上昇時間算出手段により算出された弁体上昇時間を加味して前記ピエゾ素子への充電量を制御することで、前記弁体の開弁リフト量を制御する充電量制御手段と、
    を備えることを特徴とする直動式燃料噴射弁の制御装置。
  5. 前記充電量制御手段は、前記ピエゾ素子へ複数回電流を流すことで前記電極間の電圧を徐々に上昇させて充電させるとともに、複数回の最後に流す電流の通電時間を前記弁体上昇時間に基づき制御することで、前記ピエゾ素子への充電量を制御することを特徴とする請求項4に記載の直動式燃料噴射弁の制御装置。
  6. 前記下降状態検出手段は、前記電圧計測手段により計測された電圧の微分値が前記ピエゾ素子の充電終了後に所定の閾値より低下した時期、又は前記微分値がゼロになった時期を、前記所定時期として検出することを特徴とする請求項4又は5に記載の直動式燃料噴射弁の制御装置。
JP2009131881A 2009-06-01 2009-06-01 直動式燃料噴射弁の制御装置 Expired - Fee Related JP4911197B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009131881A JP4911197B2 (ja) 2009-06-01 2009-06-01 直動式燃料噴射弁の制御装置
DE201010017093 DE102010017093A1 (de) 2009-06-01 2010-05-26 Steuervorrichtung für ein Kraftstoffdirekteinspritzventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131881A JP4911197B2 (ja) 2009-06-01 2009-06-01 直動式燃料噴射弁の制御装置

Publications (2)

Publication Number Publication Date
JP2010275987A JP2010275987A (ja) 2010-12-09
JP4911197B2 true JP4911197B2 (ja) 2012-04-04

Family

ID=43123132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131881A Expired - Fee Related JP4911197B2 (ja) 2009-06-01 2009-06-01 直動式燃料噴射弁の制御装置

Country Status (2)

Country Link
JP (1) JP4911197B2 (ja)
DE (1) DE102010017093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778875B1 (ko) 2013-04-12 2017-09-15 콘티넨탈 오토모티브 게엠베하 내연 엔진에 연료를 분사하는 방법 및 디바이스

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209965A1 (de) 2012-06-14 2013-12-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Ventils
DE102013207555B3 (de) 2013-04-25 2014-10-09 Continental Automotive Gmbh Verfahren zur Einspritzmengenadaption
EP2796703B1 (en) 2013-04-26 2016-07-20 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
WO2016093056A1 (ja) * 2014-12-08 2016-06-16 日立オートモティブシステムズ株式会社 内燃機関の燃料制御装置
DE102015201514A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verfahren zum Ermitteln eines charakteristischen Zeitpunktes eines Einspritzvor-gangs eines Kraftstoffinjektors
DE102016206476B3 (de) * 2016-04-18 2017-06-14 Continental Automotive Gmbh Verfahren zum Betreiben eines diesel-common-rail-piezobetriebenen Servoinjektors und Kraftfahrzeug
KR101816390B1 (ko) 2016-04-26 2018-01-08 현대자동차주식회사 인젝터의 미소 닫힘 시간 제어를 위한 인젝터 특성 보정 방법
JP6724804B2 (ja) * 2017-01-25 2020-07-15 株式会社デンソー 燃料噴射制御装置
JP6614201B2 (ja) * 2017-05-19 2019-12-04 株式会社デンソー 燃料噴射制御装置
JP7363590B2 (ja) * 2020-03-05 2023-10-18 株式会社デンソー 噴射制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882070A (ja) * 1981-11-11 1983-05-17 Nissan Motor Co Ltd デイ−ゼルエンジンの燃料噴射時間測定装置
JP4433598B2 (ja) * 1999-12-24 2010-03-17 株式会社デンソー コモンレール式燃料噴射装置
JP4168564B2 (ja) * 2000-02-01 2008-10-22 株式会社デンソー 燃料噴射装置
DE102004007798A1 (de) * 2004-02-18 2005-09-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen der Ladeflanken eines piezoelektrischen Aktors
JP4476950B2 (ja) * 2006-02-28 2010-06-09 株式会社日本自動車部品総合研究所 燃料噴射制御装置
JP4535032B2 (ja) * 2006-07-04 2010-09-01 株式会社デンソー 燃料噴射制御装置
JP4782718B2 (ja) * 2007-03-26 2011-09-28 株式会社日本自動車部品総合研究所 燃料噴射制御装置及び燃料噴射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778875B1 (ko) 2013-04-12 2017-09-15 콘티넨탈 오토모티브 게엠베하 내연 엔진에 연료를 분사하는 방법 및 디바이스

Also Published As

Publication number Publication date
DE102010017093A1 (de) 2010-12-23
JP2010275987A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
JP4911197B2 (ja) 直動式燃料噴射弁の制御装置
JP4782718B2 (ja) 燃料噴射制御装置及び燃料噴射装置
JP4582064B2 (ja) 燃料噴射制御装置
JP6462835B2 (ja) 燃料噴射装置の駆動装置
JP4535032B2 (ja) 燃料噴射制御装置
JP4839359B2 (ja) 噴射制御システム
JP4476950B2 (ja) 燃料噴射制御装置
JP2009057925A (ja) 内燃機関の噴射制御装置
JP2004282988A (ja) ピエゾアクチュエータ駆動回路
JP2009068494A5 (ja)
JP2007327408A (ja) 燃料噴射制御装置
JP4183376B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
JP2004076646A (ja) 燃料噴射制御装置
JP6203159B2 (ja) 燃料噴射装置
JP2017089437A (ja) 燃料噴射制御装置と燃料噴射システム
JP4604356B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
JP4302665B2 (ja) 燃料噴射制御方法、燃料噴射弁及び燃料噴射制御装置
JP4345226B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
JP4483822B2 (ja) 燃料噴射制御装置
JP4872947B2 (ja) 燃料噴射弁制御装置及び燃料噴射弁制御システム
JP4148124B2 (ja) 容量負荷素子の駆動装置
US11131264B2 (en) Fuel injection control device
JP6772913B2 (ja) 燃料噴射制御装置
JP2009197600A (ja) 燃料噴射弁制御装置及び燃料噴射弁制御システム
JP4803016B2 (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees