[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4906182B2 - Conduit type forced cooling superconducting conductor and superconducting magnet - Google Patents

Conduit type forced cooling superconducting conductor and superconducting magnet Download PDF

Info

Publication number
JP4906182B2
JP4906182B2 JP2000311952A JP2000311952A JP4906182B2 JP 4906182 B2 JP4906182 B2 JP 4906182B2 JP 2000311952 A JP2000311952 A JP 2000311952A JP 2000311952 A JP2000311952 A JP 2000311952A JP 4906182 B2 JP4906182 B2 JP 4906182B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting conductor
conduit
electromagnetic force
forced cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000311952A
Other languages
Japanese (ja)
Other versions
JP2002124143A (en
Inventor
克哉 堤
秀美 林
和夫 船木
成卓 岩熊
章 富岡
敬昭 坊野
裕治郎 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2000311952A priority Critical patent/JP4906182B2/en
Publication of JP2002124143A publication Critical patent/JP2002124143A/en
Application granted granted Critical
Publication of JP4906182B2 publication Critical patent/JP4906182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、強磁界を利用する成分分析用やエネルギー貯蔵用ならびに変圧器やインダクタ等の誘導電器などに用いる大容量の超電導コイルに使用される強制冷却超電導導体、特にコンジット型強制冷却超電導導体とこれを用いた超電導磁石に関する。
【0002】
【従来の技術】
近年、冷凍機の冷凍能力向上に伴って、超電導コイルに冷凍機を付設して冷凍機で発生する極低温の冷媒によって超電導コイルを冷却する方式の超電導磁石装置の開発が盛んに進められている。
【0003】
図7は、従来の冷凍機冷却方式の超電導磁石装置の基本構成を模式的に示す断面図で、中央部に常温の高磁界空間を備えた超電導磁石装置について中心軸を通る断面を示したものである。図7において、1は超電導線をソレノイド状に巻回して構成された超電導コイル、2は超電導コイル1の周囲に配され、外部からの熱輻射を遮断して断熱する輻射シールド、3はこれらを取り囲み内部を真空に保持して断熱する真空容器である。また、7は超電導コイル1を冷却する冷凍機、8は冷凍機7に圧縮ヘリウムガスを供給し冷凍サイクルの運転制御系を備えた圧縮機、9は超電導コイル1に図示しない電源より電流を供給して励磁する電流リードである。
【0004】
図7に示すように、冷凍機7は、巻枠としての冷却ボビン5に層状に巻回された超電導コイル1を側方より支持する一方の冷却フランジ4と輻射シールド2に接続されており、超電導コイル1を所定の極低温(約20〜80K)に、また輻射シールド2を所定の極低温(約80〜100K)に冷却する。
【0005】
ところで、前記超電導コイル1が変動磁界を受け、交流損失を発生するような運転をした場合には、コイル内部に交流損失が発生して発熱する。この発熱によりコイル温度が上昇して臨界温度以上になると、超電導線が超電導状態から常電導状態へと移行し、常電導転移(クエンチ)を引き起こす恐れがあるので、この発熱を除去する必要がある。
【0006】
図8は、このような常電導転位の危険性を抑制するために提案された超電導コイルの構成例として、特開平10−116725号公報や特開平11−135318号公報に記載された超電導コイルの断面図である。本構成に於いては、巻枠としての冷却ボビン5に層状に巻回された超電導線10の層間に、銅あるいは銅合金等の良熱伝導材料もしくは層間絶縁を兼ねて良熱伝導性セラミックス材料よりなる熱伝導冷却板11が組み込まれており、熱伝導冷却板11の両端は、冷却フランジ4Cおよび冷却フランジ4Dが備えた溝中に挿入されている。従って本構成によれば、超電導コイルの内部が熱伝導冷却板11を介しての伝熱により臨界電流以下の所定温度へと冷却されるので、常電導転位を生じることなく運転できることとなる。
【0007】
しかしながら上記構成においても、超電導コイルが大型化した場合には、熱伝導冷却板11が長くなり、超電導コイルの中央部の温度は、冷却フランジの温度よりはるかに高くなる可能性があり、また大型化することで大きな交流損失が発生し、温度上昇を抑制できなくなる可能性がある。
さらに、大型の超電導コイルの場合、電磁力が増大するので高強度を要求されるが、熱伝導冷却板がセラミックスのような強度が低い材料は使用できなくなる可能性がある。結果として超電導コイルの温度を所定の温度に保つことができなくなり、安定した運転ができなくなる可能性が生じる。
【0008】
これに対して、近年、強制冷却超電導導体の開発が進んでおり、特に大型,高磁場,高精度が必要とされる超電導コイルあるいは超電導磁石においては、複数本の超電導撚線を金属管内に内蔵した、所謂コンジット型強制冷却超電導導体(以下、コンジット超電導体ともいう。)を巻線する方式が開発されている。このコンジット超電導体の構成に関しては、例えば、特開平7−45137号公報、特開平8−17264号公報、特開平11−329114号公報等に記載されている。
【0009】
図9は、前記特開平7−45137号公報に記載されたコンジット超電導体の概略断面構造の一例を示し、このコンジット超電導体は、安定化材に包み込まれた超電導素線を撚り合わせて形成された複数の超電導撚線13をさらに撚り合わせて形成された一次撚線14と、冷媒15とを金属製のコンジット12内に内蔵して構成され、冷媒15がコンジット12内を流動可能とすることにより、磁界変動などの外乱に対する安定性を、従来より向上したものである。前記特開平8−17264号公報、特開平11−329114号公報においても、前記特開平7−45137号公報に記載の発明の要旨とは異なるものの、超電導撚線を用い、冷媒がコンジット内を流動可能とした類似の構成が記載されている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の上記コンジット超電導体構成においても、超電導コイル寸法がさらに大型化した場合には、下記の問題がある。
【0011】
まず、第1の問題は、寸法の大型化に伴って増大する電磁力により、超電導撚線からなる超電導導体が、コンジット内で動く危険性があり、常電導転移(クエンチ)を引き起こす危険性が高くなる。
【0012】
また、従来装置の第2の問題は、電流分流の不均一に伴う交流損失の増大の問題である。従来の撚線を用いる構成でも、電流分流の均一化は理論的には可能であるが、超電導素線が円形断面の外縁部分にも内部にも配置されるために、素線を、位置的に厳密に電流分流を均一にするように撚ることが実際上は困難で、電流分流の均一化は不十分にならざるを得ない。
【0013】
そのため、特に交流損失が大きなものとなる大容量超電導コイルにおいて、上記撚線の導体構成を採用すると、電流分流の不均一に伴う循環電流が流れ、偏流に伴い交流損失がさらに増大する問題がある。
【0014】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、大型のコイルに於いても、超電導導体に働く大きな電磁力の良好な支持と、交流損失に伴う発熱の効果的な除去と、さらに電流分流の均一化が可能なコンジット型強制冷却超電導導体とこれを用いた超電導磁石を提供することにある。
【0015】
【課題を解決するための手段】
前述の課題を解決するため、この発明は、コンジットの内部に複数の超電導導体と冷媒流路とを備えたコンジット型強制冷却超電導導体において、前記複数の超電導導体の外周表面を成形テープにより導体の長手方向にわたって螺旋状に巻回してなる超電導導体集合体と、前記コンジットの内面と超電導導体集合体外面との間に配設された少なくとも一つの電磁力支持部材と、前記コンジットの内面と超電導導体集合体外面と電磁力支持部材外面とにより形成した冷媒流路とを備え、かつ、前記超電導導体として断面形状を矩形とした高温超電導導体を用いるとともに、前記超電導導体集合体は、電流分流の均一化のために複数の超電導導体を順次転位させて、その位置を変えることにより、各超電導導体に断面構成において全ての位置を経験させてなるものとする(請求項1の発明)。
【0016】
上記により、超電導コイルが大型化して交流損失が増大した場合にも、コンジット内部に冷媒を適量供給することにより、超電導導体を効果的に冷却できる。
また、超電導導体に働く電磁力は、電磁力支持部材を介してコンジットに伝達され、コンジットに高強度部材を用いることにより、好適に支持できる。なお、成形テープは、冷却効率向上の観点から、導体の長手方向にわたって隙間をあけて螺旋状に巻回するか、もしくは穴明きテープを用いて巻回することが望ましい。
【0017】
また、上記請求項1の発明において、前記超電導導体集合体は、複数の超電導導体を電流分流の均一化のために転位してなるものとするので、これにより、従来の撚線構成の超電導導体集合体と異なり、電流分流の均一化をより確実に行なうことができる。この転位に関しては、超電導コイルとして、並列超電導導体を巻回する際に、層間渡り接続部などで転位させる構成が提案されている(例えば、特開平10−172824号公報、特願平11−78819号参照)が、前記請求項の発明においては、超電導導体集合体自体で超電導導体を転位させて電流分布の均一化を図る構成としているので、大容量のコイルの形成が容易となる。
【0018】
前記特開平10−172824号公報には、超電導変圧器コイルに好適な超電導導体の転位構成として、複数の超電導線がコイル軸方向の少なくとも一箇所の転位個所でそれぞれの半径方向位置を変えることによって、それぞれの超電導線の半径位置の違いによる誘起電圧の違いを打ち消す、即ち、すべての超電導線の半径方向位置を占める割合を平等とする転位構成が記載されている。
また、前記特願平11−78819号には、パンケーキ形超電導コイルに好適な超電導線の転位構成が記載されている。
【0019】
前述のように、請求項の発明においては、コンジット内の超電導導体集合体自体で超電導導体を転位させて電流分布の均一化を図る構成としているが、詳細は後述する。また、超電導導体を矩形とすることにより、後述するように前記転位構成が容易となる。
【0020】
さらに、上記請求項1の発明において、前記超電導導体は、高温超電導導体とするが、近年、高温超電導導体としては、臨界温度が110Kのものが実用化されている。このような臨界温度が高い高温超電導導体を用い、冷媒として、例えば、20Kのヘリウムガスを用いることにより、冷媒の温度と臨界温度との間の大きな温度差により、発熱があってもクエンチに至るまでの超電導導体の熱容量が増大するので、より安全に運転できる。
【0021】
また、電磁力支持または冷媒流路に関わる前記発明の実施態様として、下記請求項ないしの発明が好適である。
【0022】
まず、前記請求項1記載のものにおいて、前記コンジットおよび電磁力支持部材はその断面形状を矩形とする(請求項の発明)。これにより、電磁力支持がより確実となる
【0023】
また、前記請求項に記載のものにおいて、前記電磁力支持部材は、前記矩形断面を有するコンジットの矩形を形成する4辺の内、3辺に対応するコンジットの内面と前記超電導導体集合体外面との間に配設し、かつ前記超電導導体集合体の長手方向に所定の間隔をおいて配設する(請求項の発明)。これにより、後述するように、コイルを形成した場合に、コイルの半径方向の超電導導体集合体の電磁力支持と、軸方向の電磁力支持の両方が確実となる。
【0024】
さらに、前記請求項に記載のものにおいて、前記電磁力支持部材の少なくとも一つは、支持部材内冷媒流路を備えるものとする(請求項の発明)。これにより、冷媒流路の断面積が増大し、冷媒の圧力損失が低減する。
【0025】
さらにまた、上記請求項または記載のものにおいて、超電導導体集合体の長手方向における冷媒流路が、上下または左右に交互(ジグザグ)に流れる流路となるように、前記3辺に対応するコンジットの内面の内、対向する2辺に対応するコンジットの内面と前記超電導導体集合体外面との間に配設される電磁力支持部材の配置を、超電導導体集合体の長手方向において上下または左右に交互とする(請求項の発明)。これにより、超電導導体集合体の冷却効率をさらに向上できる。
【0026】
また、前記コンジット型強制冷却超電導導体を適用する超電導磁石としては、請求項の発明が好適である。即ち、請求項1ないしのいずれかに記載のコンジット型強制冷却超電導導体を、前記超電導導体集合体に働く電磁力を前記電磁力支持部材が少なくともコイルの半径方向で支持する向きに配置して、巻枠に層状に巻回してなる超電導コイルと、超電導コイルを断熱して収納する真空容器とを備え、冷凍機で発生する極低温の冷媒を前記コンジット型強制冷却超電導導体のコンジット内に通流して前記超電導コイルを冷却する構成とする。
【0027】
上記において、電磁力を電磁力支持部材が少なくともコイルの半径方向で支持する向きに配置することに関しては、詳細を後述するが、上記構成により、超電導導体に働く大きな電磁力の良好な支持と、交流損失に伴う発熱の効果的な除去と、さらに電流分流の確実な均一化を図った大型の超電導磁石が得られる。
【0028】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下に述べる。
【0029】
図1は本発明によるコンジット型強制冷却超電導導体の実施例の断面図を示し、図2は、超電導導体集合体の一例の斜視図を示す。
【0030】
本実施例のコンジット型強制冷却超電導導体は、後述する転位された超電導導体21を成形テープ24で一体化した超電導導体集合体20を、コンジット25内部に設置する。コンジット25内部において、超電導導体21を固定するために超電導導体集合体20の長手方向に所定の間隔をおいて、電磁力支持部材23a,23b,23cを配置する。コンジット,電磁力支持部材および超電導導体21は、図1においては、矩形断面となっているが、形状は限定されない。しかしながら、電磁力支持および転位構造を考慮すると、矩形断面が好ましい。コンジット25は、例えば、2つ割構造とし、コの字と蓋板とに分けて、超電導導体集合体20と電磁力支持部材23a,23b,23cを配置後に、溶接一体化する。
【0031】
この構成では、冷媒を冷媒流路22に流し超電導導体21を冷却する。なお、冷媒流路22は、超電導導体集合体20の長手方向において、電磁力支持部材23a,23b,23cの配設された箇所では、図1に示されるように、コンジット25の内面と電磁力支持部材23a,23b,23cの外面とにより形成されるとともに、電磁力支持部材23a,23b,23cの配設されていない箇所では、コンジット25の内面と超電導導体集合体20の外面とにより形成される。
交流損失による発熱は、冷媒の流量や温度を適切に設定することで冷却できる。
従って発熱量に応じた冷凍機運転が可能であるので、コイルの運転条件により冷媒流量を調節して冷凍機運転電力の低減が図れる。
【0032】
本実施例のコンジット型強制冷却超電導導体は、超電導コイル化したときに、コイルの半径方向の電磁力が、超電導導体21に図1において上方向に働くように巻回する。このコイルの半径方向の電磁力は、電磁力支持部材23aを介してコンジット25に働き、最終的な電磁力支持はコンジットで行なうものとする。
従ってコンジットや電磁力支持部材の材質は、高強度材料とし、一般的にはステンレススティールやチタン等を用いる。
【0033】
超電導コイル化したときのコイル軸方向の電磁力支持は、電磁力支持部材23b,23cを介してコンジット25で支持するが、場合によっては、電磁力支持部材23b,23cを省略することもできる。
【0034】
また、電磁力支持部材23a,23b,23cの超電導導体集合体20の長手方向における配設位置としては、電磁力支持部材23a,23b,23cをいずれも超電導導体集合体20の長手方向における同じ位置に配設する構成に限定されるものではなく、電磁力支持部材23a,23b,23cのそれぞれを超電導導体集合体20の長手方向における互いに異なる位置に配設する構成とすることもできる。
【0035】
超電導導体21としては、前述のように、高温超電導導体が好適であり、これを後述のように転位させて、超電導導体集合体20を形成する。
【0036】
高温超電導導体としては、比較的臨界温度レベルが高い超電導導体として、(1)Bi2212(Bi2Sr2Ca1Cu2O8):臨界温度80K、(2)Bi2223(Bi2Sr2Ca2Cu3O10):臨界温度110K、(3)Y123(YBa2Cu3Ox):臨界温度90Kなどがある。現在工業的に生産されているのは、Bi2223であり、断面形状の矩形のものが生産されているので、特に本発明の構成に適している。
【0037】
図2は、本実施例の転位された高温超電導導体部を拡大して示したもので、例えばステンレススティールなどからなる成形テープ24を高温超電導導体21に巻きつけて一体化する。本実施例のように、高温超電導導体21の長手方向に隙間をあけて成形テープ24を巻きつけることにより、高温超電導導体21と冷媒とが直に接することができ、冷却が良好となる。また、成形テープ24に貫通孔を設けることにより、冷媒と接する面積を増大でき効果的に冷却できる。この場合には隙間を狭めるか、無しとすることもできる。なお、図2の成形テープ傾斜部は、図1では簡略化して、直線で示した。
【0038】
次に、図3により、この発明の実施例に関わる超電導導体集合体20の超電導導体の転位構造に関して述べる。図3(a)は、超電導導体集合体における超電導導体の転位部の模式的斜視図を示す。図3(b)は、説明の便宜上、5本の超電導導体を使用した場合の、転位に関する原理説明図である。
【0039】
図3(b)に示すように、番号1〜5の超電導導体が、初期状態から順次転位して、その位置を変えることにより、5本の導体が断面構成において全ての位置を経験することとなるので、インダクタンスが5本の導体とも同じになる。従って、上記のような転位導体をコイルにした場合、前述のように、超電導線の半径位置の違いによる誘起電圧の違いを打ち消すことができる(前記特開平10−172824号公報参照)。なお、図3においては、導体を左右2段とした例を示したが、原理的には3段、4段とすることもできる。しかしながら、製造の容易性を考慮すると、2段が望ましい。
【0040】
図4は、本発明によるコンジット型強制冷却超電導導体の異なる実施例の断面図を示す。図1と図4の相違は、図4においては、電磁力支持部材123a,123b,123cが、複数の支持部材内冷媒流路26を有する点である。この構成により、冷媒流路の断面積が増大し、冷媒の圧力損失が低減する。従って、冷凍設備の負担を少なくでき、小形化することができる。
【0041】
図5は、本発明によるコンジット型強制冷却超電導導体のさらに異なる実施例の概念的断面図で、図1におけるA−A矢に沿った断面図を示す。図5において、矢印は冷媒の流れを示す。この実施例においては、超電導導体集合体20の長手方向における冷媒流路が、上下または左右(図5では上下で示す。)に交互(ジグザグ)に流れる流路となるように、コンジット25内面の相対する2辺に設ける電磁力支持部材23bおよび23cの配置を、超電導導体集合体20の長手方向において上下または左右(図5では上下)に交互に配置している。この場合、電磁力支持部材23a,23bおよび23cは、それぞれ支持部材内冷媒流路を有してもよい。この構成により、超電導導体の冷却効率はさらに向上する。
【0042】
次に、前記コンジット型強制冷却超電導導体を適用する超電導磁石の実施例に関して述べる。図6は、超電導磁石の実施例の構成に関わる模式的断面図を示す。
【0043】
図6において、巻枠30に対して、コンジット型強制冷却超電導導体100が巻回される。図6において、矢印は電磁力が働く向きを示すが、例えば番号1で示すコンジット型強制冷却超電導導体の場合、図1のコンジット型強制冷却超電導導体の紙面下側が、巻枠30と対面する向きに巻回され、これにより、電磁力支持部材23aにより半径方向の電磁力を最適に支持することができる。
【0044】
また、ターン間、レア間を絶縁するために、コンジットの外表面を、例えば樹脂材料により絶縁被覆する。さらに、冷媒の流れは、例えばシリンダ巻きの場合、冷媒がコンジット型強制冷却超電導導体番号1、2、・・・10の順序に流れ、冷媒配管接続装置40において接続され、隣接するコンジットに流れ、以下同様に冷媒流路が構成される。パンケーキ巻きの場合には、冷媒がコンジット型強制冷却超電導導体番号1、11、・・・20の順序に流れ、冷媒配管接続装置40において同様に接続され、隣接するコンジットに流れる。
【0045】
上記のように超電導磁石を構成することにより、超電導導体に働く電磁力支持、発熱の効果的な除去、電流分流の均一化等の最適化を図った超電導磁石を提供することができる。
【0046】
【発明の効果】
この発明によれば前述のように、コンジットの内部に複数の超電導導体と冷媒流路とを備えたコンジット型強制冷却超電導導体において、前記複数の超電導導体の外周表面を成形テープにより導体の長手方向にわたって螺旋状に巻回してなる超電導導体集合体と、前記コンジットの内面と超電導導体集合体外面との間に配設された少なくとも一つの電磁力支持部材と、前記コンジットの内面と超電導導体集合体外面と電磁力支持部材外面とにより形成した冷媒流路とを備え、かつ、前記超電導導体として断面形状を矩形とした高温超電導導体を用いるとともに、前記超電導導体集合体は、電流分流の均一化のために複数の超電導導体を順次転位させて、その位置を変えることにより、各超電導導体に断面構成において全ての位置を経験させてなるものとすることにより、超電導コイルが大型化して交流損失が増大した場合でも、コンジット内部に冷媒を供給することにより、超電導導体を好適に冷却できる。また、超電導導体に働く電磁力を、電磁力支持部材を介してコンジットにおいて、好適に支持できる。
【0047】
また、前記超電導導体集合体は、複数の超電導導体を電流分流の均一化のために転位してなるものとすることにより、従来の撚線構成の超電導導体集合体と異なり、電流分流の均一化をより確実に行なうことができ、超電導導体集合体自体で超電導導体を転位させて電流分布の均一化を図る構成としているために、大容量のコイルの形成が容易となる。
【0048】
さらに、前述のコンジット型強制冷却超電導導体を超電導磁石に適用する場合、超電導導体集合体に働く電磁力を前記電磁力支持部材が少なくともコイルの半径方向で支持する向きに配置して、巻枠に層状に巻回してなる超電導コイルと、超電導コイルを断熱して収納する真空容器とを備え、冷凍機で発生する極低温の冷媒を前記コンジット型強制冷却超電導導体のコンジット内に通流して前記超電導コイルを冷却する構成とすることにより、超電導導体に働く電磁力支持、発熱の効果的な除去、電流分流の均一化等の最適化を図ることができる。
【図面の簡単な説明】
【図1】 本発明のコンジット型強制冷却超電導導体の実施例の断面図
【図2】 本発明の超電導導体集合体の一例の斜視図
【図3】 本発明の超電導導体集合体における超電導導体の転位構成を示す図
【図4】 本発明の図1とは異なるコンジット型強制冷却超電導導体の実施例の断面図
【図5】 本発明の図4とは異なるコンジット型強制冷却超電導導体の実施例の概念的断面図
【図6】 本発明の超電導磁石の実施例の構成に関わる模式的断面図
【図7】 従来の超電導磁石の基本構成を模式的に示す断面図
【図8】 従来の超電導磁石の構成例を示す超電導コイル部の拡大断面図
【図9】 従来のコンジット超電導体の概略断面構造の一例を示す図
【符号の説明】
20:超電導導体集合体、21:超電導導体、22:冷媒流路、23a,23b,23c,123a,123b,123c:電磁力支持部材、24:成形テープ、25:コンジット、26:支持部材内冷媒流路、30:巻枠、40:冷媒配管接続装置、100:コンジット型強制冷却超電導導体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a forced cooling superconducting conductor, particularly a conduit-type forced cooling superconducting conductor used in a large-capacity superconducting coil used for component analysis using high magnetic fields, for energy storage, and for induction capacitors such as transformers and inductors. The present invention relates to a superconducting magnet using this.
[0002]
[Prior art]
In recent years, with the improvement of the refrigeration capacity of refrigerators, the development of superconducting magnet devices using a superconducting coil attached to a superconducting coil and cooling the superconducting coil with a cryogenic refrigerant generated in the refrigerator has been actively promoted. .
[0003]
FIG. 7 is a cross-sectional view schematically showing a basic configuration of a conventional refrigerator-cooled superconducting magnet device, and shows a cross section passing through the central axis of a superconducting magnet device having a high-temperature space at room temperature at the center. It is. In FIG. 7, 1 is a superconducting coil formed by winding a superconducting wire in a solenoid shape, 2 is arranged around the superconducting coil 1, and a radiation shield that shields and insulates heat radiation from the outside. It is a vacuum vessel that keeps the inside of the enclosure in a vacuum to insulate it. Reference numeral 7 denotes a refrigerator that cools the superconducting coil 1, 8 a compressor that supplies compressed helium gas to the refrigerator 7 and includes an operation control system for the refrigeration cycle, and 9 supplies current to the superconducting coil 1 from a power source (not shown). Current leads to be excited.
[0004]
As shown in FIG. 7, the refrigerator 7 is connected to one cooling flange 4 and the radiation shield 2 that support the superconducting coil 1 wound in layers on a cooling bobbin 5 as a winding frame from the side, The superconducting coil 1 is cooled to a predetermined cryogenic temperature (about 20 to 80 K), and the radiation shield 2 is cooled to a predetermined cryogenic temperature (about 80 to 100 K).
[0005]
By the way, when the superconducting coil 1 receives a fluctuating magnetic field and is operated so as to generate AC loss, AC loss is generated inside the coil and heat is generated. If the coil temperature rises above the critical temperature due to this heat generation, the superconducting wire may transition from the superconducting state to the normal conducting state, causing a normal conducting transition (quenching), so it is necessary to remove this heat generation. .
[0006]
FIG. 8 shows a configuration example of a superconducting coil proposed in order to suppress the risk of such normal conducting dislocations. The superconducting coils described in Japanese Patent Laid-Open Nos. 10-116725 and 11-135318 are disclosed. It is sectional drawing. In this configuration, a highly heat conductive ceramic material which also serves as a heat conductive material such as copper or copper alloy or an interlayer insulation between layers of the superconducting wire 10 wound in layers on a cooling bobbin 5 as a winding frame. A heat conduction cooling plate 11 is incorporated, and both ends of the heat conduction cooling plate 11 are inserted into grooves provided in the cooling flange 4C and the cooling flange 4D. Therefore, according to this configuration, the inside of the superconducting coil is cooled to a predetermined temperature not higher than the critical current by heat transfer through the heat conduction cooling plate 11, so that it can be operated without causing normal conduction dislocation.
[0007]
However, even in the above configuration, when the superconducting coil is enlarged, the heat conduction cooling plate 11 becomes longer, and the temperature of the central part of the superconducting coil may be much higher than the temperature of the cooling flange. As a result, there is a possibility that a large AC loss occurs and the temperature rise cannot be suppressed.
Furthermore, in the case of a large superconducting coil, the electromagnetic force increases, and thus high strength is required. However, there is a possibility that a material having a low strength such as ceramics cannot be used for the heat conduction cooling plate. As a result, the temperature of the superconducting coil cannot be maintained at a predetermined temperature, and there is a possibility that stable operation cannot be performed.
[0008]
On the other hand, forced cooling superconducting conductors have been developed in recent years. Especially in superconducting coils or superconducting magnets that require large size, high magnetic field, and high precision, multiple superconducting stranded wires are built into the metal tube. A so-called conduit type forced cooling superconductor (hereinafter also referred to as a conduit superconductor) has been developed. The configuration of this conduit superconductor is described in, for example, JP-A-7-45137, JP-A-8-17264, and JP-A-11-329114.
[0009]
FIG. 9 shows an example of a schematic cross-sectional structure of the conduit superconductor described in Japanese Patent Laid-Open No. 7-45137. The conduit superconductor is formed by twisting superconducting wires wrapped in a stabilizing material. In addition, a primary stranded wire 14 formed by twisting a plurality of superconducting stranded wires 13 and a refrigerant 15 are built in a metal conduit 12 so that the refrigerant 15 can flow in the conduit 12. As a result, the stability against disturbances such as magnetic field fluctuations is improved compared to the prior art. Even in the above-mentioned JP-A-8-17264 and JP-A-11-329114, although different from the gist of the invention described in JP-A-7-45137, a superconducting stranded wire is used and the refrigerant flows in the conduit. A similar configuration that has been made possible is described.
[0010]
[Problems to be solved by the invention]
However, the conventional conduit superconductor configuration also has the following problems when the size of the superconducting coil is further increased.
[0011]
First, the first problem is that there is a risk that a superconducting conductor made of a superconducting stranded wire may move in a conduit due to an electromagnetic force that increases as the size of the conductor increases, resulting in a risk of causing a normal conducting transition (quenching). Get higher.
[0012]
The second problem of the conventional device is an increase in AC loss due to non-uniform current shunting. Even in the configuration using the conventional stranded wire, it is theoretically possible to make the current shunt uniform. However, since the superconducting strands are arranged inside and outside the circular cross section, However, it is practically difficult to twist the current shunt so that the current shunt becomes uniform, and the current shunting must be uniform.
[0013]
For this reason, in the high-capacity superconducting coil in which the AC loss is particularly large, if the above-described twisted conductor configuration is adopted, a circulating current flows due to non-uniform current shunting, and there is a problem that the AC loss further increases due to the drift. .
[0014]
The present invention has been made to solve the above-described problems. The object of the present invention is to provide a good support for a large electromagnetic force acting on a superconducting conductor and an AC loss even in a large coil. It is an object of the present invention to provide a conduit-type forced cooling superconducting conductor capable of effectively removing the accompanying heat generation and making the current shunt uniform, and a superconducting magnet using the same.
[0015]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a conduit-type forced cooling superconducting conductor having a plurality of superconducting conductors and a refrigerant flow path inside a conduit. A superconducting conductor assembly spirally wound in the longitudinal direction; at least one electromagnetic force support member disposed between the inner surface of the conduit and the outer surface of the superconducting conductor assembly; and the inner surface of the conduit and the superconducting conductor. A high-temperature superconducting conductor having a coolant flow path formed by the outer surface of the assembly and the outer surface of the electromagnetic force support member and having a rectangular cross-sectional shape is used as the superconducting conductor, and the superconducting conductor assembly has a uniform current distribution In order to reduce the number of superconducting conductors, the position of each superconducting conductor is changed and the position of each superconducting conductor is changed. It is allowed and shall such to (invention of claim 1).
[0016]
As described above, even when the superconducting coil is enlarged and the AC loss is increased, the superconducting conductor can be effectively cooled by supplying an appropriate amount of refrigerant into the conduit.
Further, the electromagnetic force acting on the superconducting conductor is transmitted to the conduit via the electromagnetic force supporting member, and can be suitably supported by using a high strength member for the conduit. Note that, from the viewpoint of improving the cooling efficiency, the molded tape is desirably wound spirally with a gap in the longitudinal direction of the conductor, or wound using a perforated tape.
[0017]
Further, in the invention described in claim 1, wherein the superconducting conductor assemblies, since it made by rearrangement multiple superconducting conductors for equalizing the current shunt, thereby, the superconducting conductor of a conventional twisted line structure Unlike the aggregate, the current shunt can be made more uniform. With regard to this dislocation, a structure has been proposed in which, when a parallel superconducting conductor is wound as a superconducting coil, a dislocation is performed at an interlayer connection portion or the like (for example, Japanese Patent Application Laid-Open No. 10-172824, Japanese Patent Application No. 11-78819). However, in the first aspect of the invention, the superconducting conductor assembly itself displaces the superconducting conductor to make the current distribution uniform, so that it is easy to form a large capacity coil.
[0018]
In JP-A-10-172824, as a dislocation configuration of a superconducting conductor suitable for a superconducting transformer coil, a plurality of superconducting wires change their radial positions at at least one dislocation location in the coil axial direction. A dislocation configuration is described in which the difference in induced voltage due to the difference in the radial position of each superconducting wire is canceled, that is, the proportion of all the superconducting wires in the radial direction is equal.
Japanese Patent Application No. 11-78819 describes a dislocation configuration of a superconducting wire suitable for a pancake superconducting coil.
[0019]
As described above, in the invention of claim 1, by rearrangement superconducting conductor in superconducting conductor assembly itself in a conduit are a structure made uniform current distribution, details of which will be described later. Further, by making the superconducting conductor rectangular, the dislocation configuration is facilitated as will be described later.
[0020]
Furthermore, in the first aspect of the present invention, the superconducting conductor is a high-temperature superconducting conductor, but in recent years, a high-temperature superconducting conductor having a critical temperature of 110K has been put into practical use. Using such a high-temperature superconducting conductor having a high critical temperature and using, for example, 20K helium gas as a refrigerant, a large temperature difference between the temperature of the refrigerant and the critical temperature causes quenching even if heat is generated. Since the heat capacity of the superconducting conductor is increased, it can be operated more safely.
[0021]
In addition, as the embodiments of the invention relating to the electromagnetic force support or the refrigerant flow path, the inventions of the following claims 2 to 5 are suitable.
[0022]
First, the in those claims 1 Symbol placement, the Konji' The reserve and electromagnetic force supporting member sectional shape of a rectangular (invention of claim 2). Thereby, electromagnetic force support becomes more reliable .
[0023]
The electromagnetic force support member according to claim 2 , wherein the electromagnetic force support member includes an inner surface of the conduit corresponding to three sides and an outer surface of the superconducting conductor assembly among four sides forming a rectangle of the conduit having the rectangular cross section. disposed between the and to dispose at a predetermined distance in the longitudinal direction of the superconducting conductor assembly (invention of claim 3). Thereby, as will be described later, when the coil is formed, both the electromagnetic force support of the superconducting conductor assembly in the radial direction of the coil and the electromagnetic force support in the axial direction are ensured.
[0024]
Furthermore, in the above-described third aspect , at least one of the electromagnetic force support members is provided with a refrigerant flow path in the support member (invention of the fourth aspect ). Thereby, the cross-sectional area of the refrigerant flow path is increased, and the pressure loss of the refrigerant is reduced.
[0025]
Furthermore, in the above-described third or fourth aspect, the refrigerant flow path in the longitudinal direction of the superconducting conductor assembly corresponds to the three sides so that the refrigerant flow is alternately (zigzag) vertically or horizontally. Of the inner surface of the conduit, the arrangement of the electromagnetic force support member disposed between the inner surface of the conduit corresponding to two opposing sides and the outer surface of the superconducting conductor assembly is vertically or horizontally in the longitudinal direction of the superconducting conductor assembly. Alternately (the invention of claim 5 ). Thereby, the cooling efficiency of the superconducting conductor assembly can be further improved.
[0026]
Further, the invention of claim 6 is suitable as a superconducting magnet to which the conduit type forced cooling superconducting conductor is applied. That is, the conduit type forced cooling superconducting conductor according to any one of claims 1 to 5 is disposed in such a direction that the electromagnetic force supporting member supports at least the radial direction of the coil in the electromagnetic force acting on the superconducting conductor assembly. A superconducting coil wound in layers on a winding frame, and a vacuum vessel that insulates and stores the superconducting coil, and passes a cryogenic refrigerant generated in the refrigerator into the conduit of the conduit type forced cooling superconducting conductor. flowed it configured to cool the superconducting coil.
[0027]
In the above, the electromagnetic force is disposed in the direction in which the electromagnetic force support member supports at least in the radial direction of the coil , details will be described later, but with the above configuration, good support of the large electromagnetic force acting on the superconducting conductor, A large superconducting magnet can be obtained which effectively removes heat generated due to AC loss and further ensures uniform current shunting.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0029]
FIG. 1 shows a sectional view of an embodiment of a conduit type forced cooling superconducting conductor according to the present invention, and FIG. 2 shows a perspective view of an example of a superconducting conductor assembly.
[0030]
In the conduit type forced cooling superconducting conductor of this embodiment, a superconducting conductor assembly 20 in which a dislocated superconducting conductor 21 described later is integrated with a molding tape 24 is installed inside the conduit 25. In the conduit 25, electromagnetic force support members 23a, 23b, and 23c are arranged at a predetermined interval in the longitudinal direction of the superconducting conductor assembly 20 in order to fix the superconducting conductor 21. The conduit, the electromagnetic force support member, and the superconducting conductor 21 have a rectangular cross section in FIG. 1, but the shape is not limited. However, in view of electromagnetic force support and dislocation structure, a rectangular cross section is preferred. The conduit 25 has, for example, a split structure and is divided into a U-shape and a cover plate, and the superconducting conductor assembly 20 and the electromagnetic force support members 23a, 23b, and 23c are arranged and integrated by welding.
[0031]
In this configuration, the superconducting conductor 21 is cooled by flowing the refrigerant through the refrigerant flow path 22. As shown in FIG. 1, the refrigerant flow path 22 is arranged at the location where the electromagnetic force support members 23 a, 23 b, and 23 c are disposed in the longitudinal direction of the superconducting conductor assembly 20. It is formed by the outer surfaces of the support members 23a, 23b, and 23c, and is formed by the inner surface of the conduit 25 and the outer surface of the superconducting conductor assembly 20 at places where the electromagnetic force support members 23a, 23b, and 23c are not disposed. The
Heat generated by AC loss can be cooled by appropriately setting the flow rate and temperature of the refrigerant.
Therefore, since the refrigerator operation according to the calorific value is possible, it is possible to reduce the refrigerator operating power by adjusting the refrigerant flow rate according to the coil operating conditions.
[0032]
When the conduit type forced cooling superconducting conductor of this embodiment is formed into a superconducting coil, the coil is wound around the superconducting conductor 21 so that the electromagnetic force in the radial direction of the coil acts upward in FIG. The electromagnetic force in the radial direction of the coil acts on the conduit 25 via the electromagnetic force support member 23a, and the final electromagnetic force support is performed by the conduit.
Accordingly, the material of the conduit and the electromagnetic force support member is a high-strength material, and generally stainless steel or titanium is used.
[0033]
The electromagnetic force support in the coil axis direction when the superconducting coil is formed is supported by the conduit 25 via the electromagnetic force support members 23b and 23c. However, in some cases, the electromagnetic force support members 23b and 23c can be omitted.
[0034]
Further, the electromagnetic force supporting members 23a, 23b, and 23c are disposed at the same position in the longitudinal direction of the superconducting conductor assembly 20 as the arrangement positions in the longitudinal direction of the superconducting conductor assembly 20. The electromagnetic force support members 23 a, 23 b, and 23 c may be arranged at different positions in the longitudinal direction of the superconducting conductor assembly 20.
[0035]
As described above, the superconducting conductor 21 is preferably a high-temperature superconducting conductor, which is dislocated as described later to form the superconducting conductor assembly 20.
[0036]
For high-temperature superconducting conductors, (1) Bi2212 (Bi 2 Sr 2 Ca 1 Cu 2 O 8 ): critical temperature 80K, (2) Bi2223 (Bi 2 Sr 2 Ca 2 Cu) 3 O 10 ): critical temperature 110K, (3) Y123 (YBa 2 Cu 3 O x ): critical temperature 90K, etc. Currently, Bi2223 is industrially produced, and a rectangular one having a cross-sectional shape is produced, which is particularly suitable for the configuration of the present invention.
[0037]
FIG. 2 is an enlarged view of the dislocated high-temperature superconducting conductor portion of the present embodiment. For example, a molding tape 24 made of stainless steel or the like is wound around the high-temperature superconducting conductor 21 and integrated. As in this embodiment, by winding the molding tape 24 with a gap in the longitudinal direction of the high-temperature superconducting conductor 21, the high-temperature superconducting conductor 21 and the refrigerant can be in direct contact with each other, and the cooling is improved. Moreover, by providing a through-hole in the molding tape 24, the area in contact with the refrigerant can be increased and cooling can be performed effectively. In this case, the gap can be narrowed or absent. In addition, the shaping | molding tape inclination part of FIG. 2 was simplified in FIG. 1, and was shown with the straight line.
[0038]
Next, the dislocation structure of the superconducting conductor of the superconducting conductor assembly 20 according to the embodiment of the present invention will be described with reference to FIG. Fig.3 (a) shows the typical perspective view of the dislocation part of the superconducting conductor in a superconducting conductor assembly. FIG. 3B is a diagram for explaining the principle of dislocation when five superconducting conductors are used for convenience of explanation.
[0039]
As shown in FIG. 3 (b), the superconducting conductors of Nos. 1 to 5 are sequentially displaced from the initial state and changed their positions so that the five conductors experience all positions in the cross-sectional configuration; Therefore, the inductance is the same for the five conductors. Therefore, when the dislocation conductor as described above is formed into a coil, as described above, the difference in induced voltage due to the difference in the radial position of the superconducting wire can be canceled (see Japanese Patent Laid-Open No. 10-172824). Although FIG. 3 shows an example in which the conductors have two stages on the left and right, in principle, the conductors may have three stages and four stages. However, considering the ease of manufacture, two stages are desirable.
[0040]
FIG. 4 shows a cross-sectional view of a different embodiment of a conduit-type forced cooling superconducting conductor according to the present invention. The difference between FIG. 1 and FIG. 4 is that in FIG. 4, the electromagnetic force support members 123 a, 123 b, and 123 c have a plurality of in-support-member refrigerant flow paths 26. With this configuration, the cross-sectional area of the refrigerant channel is increased, and the pressure loss of the refrigerant is reduced. Therefore, the burden on the refrigeration equipment can be reduced and the size can be reduced.
[0041]
FIG. 5 is a conceptual cross-sectional view of a further different embodiment of the conduit-type forced cooling superconducting conductor according to the present invention, and shows a cross-sectional view along the AA arrow in FIG. In FIG. 5, the arrows indicate the flow of the refrigerant. In this embodiment, the refrigerant flow path in the longitudinal direction of the superconducting conductor assembly 20 is formed on the inner surface of the conduit 25 so as to flow alternately (zigzag) vertically or horizontally (shown vertically in FIG. 5). The electromagnetic force supporting members 23b and 23c provided on the two opposite sides are alternately arranged vertically or horizontally (up and down in FIG. 5) in the longitudinal direction of the superconducting conductor assembly 20. In this case, each of the electromagnetic force support members 23a, 23b, and 23c may have a support member refrigerant flow path. With this configuration, the cooling efficiency of the superconducting conductor is further improved.
[0042]
Next, an embodiment of a superconducting magnet to which the conduit type forced cooling superconducting conductor is applied will be described. FIG. 6 is a schematic cross-sectional view relating to the configuration of the embodiment of the superconducting magnet.
[0043]
In FIG. 6, the conduit type forced cooling superconducting conductor 100 is wound around the winding frame 30. In FIG. 6, the arrow indicates the direction in which the electromagnetic force acts. For example, in the case of the conduit type forced cooling superconducting conductor indicated by the number 1, the direction in which the lower side of the conduit type forced cooling superconducting conductor in FIG. Thus, the electromagnetic force support member 23a can optimally support the electromagnetic force in the radial direction.
[0044]
Moreover, in order to insulate between turns and rares, the outer surface of a conduit is insulation-coated with a resin material, for example. Furthermore, the flow of the refrigerant, for example, in the case of cylinder winding, the refrigerant flows in the order of the conduit type forced cooling superconducting conductor numbers 1, 2,..., 10 and is connected in the refrigerant pipe connection device 40 and flows to the adjacent conduit. Similarly, the refrigerant flow path is configured. In the case of pancake winding, the refrigerant flows in the order of the conduit type forced cooling superconducting conductor numbers 1, 11,..., 20 and is similarly connected in the refrigerant pipe connecting device 40 and flows to the adjacent conduit.
[0045]
By configuring the superconducting magnet as described above, it is possible to provide a superconducting magnet that is optimized such as support of electromagnetic force acting on the superconducting conductor, effective removal of heat generation, and uniform current shunting.
[0046]
【Effect of the invention】
According to the present invention, as described above, in the conduit type forced cooling superconducting conductor provided with a plurality of superconducting conductors and a refrigerant flow path inside the conduit, the outer peripheral surface of the plurality of superconducting conductors is formed in the longitudinal direction of the conductor with the molding tape. A superconducting conductor assembly wound in a spiral manner, at least one electromagnetic force support member disposed between the inner surface of the conduit and the outer surface of the superconducting conductor assembly, and the inner surface of the conduit and the superconducting conductor assembly. A high-temperature superconducting conductor having a refrigerant flow path formed by an outer surface and an outer surface of the electromagnetic force support member and having a rectangular cross-sectional shape is used as the superconducting conductor, and the superconducting conductor assembly has a uniform current distribution. In order to allow each superconducting conductor to experience all the positions in the cross-sectional configuration by sequentially transposing a plurality of superconducting conductors and changing their positions. With shall, even when the superconducting coil is AC losses in size is increased, by supplying a coolant to the interior conduit, it can be suitably cooled superconducting conductor. Further, the electromagnetic force acting on the superconducting conductor can be suitably supported in the conduit via the electromagnetic force support member.
[0047]
In addition, the superconducting conductor assembly is formed by transposing a plurality of superconducting conductors to make the current shunting uniform, so that the current shunting is made uniform, unlike a conventional superconducting conductor assembly having a stranded wire configuration. Since the superconducting conductor assembly itself displaces the superconducting conductor to make the current distribution uniform, it is easy to form a large-capacity coil.
[0048]
Further, when the above-described conduit type forced cooling superconducting conductor is applied to a superconducting magnet, the electromagnetic force acting on the superconducting conductor assembly is arranged in a direction in which the electromagnetic force supporting member supports at least the radial direction of the coil , A superconducting coil wound in layers, and a vacuum container for insulating and storing the superconducting coil, and passing the cryogenic refrigerant generated in the refrigerator through the conduit of the conduit type forced cooling superconducting conductor By adopting a configuration that cools the coil, it is possible to achieve optimization such as support of electromagnetic force acting on the superconducting conductor, effective removal of heat generation, and uniform current shunting.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a conduit-type forced cooling superconducting conductor of the present invention. FIG. 2 is a perspective view of an example of the superconducting conductor assembly of the present invention. FIG. 4 is a cross-sectional view of an embodiment of a conduit-type forced cooling superconducting conductor different from FIG. 1 of the present invention. FIG. 5 is an embodiment of a conduit-type forced cooling superconducting conductor different from that of FIG. FIG. 6 is a schematic cross-sectional view related to the configuration of an embodiment of the superconducting magnet of the present invention. FIG. 7 is a cross-sectional view schematically showing the basic configuration of a conventional superconducting magnet. Fig. 9 is an enlarged cross-sectional view of a superconducting coil portion showing a configuration example of a magnet. Fig. 9 is a diagram showing an example of a schematic cross-sectional structure of a conventional conduit superconductor.
20: Superconducting conductor assembly, 21: Superconducting conductor, 22: Refrigerant flow path, 23a, 23b, 23c, 123a, 123b, 123c: Electromagnetic force support member, 24: Molding tape, 25: Conduit, 26: Refrigerant in support member Flow path, 30: reel, 40: refrigerant pipe connection device, 100: conduit type forced cooling superconducting conductor.

Claims (6)

コンジットの内部に複数の超電導導体と冷媒流路とを備えたコンジット型強制冷却超電導導体において、前記複数の超電導導体の外周表面を成形テープにより導体の長手方向にわたって螺旋状に巻回してなる超電導導体集合体と、前記コンジットの内面と超電導導体集合体外面との間に配設された少なくとも一つの電磁力支持部材と、前記コンジットの内面と超電導導体集合体外面と電磁力支持部材外面とにより形成した冷媒流路とを備え、かつ、前記超電導導体として断面形状を矩形とした高温超電導導体を用いるとともに、前記超電導導体集合体は、電流分流の均一化のために複数の超電導導体を順次転位させて、その位置を変えることにより、各超電導導体に断面構成において全ての位置を経験させてなることを特徴とするコンジット型強制冷却超電導導体。In a conduit type forced cooling superconducting conductor having a plurality of superconducting conductors and a refrigerant flow path inside the conduit, the superconducting conductor is formed by spirally winding the outer peripheral surface of the plurality of superconducting conductors over the longitudinal direction of the conductor with a molding tape. Formed by an assembly, at least one electromagnetic force support member disposed between the inner surface of the conduit and the outer surface of the superconducting conductor assembly, and the inner surface of the conduit, the outer surface of the superconducting conductor assembly, and the outer surface of the electromagnetic force support member A high-temperature superconducting conductor having a rectangular cross-sectional shape as the superconducting conductor, and the superconducting conductor assembly sequentially displaces a plurality of superconducting conductors in order to make current shunting uniform. Te, by changing its position, and wherein the Rukoto such by experiencing all positions in the cross-sectional configuration to each superconductor conduit Forced cooling superconducting conductor. 請求項1記載のものにおいて、前記コンジットおよび電磁力支持部材はその断面形状を矩形とすることを特徴とするコンジット型強制冷却超電導導体。In those claims 1 Symbol placement, the Konji' The reserve and electromagnetic force supporting member is a conduit type forcibly cooled superconductor, characterized by the cross-sectional shape as the rectangle. 請求項記載のものにおいて、前記電磁力支持部材は、前記矩形断面を有するコンジットの矩形を形成する4辺の内、3辺に対応するコンジットの内面と前記超電導導体集合体外面との間に配設し、かつ前記超電導導体集合体の長手方向に所定の間隔をおいて配設することを特徴とするコンジット型強制冷却超電導導体。 3. The electromagnetic force support member according to claim 2 , wherein the electromagnetic force support member is disposed between the inner surface of the conduit corresponding to three sides and the outer surface of the superconducting conductor assembly among the four sides forming the rectangle of the conduit having the rectangular cross section. arranged to, and the conduit type forcibly cooled superconductor, characterized by arranging at a predetermined distance in the longitudinal direction of the superconducting conductor assemblies. 請求項記載のものにおいて、前記電磁力支持部材の少なくとも一つは、支持部材内冷媒流路を備えることを特徴とするコンジット型強制冷却超電導導体。4. The conduit type forced cooling superconducting conductor according to claim 3 , wherein at least one of the electromagnetic force support members includes a refrigerant flow path in the support member. 請求項または記載のものにおいて、超電導導体集合体の長手方向における冷媒流路が、上下または左右に交互(ジグザグ)に流れる流路となるように、前記3辺に対応するコンジットの内面の内、対向する2辺に対応するコンジットの内面と前記超電導導体集合体外面との間に配設される電磁力支持部材の配置を、超電導導体集合体の長手方向において上下または左右に交互とすることを特徴とするコンジット型強制冷却超電導導体。 5. The thing of Claim 3 or 4 WHEREIN: The refrigerant | coolant flow path in the longitudinal direction of a superconducting conductor assembly turns into the flow path which flows alternately up and down or right and left (zigzag) of the inner surface of the conduit corresponding to the said 3 sides. The arrangement of the electromagnetic force support members disposed between the inner surface of the conduit corresponding to the two opposite sides and the outer surface of the superconducting conductor assembly is alternated vertically or horizontally in the longitudinal direction of the superconducting conductor assembly. Conduit type forced cooling superconducting conductor. 請求項1ないしのいずれかに記載のコンジット型強制冷却超電導導体を、前記超電導導体集合体に働く電磁力を前記電磁力支持部材が少なくともコイルの半径方向で支持する向きに配置して、巻枠に層状に巻回してなる超電導コイルと、超電導コイルを断熱して収納する真空容器とを備え、冷凍機で発生する極低温の冷媒を前記コンジット型強制冷却超電導導体のコンジット内に通流して前記超電導コイルを冷却する構成としたことを特徴とする超電導磁石。A conduit-type forced cooling superconducting conductor according to any one of claims 1 to 5 , wherein the electromagnetic force acting on the superconducting conductor assembly is arranged in a direction in which the electromagnetic force supporting member supports at least the radial direction of the coil . A superconducting coil wound in layers on a frame; and a vacuum container that insulates and stores the superconducting coil, and passes a cryogenic refrigerant generated in the refrigerator through the conduit type forced cooling superconducting conductor. A superconducting magnet characterized in that the superconducting coil is cooled.
JP2000311952A 2000-10-12 2000-10-12 Conduit type forced cooling superconducting conductor and superconducting magnet Expired - Fee Related JP4906182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311952A JP4906182B2 (en) 2000-10-12 2000-10-12 Conduit type forced cooling superconducting conductor and superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311952A JP4906182B2 (en) 2000-10-12 2000-10-12 Conduit type forced cooling superconducting conductor and superconducting magnet

Publications (2)

Publication Number Publication Date
JP2002124143A JP2002124143A (en) 2002-04-26
JP4906182B2 true JP4906182B2 (en) 2012-03-28

Family

ID=18791631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311952A Expired - Fee Related JP4906182B2 (en) 2000-10-12 2000-10-12 Conduit type forced cooling superconducting conductor and superconducting magnet

Country Status (1)

Country Link
JP (1) JP4906182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558517B2 (en) * 2005-01-12 2010-10-06 成卓 岩熊 Superconducting coil
EP3411884B1 (en) * 2016-01-21 2024-06-19 Brookhaven Technology Group, Inc. Second generation superconducting filaments and cable
CN113284666B (en) * 2020-02-19 2022-05-17 中国科学院高能物理研究所 Multilayer-packaged superconducting transposed cable and cabling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216111A (en) * 1986-03-18 1987-09-22 三菱電機株式会社 Superconductor
JPS6358416A (en) * 1986-08-29 1988-03-14 Toshiba Corp Vehicle photographing device
JP3176952B2 (en) * 1990-11-22 2001-06-18 株式会社東芝 Superconducting wire and method of manufacturing superconducting wire
JPH0817264A (en) * 1994-06-28 1996-01-19 Mitsubishi Heavy Ind Ltd Forced cooling type superconductor

Also Published As

Publication number Publication date
JP2002124143A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
KR100706494B1 (en) Superconducting cable
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
AU2019260018B2 (en) Superconductive electric coil device and rotor comprising a coil device
US3639672A (en) Electrical conductor
KR20090129979A (en) Superconducting coil and superconductor used for the same
JP2001244109A (en) High-temperature superconducting coil device
US20050103519A1 (en) Low loss superconducting cable in conduit conductor
JP4906182B2 (en) Conduit type forced cooling superconducting conductor and superconducting magnet
CN116072372A (en) Fusion reactor superconducting magnet system based on high-temperature superconductivity
JP4799757B2 (en) Superconducting magnet
JP3833382B2 (en) Refrigerator-cooled superconducting magnet device for single crystal pulling device
JPS6123306A (en) Cooling device of superconductive coil
JPH0727814B2 (en) Forced cooling superconducting coil device
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
CN112233871A (en) Non-heat conduction current lead excitation device and excitation circuit of superconducting magnet
JP7402620B2 (en) superconducting magnet
JP5406259B2 (en) Superconducting coil manufacturing method
JPH11262200A (en) Superconducting power storage equipment
JPH0623265U (en) Cryogenic container
WO2021014959A1 (en) Conduction-cooling-type superconducting magnet
Kim et al. Design of conduction cooling system for a high current HTS DC reactor
JPH03283678A (en) Current lead of superconducting magnet apparatus
EP4233079A1 (en) Conformal winding and current-sharing in a dipole magnet using superconducting tape conductor
JP2008124081A (en) Superconducting coil and method for manufacturing same
JPS63216213A (en) Superconductive matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees