JP4908746B2 - Multilayer structure, piezoelectric actuator, and manufacturing method thereof - Google Patents
Multilayer structure, piezoelectric actuator, and manufacturing method thereof Download PDFInfo
- Publication number
- JP4908746B2 JP4908746B2 JP2004246142A JP2004246142A JP4908746B2 JP 4908746 B2 JP4908746 B2 JP 4908746B2 JP 2004246142 A JP2004246142 A JP 2004246142A JP 2004246142 A JP2004246142 A JP 2004246142A JP 4908746 B2 JP4908746 B2 JP 4908746B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode
- piezoelectric
- dielectric
- intermediate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 239000010410 layer Substances 0.000 claims description 316
- 239000000463 material Substances 0.000 claims description 56
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 54
- 239000000758 substrate Substances 0.000 claims description 47
- 229910052697 platinum Inorganic materials 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 26
- 238000000151 deposition Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 238000005507 spraying Methods 0.000 claims description 15
- 229910052741 iridium Inorganic materials 0.000 claims description 14
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 14
- 229910052715 tantalum Inorganic materials 0.000 claims description 14
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 14
- 239000011777 magnesium Substances 0.000 claims description 13
- 239000010955 niobium Substances 0.000 claims description 13
- 239000010948 rhodium Substances 0.000 claims description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 12
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 12
- 229910052758 niobium Inorganic materials 0.000 claims description 12
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 12
- 229910052762 osmium Inorganic materials 0.000 claims description 12
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 12
- 229910052702 rhenium Inorganic materials 0.000 claims description 12
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 12
- 229910052703 rhodium Inorganic materials 0.000 claims description 12
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052707 ruthenium Inorganic materials 0.000 claims description 12
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 11
- 239000003989 dielectric material Substances 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 239000012790 adhesive layer Substances 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- -1 Funiumu Chemical compound 0.000 claims 2
- 239000000443 aerosol Substances 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000004873 anchoring Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001540 jet deposition Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
本発明は、圧電ポンプ、圧電アクチュエータ、超音波トランスデューサ等に用いられる対向電極が設けられた積層構造体及びその製造方法に関する。 The present invention relates to a laminated structure provided with a counter electrode used for a piezoelectric pump, a piezoelectric actuator, an ultrasonic transducer and the like, and a method for manufacturing the same.
圧電材料等の誘電体と電極とを積層した積層構造体は、コンデンサや、圧電ポンプや、圧電アクチュエータや、超音波トランスデューサ等の様々な用途に利用されている。このような積層構造体としては、誘電体の両側に電極が形成された単層の構造体だけでなく、複数の誘電体と複数の電極とが交互に形成された複数層の構造体も用いられている。積層された複数の層を並列に接続することにより、サイズは小さくても、積層構造体全体としては電極間容量を大きくすることができるので、電気インピーダンスの上昇を抑えることができる。近年、MEMS(マイクロエレクトロメカニカルシステム)関連の機器の開発に伴い、このような積層構造体の微細化及び集積化がますます進んでいる。 A laminated structure in which a dielectric material such as a piezoelectric material and an electrode are laminated is used for various applications such as a capacitor, a piezoelectric pump, a piezoelectric actuator, and an ultrasonic transducer. As such a laminated structure, not only a single layer structure in which electrodes are formed on both sides of a dielectric, but also a multilayer structure in which a plurality of dielectrics and a plurality of electrodes are alternately formed is used. It has been. By connecting a plurality of stacked layers in parallel, even if the size is small, the capacitance between the electrodes can be increased as a whole of the stacked structure, so that an increase in electrical impedance can be suppressed. In recent years, along with the development of MEMS (microelectromechanical system) related devices, the miniaturization and integration of such a laminated structure has been further advanced.
ところで、誘電体に効率良く電圧を印加するためには、誘電体と電極とが密着していることが重要である。誘電体として圧電材料を用いた素子を作製する場合には、一般に、圧電材料との反応性が低い白金(Pt)が電極材料として用いられる。しかしながら、白金は圧電材料や基板等との密着性が低い。そこで、白金と下層の材料とを密着させるためにチタン(Ti)層をさらに設け、電極を2重構造にすることが行われている。 Incidentally, in order to efficiently apply a voltage to the dielectric, it is important that the dielectric and the electrode are in close contact. In the case of producing an element using a piezoelectric material as a dielectric, platinum (Pt) having a low reactivity with the piezoelectric material is generally used as an electrode material. However, platinum has low adhesion to piezoelectric materials and substrates. Therefore, a titanium (Ti) layer is further provided in order to bring platinum and the lower layer material into close contact, and the electrode is made to have a double structure.
しかしながら、素子の製造過程においては、一般に、圧電材料の焼成が行われるので、その際に、白金を透過してくる酸素によってチタン等の密着層が酸化してしまう。その結果、圧電材料と密着層との結合が弱くなり、電極が圧電材料から剥がれてしまう。また、圧電材料と電極材料との熱膨張率の違いによっても、電極が圧電材料から剥がれる場合がある。 However, since the piezoelectric material is generally baked during the manufacturing process of the element, the adhesion layer such as titanium is oxidized by oxygen that permeates platinum. As a result, the bond between the piezoelectric material and the adhesion layer becomes weak, and the electrode is peeled off from the piezoelectric material. In addition, the electrode may be peeled off from the piezoelectric material due to a difference in thermal expansion coefficient between the piezoelectric material and the electrode material.
また、特許文献1には、圧電膜/電極界面での剥離を防ぐ為に、電極膜を配置したSi基板上にガスデポジション法で圧電体膜を形成してなる積層構造電極において、電極膜が1種以上からなり、膜厚が0.15μmより厚いことを特徴とする積層構造電極が開示されている。特許文献1においては、白金、イリジウム(Ir)、タンタル(Ta)の3種の金属を積層した電極を、圧電膜の下部電極として用いている。即ち、白金層と、下層の基板との密着層としてのタンタル層との間に、酸素を透過し難いイリジウム層を挿入することにより、白金層を透過した酸素がタンタル層に侵入するのを防いでいる。
このような構造の電極は、圧電材料層が単層である構造体の下部電極として用いる場合には有効である。しかしながら、このような構造の電極を、複数の圧電材料層が積層化された積層構造体の内部電極として使用する場合には、電極の上層の圧電材料からだけでなく、電極の下層の圧電材料からも酸素が侵入してくるので、やはり、電極の剥がれが生じてしまう。
そこで、上記の点に鑑み、本発明は、電極が剥がれ難い積層構造体及びそのような積層構造体を含む圧電アクチュエータ、並びに、それらの製造方法を提供することを目的とする。 Therefore, in view of the above points, an object of the present invention is to provide a laminated structure in which an electrode is hardly peeled off, a piezoelectric actuator including such a laminated structure, and a method for manufacturing the same.
上記課題を解決するため、本発明の1つの観点に係る積層構造体は、少なくとも1つの中間電極と、少なくとも1つの中間電極を介して積層されている複数の誘電体層とを具備し、上記少なくとも1つの中間電極が、誘電体層上に形成された密着層と、密着層を介して誘電体層上に形成された導電層とを含み、密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる。 In order to solve the above-described problem, a multilayer structure according to one aspect of the present invention includes at least one intermediate electrode and a plurality of dielectric layers stacked via at least one intermediate electrode. It said at least one intermediate electrode comprises an adhesion layer formed on the dielectric layer, a dielectric layer a conductive layer formed on the via contact layer, adhesion layer, aluminum, Ha Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, a conductive layer, platinum, ruthenium, iridium, rhenium, osmium, and at least one material of the rhodium, or its oxide It consists of things.
また、本発明に係る圧電アクチュエータは、複数の圧電体層と、第1の中間電極と、第2の中間電極とを含み、複数の圧電体層と第1の中間電極と第2の中間電極とが、圧電体層、第1の中間電極、圧電体層、第2の中間電極の順に積層されている積層構造体と、積層構造体の第1の側面領域に配置された第1の側面電極と、積層構造体の第1の側面領域とは異なる第2の側面領域に配置された第2の側面電極とを具備し、第1及び第2の中間電極の各々が、圧電体層上に形成された密着層と、密着層を介して圧電体層上に形成された導電層とを含み、第1の中間電極が、第1の側面電極に接続されていると共に、第2の側面電極から絶縁されており、第2の中間電極が、第2の側面電極に接続されていると共に、第1の側面電極から絶縁されており、密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる。 The piezoelectric actuator according to the present invention includes a plurality of piezoelectric layers, a first intermediate electrode, and a second intermediate electrode, and the plurality of piezoelectric layers, the first intermediate electrode, and the second intermediate electrode. A laminated structure in which a piezoelectric layer, a first intermediate electrode, a piezoelectric layer, and a second intermediate electrode are laminated in this order, and a first side surface disposed in a first side region of the laminated structure comprising an electrode, a second side electrode disposed on a different second side regions and the first side surface area of the product layer structure, each of the first and second intermediate electrodes, the piezoelectric layer An adhesive layer formed on the conductive layer formed on the piezoelectric layer via the adhesive layer, the first intermediate electrode is connected to the first side electrode, and the second Insulated from the side electrode, the second intermediate electrode is connected to the second side electrode and insulated from the first side electrode And, the adhesion layer, aluminum, Ha Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, a conductive layer, platinum, ruthenium, iridium, rhenium, osmium, and And at least one material of rhodium or an oxide thereof.
本発明の第1の観点に係る積層構造体の製造方法は、支持基板上に、密着層を介して導電層を形成することにより、第1の電極を配置するステップ(a)と、誘電体材料の粉体を第1の電極に吹き付けて堆積させることにより、第1の電極上に誘電体層を配置するステップ(b)と、誘電体層上に、密着層を介して導電層を形成することにより、第2の電極を配置するステップ(c)と、誘電体材料の粉体を第2の電極に吹き付けて堆積させることにより、第2の電極上に誘電体層を配置するステップ(d)と、これらの誘電体層を熱処理するステップ(e)と、ステップ(e)の前又は後に、ステップ(d)において配置された誘電体層上に第3の電極を形成するステップ(f)とを具備し、密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる。 The manufacturing method of the laminated structure according to the first aspect of the present invention includes a step (a) of disposing a first electrode by forming a conductive layer on a support substrate via an adhesion layer, and a dielectric. (B) disposing a dielectric layer on the first electrode by depositing powder of the material on the first electrode, and forming a conductive layer on the dielectric layer via an adhesion layer A step (c) of disposing a second electrode, and a step of disposing a dielectric layer on the second electrode by spraying and depositing a powder of a dielectric material on the second electrode ( d), heat-treating these dielectric layers (e), and before or after step (e), forming a third electrode on the dielectric layer disposed in step (d) (f) ); and a, adhesion layer, aluminum, Ha Funiumu, Banaji Arm, magnesium, niobium, and an oxide of at least one material of the tantalum, a conductive layer, platinum, ruthenium, iridium, rhenium, osmium, and at least one material of the rhodium, or It consists of the oxide.
本発明の第2の観点に係る積層構造体の製造方法は、誘電体材料の粉体を支持基板に吹き付けて堆積させることにより、誘電体層を配置するステップ(a)と、誘電体層上に、密着層を介して導電層を形成することにより、第1の電極を配置するステップ(b)と、誘電体材料の粉体を第1の電極に吹き付けて堆積させることにより、第1の電極上に誘電体層を配置するステップ(c)と、これらの誘電体層を熱処理するステップ(d)と、ステップ(d)の前又は後に、ステップ(c)において配置された誘電体層上に第2の電極を形成するステップ(e)と、ステップ(a)において配置された誘電体層から支持基板を除去するステップ(f)とを具備し、密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる。 The method for manufacturing a laminated structure according to the second aspect of the present invention includes a step (a) of disposing a dielectric layer by spraying and depositing a powder of a dielectric material on a support substrate, and a step on the dielectric layer. In addition, the step (b) of disposing the first electrode by forming a conductive layer through the adhesion layer, and spraying and depositing the powder of the dielectric material on the first electrode, A step (c) of disposing a dielectric layer on the electrode; a step (d) of heat-treating these dielectric layers; and on the dielectric layer disposed in step (c) before or after step (d). in step (e) forming a second electrode, comprising a step (f) of removing the supporting substrate from the dielectric layer disposed in the step (a), the adhesion layer, aluminum, Ha Funiumu, vanadium , magnesium, niobium, 及 , An oxide of at least one material of the tantalum, a conductive layer, platinum, ruthenium, iridium, rhenium, osmium, and at least one material of the rhodium, or its oxide.
本発明に係る積層構造を有する圧電アクチュエータの製造方法は、圧電材料の粉体を支持基板に吹き付けて堆積させることにより、圧電体層を配置するステップ(a)と、圧電体層上に、密着層を介して導電層を形成することにより、第1の中間電極を配置するステップ(b)と、圧電材料の粉体を第1の中間電極に吹き付けて堆積させることにより、第1の中間電極上に圧電体層を配置するステップ(c)と、圧電体層上に、密着層を介して導電層を形成することにより、第2の中間電極を配置するステップ(d)と、圧電材料の粉体を第2の中間電極に吹き付けて堆積させることにより、第2の中間電極上に圧電体層を配置するステップ(e)と、これらの圧電体層を熱処理するステップ(f)と、ステップ(a)において配置された圧電体層から支持基板を除去するステップ(g)と、積層構造の少なくとも第1及び第2の側面に側面電極を形成するステップ(h)とを具備し、密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる。 The method for manufacturing a piezoelectric actuator having a laminated structure according to the present invention includes a step (a) of disposing a piezoelectric layer by spraying a powder of a piezoelectric material onto a support substrate and depositing the piezoelectric material layer, Forming a conductive layer through the layer, placing the first intermediate electrode in step (b), and spraying and depositing a powder of piezoelectric material on the first intermediate electrode; A step (c) of disposing a piezoelectric layer thereon, a step (d) of disposing a second intermediate electrode by forming a conductive layer on the piezoelectric layer via an adhesion layer; A step (e) of disposing a piezoelectric layer on the second intermediate electrode by spraying and depositing powder onto the second intermediate electrode; a step (f) of heat-treating these piezoelectric layers; Pressure arranged in (a) And removing the supporting substrate from the body layer (g), comprising the steps (h) forming at least first and second side electrodes on the side surfaces of the product layer structure, the adhesion layer, aluminum, Ha Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, a conductive layer, platinum, ruthenium, iridium, rhenium, osmium, and at least one material of the rhodium, or It consists of the oxide.
本発明によれば、誘電体層又は圧電体層の上に、所定の金属酸化物からなる密着層を介して導電層を形成するので、積層構造体の熱処理工程において、誘電体層又は圧電体層から酸素が発生したり、熱膨張率の違いにより応力が発生しても、密着層及び導電層によって構成される中間電極が下層から剥がれるのを防止することができる。従って、そのような積層構造体を用いることにより、圧電アクチュエータの製造歩留まりを向上させることができる。
According to the present invention, on the dielectrics layer or the piezoelectric layer, since a conductive layer is formed via an adhesive layer made of predetermined metal oxides, in the heat treatment process of the laminated structure, a dielectric layer or a piezoelectric Even if oxygen is generated from the body layer or stress is generated due to a difference in thermal expansion coefficient, it is possible to prevent the intermediate electrode constituted by the adhesion layer and the conductive layer from being peeled off from the lower layer . What slave, by using such a laminated structure, it is possible to improve the manufacturing yield of the piezoelectric actuator.
以下、本発明を実施するための最良の形態について、図面を参照しながら詳しく説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は、本発明の第1の実施形態に係る積層構造体を示す断面図である。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. The same constituent elements are denoted by the same reference numerals, and the description thereof is omitted.
FIG. 1 is a cross-sectional view showing a laminated structure according to the first embodiment of the present invention.
図1に示すように、積層構造体1は、例えば、底面の一辺が0.2mm〜1.0mm程度で高さが1.0mm程度の微小な柱状の構造体である。積層構造体1は、基板10と、密着層11及び導電層12を含む下部電極と、誘電体層13と、密着層14及び導電層15を含む上部電極とを含んでいる。
本実施形態に係る積層構造体は、誘電体層13として圧電性物質であるPZT(チタン酸ジルコン酸鉛:Pb(lead) zirconate titanate)を用いている。PZT層に電極を介して電圧を印加すると、PZT層は、圧電効果により伸縮する。このような積層構造体は、圧電ポンプや、圧電アクチュエータや、超音波用探触子において超音波を送受信する超音波トランスデューサ等に用いられる。
As shown in FIG. 1, the laminated
In the laminated structure according to this embodiment, PZT (Pb (lead) zirconate titanate), which is a piezoelectric material, is used as the
基板10は、上部に積層される構造体を支持するためのものである。基板10は、例えば、シリコン(Si)によって形成されており、その上面には、上部に形成される層を電気的に絶縁するために、絶縁膜(SiO2)が形成されている。
The
下部電極において、導電層12は、誘電体層13に電圧を印加するために用いられる。導電層12としては、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)、オスミウム(Os)、ロジウム(Rh)等の金属材料や、それらの金属の内の少なくとも1つを含む金属酸化物を用いることができる。本実施形態においては、白金を用いている。
In the lower electrode, the conductive layer 12 is used to apply a voltage to the
導電層12は、300nm程度の厚さを有している。その理由は、以下の通りである。本実施形態においては、導電層12の上に、材料の粉体を高速で下層に吹き付けて堆積させることにより膜を形成する噴射堆積法を用いて誘電体層13が形成される。なお、噴射堆積法は、エアロゾルデポジション法、又は、ガスデポジション法とも呼ばれており、以下においては、「AD(aerosol deposition)法」という。このAD法においては、堆積させる材料の粉体が下層の電極層に食い込む現象(「アンカーリング」と呼ばれる)が生じる。このアンカーリングによって生じるアンカー層(粉体が食い込んだ層)の厚さは、下層(電極層)の材質や粉体の速度等によって異なるが、通常は、10nm〜300nm程度となる。従って、十分にアンカーリングを生じさせて導電層と誘電体層とを密着させると共に、導電層として良好に機能させるためには、導電層の厚さが300nm以上あることが望ましいからである。なお、AD法については、後で詳しく説明する。
The conductive layer 12 has a thickness of about 300 nm. The reason is as follows. In the present embodiment, the
密着層11は、導電層12を基板10に密着させるために、両者の間に配置されている中間層である。ここで、導電層12は、スパッタリングや真空蒸着法等を用いて形成されるので、下層との密着性が比較的低い。そこで、本実施形態においては、導電層12と基板10とを密着させるために、両者の間に20nm〜100nm程度、より好ましくは、20nm〜50nmの厚さを有する密着層11を設けている。
The
一般に、密着層としては、チタン(Ti)等のように、導電層及び基板との間で高い密着性を有する材料が用いられる。しかしながら、積層構造体の製造過程においては、誘電体層(PZT層)の熱処理が行われるので、その際に酸素が導電層を透過し、密着層に侵入する。それにより、密着層が酸化して、密着層と導電層、又は、密着層と基板との結合状態が変性し、密着性が低下してしまう。そこで本実施形態においては、密着層11として、酸化チタン(TiO2)を用いている。このように予め酸化されている物質は、PZTの熱処理の際に発生し、導電層12を透過した酸素が侵入しても変性することがないので、密着性を維持することができる。密着層11としては、この他にも、酸化チタン(TiXOY、ここで、(X,Y)=(1,1)、(2,3)、(3,5))や、酸化タンタル(Ta2O5)や、酸化クロム(CrXOY、ここで、(X,Y)=(1,1)、(1,3)、(2,3))や、ジルコニウム(Zr)、アルミニウム(Al)、ニッケル(Ni)、ハフニウム(Hf)、バナジウム(V)、マグネシウム(Mg)、ニオブ(Nb)、又は、タングステン(W)の内の少なくとも1つの材料の酸化物を含む金属酸化物を用いることができる。
In general, as the adhesion layer, a material having high adhesion between the conductive layer and the substrate, such as titanium (Ti), is used. However, since the dielectric layer (PZT layer) is heat-treated in the manufacturing process of the laminated structure, oxygen passes through the conductive layer and enters the adhesion layer. As a result, the adhesion layer is oxidized, the bonding state between the adhesion layer and the conductive layer, or the adhesion layer and the substrate is denatured, and the adhesion is deteriorated. Therefore, in this embodiment, titanium oxide (TiO 2 ) is used as the
誘電体層13は、例えば、100μm程度の厚さを有するPZT層である。
上部電極において、導電層15は、例えば、白金層であり、誘電体層13に電圧を印加するために用いられる。また、密着層14は、例えば、酸化チタン層であり、導電層15を誘電体層13に密着させるために配置されている。誘電体層13の熱処理後に上部電極を形成する場合には、密着層14として、白金及びPZTとの間で高い密着性を有するチタン(Ti)を用いても良い。
The
In the upper electrode, the
次に、本発明の第2の実施形態に係る積層構造体について、図2を参照しながら説明する。
図2に示す積層構造体2は、下部電極21と、複数の誘電体層22と、密着層23及び導電層24を含む複数の内部電極(中間電極とも呼ばれる)と、密着層25及び導電層26を含む上部電極とを含んでいる。このように、複数の誘電体層と内部電極とが交互に積層された構造体は、単層の構造体と比較して、構造体全体として、対向する電極の面積を増加させることが可能であるので、電気的インピーダンスを下げることができる。従って、単層の構造体と比較して、印加される電圧に対して効率良く動作する。
Next, a laminated structure according to the second embodiment of the present invention will be described with reference to FIG.
2 includes a
下部電極21は、例えば、白金層であり、上部に誘電体層22を形成する際に生じるアンカー層の厚さを考慮して、300nm程度の厚さを有している。
誘電体層22は、例えば、100μm程度の厚さを有するPZT層である。誘電体層22の上面(密着層23側)は、少なくとも0.3μmのラフネス(表面粗さ)を有している。本実施形態において、誘電体層22は、密着層23を介して導電層24と結合されている。しかしながら、積層構造体の製造過程において、誘電体層(PZT層)の熱処理が行われると、誘電体層と密着層との熱膨張率の違いにより応力が発生して、両者が剥がれ易くなる。そこで、誘電体層22の上面を粗くすることにより、誘電体層と密着層との接触面積を増やし、熱膨張率の違いによって発生した応力を吸収するようにしている。ラフネスの値については、AFM(原子間力顕微鏡)による観察により、0.3μm以上あれば、誘電体層と密着層との間において剥がれが生じないことが確認できた。
The
The
内部電極において、導電層24は、その両側に配置された誘電体層22に電圧を印加するために用いられる。導電層24の材料及び厚さについては、図1に示す導電層12と同様である。また、密着層23は、導電層24を誘電体層22に密着させるために、両者の間に配置されている中間層である。密着層の機能や材料や厚さについては、図1に示す密着層11と同様である。
密着層25及び導電層26を含む上部電極の構成については、図1に示す密着層14及び導電層15と同様である。
In the internal electrode, the
The configuration of the upper electrode including the adhesion layer 25 and the
ここで、本実施形態においては、誘電体層22と、その下層の導電層24との間には、密着層を設けていない。誘電体層をAD法によって形成する場合には、材料の粉体が下層の電極層に食い込むアンカーリングにより、それらの層の間においては、高い密着性が保たれるからである。
Here, in the present embodiment, no adhesion layer is provided between the
次に、本発明の第3の実施形態に係る積層構造体について、図3を参照しながら説明する。
図3に示す積層構造体3は、基板30上に、図2に示す積層構造体2と同様の構造を有する積層構造体を形成したものである。積層構造体3は、基板30と、密着層31及び導電層32を含む下部電極と、複数の誘電体層33と、密着層34及び導電層35を含む複数の内部電極と、密着層36及び導電層37を含む上部電極とを含んでいる。
Next, a laminated structure according to the third embodiment of the present invention will be described with reference to FIG.
A
基板30は、上部に積層される構造体を支持するためのものである。基板30は、例えば、シリコン(Si)によって形成されており、その上面には、上部に形成される層を電気的に絶縁するために、絶縁膜(SiO2)が形成されている。
下部電極において、密着層31は、導電層32を基板30に密着させるために、両者の間に配置されている中間層である。密着層31の機能及び材料については、図1に示す密着層11と同様である。
基板30の上部に積層された各層32〜37の構成については、図2に示す積層構造体2における各層21〜26と同様である。
The board |
In the lower electrode, the
About the structure of each layer 32-37 laminated | stacked on the upper part of the board |
次に、本発明の一実施形態に係る積層構造体の製造方法について、図3〜図5を参照しながら説明する。図4は、本実施形態に係る積層構造体の製造方法を示すフローチャートである。
図4のステップS1において、積層構造体を支持するための基板30を用意する。即ち、所定の大きさを有するシリコン基板を用意し、熱酸化処理を行うことにより、シリコン基板の少なくとも1つの面に絶縁膜(SiO2)を形成する。
Next, the manufacturing method of the laminated structure which concerns on one Embodiment of this invention is demonstrated, referring FIGS. FIG. 4 is a flowchart showing the manufacturing method of the laminated structure according to this embodiment.
In step S1 of FIG. 4, a
次に、ステップS2及びS3において、下部電極を形成する。即ち、ステップS2において、基板30上に、密着層31となる酸化チタン層をスパッタリング等により形成し、ステップS3において、その上に、導電層32となる白金層をスパッタリング等により形成する。
Next, in steps S2 and S3, a lower electrode is formed. That is, in step S2, a titanium oxide layer to be the
次に、ステップS4において、導電層32の上に誘電体層33を形成する。本実施形態においては、誘電体層であるPZT層を、AD法を用いて形成する。
図5は、AD法による成膜装置を示す模式図である。この成膜装置は、原料の粉体51を配置するエアロゾル生成容器52を有している。ここで、エアロゾルとは、気体中に浮遊している固体や液体の微粒子のことをいう。エアロゾル生成容器52には、キャリアガス導入部53、エアロゾル導出部54、振動部55が設けられている。キャリアガス導入部53から窒素ガス(N2)等の気体を導入することにより、エアロゾル生成容器52内に配置された原料の粉体が噴き上げられ、エアロゾルが生成される。その際に、振動部55によってエアロゾル生成容器52に振動を与えることにより、原料の粉体が撹拌され、効率良くエアロゾルが生成される。生成されたエアロゾルは、エアロゾル導出部54を通って、成膜チャンバ56に導かれる。
Next, in step S <b> 4, the
FIG. 5 is a schematic diagram showing a film forming apparatus using the AD method. This film forming apparatus has an aerosol generation container 52 in which
成膜チャンバ56には、排気管57、ノズル58、可動ステージ59が設けられている。排気管57は、真空ポンプに接続されており、成膜チャンバ56内を排気する。エアロゾル生成容器52において生成され、エアロゾル導出部54を通って成膜チャンバ56に導かれたエアロゾルは、ノズル58から基板50に向けて噴射される。これにより、原料の粉体が基板50上に衝突して堆積する。基板50は、3次元に移動可能な可動ステージ59に戴置されており、可動ステージ59を制御することにより、基板50とノズル58との相対的位置が調節される。
The
原料として、例えば、平均粒径0.3μmのPZT単結晶粉体を用い、図5に示す成膜装置を駆動することにより、図3に示すようなPZT層(誘電体層33)が導電層32上に形成される。ここで、形成されたPZT層の上面において、ラフネスが0.3μmより小さい場合には、サンドブラスト等の表面加工技術を用いて表面を粗くする。 As a raw material, for example, a PZT single crystal powder having an average particle size of 0.3 μm is used, and the film forming apparatus shown in FIG. 5 is driven, whereby the PZT layer (dielectric layer 33) as shown in FIG. 32 is formed. Here, when the roughness is smaller than 0.3 μm on the upper surface of the formed PZT layer, the surface is roughened by using a surface processing technique such as sand blasting.
次に、ステップS5及びS6において、内部電極を形成する。即ち、ステップS5において、誘電体層33上に、密着層34となる酸化チタン層をスパッタリング等により形成し、ステップS6において、その上に、導電層35となる白金層をスパッタリング等により形成する。
Next, internal electrodes are formed in steps S5 and S6. That is, in step S5, a titanium oxide layer to be the
ステップS7において、ステップS4と同様に、誘電体層33を形成する。これらのステップS5〜S7を繰り返すことにより、内部電極と誘電体層とを必要な数だけ交互に積層する。
ステップS8において、複数の内部電極と複数の誘電体層とが交互に積層された積層体を、500℃〜1000℃程度の酸素雰囲気又は空気中で熱処理する。これにより、誘電体層33に含まれるPZT結晶のグレインサイズを大きくする。
In step S7, the
In step S8, the laminated body in which a plurality of internal electrodes and a plurality of dielectric layers are alternately laminated is heat-treated in an oxygen atmosphere or air of about 500 ° C. to 1000 ° C. This increases the grain size of the PZT crystal contained in the
ステップS9及びS10において、上部電極を形成する。即ち、ステップS9において、密着層36となる酸化チタン層又はチタン層をスパッタリング等により形成し、ステップS10において、その上に、導電層37となる白金層をスパッタリング等により形成する。ここで、ステップS9においては、最上部の誘電体層33の上面におけるラフネスを考慮する必要はない。ステップS8において既に熱処理を終えているので、熱応力により密着層36が剥がれるおそれがないからである。これにより、図3に示す積層構造体3が製造される。
In steps S9 and S10, an upper electrode is formed. That is, in step S9, a titanium oxide layer or a titanium layer that becomes the
或いは、上部電極を、ステップS8における熱処理の前に形成しても良い。この場合には、最上部の誘電体層33の上面におけるラフネスを、他の誘電体層33と同様に、0.3μm以上とする必要がある。また、この場合には、密着層36の材料として、酸化チタン等の金属酸化物を用いることが望ましい。酸化されていないチタン等を用いると、熱処理の際に酸素によって密着層が酸化してしまうおそれがあるからである。
Alternatively, the upper electrode may be formed before the heat treatment in step S8. In this case, the roughness on the upper surface of the uppermost
図1に示す単層の積層構造体1を製造するためには、図4に示す製造方法において、ステップS5〜S7を省略すれば良い。
また、図2に示す積層構造体2を製造するためには、図4に示す製造方法において、ステップS2及びS3を省略し、ステップS10の後で誘電体層22から基板を剥離し、基板が除去された面に下部電極21を配置すれば良い。
In order to manufacture the single-layer
Further, in order to manufacture the
或いは、図4に示す製造方法において、ステップS2及びS3を省略すると共に、ステップS7の後で基板を剥離し、その後で熱処理を行っても良い。さらに、熱処理された積層体に必要に応じてレジストを形成し、メッキ法により、上部電極及び下部電極や、側面電極を形成しても良い。この場合には、それらの電極をまとめて形成することにより、工程数を少なくすることができる。 Alternatively, in the manufacturing method shown in FIG. 4, steps S2 and S3 may be omitted, and the substrate may be peeled off after step S7, and then heat treatment may be performed. Furthermore, a resist may be formed on the heat treated laminate as necessary, and the upper electrode, the lower electrode, and the side electrode may be formed by plating. In this case, the number of steps can be reduced by forming these electrodes together.
図6の(a)は、本発明の一実施形態に係る圧電アクチュエータの構造を示す断面図である。この圧電アクチュエータは、電圧を印加されることによって伸縮する圧電体層61と、密着層62a及び導電層62bを含む2種類の内部電極62と、下部電極63及び上部電極64と、2つの側面電極65及び66とを含む積層型アクチュエータである。
FIG. 6A is a cross-sectional view showing the structure of a piezoelectric actuator according to an embodiment of the present invention. This piezoelectric actuator includes a
図6の(a)に示すように、第1群の内部電極62及び下部電極63は、側面電極65に接続されていると共に、各電極の端面に形成された絶縁部67により、側面電極66から絶縁されている。反対に、第2群の内部電極62及び上部電極64は、側面電極66に接続されていると共に、各電極の端面に形成された絶縁部67により、側面電極65から絶縁されている。このように電極62〜66を形成することにより、圧電体層及びそれを挟む電極を含むアクチュエータ構造が並列に接続される。このような積層構造においては、素子を微細化しつつ、圧電アクチュエータのインピーダンスを下げて、出力を大きくことが可能になる。
As shown in FIG. 6A, the
図6の(b)は、図6の(a)に示す圧電アクチュエータの変形例である。この圧電アクチュエータは、圧電体層71と、密着層72a及び導電層72bを含む2種類の内部電極72と、下部電極73と、上部電極74と、側面電極75及び76とを含んでいる。この圧電アクチュエータにおいて、第1群の内部電極72は、側面電極75に接続されていると共に、その端面77を上層の圧電体層71によって覆うことにより、側面電極76から絶縁されている。反対に、第2群の内部電極72は、側面電極76に接続されていると共に、その端面77を上層の圧電体層71によって覆うことにより、側面電極75から絶縁されている。また、下部電極73は、側面電極75に接続されていると共に、絶縁領域78によって側面電極76から絶縁されており、上部電極74は、側面電極76に接続されていると共に、絶縁領域78によって側面電極75から絶縁されている。
FIG. 6B is a modification of the piezoelectric actuator shown in FIG. The piezoelectric actuator includes a
次に、本発明の一実施形態に係る圧電アクチュエータの製造方法について、図4及び図6の(a)を参照しながら説明する。
まず、誘電体層の材料としてPZT等の圧電材料を用い、図4のステップS1及びステップS4〜ステップS7において、密着層62a及び導電層62bを含む内部電極62と圧電体層61とが交互に積層された積層体を形成する。そして、積層体から基板を除去した後で、ステップS8において、積層構造体の熱処理を行う。さらに、その後でダイシングを行うことにより、積層体の形状を整形し、内部電極の端面が積層体の側面に、正確に露出するようにしても良い。
Next, a method for manufacturing a piezoelectric actuator according to an embodiment of the present invention will be described with reference to FIGS. 4 and 6A.
First, a piezoelectric material such as PZT is used as the material for the dielectric layer, and in steps S1 and S4 to S7 in FIG. 4, the
次に、積層体の下面及び上面に、スパッタリング等により下部電極63及び上部電極64をそれぞれ形成する。なお、これらの電極63及び64は、ダイシングの前に形成しても良い。
次に、積層体の側面に露出した内部電極62、下部電極63、及び、上部電極64の端面に、電気泳動法等を用いてガラス等の絶縁材料を配置することにより、絶縁部67を形成する。さらに、スパッタリング等により側面電極65及び66を配置することにより、図6の(a)に示す圧電アクチュエータが完成する。
Next, the
Next, an insulating
また、本実施形態に係る圧電アクチュエータの別の製造方法として、図6の(b)に示すように、内部電極72の一方の端面のみが積層体の側面に達するように、内部電極72を形成しても良い。この場合には、その後で内部電極72の上に圧電体層71を形成することにより、内部電極72の反対側の端面が圧電材料によって覆われる。
As another manufacturing method of the piezoelectric actuator according to the present embodiment, as shown in FIG. 6B, the
次に、下部電極73及び上部電極74において、側面電極75及び76から絶縁させたい領域(絶縁領域78)にレジストを形成した上で、積層体の周囲にメッキ処理を施す。さらに、レジストを除去した後で、電極が不要な面(図6の(b)においては、正面及びそれと向かい合う面)をダイシングすることにより、メッキを除去する。これにより、図6の(b)に示す圧電アクチュエータが完成する。
なお、このようなメッキ法による電極形成方法は、図6の(a)に示す圧電アクチュエータを製造する際にも用いることができる。
Next, in the
Note that such an electrode forming method by plating can also be used when manufacturing the piezoelectric actuator shown in FIG.
以上説明したように、密着層を含む積層構造体を用いて圧電アクチュエータを作製することにより、製造歩留まりを向上させることが可能になる。また、エアロゾルデポジション法を用いることにより緻密で強固な圧電体層を形成することができるので、圧電体層の耐電圧性を高くなり、圧電アクチュエータを高電圧で駆動することが可能になる。 As described above, manufacturing yield can be improved by manufacturing a piezoelectric actuator using a laminated structure including an adhesion layer. Moreover, since the dense and strong piezoelectric layer can be formed by using the aerosol deposition method, the withstand voltage of the piezoelectric layer can be increased, and the piezoelectric actuator can be driven at a high voltage.
1、2、3 積層構造体
10、30、50 基板
11、14、23、25、31、34、36、62a、72a 密着層
12、15、21、24、26、32、35、37、62b、72b 導電層
13、22、33 誘電体層
51 原料の粉体
52 エアロゾル生成容器
53 キャリアガス導入部
54 エアロゾル導出部
55 振動部
56 成膜チャンバ
57 排気管
58 ノズル
59 可動ステージ
61、71 圧電体層
62、72 内部電極
63、73 下部電極
64、74 上部電極
65、66、75、76 側面電極
67 絶縁部
77 端面
78 絶縁領域
1, 2, 3
Claims (17)
前記少なくとも1つの中間電極を介して積層されている複数の誘電体層と、
を具備し、
前記少なくとも1つの中間電極が、前記誘電体層上に形成された密着層と、前記密着層を介して前記誘電体層上に形成された導電層とを含み、前記密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、前記導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる、積層構造体。 At least one intermediate electrode;
A plurality of dielectric layers stacked via the at least one intermediate electrode;
Comprising
The at least one intermediate electrode includes an adhesion layer formed on the dielectric layer and a conductive layer formed on the dielectric layer via the adhesion layer, and the adhesion layer is made of aluminum , Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, wherein the conductive layer of platinum, ruthenium, iridium, rhenium, osmium, and at least one material of rhodium Or a laminated structure made of the oxide thereof.
前記支持基板の主面上に形成された電極であって、前記少なくとも1つの中間電極及び前記複数の誘電体層がその上に積層された前記電極と、
をさらに具備する、請求項1記載の積層構造体。 A support substrate;
An electrode formed on a main surface of the support substrate, wherein the at least one intermediate electrode and the plurality of dielectric layers are stacked thereon;
Further comprising, claim 1 laminated structure according.
前記積層構造体の第1の側面領域に配置された第1の側面電極と、
前記積層構造体の第1の側面領域とは異なる第2の側面領域に配置された第2の側面電極と、
を具備し、前記第1及び第2の中間電極の各々が、前記圧電体層上に形成された密着層と、前記密着層を介して前記圧電体層上に形成された導電層とを含み、前記第1の中間電極が、前記第1の側面電極に接続されていると共に、前記第2の側面電極から絶縁されており、前記第2の中間電極が、前記第2の側面電極に接続されていると共に、前記第1の側面電極から絶縁されており、前記密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、前記導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる、圧電アクチュエータ。 A plurality of piezoelectric layers, a first intermediate electrode, and a second intermediate electrode, wherein the plurality of piezoelectric layers, the first intermediate electrode, and the second intermediate electrode are piezoelectric layers, A laminated structure in which a first intermediate electrode, a piezoelectric layer, and a second intermediate electrode are laminated in this order;
A first side electrode disposed in a first side region of the laminated structure;
A second side electrode disposed in a second side region different from the first side region of the stacked structure;
Each of the first and second intermediate electrodes includes an adhesion layer formed on the piezoelectric layer, and a conductive layer formed on the piezoelectric layer via the adhesion layer. The first intermediate electrode is connected to the first side electrode and insulated from the second side electrode, and the second intermediate electrode is connected to the second side electrode. together are the are insulated from the first side electrode, wherein the adhesion layer is made of aluminum, c Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, The piezoelectric actuator, wherein the conductive layer is made of at least one material selected from platinum, ruthenium, iridium, rhenium, osmium, and rhodium, or an oxide thereof.
支持基板上に、密着層を介して導電層を形成することにより、第1の電極を配置するステップ(a)と、
誘電体材料の粉体を前記第1の電極に吹き付けて堆積させることにより、前記第1の電極上に誘電体層を配置するステップ(b)と、
前記誘電体層上に、密着層を介して導電層を形成することにより、第2の電極を配置するステップ(c)と、
誘電体材料の粉体を前記第2の電極に吹き付けて堆積させることにより、前記第2の電極上に誘電体層を配置するステップ(d)と、
これらの誘電体層を熱処理するステップ(e)と、
ステップ(e)の前又は後に、ステップ(d)において配置された前記誘電体層上に第3の電極を形成するステップ(f)と、
を具備し、前記密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、前記導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる、製造方法。 A method of manufacturing a laminated structure,
(A) disposing the first electrode by forming a conductive layer on the support substrate via the adhesion layer;
Disposing a dielectric layer on the first electrode by spraying and depositing a powder of dielectric material on the first electrode; and (b),
(C) disposing a second electrode by forming a conductive layer on the dielectric layer via an adhesion layer;
Placing a dielectric layer on the second electrode by spraying and depositing a powder of dielectric material on the second electrode; (d);
Heat treating these dielectric layers (e);
Before or after step (e), forming a third electrode on the dielectric layer disposed in step (d); and (f)
Comprising a, the adhesion layer, aluminum, Ha Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, wherein the conductive layer of platinum, ruthenium, iridium, rhenium, A production method comprising at least one material of osmium and rhodium or an oxide thereof.
誘電体材料の粉体を支持基板に吹き付けて堆積させることにより、誘電体層を配置するステップ(a)と、
前記誘電体層上に、密着層を介して導電層を形成することにより、第1の電極を配置するステップ(b)と、
誘電体材料の粉体を前記第1の電極に吹き付けて堆積させることにより、前記第1の電極上に誘電体層を配置するステップ(c)と、
これらの誘電体層を熱処理するステップ(d)と、
ステップ(d)の前又は後に、ステップ(c)において配置された前記誘電体層上に第2の電極を形成するステップ(e)と、
ステップ(a)において配置された前記誘電体層から前記支持基板を除去するステップ(f)と、
を具備し、前記密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、前記導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる、製造方法。 A method of manufacturing a laminated structure,
Placing a dielectric layer by spraying and depositing a powder of dielectric material on a support substrate; and
(B) disposing a first electrode by forming a conductive layer on the dielectric layer via an adhesion layer;
Disposing a dielectric layer on the first electrode by spraying and depositing a powder of dielectric material on the first electrode;
Heat treating these dielectric layers (d);
Forming a second electrode on the dielectric layer disposed in step (c) before or after step (d); and
Removing the support substrate from the dielectric layer disposed in step (a) (f);
Comprising a, the adhesion layer, aluminum, Ha Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, wherein the conductive layer of platinum, ruthenium, iridium, rhenium, A production method comprising at least one material of osmium and rhodium or an oxide thereof.
圧電材料の粉体を支持基板に吹き付けて堆積させることにより、圧電体層を配置するステップ(a)と、
前記圧電体層上に、密着層を介して導電層を形成することにより、第1の中間電極を配置するステップ(b)と、
圧電材料の粉体を前記第1の中間電極に吹き付けて堆積させることにより、前記第1の中間電極上に圧電体層を配置するステップ(c)と、
前記圧電体層上に、密着層を介して導電層を形成することにより、第2の中間電極を配置するステップ(d)と、
圧電材料の粉体を前記第2の中間電極に吹き付けて堆積させることにより、前記第2の中間電極上に圧電体層を配置するステップ(e)と、
これらの圧電体層を熱処理するステップ(f)と、
ステップ(a)において配置された前記圧電体層から前記支持基板を除去するステップ(g)と、
前記積層構造の少なくとも第1及び第2の側面に側面電極を形成するステップ(h)と、
を具備し、前記密着層が、アルミニウム、ハフニウム、バナジウム、マグネシウム、ニオブ、及び、タンタルの内の少なくとも1つの材料の酸化物からなり、前記導電層が、白金、ルテニウム、イリジウム、レニウム、オスミウム、及び、ロジウムの内の少なくとも1つの材料、又は、その酸化物からなる、製造方法。 A method of manufacturing a piezoelectric actuator having a laminated structure,
(A) disposing a piezoelectric layer by spraying and depositing a powder of piezoelectric material on a support substrate;
(B) disposing a first intermediate electrode by forming a conductive layer on the piezoelectric layer via an adhesion layer;
Disposing a piezoelectric layer on the first intermediate electrode by spraying and depositing a powder of piezoelectric material on the first intermediate electrode;
A step (d) of disposing a second intermediate electrode by forming a conductive layer on the piezoelectric layer via an adhesion layer;
Disposing a piezoelectric layer on the second intermediate electrode by spraying and depositing a powder of piezoelectric material on the second intermediate electrode (e);
Heat-treating these piezoelectric layers (f);
Removing the support substrate from the piezoelectric layer disposed in step (a) (g);
Forming a side electrode on at least the first and second side surfaces of the laminated structure (h);
Comprising a, the adhesion layer, aluminum, Ha Funiumu, vanadium, magnesium, niobium, and an oxide of at least one material of the tantalum, wherein the conductive layer of platinum, ruthenium, iridium, rhenium, A production method comprising at least one material of osmium and rhodium or an oxide thereof.
ステップ(a)〜(g)において形成された前記積層構造の第1の側面とは異なる第2の側面に露出している前記第2の中間電極の端面に絶縁部を形成するステップと、
をさらに具備する請求項12又は13記載の製造方法。 Forming an insulating portion on an end surface of the first intermediate electrode exposed at the first side surface of the multilayer structure formed in steps (a) to (g);
Forming an insulating portion on an end surface of the second intermediate electrode exposed on a second side surface different from the first side surface of the multilayer structure formed in steps (a) to (g);
The manufacturing method according to claim 12 or 13 , further comprising:
ステップ(e)が、前記積層構造の第1の側とは異なる第2の側において前記第2の中間電極の端面を覆うように前記圧電体層を配置することを含む、
請求項12又は13記載の製造方法。 Step (c) includes disposing the piezoelectric layer so as to cover an end face of the first intermediate electrode on the first side of the multilayer structure,
Step (e) includes disposing the piezoelectric layer so as to cover an end surface of the second intermediate electrode on a second side different from the first side of the multilayer structure.
The manufacturing method of Claim 12 or 13 .
ステップ(g)において前記支持基板が除去された面に第2の電極を形成するステップと、
をさらに具備する、請求項12〜15のいずれか1項記載の製造方法。 Before or after step (f), forming a first electrode on the principal surface of the piezoelectric layer disposed in step (e);
Forming a second electrode on the surface from which the support substrate has been removed in step (g);
Further comprising The method of any one of claims 12-15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004246142A JP4908746B2 (en) | 2003-09-01 | 2004-08-26 | Multilayer structure, piezoelectric actuator, and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003308880 | 2003-09-01 | ||
JP2003308880 | 2003-09-01 | ||
JP2004246142A JP4908746B2 (en) | 2003-09-01 | 2004-08-26 | Multilayer structure, piezoelectric actuator, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005101577A JP2005101577A (en) | 2005-04-14 |
JP4908746B2 true JP4908746B2 (en) | 2012-04-04 |
Family
ID=34467468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004246142A Expired - Fee Related JP4908746B2 (en) | 2003-09-01 | 2004-08-26 | Multilayer structure, piezoelectric actuator, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4908746B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006229154A (en) * | 2005-02-21 | 2006-08-31 | Brother Ind Ltd | Piezoelectric actuator, inkjet head, and manufacturing method thereof |
JP2007149995A (en) * | 2005-11-28 | 2007-06-14 | Fujifilm Corp | Laminated piezoelectric element and its manufacturing method |
JP5836754B2 (en) * | 2011-10-04 | 2015-12-24 | 富士フイルム株式会社 | Piezoelectric element and manufacturing method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09280947A (en) * | 1996-04-11 | 1997-10-31 | Matsushita Electric Ind Co Ltd | Ferroelectric element |
JP3695625B2 (en) * | 1998-09-21 | 2005-09-14 | セイコーエプソン株式会社 | Piezoelectric element and manufacturing method thereof |
JP3401220B2 (en) * | 1998-12-22 | 2003-04-28 | 松下電器産業株式会社 | Flexible thin film capacitor and method of manufacturing the same |
JP2001156351A (en) * | 1999-11-26 | 2001-06-08 | Ricoh Co Ltd | Laminated electrode, method of forming the same, and piezoelectric actuator |
JP2003133604A (en) * | 2001-10-26 | 2003-05-09 | Seiko Epson Corp | Piezoelectric thin film element, method of manufacturing the same, and ink jet recording head and ink jet printer using the same |
JP4035988B2 (en) * | 2001-12-06 | 2008-01-23 | 株式会社デンソー | Ceramic laminate and manufacturing method thereof |
JP4099818B2 (en) * | 2001-12-10 | 2008-06-11 | セイコーエプソン株式会社 | Piezoelectric actuator and ink jet recording head |
JP2003188433A (en) * | 2001-12-18 | 2003-07-04 | Matsushita Electric Ind Co Ltd | Piezo-electric device, ink jet head and method for manufacturing them and ink jet recording device |
-
2004
- 2004-08-26 JP JP2004246142A patent/JP4908746B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005101577A (en) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7673385B2 (en) | Laminated structure method | |
JP5836754B2 (en) | Piezoelectric element and manufacturing method thereof | |
JP4492821B2 (en) | Piezoelectric element | |
US7087970B2 (en) | Laminated structure, method of manufacturing the same and ultrasonic transducer array | |
JP3320596B2 (en) | Piezoelectric / electrostrictive film element and method of manufacturing the same | |
US7765660B2 (en) | Method of manufacturing a multilayered piezoelectric element having internal electrodes and side electrodes | |
JP2014187094A (en) | Piezoelectric thin film multilayer substrate, piezoelectric thin film element and method of manufacturing the same | |
JP5289710B2 (en) | Piezoelectric element and inkjet head | |
US11417723B2 (en) | Metal-insulator metal structure and method of forming the same | |
JP4908746B2 (en) | Multilayer structure, piezoelectric actuator, and manufacturing method thereof | |
JP4730126B2 (en) | Bulk acoustic wave resonance element, manufacturing method thereof, and filter circuit | |
JP2002314157A (en) | Wiring circuit board and manufacturing method thereof | |
US11758816B2 (en) | Method of forming a piezo-electric transducing device | |
JP2008258516A (en) | Piezoelectric element and film formation method for crystalline ceramics | |
JP4094521B2 (en) | Manufacturing method of structure | |
JP2010157648A (en) | Piezoelectric element | |
JPH10246654A (en) | Manufacture of functional film element | |
JP2001285015A (en) | Piezoelectric resonator | |
JP2008172157A (en) | Method for manufacturing piezoelectric element | |
JP6934746B2 (en) | A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. | |
JP2001156351A (en) | Laminated electrode, method of forming the same, and piezoelectric actuator | |
JP2020151796A (en) | Method of manufacturing oscillator substrate and oscillator substrate | |
JP2002319716A (en) | Piezoelectric ceramic multilayer actuator and method for manufacturing the same | |
JP2005235796A (en) | Manufacturing method of piezoelectric thin film element | |
JPH11243032A (en) | Thin-film capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061206 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |