[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4906193B2 - Ferritic free-cutting stainless steel - Google Patents

Ferritic free-cutting stainless steel Download PDF

Info

Publication number
JP4906193B2
JP4906193B2 JP2001076534A JP2001076534A JP4906193B2 JP 4906193 B2 JP4906193 B2 JP 4906193B2 JP 2001076534 A JP2001076534 A JP 2001076534A JP 2001076534 A JP2001076534 A JP 2001076534A JP 4906193 B2 JP4906193 B2 JP 4906193B2
Authority
JP
Japan
Prior art keywords
less
steel
amount
machinability
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001076534A
Other languages
Japanese (ja)
Other versions
JP2001355048A5 (en
JP2001355048A (en
Inventor
光司 高野
麻佑巳 沖森
正夫 菊池
和久 竹内
亘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2001076534A priority Critical patent/JP4906193B2/en
Publication of JP2001355048A publication Critical patent/JP2001355048A/en
Publication of JP2001355048A5 publication Critical patent/JP2001355048A5/ja
Application granted granted Critical
Publication of JP4906193B2 publication Critical patent/JP4906193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被削性および冷間加工性に優れたフェライト系ステンレス鋼に係わり、快削性元素として、Pb,Se,Te等の毒性の強い元素を含有しない環境に優しいフェライト系快削ステンレス鋼に関するものである。
【0002】
【従来の技術】
従来、SUS430Fに代表されるフェライト系S快削ステンレス鋼は、切削抵抗が小さいが切屑処理性に劣るという欠点があった。また、硫化物に起因した耐食性の劣化,硫化水素の発生や低冷間加工性が問題になっていた。
これらの課題に、近年はMnを低減し、MnSの比率を下げて耐食性を上げると同時に、Pb,Te,Se等の快削元素を添加した鋼が提案・実用化されている(例えば特開平10−237603号公報)。しかしながら、これらPb等の毒性の強い快削元素は、近年の環境問題から規制される動きが強くなっており、製造できなくなりつつある。
【0003】
また米国において、Pb快削鋼(炭素鋼)の代替としてSn,Cu,Sの複合快削鋼が提案されている(特許USP−5961747号)。
また、Biは毒性もなく腐食性ガスを発生することもないため、含Biステンレス鋼は、環境親和型の快削ステンレス鋼として有望視されている(例えば特公平5−45661号公報)。
【0004】
しかしながら、Bi,Pb等の超快削元素は熱間製造性を著しく低下するばかりか、難溶解元素であるため、偏析・沈降等のためBi,Pbの添加歩留が低く、また未溶解の大型粒状Bi,Pbが製品に発生する等の理由から、製品歩留が悪く、コストアップになっていた。
このように従来の鋼では、Pb等の毒性の強い元素を使用せずに、被削性,冷間加工性,製造性を兼ね備えた環境親和性に優れた安価なフェライト系快削ステンレス鋼は提案されていない。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の欠点を解消するためになされたものであって、Pb等の毒性の強い元素を使用せずに、熱間加工性、被削性および冷間加工性が良好で環境に優しいフェライト系S快削鋼を安価に提供することを目的としたものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、フェライト系ステンレス鋼の快削元素として熱間製造性と冷間鍛造性を低下させ難いSnを使用し、更に、BiとCu等の複合添加により、被削性と冷間加工性を向上させると共に、Biの溶解性を上げて製造性を著しく上げ、また、Si,O,Ca,Al量を制御することで、更に被削性を改善できることを見出し、本発明をなしたものである。
【0007】
本発明の要旨とするところは以下の通りである。
(1) 質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.005〜0.05%、
Cu:0.2〜0.7%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
(2) 質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0% S :0.05〜0.4%、
Cu:0.2〜0.7%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.005〜0.05%、
Cu:0.5〜2.5%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%、 Bi:0.01〜0.15%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.05〜0.4%、
Cu:0.5〜2.5%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%、 Bi:0.01〜0.15%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.005〜0.05%、
Cu:0.5〜2.5%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%、 Bi:0.01〜0.15%、
および、
Mg:0.0005〜0.05%、 Ag:0.02〜0.15%
のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.05〜0.4%、
Cu:0.5〜2.5%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%、 Bi:0.01〜0.15%、
および、
Mg:0.0005〜0.05%、 Ag:0.02〜0.15%
のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.005〜0.05%、
Cu:0.2〜0.9%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%、
および、
B :0.0005〜0.02%、
Ca:0.0005〜0.02%のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
質量%で、
C :0.08%以下、 Mn:0.05〜3.0%、
P :0.01〜0.1%、 Cr:15〜22%、
Sn:0.03〜0.3%、 N :0.08%以下、
Ni:0.05〜1.0%、 S :0.05〜0.4%、
Cu:0.2〜0.9%、 Si:0.05〜0.5%、
Al:0.015%以下、 Mo:0.01〜3.0%、
O :0.003〜0.015%、
および、
B :0.0005〜0.02%、
Ca:0.0005〜0.02%のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
) 質量%でさらに、Zr:0.005〜0.3%を含有することを特徴とする上記(1)または(2)に記載のフェライト系快削ステンレス鋼。
【0008】
【発明の実施の形態】
以下に、請求項1及び2の本発明の鋼の成分範囲の限定理由について述べる。
Cは、マトリックスの強度を高め、また、耐食性,冷間鍛造性,切削性を劣化させるため上限を0.08%とした。切削加工後の表面性状を良好にするために、好ましくは0.04%以下である。
【0009】
Mnは、Sと硫化物をつくり被削性を向上させる元素であるため、0.05%以上添加する。しかしながら、3%超添加するとその効果は飽和するし、逆に切削性や冷間加工性が劣化する。そのため上限を3.0%とした。また、Mnは耐食性と耐アウトガス性を劣化させる元素であるため、それらを良好にするためには、好ましくは0.5%以下である。
【0010】
Pは被削性の向上に有効な元素であり、0.01%以上添加する。しかしながら、多量に添加すると熱間製造性,冷間鍛造性および耐食性を劣化させるため、上限を0.1%とした。好ましくは0.02%以上、0.05%以下である。
【0011】
Crは耐食性を確保するために15%以上添加する。しかしながら、22%を超えて添加すると製造性が著しく低下し、経済性に劣る。そのため上限を22%とした。好ましくは16%以上、20%以下である。
【0012】
Snはフェライト系ステンレス鋼において高温で固溶し、低温で粒界偏析する元素であり、熱間製造性,冷間鍛造性,耐食性を劣化させずに被削性を向上させる。また、Biの溶解性を向上させる元素でもある。そのために0.03%以上添加する。しかしながら、0.3%を超えて添加すると熱間製造性が劣化するばかりか、素材が硬くなり被削性が劣化する。そのため上限を0.3%とした。
図1に、18%Cr―0.02%C−0.02%N系の材料にSnを添加した材料(4mm厚さ)のドリル穴開け時間を示す。Snを0.03〜0.3%までは20秒以内にドリルが貫通しており、その効果が大きい。好ましくは0.05%以上、0.2%以下である。
【0013】
Nはマトリックスの強度を高め、また耐食性,冷間鍛造性や被削性を劣化させるため上限を0.08%とした。切削加工後の表面性状を良好にするために、好ましくは0.03%以下である。
Niはマトリックスの靱性を高めるため、0.05%以上添加するが、過剰に添加し過ぎるとマルテンサイト組織が析出し被削性や冷間鍛造性を劣化させるため、上限を1.0%とした。好ましくは0.6以下である。
【0014】
Sは快削元素でありマトリックス中でMnやCrの硫化物を形成し、被削性を向上させるために0.005%以上添加する。一方、過剰に添加するとノッチ効果のため冷間鍛造性を劣化させる。そのため、冷間鍛造を実施する時(請求項)の上限は0.05%とした。好ましくは0.03%以下である。
また、冷間鍛造を実施せず、被削性を重視する時(請求項)は、Sを0.05%以上添加する。しかしながら、0.4%超添加すると熱間加工性も劣化させる。そのため上限を0.4%とした。好ましくは0.15%以上、0.35%以下である。
【0015】
Cuは被削性元素であると共に耐食性を有し、表1に示すように0.2〜0.7%含有させる。また、溶鋼中のBiの蒸気圧を下げてBiの溶解を助長し、製品歩留を著しく向上させる。そのため、Biの添加とともに0.5%以上添加する。しかしながら、2.5%を超えて添加するとマトリックスが硬化し、被削性を劣化させるばかりか熱間製造性も劣化させる。そのため上限を2.5%とした。Biの歩留,被削性,熱間製造性を考慮すると、好ましくは1.0%以上、2.0%以下である。
【0016】
Siは脱酸元素として必要なため0.05%以上添加する。しかしながら、0.5%を超えて添加すると凝固時の脱酸生成物が低融点のMnO−SiO系となり、それを核として晶出する硫化物も微細分散する。0.5%以下であれば、凝固時の脱酸生成物が比較的高融点で粗大なMnO−Cr系リッチとなり、それを核として晶出する硫化物も粗く分散する結果、被削性が向上する。そのため0.5%以下に制限する。尚、硫化物の粗大分散には後述するが、Oが0.003%以上必要である。好ましくは0.25%以下である。
【0017】
Al0.015%を超えて添加された場合、硬質なAl系の酸化物を主に形成して被削性を劣化させる。そのため上限を0.015%に限定した。好ましくは0.005%以下である。
【0018】
Moは鋼の耐食性を向上させるため0.01%以上添加するが、過剰に添加すると経済的でないばかりか、被削性や冷間鍛造性を劣化させる。そのため上限を3.0%とした。好ましくは2.5%以下である。
【0019】
Oは、前述しているように凝固時の脱酸生成物を粗大なMnO−Cr系にすることで被削性を向上させるために0.003%以上添加する。但し、0.015%を超えて添加すると逆に硬質な酸化物の割合が増え、被削性が低下する。そのため上限を0.015%とした。
【0020】
次に請求項3〜6の本発明の成分の限定理由を述べる。
Biは被削性を更に向上させるため、必要に応じて0.01%以上添加する。しかしながら、0.15%を超えて添加すると熱間加工性を劣化させるばかりか、Biの沈降が起こり、製品歩留が低下し製造コストが高くなる。そのため上限を0.15%とした。好ましくは0.12%以下である。
【0021】
Mgは被削性元素であると共に、溶鋼中のBiの蒸気圧を下げてBiの溶解を助長し、製品歩留を著しく向上させる。そのため、Biの添加とともに0.0005%以上添加する。しかしながら、0.05%を超えると粗大な硬質介在物を生成させ、被削性や冷間加工性を劣化させる。そのため上限を0.05%とした。Biの歩留および被削性を考慮すると、好ましくは0.005%以上、0.03%以下である。
【0022】
Agは被削性元素であると共に、溶鋼中のBiの蒸気圧を下げてBiの溶解を助長し、製品歩留を著しく向上させる。そのため、Biの添加と共に0.02%以上添加する。しかしながら0.15%を超えると、熱間加工性を劣化させるばかりか製品歩留も劣化させる。そのため上限を0.15%とした。Biの歩留および被削性を考慮すると、好ましくは0.05%以上、0.10%以下である。
【0023】
次に請求項9の本発明の成分の限定理由を述べる。
Zrは炭窒化物の生成に加え、硫化物を均一に微細分散させて被削性および冷間鍛造性を向上させる。そのため、必要に応じて0.005%以上添加するが、過剰な添加は強度を高め、被削性や冷間鍛造性を劣化させる。そのため上限を0.3%とした。好ましくは0.15%以下である。
【0024】
次に請求項7,8の本発明の成分の限定理由を述べる。
Bは熱間加工性の向上のため必要に応じて0.0005%添加する。しかしながら、0.02%を超えて添加すると粗大なボライドが生成し、逆に熱間加工性や耐食性を劣化させる。そのため上限を0.02%とした。好ましくは0.01%以下である。
【0025】
Caは凝固時の硫化物の形態を均一に分散させ、被削性および熱間製造性を向上させ、またS快削鋼の耐食性を向上させる目的で、必要に応じて0.0005%以上添加する。しかしながら、0.02%を超えて添加するとその効果は飽和するし、逆に粗大な介在物が増加して耐食性が劣化するし、不経済である。そのため上限を0.02%とした。好ましくは0.008%以下である。
なお、上記B及びCaを添加する場合は、実施例の表1(本発明鋼28,29)に記載しているようにCu量を0.8〜0.9%にすることで、表5に示すような効果を得ることができる。
【0026】
削除
【0027】
削除
【0028】
削除
【0029】
削除
【0030】
【実施例】
表1,表2,表3に示す化学成分の供試材を真空溶解し、50kg鋼塊を作製した。表1,表2は、Sが0.05%未満で冷間鍛造と切削性が要求される場合、表3は、Sが0.05%以上で切削性のみが要求される場合の化学成分を示す。これらの鋼塊を熱間鍛造および熱間圧延を行い、21mmφの棒鋼にした。その後850℃で焼鈍を行い、冷間引抜き加工およびセンタレス加工により、20mmφの棒線に仕上げた。
なお、表1の鋼No.1、9、10、20〜27、30〜33と、表3の鋼No.59、60は参考鋼である。
【0031】
評価は、Sが0.05%未満で冷間鍛造性と切削性の両特性が要求される場合と、Sが0.05%以上で切削性のみが要求される場合に分けた。
冷間鍛造性と切削性の両特性が要求される場合、すなわちSが0.05%未満の場合(成分:表1,表2)における切削性,熱間加工性,冷間鍛造性を評価した。また熔解・凝固過程で生じる偏析、すなわち製造歩留,製造コストの指標として、棒鋼各部位のSn,S,Bi元素のマクロな偏析の状態を評価した。
【0032】
切削性は、この棒鋼を表4に示す条件で切削試験を行い、被削性を評価した。なお、被削性の評価は工具寿命と切屑形状で行った。工具寿命はフランク摩耗量で評価し、30min 後のフランク摩耗量が50μm以下であれば工具寿命は○,50μm超の場合は×と評価した。また、切屑形状は規則的にカール状に分断されていれば○,不規則な形の連続切屑の場合は×と評価した。
本発明鋼の工具寿命と切屑処理性は共に○であった。
【0033】
熱間製造性は、上記鋳片表層から、試験片(φ8mm×110mm)を切り出し、サーモレスター試験によって熱間加工性を評価した。評価は1000℃における破断絞り値で行い、その時の絞り値が60%以上であれば熱間加工性を○ (良好)と判断した。本発明鋼の熱間加工性は全て○であった。
【0034】
冷間鍛造性は、上記棒鋼から0.5mmVノッチを入れたφ10mm×20mm試験片を切り出し、1mm/sec のスピードで圧縮試験を行い、割れが発生する圧縮加工(限界圧縮率)にて評価した。限界圧縮率が65%以上であれば冷間加工性を○とし、65%未満なら×と評価した。
本発明の冷間加工性は全て○であった。
【0035】
棒鋼の偏析は、棒鋼の最トップおよび最ボトムから成分分析用の切屑を採取し、Sn,S,Bi快削元素の分析値の比から評価した。最ボトムのSn,S,Biの元素の分析値が最トップ部の値(偏析値)の1.3倍未満であれば偏析の評価は○(良好),1.3倍以上であれば偏析の評価は×(不良)とした。すなわち、×であれば製造歩留が悪く、製造コストが高いと判断した。
本発明の偏析の評価は全て○であった。
【0036】
これらの試験結果を表5,表6に示す。
本発明鋼No.2〜8、11〜19、28、29は、フェライト系ステンレス鋼へSnに加え、Bi,Cu等を添加することによって、Pb等の毒性の強い元素を使わなくても切削性,熱間製造性,冷間鍛造性,偏析(製造歩留)の全てに優れている。
なお、表5の鋼No.1、9、10、20〜27、30〜33は参考鋼である。
【0037】
これに対して比較鋼No.34〜58では、いずれも次のような欠点が見られた。
比較鋼のNo.34〜36では、C量(%),N量(%),Mn量(%)がそれぞれ高いため素材が硬くなり、切削時の工具寿命や冷間鍛造性が劣るばかりか、耐食性に劣っている。比較鋼No.37では、P量(%)が高いため冷間鍛造性や熱間製造性に劣っている。比較鋼No.38では、Cr量(%)が低いため耐食性に劣っている。また比較鋼No.39では、Cr量(%)が高いため不経済である。比較鋼No.40では、Sn量(%)が低いため切削時の工具寿命や切屑処理性に劣っている。比較鋼No.41では、Sn量(%)が高いため素材が硬くなり、切削時の工具寿命や熱間製造性に劣っている。
【0038】
比較鋼No.42では、Cu量(%)が低いためBiの偏析に劣っており、製造歩留に劣っている。比較鋼No.43では、Cu量(%)が高いため、冷間鍛造性や工具寿命に劣るばかりか熱間製造性にも劣っている。比較鋼No.44では、Bi量(%)が高いため熱間加工性に劣るばかりか、Biが偏析しており、製造歩留・製造コストに劣っている。比較鋼No.45では、Mg量(%)が高いため冷間鍛造性や工具寿命に劣っている。比較鋼No.46では、Ag量(%)が高いため熱間製造性に劣っている。
【0039】
比較鋼No.47,48では、Ni量(%)やCo量(%)がそれぞれ高いため冷間鍛造性や工具寿命に劣っている。比較鋼No.49では、Mo量(%)が高いため冷間鍛造性や工具寿命に劣るばかりか、不経済である。
比較鋼No.50〜54では、Nb量(%),V量(%),W量(%),Ta量(%),Zr量(%)がそれぞれ高いため、冷間鍛造性や工具寿命に劣っている。
【0040】
比較鋼No.55では、B量(%)が高いため熱間製造性に劣るばかりか、耐食性に劣っている。比較鋼No.56では、Ca量(%)が高いため耐食性が劣化するばかりか不経済である。比較鋼No.57では、Y量(%)が高いため熱間製造性に劣っている。比較鋼No.58では、Ti量(%)が高いため工具寿命に劣っている。
【0041】
次に切削性のみが要求される場合、すなわちSが0.05%以上の場合、切削性,熱間製造性,偏析の状態(製造歩留・製造コスト)を評価した。切削性は表4に示す条件で切削試験を行い、工具寿命と切屑形状で行った。工具寿命はフランク摩耗量で評価し、30min 後のフランク摩耗量が30μm以下であれば工具寿命は○、30μm超の場合は×と評価した。また、切屑形状は規則的にカール状に分断されていれば○、不規則な形の連続切削の場合は×と評価した。
本発明鋼の工具寿命と切屑処理性は共に○であった。
【0042】
熱間製造性は、上記鋳片表層から試験片(φ8mm×110mm)を切り出し、サーモレスター試験によって熱間加工性を評価した。評価は1000℃における破断絞り値で行い、その時の絞り値が60%以上であれば熱間加工性を○(良好)と判断した。本発明鋼の熱間加工性は全て○であった。
【0043】
棒鋼の偏析は、棒鋼の最トップおよび最ボトムから成分分析用の切屑を採取し、Sn,S,Bi快削元素の分析値の比から評価した。最ボトムのSn,S,Biの元素の分析値が最トップ部の値(偏析値)の1.3倍未満であれば偏析の評価は○(良好)、1.3倍以上であれば偏析の評価は×(不良)とした。すなわち、×であれば製造歩留が悪く、製造コストが高いと判断した。
本発明の偏析の評価は全て○であった。
【0044】
これらの試験結果を表7に示す。
本発明鋼No.61〜72は、フェライト系ステンレス鋼にSnを添加し、更にS,Bi,Cu等に加え、酸化物制御を施しており、Pb等の毒性の強い元素を使わなくても切屑処理性,工具寿命,熱間製造性,偏析の状態(製造歩留・製造コスト)の全てに優れている。但し、Si,Alを低めてOを高めた本発明鋼No.59,62は、Si,Alが高くOが低い本発明鋼のNo.63,64に比べ工具寿命に優れている。
なお、表7の鋼No.59、60は参考鋼である。
【0045】
これに対して比較鋼No.73〜83では、いずれも次のような欠点が見られた。
比較鋼No.73,74では、C量(%),N量(%)量がそれぞれ高いため工具寿命に劣っている。比較鋼No.75では、S量(%)が高いため熱間製造性に劣っている。比較鋼No.76では、P量(%)が高いため熱間製造性に劣っている。比較鋼No.77では、Sn量(%)が低いため、切削時の工具寿命および切屑処理性に劣っている。比較鋼No.78では、Cu量(%)が高いため素材が硬く切削時の工具寿命に劣るばかりか、熱間製造性に劣っている。
【0046】
比較鋼No.79では、Cu量(%)が低いため熱間製造性が低いばかりか、Biが偏析し製造歩留に劣っている。比較鋼No.80では、Bi量(%)が高いため熱間製造性が低いばかりか、Biが偏析し製造歩留に劣っている。比較鋼No.81では、Mg量(%)が高いため切削時の工具寿命に劣っている。比較鋼No.82では、Ag量(%)が高いため熱間製造性に劣っている。比較鋼No.83では、Zr量(%)が高く切削時の工具寿命に劣っている。
【0047】
【表1】

Figure 0004906193
【0048】
【表2】
Figure 0004906193
【0049】
【表3】
Figure 0004906193
【0050】
【表4】
Figure 0004906193
【0051】
【表5】
Figure 0004906193
【0052】
【表6】
Figure 0004906193
【0053】
【表7】
Figure 0004906193
【0054】
【発明の効果】
本発明によれば、フェライト系S快削ステンレス鋼において、Snに加えてBi,Cu等を添加し、更には介在物の形態を制御することによって、環境衛生上で問題のあるPb,Se,Teなしに被削性,熱間製造性,冷間鍛造性,製造歩留・製造コストに優れたフェライト系快削ステンレス鋼を安価に得ることができる。
【図面の簡単な説明】
【図1】 18%Cr―0.02%C−0.02%N系のステンレス材料(4mm厚さ)のドリル穴開け時間とSn量の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel excellent in machinability and cold workability, and is an environment-friendly ferritic free-cutting stainless that does not contain a highly toxic element such as Pb, Se, Te as a free-cutting element. It is about steel.
[0002]
[Prior art]
Conventionally, ferritic S free-cutting stainless steel represented by SUS430F has a drawback that it has low cutting resistance but is inferior in chip disposal. In addition, deterioration of corrosion resistance due to sulfides, generation of hydrogen sulfide and low cold workability have been problems.
In recent years, steels to which free cutting elements such as Pb, Te, Se and the like are added have been proposed and put into practical use in order to solve these problems in recent years by reducing Mn and lowering the ratio of MnS to increase corrosion resistance (see, for example, 10-237603). However, these highly toxic free-cutting elements such as Pb are becoming increasingly regulated due to environmental problems in recent years, and are becoming impossible to manufacture.
[0003]
In the United States, a composite free-cutting steel of Sn, Cu, S has been proposed as an alternative to Pb free-cutting steel (carbon steel) (Patent USP-5961747).
Further, since Bi does not have toxicity and does not generate corrosive gas, Bi-containing stainless steel is regarded as promising as an environment-friendly free-cutting stainless steel (for example, Japanese Patent Publication No. 5-45661).
[0004]
However, super free-cutting elements such as Bi and Pb not only significantly reduce the hot productivity, but are also hardly soluble elements, so the addition yield of Bi and Pb is low due to segregation and sedimentation, etc. The product yield is poor and the cost is increased because large granular Bi and Pb are generated in the product.
Thus, in conventional steel, an inexpensive ferritic free-cutting stainless steel excellent in environmental friendliness that combines machinability, cold workability, and manufacturability without using a highly toxic element such as Pb. Not proposed.
[0005]
[Problems to be solved by the invention]
The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and without using a toxic element such as Pb, hot workability, machinability and cold workability. The objective is to provide a ferritic S free-cutting steel with good quality and environmental friendliness at low cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors use Sn, which is difficult to reduce hot manufacturability and cold forgeability, as a free-cutting element of ferritic stainless steel, and furthermore, combined addition of Bi and Cu, etc. As a result, machinability and cold workability are improved, the solubility of Bi is increased, the productivity is remarkably increased, and the machinability is further improved by controlling the amount of Si, O, Ca, and Al. The present invention has been found out and the present invention has been made.
[0007]
The gist of the present invention is as follows.
(1) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.005-0.05%,
Cu: 0.2 to 0.7%, Si: 0.05 to 0.5%,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
(2) By mass%
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0% S: 0.05-0.4%
Cu: 0.2 to 0.7%, Si: 0.05 to 0.5%,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
( 3 ) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.005-0.05%,
Cu: 0.5 to 2.5%, Si: 0.05 to 0.5%,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%, Bi: 0.01-0.15%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
( 4 ) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.05-0.4%,
Cu: 0.5 to 2.5%, Si: 0.05 to 0.5%,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%, Bi: 0.01-0.15%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
( 5 ) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.005-0.05%,
Cu: 0.5 to 2.5%, Si: 0.05 to 0.5%,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%, Bi: 0.01-0.15%,
and,
Mg: 0.0005-0.05%, Ag: 0.02-0.15%
A ferritic free-cutting stainless steel comprising at least one of the above, and the balance being Fe and inevitable impurities.
( 6 ) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.05-0.4%,
Cu: 0.5 to 2.5%, Si: 0.05 to 0.5%,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%, Bi: 0.01-0.15%,
and,
Mg: 0.0005-0.05%, Ag: 0.02-0.15%
A ferritic free-cutting stainless steel comprising at least one of the above, and the balance being Fe and inevitable impurities.
( 7 ) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.005-0.05%,
Cu: 0.2-0.9%, Si : 0.05-0.5 %,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
and,
B: 0.0005 to 0.02%,
Ca: Ferritic free-cutting stainless steel containing at least one of 0.0005 to 0.02%, and remaining balance Fe and inevitable impurities.
( 8 ) In mass%,
C: 0.08% or less, Mn: 0.05-3.0%,
P: 0.01 to 0.1%, Cr: 15 to 22%,
Sn: 0.03-0.3%, N: 0.08% or less,
Ni: 0.05-1.0%, S: 0.05-0.4%,
Cu: 0.2-0.9%, Si : 0.05-0.5 %,
Al: 0.015% or less, Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
and,
B: 0.0005 to 0.02%,
Ca: Ferritic free-cutting stainless steel containing at least one of 0.0005 to 0.02%, and remaining balance Fe and inevitable impurities.
( 9 ) The ferritic free-cutting stainless steel according to (1) or (2) above, further containing Zr: 0.005 to 0.3% by mass%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the component ranges of the steel of the present invention according to claims 1 and 2 will be described below.
C increases the strength of the matrix and degrades the corrosion resistance, cold forgeability, and machinability, so the upper limit was made 0.08%. In order to improve the surface properties after cutting, the content is preferably 0.04% or less.
[0009]
Mn is an element that produces S and sulfides and improves the machinability, so 0.05% or more is added. However, if added over 3%, the effect is saturated, and conversely, machinability and cold workability deteriorate. Therefore, the upper limit was made 3.0%. Further, since Mn is an element that deteriorates corrosion resistance and outgas resistance, in order to improve them, it is preferably 0.5% or less.
[0010]
P is an element effective for improving machinability, and is added by 0.01% or more. However, if added in a large amount, hot manufacturability, cold forgeability and corrosion resistance are deteriorated, so the upper limit was made 0.1%. Preferably they are 0.02% or more and 0.05% or less.
[0011]
Cr is added in an amount of 15% or more to ensure corrosion resistance. However, if it exceeds 22%, the productivity is remarkably lowered and the economy is inferior. Therefore, the upper limit was made 22%. Preferably they are 16% or more and 20% or less.
[0012]
Sn is an element that dissolves at high temperatures in ferritic stainless steel and segregates at grain boundaries at low temperatures, and improves machinability without deteriorating hot manufacturability, cold forgeability, and corrosion resistance. It is also an element that improves the solubility of Bi. Therefore, 0.03% or more is added. However, if added over 0.3%, not only the hot productivity deteriorates, but the material becomes hard and the machinability deteriorates. Therefore, the upper limit was made 0.3%.
FIG. 1 shows the drilling time of a material (4 mm thickness) obtained by adding Sn to a 18% Cr-0.02% C-0.02% N-based material. When Sn is 0.03 to 0.3%, the drill penetrates within 20 seconds, and the effect is great. Preferably they are 0.05% or more and 0.2% or less.
[0013]
N increases the strength of the matrix and degrades the corrosion resistance, cold forgeability and machinability, so the upper limit was made 0.08%. In order to improve the surface properties after cutting, the content is preferably 0.03% or less.
Ni is added in an amount of 0.05% or more in order to increase the toughness of the matrix. However, if excessively added, the martensite structure precipitates and deteriorates machinability and cold forgeability, so the upper limit is 1.0%. did. Preferably it is 0.6 or less.
[0014]
S is a free-cutting element which forms Mn and Cr sulfides in the matrix and is added in an amount of 0.005% or more in order to improve machinability. On the other hand, if added excessively, the cold forgeability deteriorates due to the notch effect. Therefore, the upper limit when carrying out cold forging (Claim 1 ) is set to 0.05%. Preferably it is 0.03% or less.
Further, when cold forging is not performed and the machinability is important (Claim 2 ), 0.05% or more of S is added. However, when it exceeds 0.4%, hot workability is also deteriorated. Therefore, the upper limit was made 0.4%. Preferably they are 0.15% or more and 0.35% or less.
[0015]
Cu is a machinable element and has corrosion resistance. As shown in Table 1, 0.2 to 0.7% is contained. Moreover, the vapor pressure of Bi in molten steel is lowered to promote the dissolution of Bi, and the product yield is remarkably improved. Therefore, 0.5% or more is added together with Bi. However, if added over 2.5%, the matrix hardens and deteriorates machinability as well as hot manufacturability. Therefore, the upper limit was made 2.5%. In consideration of Bi yield, machinability and hot manufacturability, it is preferably 1.0% or more and 2.0% or less.
[0016]
Since Si is necessary as a deoxidizing element, 0.05% or more is added. However, if added over 0.5 %, the deoxidized product at the time of solidification becomes a low melting point MnO-SiO 2 system, and the sulfide crystallized using it as a nucleus is finely dispersed. If it is 0.5 % or less, the deoxidation product at the time of solidification becomes a relatively high melting point and coarse MnO—Cr 2 O 3 system rich, and as a result, the sulfide that crystallizes using it as a nucleus is also coarsely dispersed. The machinability is improved. Therefore, it is limited to 0.5 % or less. As will be described later, the coarse dispersion of sulfides requires O of 0.003 % or more. Preferably it is 0.25% or less.
[0017]
When Al is added in an amount exceeding 0.015 %, a hard Al-based oxide is mainly formed to deteriorate the machinability. Therefore, the upper limit is limited to 0.015 %. Preferably it is 0.005% or less.
[0018]
Mo is added in an amount of 0.01 % or more in order to improve the corrosion resistance of the steel, but if added excessively, it is not economical and deteriorates machinability and cold forgeability. Therefore, the upper limit was made 3.0%. Preferably it is 2.5% or less.
[0019]
As described above, O is added in an amount of 0.003 % or more in order to improve machinability by making the deoxidation product during solidification into a coarse MnO—Cr 2 O 3 system. However, if added over 0.015%, the ratio of hard oxide increases, and the machinability deteriorates. Therefore, the upper limit was made 0.015%.
[0020]
Next, the reasons for limiting the components of the present invention of claims 3 to 6 will be described.
Bi is added in an amount of 0.01% or more as necessary to further improve the machinability. However, addition over 0.15% not only degrades hot workability, but also causes Bi to settle, resulting in a decrease in product yield and an increase in manufacturing cost. Therefore, the upper limit was made 0.15%. Preferably it is 0.12% or less.
[0021]
Mg is a machinable element and lowers the vapor pressure of Bi in the molten steel to promote the dissolution of Bi, thereby significantly improving the product yield. Therefore, 0.0005% or more is added together with Bi. However, if it exceeds 0.05%, coarse hard inclusions are generated, and machinability and cold workability are deteriorated. Therefore, the upper limit was made 0.05%. In consideration of Bi yield and machinability, it is preferably 0.005% or more and 0.03% or less.
[0022]
Ag is a machinable element and lowers the vapor pressure of Bi in the molten steel to promote the dissolution of Bi, thereby significantly improving the product yield. Therefore, 0.02% or more is added together with Bi. However, if it exceeds 0.15 %, not only the hot workability is deteriorated but also the product yield is deteriorated. Therefore, the upper limit was made 0.15%. Considering Bi yield and machinability, it is preferably 0.05% or more and 0.10% or less.
[0023]
Next, the reasons for limiting the components of the present invention of claim 9 will be described.
Zr improves the machinability and cold forgeability by uniformly finely dispersing sulfides in addition to the formation of carbonitrides. For this reason, 0.005% or more is added as necessary, but excessive addition increases the strength and degrades machinability and cold forgeability. Therefore, the upper limit was made 0.3%. Preferably it is 0.15% or less.
[0024]
Next, the reasons for limiting the components of the present invention of claims 7 and 8 will be described.
B is added in an amount of 0.0005% as necessary to improve hot workability. However, if added over 0.02%, coarse boride is produced, and conversely, hot workability and corrosion resistance are deteriorated. Therefore, the upper limit was made 0.02%. Preferably it is 0.01% or less.
[0025]
Ca is added in an amount of 0.0005% or more as necessary for the purpose of uniformly dispersing the form of sulfide during solidification, improving machinability and hot manufacturability, and improving the corrosion resistance of S free-cutting steel. To do. However, if added over 0.02%, the effect is saturated, and conversely, coarse inclusions increase and the corrosion resistance deteriorates, which is uneconomical. Therefore, the upper limit was made 0.02%. Preferably it is 0.008% or less.
In addition, when adding the said B and Ca, as described in Table 1 (invention steel 28, 29) of an Example, Cu content is made into 0.8 to 0.9%, Table 5 The effect as shown in can be obtained.
[0026]
Delete [0027]
Delete [0028]
Delete [0029]
Delete [0030]
【Example】
Test materials having chemical components shown in Table 1, Table 2, and Table 3 were vacuum-melted to prepare 50 kg steel ingots. Tables 1 and 2 show chemical components when S is less than 0.05% and cold forging and machinability are required. Table 3 shows chemical components when S is 0.05% and more and only machinability is required. Indicates. These steel ingots were hot forged and hot rolled into 21 mmφ bar steel. Thereafter, annealing was performed at 850 ° C., and a 20 mmφ bar wire was finished by cold drawing and centerless processing.
In Table 1, the steel No. 1, 9, 10, 20-27, 30-33, and steel No. 1 in Table 3. 59 and 60 are reference steels.
[0031]
The evaluation was divided into a case where S is less than 0.05% and both cold forgeability and machinability are required, and a case where S is 0.05% and more and only machinability is required.
When both cold forgeability and machinability characteristics are required, that is, when S is less than 0.05% (components: Tables 1 and 2), the machinability, hot workability, and cold forgeability are evaluated. did. Moreover, the state of macro segregation of Sn, S, Bi elements in each part of the steel bar was evaluated as an index of segregation occurring in the melting / solidification process, that is, production yield and production cost.
[0032]
As for machinability, a cutting test was performed on the steel bar under the conditions shown in Table 4 to evaluate machinability. The machinability was evaluated based on the tool life and the chip shape. The tool life was evaluated by the amount of flank wear, and the tool life was evaluated as ○ when the flank wear amount after 30 min was 50 μm or less, and × when it was over 50 μm. In addition, the chip shape was evaluated as “◯” when it was regularly divided into curls, and “X” when the chip was irregularly shaped.
The tool life and chip disposal of the steel of the present invention were both good.
[0033]
As for the hot productivity, a test piece (φ8 mm × 110 mm) was cut out from the slab surface layer, and the hot workability was evaluated by a thermorester test. The evaluation was performed at the breaking drawing value at 1000 ° C., and when the drawing value at that time was 60% or more, the hot workability was judged as “good”. The hot workability of the steel of the present invention was all good.
[0034]
The cold forgeability was evaluated by compressing a 10 mm × 20 mm test piece with a 0.5 mmV notch from the above steel bar, performing a compression test at a speed of 1 mm / sec, and generating cracks (limit compression rate). . When the limit compression ratio was 65% or more, the cold workability was evaluated as ◯, and when it was less than 65%, it was evaluated as x.
All the cold workability of this invention was (circle).
[0035]
The segregation of the bar steel was evaluated from the ratio of the analysis values of Sn, S, Bi free cutting elements by collecting chips for component analysis from the top and bottom of the bar steel. If the analysis value of the element of the bottom Sn, S, Bi is less than 1.3 times the value of the top part (segregation value), the evaluation of segregation is good (good), and if it is 1.3 times or more, segregation. Was evaluated as x (defect). That is, if it was x, it was judged that the production yield was bad and the production cost was high.
All the evaluations of segregation of the present invention were ○.
[0036]
These test results are shown in Tables 5 and 6.
Invention Steel No. 2-8 , 11-19 , 28 and 29 are ferritic stainless steel by adding Bi, Cu, etc. in addition to Sn, cutting ability and hot production without using toxic elements such as Pb , Cold forgeability and segregation (production yield) are all excellent.
In Table 5, steel No. Reference numerals 1, 9, 10, 20 to 27, and 30 to 33 are reference steels.
[0037]
On the other hand, comparative steel No. In 34 to 58, the following defects were observed.
No. of comparative steel. In 34 to 36, since the C amount (%), N amount (%), and Mn amount (%) are high, the material becomes hard, not only the tool life and cold forgeability at the time of cutting are inferior, but also inferior in corrosion resistance. Yes. Comparative steel No. No. 37 is inferior in cold forgeability and hot manufacturability because the amount of P (%) is high. Comparative steel No. No. 38 is inferior in corrosion resistance because the Cr amount (%) is low. Comparative steel No. No. 39 is uneconomical because the Cr content (%) is high. Comparative steel No. In No. 40, since the Sn amount (%) is low, the tool life at the time of cutting and chip disposal are poor. Comparative steel No. In No. 41, since the Sn amount (%) is high, the material becomes hard, and the tool life and hot manufacturability at the time of cutting are inferior.
[0038]
Comparative steel No. In No. 42, since the amount of Cu (%) is low, the segregation of Bi is inferior, and the production yield is inferior. Comparative steel No. In No. 43, since the amount of Cu (%) is high, it is not only inferior in cold forgeability and tool life, but also inferior in hot productivity. Comparative steel No. No. 44 is not only inferior in hot workability due to a high Bi amount (%), but also has a segregation of Bi, and is inferior in production yield and production cost. Comparative steel No. In No. 45, since the Mg amount (%) is high, the cold forgeability and the tool life are inferior. Comparative steel No. In No. 46, since the Ag amount (%) is high, the hot productivity is inferior.
[0039]
Comparative steel No. 47 and 48 are inferior in cold forgeability and tool life because the Ni amount (%) and Co amount (%) are high. Comparative steel No. In No. 49, since the Mo amount (%) is high, it is not only inferior in cold forgeability and tool life but also uneconomical.
Comparative steel No. In 50 to 54, the Nb amount (%), V amount (%), W amount (%), Ta amount (%), and Zr amount (%) are high, respectively, so that cold forgeability and tool life are inferior. .
[0040]
Comparative steel No. In No. 55, since the amount of B (%) is high, it is not only inferior in hot productivity but also inferior in corrosion resistance. Comparative steel No. In 56, since the Ca amount (%) is high, the corrosion resistance is deteriorated and it is uneconomical. Comparative steel No. No. 57 is inferior in hot manufacturability because the Y amount (%) is high. Comparative steel No. In No. 58, since the Ti amount (%) is high, the tool life is inferior.
[0041]
Next, when only machinability is required, that is, when S is 0.05% or more, the machinability, hot manufacturability, and segregation state (manufacturing yield / manufacturing cost) were evaluated. A cutting test was carried out under the conditions shown in Table 4, and the tool life and chip shape were used. The tool life was evaluated by the amount of flank wear, and the tool life was evaluated as ○ when the flank wear amount after 30 minutes was 30 μm or less, and × when it was over 30 μm. In addition, the chip shape was evaluated as “◯” if it was regularly divided into curls, and “×” in the case of irregular-shaped continuous cutting.
The tool life and chip disposal of the steel of the present invention were both good.
[0042]
For the hot manufacturability, a test piece (φ8 mm × 110 mm) was cut out from the slab surface layer, and the hot workability was evaluated by a thermorester test. The evaluation was performed at the breaking drawing value at 1000 ° C., and the hot workability was judged to be good (good) if the drawing value at that time was 60% or more. The hot workability of the steel of the present invention was all good.
[0043]
The segregation of the bar steel was evaluated from the ratio of the analysis values of Sn, S, Bi free cutting elements by collecting chips for component analysis from the top and bottom of the bar steel. If the analysis value of the element of Sn, S, Bi at the bottom is less than 1.3 times the value (segregation value) at the top, the evaluation of segregation is good (good), and if it is 1.3 times or more, segregation. Was evaluated as x (defect). That is, if it was x, it was judged that the production yield was bad and the production cost was high.
All the evaluations of segregation of the present invention were ○.
[0044]
These test results are shown in Table 7.
Invention Steel No. 61-72 is Sn-added ferritic stainless steel, further S, Bi, in addition to the Cu or the like, and subjected to oxide control, chip disposability without using a strong element of toxic Pb or the like, the tool Excellent life, hot manufacturability and segregation (manufacturing yield / cost). However, steel No. 1 of the present invention in which Si and Al are reduced and O is increased. Nos. 59 and 62 are Nos. Of steels of the present invention having high Si and Al and low O. Compared to 63 and 64, the tool life is excellent.
In Table 7, steel No. 59 and 60 are reference steels.
[0045]
On the other hand, comparative steel No. In 73-83, the following faults were observed.
Comparative steel No. In 73 and 74, since the amount of C (%) and the amount of N (%) are high, the tool life is inferior. Comparative steel No. In 75, since S amount (%) is high, it is inferior to hot productivity. Comparative steel No. No. 76 is inferior in hot manufacturability because the amount of P (%) is high. Comparative steel No. In No. 77, since the Sn amount (%) is low, it is inferior in tool life and chip disposal during cutting. Comparative steel No. In No. 78, since the amount of Cu (%) is high, the material is hard and the tool life at the time of cutting is inferior, and the hot productivity is also inferior.
[0046]
Comparative steel No. In No. 79, since the Cu content (%) is low, not only the hot productivity is low, but Bi is segregated and the production yield is poor. Comparative steel No. In No. 80, since the Bi amount (%) is high, not only the hot productivity is low, but Bi is segregated and the production yield is poor. Comparative steel No. In 81, since the Mg amount (%) is high, the tool life at the time of cutting is inferior. Comparative steel No. In No. 82, since the Ag amount (%) is high, the hot productivity is poor. Comparative steel No. In No. 83, the amount of Zr (%) is high and the tool life during cutting is poor.
[0047]
[Table 1]
Figure 0004906193
[0048]
[Table 2]
Figure 0004906193
[0049]
[Table 3]
Figure 0004906193
[0050]
[Table 4]
Figure 0004906193
[0051]
[Table 5]
Figure 0004906193
[0052]
[Table 6]
Figure 0004906193
[0053]
[Table 7]
Figure 0004906193
[0054]
【Effect of the invention】
According to the present invention, the ferritic S free cutting stainless steel, Sn in pressurized forte Bi, Cu is added, etc., even a by controlling the form of inclusions, the problem on environmental sanitation Pb, Se, A ferritic free-cutting stainless steel excellent in machinability, hot manufacturability, cold forgeability, production yield and production cost can be obtained at low cost without Te.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the drilling time and the Sn amount of 18% Cr-0.02% C-0.02% N-based stainless steel material (4 mm thickness).

Claims (9)

質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%
S :0.005〜0.05%、
Cu:0.2〜0.7%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05-1.0%
S: 0.005 to 0.05%,
Cu: 0.2 to 0.7%,
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%
S :0.05〜0.4%、
Cu:0.2〜0.7%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05-1.0%
S: 0.05 to 0.4%,
Cu: 0.2 to 0.7%,
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%、
S :0.005〜0.05%、
Cu:0.5〜2.5%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%、
Bi:0.01〜0.15%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05 to 1.0%,
S: 0.005 to 0.05%,
Cu: 0.5 to 2.5%,
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
Bi: 0.01 to 0.15%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%、
S :0.05〜0.4%、
Cu:0.5〜2.5%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%、
Bi:0.01〜0.15%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05 to 1.0%,
S: 0.05 to 0.4%,
Cu: 0.5 to 2.5%,
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
Bi: 0.01 to 0.15%
A ferritic free-cutting stainless steel characterized by comprising the balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%、
S :0.005〜0.05%、
Cu:0.5〜2.5%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%、
Bi:0.01〜0.15%、
および、
Mg:0.0005〜0.05%、
Ag:0.02〜0.15%のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05 to 1.0%,
S: 0.005 to 0.05%,
Cu: 0.5 to 2.5%,
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
Bi: 0.01 to 0.15%,
and,
Mg: 0.0005 to 0.05%,
Ag: Ferritic free-cutting stainless steel containing at least one of 0.02 to 0.15% and comprising the balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%、
S :0.05〜0.4%、
Cu:0.5〜2.5%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%、
Bi:0.01〜0.15%、
および、
Mg:0.0005〜0.05%、
Ag:0.02〜0.15%のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05 to 1.0%,
S: 0.05 to 0.4%,
Cu: 0.5 to 2.5%,
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
Bi: 0.01 to 0.15%,
and,
Mg: 0.0005 to 0.05%,
Ag: Ferritic free-cutting stainless steel containing at least one of 0.02 to 0.15% and comprising the balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%、
S :0.005〜0.05%、
Cu:0.2〜0.9%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%、
および、
B :0.0005〜0.02%、
Ca:0.0005〜0.02%のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05 to 1.0%,
S: 0.005 to 0.05%,
Cu: 0.2-0.9%
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
and,
B: 0.0005 to 0.02%,
Ca: Ferritic free-cutting stainless steel containing at least one of 0.0005 to 0.02%, and remaining balance Fe and inevitable impurities.
質量%で、
C :0.08%以下、
Mn:0.05〜3.0%、
P :0.01〜0.1%、
Cr:15〜22%、
Sn:0.03〜0.3%、
N :0.08%以下、
Ni:0.05〜1.0%、
S :0.05〜0.4%、
Cu:0.2〜0.9%、
Si:0.05〜0.5%、
Al:0.015%以下、
Mo:0.01〜3.0%、
O :0.003〜0.015%、
および、
B :0.0005〜0.02%、
Ca:0.0005〜0.02%のうち1種以上
を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系快削ステンレス鋼。
% By mass
C: 0.08% or less,
Mn: 0.05 to 3.0%
P: 0.01-0.1%
Cr: 15-22%,
Sn: 0.03-0.3%,
N: 0.08% or less,
Ni: 0.05 to 1.0%,
S: 0.05 to 0.4%,
Cu: 0.2-0.9%
Si: 0.05 to 0.5%,
Al: 0.015% or less,
Mo: 0.01 to 3.0%,
O: 0.003-0.015%,
and,
B: 0.0005 to 0.02%,
Ca: Ferritic free-cutting stainless steel containing at least one of 0.0005 to 0.02%, and remaining balance Fe and inevitable impurities.
質量%でさらに、Zr:0.005〜0.3%を含有することを特徴とする請求項1または2に記載のフェライト系快削ステンレス鋼。The ferritic free-cutting stainless steel according to claim 1 or 2 , further comprising, in mass%, Zr: 0.005 to 0.3%.
JP2001076534A 2000-04-13 2001-03-16 Ferritic free-cutting stainless steel Expired - Fee Related JP4906193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076534A JP4906193B2 (en) 2000-04-13 2001-03-16 Ferritic free-cutting stainless steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-112009 2000-04-13
JP2000112009 2000-04-13
JP2000112009 2000-04-13
JP2001076534A JP4906193B2 (en) 2000-04-13 2001-03-16 Ferritic free-cutting stainless steel

Publications (3)

Publication Number Publication Date
JP2001355048A JP2001355048A (en) 2001-12-25
JP2001355048A5 JP2001355048A5 (en) 2010-08-26
JP4906193B2 true JP4906193B2 (en) 2012-03-28

Family

ID=26590038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076534A Expired - Fee Related JP4906193B2 (en) 2000-04-13 2001-03-16 Ferritic free-cutting stainless steel

Country Status (1)

Country Link
JP (1) JP4906193B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545087B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Chromium-containing ferritic stainless steel
JP3942934B2 (en) * 2002-03-29 2007-07-11 日新製鋼株式会社 Manufacturing method of stainless steel molded products with excellent shape accuracy
JP4272397B2 (en) * 2002-09-10 2009-06-03 日新製鋼株式会社 Martensitic and ferritic stainless steels with excellent hot workability and machinability
JP2006194256A (en) * 2003-04-25 2006-07-27 Seiko Instruments Inc Fluid dynamic pressure bearing motor and information recording/reproducing device
JP4266336B2 (en) * 2003-10-08 2009-05-20 株式会社神戸製鋼所 Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
SE528680C2 (en) * 2004-06-30 2007-01-23 Sandvik Intellectual Property Ferritic lead-free stainless steel alloy
JP2006097039A (en) * 2004-09-28 2006-04-13 Sanyo Special Steel Co Ltd Free-cutting stainless steel with excellent corrosion resistance, cold forgeability and hot workability
DE102008048050A1 (en) 2007-09-19 2009-04-16 Daido Tokushuko K.K., Nagoya Easily cutting ferritic stainless steel has manganese that forms sulphide in zirconium-series sulphide replaced by zirconium
JP4651682B2 (en) * 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent corrosion resistance and workability and method for producing the same
JP4624473B2 (en) * 2008-12-09 2011-02-02 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent weather resistance and method for producing the same
JP5683197B2 (en) * 2009-11-11 2015-03-11 新日鐵住金ステンレス株式会社 Ferritic free-cutting stainless steel bar wire with excellent corrosion resistance
CN102162063B (en) * 2010-02-23 2012-11-14 宝山钢铁股份有限公司 Ferritic stainless steel medium plate and manufacturing method thereof
JP5704823B2 (en) * 2010-02-25 2015-04-22 日新製鋼株式会社 Ferritic stainless steel with no rare earth metals and excellent oxidation resistance at high temperatures
JP5709594B2 (en) * 2011-03-14 2015-04-30 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel plate with excellent weather resistance and antiglare properties
KR20130125823A (en) * 2011-03-29 2013-11-19 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit
JP5921352B2 (en) * 2011-08-05 2016-05-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
ES2788506T3 (en) 2011-06-16 2020-10-21 Nippon Steel & Sumikin Sst Ferritic stainless steel plate that has excellent scoring resistance and production method thereof
CN103510022A (en) * 2012-06-26 2014-01-15 宝钢不锈钢有限公司 Control method for avoiding low Cr ferrite stainless steel hot rolling edge crack
CN104451430A (en) * 2014-11-13 2015-03-25 湖北宏盛不锈钢制品有限公司 Stainless steel wire with high toughness
CN104409748A (en) * 2014-11-13 2015-03-11 湖北宏盛不锈钢制品有限公司 Stainless steel separator plate used for fuel cell
CN104493504A (en) * 2014-11-28 2015-04-08 周正英 Sliding seat
CN104492553A (en) * 2014-11-28 2015-04-08 周正英 Closed sand mill
CN104480367A (en) * 2014-11-28 2015-04-01 周正英 Multifunctional submersible pump
CN104674135B (en) * 2015-03-20 2017-01-25 苏州赛斯德工程设备有限公司 Anti-corrosion steel plate for shuttle type storage rack and thermal treatment process thereof
JP6814655B2 (en) * 2017-02-17 2021-01-20 日鉄ステンレス株式会社 Ferritic free-cutting stainless steel wire
WO2018179456A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Ferritic stainless steel
CN110541130A (en) * 2019-10-22 2019-12-06 长沙凯泽工程设计有限公司 Stainless steel for medical instruments and preparation method thereof
WO2022145069A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
CN115216693B (en) * 2022-07-13 2024-08-06 山西太钢不锈钢股份有限公司 Leadless free-cutting stainless steel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220922A (en) * 1975-07-05 1977-02-17 Daido Steel Co Ltd Free cutting ferrite stainless steel
JPS5925002B2 (en) * 1979-10-27 1984-06-13 大同特殊鋼株式会社 free cutting stainless steel powder
JPS63274744A (en) * 1987-04-30 1988-11-11 Sanyo Electric Co Ltd Ni-cr stainless steel improved in corrosion resistance and machinability
JPS6442557A (en) * 1987-08-07 1989-02-14 Kawasaki Steel Co Mild ferritic stainless steel having superior machinability
JPH10237603A (en) * 1997-02-20 1998-09-08 Daido Steel Co Ltd Free cutting ferritic stainless steel excellent in corrosion resistance
JP3904683B2 (en) * 1997-09-12 2007-04-11 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface properties and method for producing the same

Also Published As

Publication number Publication date
JP2001355048A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP4906193B2 (en) Ferritic free-cutting stainless steel
JP3758581B2 (en) Low carbon free cutting steel
US20080240970A1 (en) Austenitic free-cutting stainless steel
JP5121282B2 (en) Steel for high-speed cold working and its manufacturing method, and high-speed cold-worked component and its manufacturing method
JP4502519B2 (en) Martensitic free-cutting stainless steel
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP2000219936A (en) Free-cutting steel
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JPH07188847A (en) Machine-structural carbon steel excellent in machiniability
JP3747585B2 (en) High hardness martensitic stainless steel with excellent workability and corrosion resistance
CN110983164A (en) Microalloy element Nb-reinforced duplex stainless steel and preparation method thereof
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP2008144211A (en) Non-tempered steel containing V
JP3255612B2 (en) Method of manufacturing super-cuttable steel rod and wire and super-cuttable steel rod and wire thereby
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
JP3255611B2 (en) Free-cutting steel rod and wire excellent in drilling workability and method for producing the same
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JPH11293391A (en) Low carbon free cutting steel excellent in chip treatability, and its production
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP4272397B2 (en) Martensitic and ferritic stainless steels with excellent hot workability and machinability
JPH07188849A (en) Machine-structural carbon steel excellent in machinability
JP3778140B2 (en) Free-cutting steel
JPH09291344A (en) Low hardness martensitic stainless steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees