[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4904915B2 - Power module substrate manufacturing method, power module substrate and power module - Google Patents

Power module substrate manufacturing method, power module substrate and power module Download PDF

Info

Publication number
JP4904915B2
JP4904915B2 JP2006138657A JP2006138657A JP4904915B2 JP 4904915 B2 JP4904915 B2 JP 4904915B2 JP 2006138657 A JP2006138657 A JP 2006138657A JP 2006138657 A JP2006138657 A JP 2006138657A JP 4904915 B2 JP4904915 B2 JP 4904915B2
Authority
JP
Japan
Prior art keywords
circuit layer
power module
ceramic plate
module substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006138657A
Other languages
Japanese (ja)
Other versions
JP2007311526A (en
Inventor
慎介 青木
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006138657A priority Critical patent/JP4904915B2/en
Publication of JP2007311526A publication Critical patent/JP2007311526A/en
Application granted granted Critical
Publication of JP4904915B2 publication Critical patent/JP4904915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

この発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板の製造方法、パワーモジュール用基板およびパワーモジュールに関するものである。   The present invention relates to a power module substrate manufacturing method, a power module substrate, and a power module used in a semiconductor device that controls a large current and a high voltage.

この種のパワーモジュールは一般に、セラミックス板において、その表面に回路層がろう付けされるとともに、裏面に金属層がろう付けされたパワーモジュール用基板と、回路層の表面に接合された半導体チップと、金属層の表面に接合されたヒートシンクとを備えている。このうち回路層は、従来では、例えば下記特許文献1に示されるように、セラミックス板の表面に回路層を形成するための回路層部材をろう付けした後に、この回路層部材にエッチング処理を施すことにより形成されていた。
しかしながら、このようにエッチング処理により回路層を形成すると、この回路層の側面は、その表面(半導体チップ側)から裏面(セラミックス板側)に向かうに従い漸次、この回路層の外側に向けて拡がるような末広がり形状になるため、近年のパワーモジュールに対するさらなるコンパクト化、すなわち回路層を構成する導体の幅を狭くして、隣合う導体同士の間隔を狭くすることについての要求に応えることが困難であるという問題があった。また、エッチング処理では、製造に要する時間がかかるばかりでなく、廃液も発生することになるため、結果として製造コストを低減することが困難であるという問題があった。
そこで、本発明者等は、母材から打ち抜いた回路層、または鋳造により形成した回路層を、セラミックス板にろう付けすることによって、側面がセラミックス板の表面から略垂直に立上がった回路層を形成することについて検討している。
特開平10−242330号公報
In general, this type of power module is a ceramic plate in which a circuit layer is brazed on the front surface and a metal layer is brazed on the back surface, and a semiconductor chip bonded to the surface of the circuit layer. And a heat sink bonded to the surface of the metal layer. Of these, the circuit layer is conventionally subjected to an etching process after brazing a circuit layer member for forming the circuit layer on the surface of the ceramic plate, as shown in Patent Document 1, for example. It was formed by.
However, when the circuit layer is formed by etching as described above, the side surface of the circuit layer gradually expands toward the outside of the circuit layer from the front surface (semiconductor chip side) to the back surface (ceramic plate side). Because of the divergent shape, it is difficult to meet the demand for further downsizing of power modules in recent years, that is, by narrowing the width of conductors constituting the circuit layer and narrowing the distance between adjacent conductors. There was a problem. In addition, the etching process not only takes time for production but also generates waste liquid, resulting in a problem that it is difficult to reduce the production cost.
Therefore, the present inventors brazed a circuit layer punched out from a base material or a circuit layer formed by casting to a ceramic plate, thereby forming a circuit layer whose side surface rises substantially vertically from the surface of the ceramic plate. We are considering forming.
JP-A-10-242330

しかしながら、このようなパワーモジュール用基板の製造方法では、エッチング工程を経ないので、上述した問題は解決することができるものの、この回路層の側面がセラミックス板の表面から略垂直に立上がっているので、エッチング処理して得られた回路層の側面と比べてその立上がる方向の長さが短くなるため、回路層をセラミックス板にろう付けする際に、セラミックス板との間から溢れ出たろう材の余剰分が、その表面張力により凝集することによって、この回路層の側面を伝ってその表面に乗り上がり易くなっている。
そして、このように表面に乗り上げたろう材上にさらに半導体チップを接合すると、この接合時にろう材の組成成分の一部が溶融することがあり、半導体チップと回路層との接合部にボイドが発生し、これらの接合信頼性を低下させるおそれがある。
特に、例えばろう材がAl−Si系とされてSiを含有し、回路層が純Al若しくはAl合金により形成されている場合には、回路層の表面に乗り上げたろう材は、この回路層よりも硬いうえに、パワーモジュールを使用する過程での熱サイクルによりさらに加工硬化させられることによって、回路層に対してその表面および側面から大きな外力を作用させ、回路層とセラミックス板との接合界面に大きな応力が作用し、回路層がセラミックス板の表面から剥離し易くなり、パワーモジュールの熱サイクル寿命を低下させるおそれがある。
また、回路層の表面においてろう材が乗り上げた部分に、ワイヤボンディングが施されると、ろう材は前記のように回路層と比べて硬いので、この部分とワイヤボンディングとの接合部における熱サイクル寿命を低下させるおそれがある。
さらに、回路層の表面に前記のように乗り上げたろう材は、視認することができ、外観品質を低減させるおそれもある。
However, in such a method for manufacturing a power module substrate, since the etching process is not performed, the above-described problem can be solved, but the side surface of the circuit layer rises substantially vertically from the surface of the ceramic plate. Therefore, since the length in the rising direction is shorter than the side surface of the circuit layer obtained by etching, the brazing material overflowed from the space between the ceramic plate when the circuit layer is brazed to the ceramic plate. As a result, the surplus portion of the water is agglomerated by the surface tension, so that it easily reaches the surface through the side surface of the circuit layer.
When a semiconductor chip is further bonded onto the brazing material that has been placed on the surface in this way, a part of the composition component of the brazing material may melt at the time of this bonding, and a void is generated at the bonding portion between the semiconductor chip and the circuit layer. In addition, there is a risk of reducing the bonding reliability.
In particular, for example, when the brazing material is made of Al-Si and contains Si, and the circuit layer is made of pure Al or Al alloy, the brazing material on the surface of the circuit layer is more than the circuit layer. In addition to being hard, it is further hardened by heat cycle in the process of using the power module, so that a large external force is applied to the circuit layer from its surface and side surface, and a large interface is applied to the bonding interface between the circuit layer and the ceramic plate. The stress acts, the circuit layer is easily peeled off from the surface of the ceramic plate, and the thermal cycle life of the power module may be reduced.
Also, if wire bonding is applied to the part where the brazing material runs on the surface of the circuit layer, the brazing material is harder than the circuit layer as described above, so the thermal cycle at the joint between this part and the wire bonding. May reduce life.
Furthermore, the brazing material that has run on the surface of the circuit layer as described above can be visually recognized, and the appearance quality may be reduced.

本発明はこのような事情を考慮してなされたもので、回路層と半導体チップとの接合信頼性を低下させたり、パワーモジュールの熱サイクル寿命を低減させたり、さらには、パワーモジュール用基板の外観品質を低下させたりすることなく、パワーモジュールのコンパクト化や低コスト化を図ることができるパワーモジュール用基板の製造方法、パワーモジュール用基板およびパワーモジュールを提供することを目的とする。   The present invention has been made in view of such circumstances, reducing the reliability of bonding between the circuit layer and the semiconductor chip, reducing the thermal cycle life of the power module, and further, An object of the present invention is to provide a power module substrate manufacturing method, a power module substrate, and a power module capable of reducing the size and cost of the power module without deteriorating the appearance quality.

このような課題を解決して、前記目的を達成するために、本発明のパワーモジュール用基板の製造方法は、セラミックス板の表面に回路層がろう付けされてなり、回路層の表面に半導体チップが接合されるとともに、セラミックス板の裏面側にヒートシンクが接合されるパワーモジュール用基板の製造方法であって、セラミックス板に回路層をろう付けする際に、またはこのろう付けの前に予め、回路層の外表面のうち、セラミックス板の表面から略垂直に立上がる側面に金属酸化膜を形成することを特徴とする。
この発明によれば、回路層の側面に金属酸化膜を形成しながら、または形成した後に、ろう材箔を溶融してセラミックス板と回路層とをろう付けするので、回路層の側面における溶融したろう材の濡れ性を低下させることが可能になり、溶融したろう材がこの側面を伝って回路層の表面に乗り上がるのを防ぐことができる。したがって、回路層と半導体チップとの接合信頼性を低下させたり、パワーモジュールの熱サイクル寿命を低減させたり、さらには、パワーモジュール用基板の外観品質を低下させたりすることなく、パワーモジュールのコンパクト化や低コスト化を図ることができる。
In order to solve the above problems and achieve the above object, a method for manufacturing a power module substrate according to the present invention includes a circuit layer brazed to the surface of a ceramic plate, and a semiconductor chip on the surface of the circuit layer. Is a method of manufacturing a power module substrate in which a heat sink is bonded to the back side of a ceramic plate, and a circuit layer is preliminarily mounted when the circuit layer is brazed to the ceramic plate or before the brazing. A metal oxide film is formed on a side surface of the outer surface of the layer that rises substantially perpendicularly from the surface of the ceramic plate.
According to this invention, while forming the metal oxide film on the side surface of the circuit layer or after the formation, the brazing material foil is melted to braze the ceramic plate and the circuit layer. It becomes possible to reduce the wettability of the brazing material, and it is possible to prevent the molten brazing material from climbing onto the surface of the circuit layer along this side surface. Therefore, the compactness of the power module can be achieved without reducing the bonding reliability between the circuit layer and the semiconductor chip, reducing the thermal cycle life of the power module, and further reducing the appearance quality of the power module substrate. And cost reduction can be achieved.

ここで、前記金属酸化膜は、回路層の側面に、セラミックス板と回路層とをろう付けするろう材箔よりも融点が低く、かつ回路層を形成する材質よりも酸素との親和性が高い金属材料を蒸着させて蒸着膜を形成しておき、その後、この蒸着膜を酸化させることにより形成されてもよい。
この場合、前記金属酸化膜を容易かつ確実に形成することが可能になり、前記の作用効果が確実に奏効されることになる。
Here, the metal oxide film has a lower melting point than the brazing material foil for brazing the ceramic plate and the circuit layer on the side surface of the circuit layer, and has a higher affinity for oxygen than the material forming the circuit layer. It may be formed by vapor-depositing a metal material to form a vapor deposition film and then oxidizing the vapor deposition film.
In this case, the metal oxide film can be easily and reliably formed, and the above-described effects can be reliably achieved.

また、本発明のパワーモジュール用基板は、セラミックス板の表面に回路層がろう付けされてなり、回路層の表面に半導体チップが接合されるとともに、セラミックス板の裏面側にヒートシンクが接合されるパワーモジュール用基板であって、回路層の外表面のうち、セラミックス板の表面から略垂直に立上がる側面に、金属酸化膜が形成されていることを特徴とする。
In the power module substrate of the present invention, the circuit layer is brazed to the surface of the ceramic plate, the semiconductor chip is bonded to the surface of the circuit layer, and the heat sink is bonded to the back side of the ceramic plate. In the module substrate, a metal oxide film is formed on a side surface of the outer surface of the circuit layer that rises substantially vertically from the surface of the ceramic plate.

ここで、前記金属酸化膜は、セラミックス板と回路層とをろう付けするろう材箔よりも融点が低く、かつ回路層を形成する材質よりも酸素との親和性が高い金属材料からなる蒸着膜が酸化した金属酸化膜であってもよい。 Here, the metal oxide film has a lower melting point than the brazing material foil for brazing the ceramic plate and the circuit layer, and is a deposited film made of a metal material having a higher affinity for oxygen than the material forming the circuit layer. An oxidized metal oxide film may be used.

さらに、本発明のパワーモジュールは、セラミックス板の表面に回路層がろう付けされたパワーモジュール用基板と、回路層の表面に接合された半導体チップと、セラミックス板の裏面側に接合されたヒートシンクとを備えたパワーモジュールであって、前記パワーモジュール用基板が、本発明のパワーモジュール用基板であることを特徴とする。
この発明によれば、回路層と半導体チップとの接合信頼性を低下させたり、パワーモジュールの熱サイクル寿命を低減させたり、さらには、パワーモジュール用基板の外観品質を低下させたりすることなく、パワーモジュールのコンパクト化や低コスト化を図ることができる。
Furthermore, the power module of the present invention includes a power module substrate having a circuit layer brazed to the surface of a ceramic plate, a semiconductor chip bonded to the surface of the circuit layer, and a heat sink bonded to the back side of the ceramic plate. The power module substrate is characterized in that the power module substrate is the power module substrate of the present invention.
According to the present invention, without reducing the bonding reliability between the circuit layer and the semiconductor chip, without reducing the thermal cycle life of the power module, and further without reducing the appearance quality of the power module substrate, It is possible to reduce the size and cost of the power module.

この発明によれば、回路層と半導体チップとの接合信頼性を低下させたり、パワーモジュールの熱サイクル寿命を低減させたり、さらには、パワーモジュール用基板の外観品質を低下させたりすることなく、パワーモジュールのコンパクト化や低コスト化を図ることができる。   According to the present invention, without reducing the bonding reliability between the circuit layer and the semiconductor chip, without reducing the thermal cycle life of the power module, and further without reducing the appearance quality of the power module substrate, It is possible to reduce the size and cost of the power module.

以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の一実施形態に係るパワーモジュール用基板を適用したパワーモジュールを示す全体図である。
このパワーモジュール10は、セラミックス板11の表面に回路層12がろう付けされたパワーモジュール用基板14と、回路層12の表面に第1はんだ層17を介してはんだ接合された半導体チップ15と、セラミックス板11の裏面側に接合されたヒートシンク16とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall view showing a power module to which a power module substrate according to an embodiment of the present invention is applied.
This power module 10 includes a power module substrate 14 having a circuit layer 12 brazed to the surface of a ceramic plate 11, a semiconductor chip 15 soldered to the surface of the circuit layer 12 via a first solder layer 17, The heat sink 16 joined to the back surface side of the ceramic board 11 is provided.

図示の例では、パワーモジュール用基板14には、回路層12と同じ材質により形成されるとともに、セラミックス板11の裏面にろう付けされた金属層13が備えられている。そして、ヒートシンク16は、金属層13の表面に、第2はんだ層19を介してはんだ接合、若しくはろう付けや拡散接合により接合されている。   In the illustrated example, the power module substrate 14 includes a metal layer 13 that is formed of the same material as the circuit layer 12 and brazed to the back surface of the ceramic plate 11. The heat sink 16 is bonded to the surface of the metal layer 13 via the second solder layer 19 by solder bonding, brazing or diffusion bonding.

ここで、これらの各部材を形成する材質としては、例えば、セラミックス板11ではAlN、Al、Si、SiC等が挙げられ、回路層12、金属層13およびヒートシンク16では純Al、純Cu、Al合金若しくはCu合金等が挙げられ、第1、第2はんだ層17、19では例えばSn−Ag−Cu系等の無鉛系のはんだ材が挙げられる。また、セラミックス板11と回路層12および金属層13とをそれぞれろう付けするろう材では、例えばAl−Si系等のAl系のろう材が挙げられる。 Here, examples of the material forming these members include AlN, Al 2 O 3 , Si 3 N 4 , SiC, and the like for the ceramic plate 11, and pure materials for the circuit layer 12, the metal layer 13, and the heat sink 16. Examples of the first and second solder layers 17 and 19 include lead-free solder materials such as Sn—Ag—Cu. In addition, as the brazing material for brazing the ceramic plate 11, the circuit layer 12, and the metal layer 13, for example, an Al-based brazing material such as an Al—Si based material can be used.

このAl−Si系のろう材としては、例えば、Siを6.8wt%〜13.0wt%、Feを0.8wt%以下、Cuを4.7wt%以下、Mnを0.15wt%以下、Mgを2.0wt%以下、Crを0.15wt%以下、Znを2.5wt%以下、Tiを0.20wt%以下、Biを0.20wt%以下、その他を0.15wt%以下それぞれ含み、残部がAlとされた材質を採用することができる。   Examples of the Al—Si brazing material include Si of 6.8 wt% to 13.0 wt%, Fe of 0.8 wt% or less, Cu of 4.7 wt% or less, Mn of 0.15 wt% or less, Mg 2.0 wt% or less, Cr 0.15 wt% or less, Zn 2.5 wt% or less, Ti 0.20 wt% or less, Bi 0.20 wt% or less, and others 0.15 wt% or less, and the balance A material made of Al can be used.

そして、本実施形態では、回路層12の外表面のうち、セラミックス板11の表面から略垂直に立上がる側面12aに酸化膜20が形成されている。この酸化膜20は、セラミックス板11と回路層12とをろう付けするろう材箔よりも融点が低く、かつ回路層12を形成する材質よりも酸素との親和性が高い金属材料からなる蒸着膜が酸化した金属酸化膜とされている。この金属材料としては、例えば、Al−Si−Mg系合金、Al−Mg系合金、Al−Zn−Mg系合金、Al−Zn系合金、Al−Cu系合金若しくはAl−Cu−Si系合金等といったAl系の合金、またはMg−Al系合金、Mg−Al−Mn系合金、Mg−Li系合金等といったMg系の合金等が挙げられる。また、この酸化膜20は、厚さが約0.05μm以上100μm以下とされている。さらに、本実施形態では、金属層13の側面13aにも、回路層12と同様に酸化膜20が形成されている。   In the present embodiment, the oxide film 20 is formed on the side surface 12 a that rises substantially vertically from the surface of the ceramic plate 11 in the outer surface of the circuit layer 12. The oxide film 20 has a lower melting point than the brazing material foil that brazes the ceramic plate 11 and the circuit layer 12, and is a vapor deposition film made of a metal material having a higher affinity for oxygen than the material forming the circuit layer 12. The metal oxide film is oxidized. Examples of the metal material include an Al—Si—Mg alloy, an Al—Mg alloy, an Al—Zn—Mg alloy, an Al—Zn alloy, an Al—Cu alloy, and an Al—Cu—Si alloy. Al-based alloys such as Mg-Al alloys, Mg-Al-Mn alloys, Mg-Al-Mn alloys, Mg-Li alloys, and the like. The oxide film 20 has a thickness of about 0.05 μm to 100 μm. Further, in the present embodiment, the oxide film 20 is also formed on the side surface 13 a of the metal layer 13 in the same manner as the circuit layer 12.

次に、以上のように構成されたパワーモジュール用基板14の製造方法について説明する。
まず、純Al若しくはAl合金からなる母材を打ち抜いて回路層12を形成する。
すなわち、本実施形態では、母材の表裏面のうち、形成される回路層12の裏面を有する裏面にろう材箔を配置しておき、この母材における回路層12の形成予定部をその裏面側から押圧し、この回路層12の形成予定部の外周縁にせん断力を作用させてその厚さ方向途中まで切断し、前記ろう材箔のうち回路層12の形成予定部の外周縁に位置する部分を切断した後に、この回路層12の形成予定部をその表面側から押圧して押し戻す。
Next, a method for manufacturing the power module substrate 14 configured as described above will be described.
First, a circuit layer 12 is formed by punching a base material made of pure Al or an Al alloy.
That is, in the present embodiment, the brazing material foil is disposed on the back surface of the base material having the back surface of the circuit layer 12 to be formed, and the portion where the circuit layer 12 is to be formed in the base material is disposed on the back surface. Pressing from the side, applying a shearing force to the outer peripheral edge of the part to be formed of the circuit layer 12 and cutting it halfway in the thickness direction. After the portion to be cut is cut, the portion where the circuit layer 12 is to be formed is pressed back from the surface side.

その後、この母材の裏面とセラミックス板11の表面とをテンプレートを挟んで対向させた状態で、回路層12の形成予定部の表面をセラミックス板11の表面に向けて押圧して母材から分離し回路層12を形成するとともに、この回路層12をその裏面側からテンプレートのガイド孔に挿入することにより、セラミックス板11の表面にろう材箔と回路層12とをこの順に配置する。   Thereafter, in a state where the back surface of the base material and the surface of the ceramic plate 11 are opposed to each other with the template interposed therebetween, the surface of the portion where the circuit layer 12 is to be formed is pressed toward the surface of the ceramic plate 11 and separated from the base material. The circuit layer 12 is formed, and the circuit layer 12 is inserted into the guide hole of the template from the back side thereof, thereby arranging the brazing material foil and the circuit layer 12 in this order on the surface of the ceramic plate 11.

一方、回路層12と同様にして、セラミックス板11の裏面にろう材箔を介して金属層13を配置する。以上より、セラミックス板11の表面に、ろう材箔と回路層12とがこの順に配置され、裏面にろう材箔と金属層13とがこの順に配置された積層体18を形成する。   On the other hand, in the same manner as the circuit layer 12, the metal layer 13 is disposed on the back surface of the ceramic plate 11 with a brazing material foil interposed. As described above, the laminated body 18 is formed in which the brazing material foil and the circuit layer 12 are arranged in this order on the surface of the ceramic plate 11 and the brazing material foil and the metal layer 13 are arranged in this order on the back surface.

そして、図2に示されるように、この積層体18を積層方向にカーボンシートCを介して複数積層させたものを、内部が5.0×10−2Pa以上5.0×10−1Pa以下の低真空度とされて酸素分圧が高められた雰囲気の炉内に置く。この際、回路層12および金属層13は、セラミックス板11の表裏面からそれぞれ立上がる側面12a、13aのみが露出し、この他の表裏面はその全域がセラミックス板11の表裏面およびカーボンシートCにより被覆されている。その後、前記複数積層させたものを積層方向に加圧した状態で加熱し、ろう材箔を溶融させることによって、セラミックス板11の表面に回路層12をろう付けするとともに、セラミックス板11の裏面に金属層13をろう付けしてパワーモジュール用基板14を形成する。 And as FIG. 2 shows, what laminated | stacked multiple this laminated body 18 via the carbon sheet C in the lamination direction is 5.0 * 10 <-2 > Pa or more and 5.0 * 10 < -1 > Pa inside. It is placed in a furnace having an atmosphere with a low vacuum and an increased oxygen partial pressure. At this time, only the side surfaces 12a and 13a rising from the front and rear surfaces of the ceramic plate 11 are exposed in the circuit layer 12 and the metal layer 13, respectively, and the entire area of the other front and rear surfaces is the front and rear surfaces of the ceramic plate 11 and the carbon sheet C. It is covered with. Thereafter, the circuit laminate 12 is brazed to the surface of the ceramic plate 11 and heated on the back surface of the ceramic plate 11 by heating the plurality of laminated layers while being pressed in the laminating direction and melting the brazing material foil. The metal layer 13 is brazed to form the power module substrate 14.

ここで、炉内に予め、前記複数積層させたものとともに前述したAl−Si−Mg系合金等の金属材料からなる部材を置いておき、上記のように炉内を加熱する過程においてろう材箔が溶融する前に、この部材を溶融させて回路層12および金属層13の各側面12a、13aに蒸着させた後に、この蒸着膜を酸化させて酸化膜20を形成する。その後、上述のようにろう材箔を溶融させてパワーモジュール用基板14を形成する。   Here, in the process of heating the inside of the furnace as described above, a member made of a metal material such as the Al—Si—Mg-based alloy described above is placed in advance in the furnace together with the plurality of laminated layers. Before the material melts, this member is melted and deposited on the side surfaces 12a and 13a of the circuit layer 12 and the metal layer 13, and then the deposited film is oxidized to form the oxide film 20. Thereafter, the brazing material foil is melted as described above to form the power module substrate 14.

ここで、この製造方法についての具体的な実施例について説明する。
まず、材質については、回路層12および金属層13を純度99.98%のAl合金、ろう材13をAl−Si系(Alが93wt%、Siが7wt%)、セラミックス板11をAlNによりそれぞれ形成した。厚さについては、回路層12および金属層13を約0.4mm、ろう材箔を約13μm、セラミックス板11を約0.635mmとした。なお、回路層12および金属層13は平面視四角形とされ、縦および横の寸法はそれぞれ、約28mmおよび約70mmとした。また、前記積層体18を構成する回路層12、金属層13およびろう材箔は、揮発性有機媒体(オクタンジオール)により仮固定した。
そして、前記積層体18が複数積層されたものを、5.0×10−2Pa以上5.0×10−1Pa以下の低真空度の雰囲気とされ、かつ620℃〜650℃に保温可能な炉内に、Al−Si−Mg系合金からなる部材とともに置いて、積層方向に0.23MPa〜0.35MPaで加圧した状態で30分〜60分間加熱し、パワーモジュール用基板14を形成した。
Here, specific examples of the manufacturing method will be described.
First, regarding the material, the circuit layer 12 and the metal layer 13 are made of an Al alloy having a purity of 99.98%, the brazing material 13 is made of Al—Si (Al is 93 wt%, Si is 7 wt%), and the ceramic plate 11 is made of AlN. Formed. Regarding the thickness, the circuit layer 12 and the metal layer 13 were about 0.4 mm, the brazing material foil was about 13 μm, and the ceramic plate 11 was about 0.635 mm. The circuit layer 12 and the metal layer 13 were square in plan view, and the vertical and horizontal dimensions were about 28 mm and about 70 mm, respectively. Further, the circuit layer 12, the metal layer 13, and the brazing material foil constituting the laminate 18 were temporarily fixed with a volatile organic medium (octanediol).
And what laminated | stacked the said laminated body 18 is made into the atmosphere of the low vacuum degree of 5.0 * 10 <-2 > Pa or more and 5.0 * 10 < -1 > Pa or less, and heat insulation is possible at 620 to 650 degreeC A power module substrate 14 is formed by placing it in a furnace with a member made of an Al—Si—Mg alloy and heating it in the direction of lamination at a pressure of 0.23 MPa to 0.35 MPa for 30 minutes to 60 minutes. did.

以上説明したように、本実施形態によるパワーモジュール用基板によれば、回路層12の側面12aに酸化膜20を形成しながら、または形成した後に、ろう材箔を溶融してセラミックス板11と回路層12とをろう付けするので、回路層12の側面12aにおける溶融したろう材の濡れ性を低下させることが可能になり、溶融したろう材がこの側面12aを伝って回路層12の表面に乗り上がるのを防ぐことができる。したがって、回路層12と半導体チップ15との接合信頼性を低下させたり、パワーモジュール10の熱サイクル寿命を低減させたり、さらには、パワーモジュール用基板14の外観品質を低下させたりすることなく、パワーモジュール10のコンパクト化や低コスト化を図ることができる。   As described above, according to the power module substrate of the present embodiment, the brazing material foil is melted to form the ceramic plate 11 and the circuit while the oxide film 20 is formed on the side surface 12a of the circuit layer 12 or after the oxide film 20 is formed. Since the layer 12 is brazed, the wettability of the molten brazing material on the side surface 12a of the circuit layer 12 can be reduced, and the molten brazing material travels on the surface of the circuit layer 12 through the side surface 12a. It can be prevented from going up. Therefore, without reducing the bonding reliability between the circuit layer 12 and the semiconductor chip 15, reducing the thermal cycle life of the power module 10, or further reducing the appearance quality of the power module substrate 14, The power module 10 can be reduced in size and cost.

また、本実施形態では、酸化膜20は、回路層12の側面12aに、セラミックス板11と回路層12および金属層13とをろう付けするろう材箔よりも融点が低く、かつ回路層12を形成する材質よりも酸素との親和性が高い金属材料を蒸着させて蒸着膜を形成しておき、その後、この蒸着膜を酸化させて形成するので、酸化膜20を容易かつ確実に形成することが可能になり、前記の作用効果が確実に奏効されることになる。
さらに、金属層13にも酸化膜20を形成したので、この金属層13とヒートシンク16との接合信頼性をも向上させることができる。
In the present embodiment, the oxide film 20 has a lower melting point than the brazing material foil that brazes the ceramic plate 11, the circuit layer 12, and the metal layer 13 to the side surface 12 a of the circuit layer 12, and the circuit layer 12 is formed. A metal material having a higher affinity for oxygen than the material to be formed is vapor-deposited to form a vapor-deposited film, and then the vapor-deposited film is oxidized to form the oxide film 20 easily and reliably. Thus, the above-described effects can be reliably achieved.
Furthermore, since the oxide film 20 is also formed on the metal layer 13, the bonding reliability between the metal layer 13 and the heat sink 16 can be improved.

なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前記実施形態では、回路層12および金属層13を母材から打ち抜いて形成したが、これに代えて、鋳造により形成してもよい。
また、母材を打ち抜いて回路層12を形成する方法として、前記実施形態に代えて、例えば、裏面にろう材箔が配置された母材における回路層12の形成予定部に向けて打ち抜きパンチを前進移動し、この母材における回路層12の形成予定部をその裏面側から押圧して、このパンチの前進移動を、回路層12の形成予定部の外周縁を母材の厚さ方向全域でせん断変形させて破断するまで継続することにより母材から打ち抜いて形成してもよい。さらにまた、金属層13もこのような方法で形成してもよい。
さらに、酸化膜20として、前記ろう材箔よりも融点が低く、かつ回路層12および金属層13を形成する材質よりも酸素との親和性が高い金属材料からなる蒸着膜が酸化した金属酸化膜を示したが、これに代えて、例えば、蒸着膜を形成しないで直接、回路層12および金属層13の側面12a、13aに酸化膜を形成するようにしてもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the circuit layer 12 and the metal layer 13 are formed by punching from the base material, but instead of this, they may be formed by casting.
Further, as a method of punching the base material to form the circuit layer 12, instead of the above-described embodiment, for example, a punching punch is performed toward the formation planned portion of the circuit layer 12 in the base material in which the brazing material foil is arranged on the back surface. It moves forward, presses the formation portion of the circuit layer 12 in the base material from the back surface side, and advances the forward movement of the punch, the outer peripheral edge of the formation portion of the circuit layer 12 in the entire thickness direction of the base material. It may be formed by punching from the base material by continuing shear deformation and breaking. Furthermore, the metal layer 13 may also be formed by such a method.
Further, as the oxide film 20, a metal oxide film obtained by oxidizing a deposited film made of a metal material having a lower melting point than the brazing material foil and having a higher affinity for oxygen than the material forming the circuit layer 12 and the metal layer 13 is used. However, instead of this, for example, an oxide film may be formed directly on the side surfaces 12a and 13a of the circuit layer 12 and the metal layer 13 without forming a vapor deposition film.

ここで、前記実施例に従ってパワーモジュール用基板14を形成し、回路層12および金属層13の各表面を目視により確認したところ、ろう材の乗り上げが視認されなかった。
また、純度99.98%のAl合金からなる板材の表面に、Al−Si−Mg系合金からなる蒸着膜を形成し、さらにこの蒸着膜を酸化させて酸化膜を形成した後に、この酸化膜の表面に、Alを93wt%、Siを7wt%それぞれ含有する溶融したAl−Si系のろう材を滴下したときの、この酸化膜の表面に対する溶融ろう材の濡れ角を測定したところ90°以下であり、前記板材の表面に酸化膜を形成しないで直接、溶融ろう材を滴下した場合(濡れ角度90°より大)と比べて、濡れ性を低下させることができたことが確認された。
Here, when the power module substrate 14 was formed in accordance with the above-described example and the respective surfaces of the circuit layer 12 and the metal layer 13 were confirmed by visual observation, the climbing of the brazing material was not visually recognized.
Further, after forming a vapor deposition film made of an Al—Si—Mg based alloy on the surface of a plate material made of an Al alloy having a purity of 99.98% and further oxidizing the vapor deposition film to form an oxide film, this oxide film When the molten Al-Si brazing material containing 93 wt% Al and 7 wt% Si was dropped onto the surface of the metal, the wetting angle of the molten brazing material relative to the surface of the oxide film was measured to be 90 ° or less. It was confirmed that the wettability could be reduced as compared with the case where the molten brazing material was directly dropped without forming an oxide film on the surface of the plate (wetting angle greater than 90 °).

回路層と半導体チップとの接合信頼性を低下させたり、パワーモジュールの熱サイクル寿命を低減させたり、さらには、パワーモジュール用基板の外観品質を低下させたりすることなく、パワーモジュールのコンパクト化や低コスト化を図る。   The power module can be made more compact without reducing the reliability of bonding between the circuit layer and the semiconductor chip, reducing the thermal cycle life of the power module, and further reducing the appearance quality of the power module substrate. Reduce costs.

この発明の一実施形態に係るパワーモジュール用基板を適用したパワーモジュールを示す全体図である。1 is an overall view showing a power module to which a power module substrate according to an embodiment of the present invention is applied. この発明の一実施形態に係るパワーモジュール用基板の製造方法の一工程を示す概略図であるIt is the schematic which shows 1 process of the manufacturing method of the board | substrate for power modules which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

10 パワーモジュール
11 セラミックス板
12 回路層
12a 回路層の側面
14 パワーモジュール用基板
15 半導体チップ
16 ヒートシンク
20 酸化膜
DESCRIPTION OF SYMBOLS 10 Power module 11 Ceramic board 12 Circuit layer 12a Side of circuit layer 14 Power module substrate 15 Semiconductor chip 16 Heat sink 20 Oxide film

Claims (5)

セラミックス板の表面に回路層がろう付けされてなり、回路層の表面に半導体チップが接合されるとともに、セラミックス板の裏面側にヒートシンクが接合されるパワーモジュール用基板の製造方法であって、
セラミックス板に回路層をろう付けする際に、またはこのろう付けの前に予め、回路層の外表面のうち、セラミックス板の表面から略垂直に立上がる側面に金属酸化膜を形成することを特徴とするパワーモジュール用基板の製造方法。
A method for manufacturing a power module substrate, wherein a circuit layer is brazed to the surface of a ceramic plate, a semiconductor chip is bonded to the surface of the circuit layer, and a heat sink is bonded to the back side of the ceramic plate,
When brazing the circuit layer to the ceramic plate, or before brazing, a metal oxide film is formed on a side surface of the outer surface of the circuit layer that rises substantially vertically from the surface of the ceramic plate in advance. A method for manufacturing a power module substrate.
請求項1記載のパワーモジュール用基板の製造方法において、
前記金属酸化膜は、回路層の側面に、セラミックス板と回路層とをろう付けするろう材箔よりも融点が低く、かつ回路層を形成する材質よりも酸素との親和性が高い金属材料を蒸着させて蒸着膜を形成しておき、その後、この蒸着膜を酸化させることにより形成されることを特徴とするパワーモジュール用基板の製造方法。
In the manufacturing method of the board | substrate for power modules of Claim 1,
The metal oxide film is made of a metal material having a lower melting point than the brazing material foil for brazing the ceramic plate and the circuit layer on the side surface of the circuit layer and having a higher affinity for oxygen than the material forming the circuit layer. A method for producing a power module substrate, wherein a vapor deposition film is formed by vapor deposition, and then the vapor deposition film is oxidized.
セラミックス板の表面に回路層がろう付けされてなり、回路層の表面に半導体チップが接合されるとともに、セラミックス板の裏面側にヒートシンクが接合されるパワーモジュール用基板であって、
回路層の外表面のうち、セラミックス板の表面から略垂直に立上がる側面に、金属酸化膜が形成されていることを特徴とするパワーモジュール用基板。
A power module substrate in which a circuit layer is brazed to the surface of a ceramic plate, a semiconductor chip is bonded to the surface of the circuit layer, and a heat sink is bonded to the back side of the ceramic plate,
A power module substrate, wherein a metal oxide film is formed on a side surface of the outer surface of the circuit layer that rises substantially perpendicularly from the surface of the ceramic plate.
請求項3記載のパワーモジュール用基板において、
前記金属酸化膜は、セラミックス板と回路層とをろう付けするろう材箔よりも融点が低く、かつ回路層を形成する材質よりも酸素との親和性が高い金属材料からなる蒸着膜が酸化した金属酸化膜であることを特徴とするパワーモジュール用基板。
In the power module substrate according to claim 3,
The metal oxide film has a lower melting point than the brazing material foil for brazing the ceramic plate and the circuit layer, and the deposited film made of a metal material having a higher affinity with oxygen than the material forming the circuit layer is oxidized. A power module substrate, which is a metal oxide film.
セラミックス板の表面に回路層がろう付けされたパワーモジュール用基板と、回路層の表面に接合された半導体チップと、セラミックス板の裏面側に接合されたヒートシンクとを備えたパワーモジュールであって、
前記パワーモジュール用基板が、請求項3または4に記載のパワーモジュール用基板であることを特徴とするパワーモジュール。
A power module comprising a power module substrate having a circuit layer brazed to the surface of the ceramic plate, a semiconductor chip bonded to the surface of the circuit layer, and a heat sink bonded to the back side of the ceramic plate,
The power module substrate according to claim 3 or 4, wherein the power module substrate is the power module substrate.
JP2006138657A 2006-05-18 2006-05-18 Power module substrate manufacturing method, power module substrate and power module Expired - Fee Related JP4904915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138657A JP4904915B2 (en) 2006-05-18 2006-05-18 Power module substrate manufacturing method, power module substrate and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138657A JP4904915B2 (en) 2006-05-18 2006-05-18 Power module substrate manufacturing method, power module substrate and power module

Publications (2)

Publication Number Publication Date
JP2007311526A JP2007311526A (en) 2007-11-29
JP4904915B2 true JP4904915B2 (en) 2012-03-28

Family

ID=38844118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138657A Expired - Fee Related JP4904915B2 (en) 2006-05-18 2006-05-18 Power module substrate manufacturing method, power module substrate and power module

Country Status (1)

Country Link
JP (1) JP4904915B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664024B2 (en) * 2010-08-30 2015-02-04 三菱マテリアル株式会社 Power module substrate and method of manufacturing power module substrate with heat sink
JP5577988B2 (en) * 2010-09-24 2014-08-27 カシオ計算機株式会社 Interposer manufacturing method and semiconductor device manufacturing method
JP5915051B2 (en) * 2010-09-29 2016-05-11 三菱マテリアル株式会社 Power module substrate and method of manufacturing power module substrate with heat sink
JP5671351B2 (en) * 2011-01-12 2015-02-18 昭和電工株式会社 Manufacturing method of electronic device mounting substrate
JP5707278B2 (en) * 2011-08-19 2015-04-22 昭和電工株式会社 Insulated circuit board manufacturing method
CN104126226B (en) * 2012-02-14 2018-05-04 三菱综合材料株式会社 Welding structure, power module, the power module substrate with radiator and its manufacture method and solder basalis formation cream

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3346216B2 (en) * 1997-04-01 2002-11-18 イビデン株式会社 Printed wiring board
JP4476428B2 (en) * 2000-04-21 2010-06-09 株式会社東芝 Aluminum nitride circuit board and manufacturing method thereof
JP2001332854A (en) * 2000-05-24 2001-11-30 Toshiba Corp Ceramic circuit board
JP2001332823A (en) * 2000-05-24 2001-11-30 Toshiba Corp Ceramic circuit board
JP2004265972A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2006237151A (en) * 2005-02-23 2006-09-07 Shinko Electric Ind Co Ltd Wiring board and semiconductor apparatus

Also Published As

Publication number Publication date
JP2007311526A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4904916B2 (en) Power module substrate, power module substrate manufacturing method, and power module
EP3208839B1 (en) Substrate with cooler for power modules and method for producing same
JP4904915B2 (en) Power module substrate manufacturing method, power module substrate and power module
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
JP5115318B2 (en) Semiconductor device
CN109755208B (en) Bonding material, semiconductor device and manufacturing method thereof
JP6443568B2 (en) Bonding material, bonding method and bonding structure using the same
JP2017183716A (en) Manufacturing method of insulation circuit board with heat sink, and insulation circuit board with heat sink
JP4682889B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP6432208B2 (en) Method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
JP4725412B2 (en) Power module substrate manufacturing method
JP4876719B2 (en) Power element mounting unit, method for manufacturing power element mounting unit, and power module
KR20120021152A (en) Substrate for power module, substrate for power module equiptted with heat sink, power module, and manufacturing method of substrate for power module
KR102524698B1 (en) Assembly, power module substrate, power module, assembly method and manufacturing method of power module substrate
US11712759B2 (en) Lead-free soldering foil
JP4882538B2 (en) Power element mounting unit, method for manufacturing power element mounting unit, and power module
JP4910789B2 (en) Power element mounting substrate, power element mounting substrate manufacturing method, and power module
JP4951932B2 (en) Power module substrate manufacturing method
JP2008021716A (en) Power module substrate and method of manufacturing the same, and power module
WO2013129229A1 (en) Method for manufacturing semiconductor device
JP7400109B2 (en) Methods of producing metal-ceramic substrates and metal-ceramic substrates produced by such methods
JP2010098058A (en) Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP7398565B2 (en) Methods of producing metal-ceramic substrates and metal-ceramic substrates produced by such methods
WO2011125140A1 (en) Connecting material, semiconductor device, and process for producing same
JP5691580B2 (en) Manufacturing apparatus and manufacturing method for power module substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4904915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees