JP4900652B2 - Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting - Google Patents
Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting Download PDFInfo
- Publication number
- JP4900652B2 JP4900652B2 JP2005357085A JP2005357085A JP4900652B2 JP 4900652 B2 JP4900652 B2 JP 4900652B2 JP 2005357085 A JP2005357085 A JP 2005357085A JP 2005357085 A JP2005357085 A JP 2005357085A JP 4900652 B2 JP4900652 B2 JP 4900652B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- zro
- hard coating
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)の表面研磨方法に関するものである。 The present invention is a surface-coated cermet cutting throwaway tip (hereinafter referred to as a coated cutting tip) that exhibits excellent chipping resistance with a hard coating layer, particularly when used for high-speed cutting of various steels and cast irons . The present invention relates to a surface polishing method .
従来、一般に、図3に概略斜視図で示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取りつけ孔を有する基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態で酸化アルミニウムと酸化ジルコニウムの2相混合酸化物(以下、Al2O3−ZrO2で示す)層、
で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally, as shown in a schematic perspective view in FIG. 3, it is composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, and a tool at the center. On the entire surface of the rake face and the flank face including the cutting edge ridge line portion of the base body (hereinafter collectively referred to as a chip base body) having mounting holes,
As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) layer And a Ti compound layer comprising one or more of titanium carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, a two-phase mixed oxide (hereinafter referred to as Al 2 O 3 —ZrO 2 ) layer of aluminum oxide and zirconium oxide having an average layer thickness of 1 to 15 μm and chemical vapor deposition,
It is well known that a coated cutting tip formed by vapor-depositing a hard coating layer composed of is used for continuous cutting and intermittent cutting of, for example, various types of steel and cast iron. Yes.
そして、上記上部層であるAl 2 O 3 −ZrO 2 層は、次のような条件、すなわち、
(イ)反応ガス組成(体積%)
AlCl3: 1〜10 %、
ZrCl4: 0.01〜10 %、
CO2 : 1〜30 %、
HCl: 1〜30 %、
H2S: 0.01〜1 %、
H2:残り、
(ロ)反応雰囲気温度 : 900〜1050 ℃、
(ハ)反応雰囲気圧力 : 4〜70 kPa(30〜525 torr)、
の条件で化学蒸着することにより形成されることが知られている。
The Al 2 O 3 —ZrO 2 layer , which is the upper layer, has the following conditions:
(B) Reaction gas composition (volume%)
AlCl 3 : 1 to 10%,
ZrCl 4: 0.01~10%,
CO 2: 1~30%,
HCl: 1-30%,
H 2 S: 0.01~1%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 900 to 1050 ° C.
(C) Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
It is known that it is formed by chemical vapor deposition under the following conditions .
また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、上記の被覆切削チップの硬質被覆層を構成する上部層の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
Furthermore, it is also known that the surface of the upper layer constituting the hard coating layer of the above-described coated cutting tip is smoothed by wet blasting for the purpose of improving the cutting performance.
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が350m/min.を越える高速で切削加工を行なうのに用いた場合には、硬質被覆層の上部層を構成するAl 2 O 3 −ZrO 2 層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. The cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 350 m / min. When it is used for cutting at a high speed exceeding 1, the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer is likely to chip (small chipping), resulting in a relatively short time. At present, the service life is reached.
そこで、本発明者等は、上述のような観点から、上記のAl 2 O 3 −ZrO 2 層が硬質被覆層の上部層を構成する被覆切削チップに着目し、特に前記Al2O3−ZrO2層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム(以下、Al2O3で示す)微粒を配合した研磨液を噴射して、研磨すると、前記Al2O3−ZrO2層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記Al2O3−ZrO2層の表面を、ウエットブラストにてRa:0.3〜0.6μmの表面粗さに平滑化した被覆切削チップを用いても、切削速度が350m/min.を越えた高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
Therefore, the present inventors pay attention to the coated cutting tip in which the Al 2 O 3 —ZrO 2 layer constitutes the upper layer of the hard coating layer from the above viewpoint, and in particular, the Al 2 O 3 —ZrO 2. As a result of research to improve chipping resistance of the two layers,
(A) On the surface of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting tip, the ratio of the wet blast to the total amount of water as the spray abrasive When a polishing liquid containing 15 to 60% by mass of aluminum oxide (hereinafter referred to as Al 2 O 3 ) fine particles is sprayed and polished, the Al 2 O 3 —ZrO 2 layer is in compliance with JIS B0601-1994. (The following surface roughness is a measured value based on such standards.) Ra: 0.3 to 0.6 μm surface roughness is obtained. Even when a coated cutting tip in which the surface of the 2 O 3 —ZrO 2 layer was smoothed to a surface roughness of Ra: 0.3 to 0.6 μm by wet blasting, the cutting speed was 350 m / min. High-speed cutting that exceeds the limit cannot effectively suppress chipping at the cutting edge.
(b)一方、図2に概略斜視図で示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するAl2O3−ZrO2層の切刃稜線部を含むすくい面および逃げ面の全面に、通常の化学蒸着装置を用い、通常の条件、例えば表3に示される条件で、かつ、0.5〜5μmの平均層厚で、窒化チタン(以下、TiNで示す)層を化学蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射すると、上記TiN層(以下、TiN研磨材層という)は、前記Al2O3微粒によって粉砕微粒化し、TiN微粒となって前記Al2O3微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面を研磨することになり、この結果研磨後の前記Al2O3−ZrO2層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層であるAl2O3−ZrO2層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.を越える切削速度でも切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(B) On the other hand, as shown in the schematic perspective view of FIG. 2, the rake face including the cutting edge ridge portion of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip and A titanium nitride (hereinafter referred to as TiN) layer is formed on the entire flank surface by using a normal chemical vapor deposition apparatus under normal conditions, for example, conditions shown in Table 3 and an average layer thickness of 0.5 to 5 μm. In a state where chemical vapor deposition is formed,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (a) above, the TiN layer ( Hereinafter, the TiN abrasive layer is pulverized and pulverized by the Al 2 O 3 fine particles, becomes TiN fine particles and acts as an abrasive in the presence of the Al 2 O 3 fine particles, and constitutes the upper layer of the hard coating layer to become polishing the surface of the Al 2 O 3 -ZrO 2 layers, the surface of the Al 2 O 3 -ZrO 2 layer after the results polishing, Ra: smoothed to a surface roughness of not more than 0.2μm When high-speed cutting is performed using a coated cutting tip in which the surface of the upper layer Al 2 O 3 —ZrO 2 layer is smoothed to a surface roughness of Ra: 0.2 μm or less 350 m / min. Chipping at the cutting edge is prevented even at a cutting speed exceeding 1, and the hard coating layer exhibits excellent wear resistance over a long period of time.
(c)上記の通り、切削速度が350m/min.を越えた高速切削加工では、被覆切削チップの切刃部に懸かる負荷はきわめて高いものになるため、特にフライス切削の場合、工具本体への被覆切削チップの取り付けに際しては、きわめて高い締め付け力で取り付けが行なわれることになり、この結果被覆切削チップの工具取り付け孔周辺部の硬質被覆層に対する圧縮応力はきわめて高いものとなるので、特に上部層を構成するAl2O3−ZrO2層は、ビッカース硬さ(Hv)で約2400の高硬度を有することと相俟って、これに割れが発生し易くなり、これが原因で硬質被覆層に剥離やチッピングが発生するようになるが、図1に概略斜視図で示される通り、前記ウエットブラストに際して、工具取り付け孔周辺部を研磨せず、この部分のTiN研磨材層を残した状態にしておくと、前記TiN研磨材層は前記Al2O3−ZrO2層に比して、相対的に高い高温強度をもち、かつ、硬さの低いもの(Hv:約1950)であるため、工具本体への被覆切削チップの取り付けに際して、高い締め付け力の緩衝層として作用し、この結果前記Al2O3−ZrO2層に対する圧縮応力が著しく小さなものとなることから、剥離やチッピング発生の原因となる割れ発生が防止されるようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) As described above, the cutting speed is 350 m / min. In high-speed cutting processing exceeding 1, the load applied to the cutting edge of the coated cutting tip is extremely high. Therefore, especially in the case of milling, the coated cutting tip is attached to the tool body with a very high clamping force. As a result, the compressive stress on the hard coating layer around the tool mounting hole of the coated cutting tip becomes extremely high, and in particular, the Al 2 O 3 —ZrO 2 layer constituting the upper layer is made of Vickers. Combined with having a high hardness (Hv) of about 2400, it is easy for cracks to occur, which causes peeling and chipping on the hard coating layer. As shown in the schematic perspective view, during the wet blasting, the periphery of the tool mounting hole is not polished, and the TiN abrasive layer is left in this portion. When the TiN abrasive layer as compared with the Al 2 O 3 -ZrO 2 layer has a relatively high temperature strength, and low in hardness (Hv: about 1950) because it is, the tool body When the coated cutting tip is attached to the surface, it acts as a buffer layer having a high clamping force, and as a result, the compressive stress on the Al 2 O 3 —ZrO 2 layer becomes extremely small, which causes peeling and chipping. The generation of cracks should be prevented.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成され、かつ中心部に工具取り付け孔を有するチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ、ZrO2が、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(原子比)で0.01〜0.20を満足するAl2O3−ZrO2層、
で構成された硬質被覆層を化学蒸着形成してなる被覆切削チップの表面研磨方法にして、
(a)上記硬質被覆層の上部層であるAl2O3−ZrO2層の全面に、0.5〜5μmの平均層厚で、TiN研磨材層を化学蒸着形成し、
(b)ついで、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射し、
この場合工具取り付け孔周辺部の上記TiN研磨材層を研磨せず、工具本体取り付け時における高い締め付け力の緩衝層として残した状態で、残りの研磨面における上記TiN研磨材層が噴射研磨材であるAl2O3微粒の噴射により粉砕微粒化してなる粉砕化TiN微粒と、噴射研磨材としてのAl2O3微粒の共存下で、上記硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面を研磨して、前記Al2O3−ZrO2層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としてなる、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する被覆切削チップの表面研磨方法に特徴を有するものである。
The present invention has been made on the basis of the above research results, and includes a cutting edge ridge portion of a chip base made of a WC-based cemented carbide or TiCN-based cermet and having a tool mounting hole in the center. On the entire surface and flank,
As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, it has an average layer thickness of 1 to 15 μm, and ZrO 2 is 0 in terms of the ratio (atomic ratio) in the total amount of Al and Zr contained in the layer, in terms of the content ratio of Zr. Al 2 O 3 —ZrO 2 layer satisfying .01 to 0.20,
In the surface polishing method of a coated cutting chip formed by chemical vapor deposition of a hard coating layer composed of
(A) the entire surface of the Al 2 O 3 -ZrO 2 layer which is the upper layer of the hard coating layer, an average layer thickness of 0.5 to 5 [mu] m, and chemical vapor deposition a TiN abrasive layer,
( B ) Next , in wet blasting, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a proportion of the total amount with water is sprayed as a spray abrasive.
In this case, the TiN abrasive layer around the tool mounting hole is not polished and left as a buffer layer having a high clamping force when the tool body is mounted, and the TiN abrasive layer on the remaining polishing surface is a jet abrasive. and there Al 2 O 3 milled TiN fine made by grinding atomized by injection fine, in the presence of Al 2 O 3 fine as injection abrasive, Al 2 O 3 constituting the upper layer of the hard coating layer - By polishing the surface of the ZrO 2 layer and measuring the surface roughness of the rake face and flank face including the cutting edge ridge line portion of the Al 2 O 3 —ZrO 2 layer based on the compliant standard JIS B0601-1994, Ra The hard coating layer having a thickness of 0.2 μm or less has a feature in the surface polishing method of a coated cutting chip that exhibits excellent chipping resistance in high-speed cutting.
以下に、この発明の被覆切削チップの表面研磨方法において、硬質被覆層およびTiN研磨材層、さらにウエットブラストで用いられる研磨液のAl2O3微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、Al 2 O 3 −ZrO 2 層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、チップ基体とAl 2 O 3 −ZrO 2 層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
Hereinafter, in the surface polishing method of the coated cutting tip of the present invention, the reason why the hard coating layer, the TiN abrasive layer, and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are numerically limited as described above will be described. To do.
(A) hard coating layer (a-1) Ti compound layer Ti compound layer of the lower layer is present as a lower layer of Al 2 O 3 -ZrO 2 layer, the hard coating layer by excellent high temperature strength which includes its own In addition to contributing to the improvement of high-temperature strength, it has a function of firmly adhering to both the chip base and the Al 2 O 3 —ZrO 2 layer , thereby improving the adhesion of the hard coating layer to the chip base. If the thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, thermoplastic deformation tends to occur particularly in high-speed cutting accompanied by high heat generation. Since it causes wear, the overall average layer thickness is determined to be 3 to 20 μm.
(a−2)上部層のAl 2 O 3 −ZrO 2 層
上記のAl 2 O 3 −ZrO 2 層は、そのAl成分によって、すぐれた高温硬さと耐熱性を、また、そのZr成分によって、すぐれた高温強度を備え、被覆切削チップの切削性能(耐チッピング性、耐摩耗性)向上に寄与するが、前記Al 2 O 3 −ZrO 2 層におけるZrO 2 の含有割合は、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合[=Zr/(Al+Zr)]で、0.01〜0.20但し、原子比)の範囲内のものとする。前記Al2O3−ZrO2層におけるZrO2の含有割合を示すこの値が0.01未満であると、上部層の高温強度の向上の効果が少なく、一方、この値が0.20を超えると、上部層におけるAl 2 O 3 量の相対的な減少により高温硬さ、耐熱性の低下が生じ、その結果として耐摩耗性劣化の傾向がみられるので、前記Al 2 O 3 −ZrO 2 層におけるZrO 2 の含有割合[原子比で換算したZr/(Al+Zr)の値)を、上記のとおり、0.01〜0.20の範囲内の値とする。
また、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) Al 2 O 3 —ZrO 2 layer of the upper layer
The Al 2 O 3 —ZrO 2 layer has excellent high-temperature hardness and heat resistance due to its Al component, and excellent high-temperature strength due to its Zr component, and the cutting performance (chipping resistance) of the coated cutting tip. However, the content ratio of ZrO 2 in the Al 2 O 3 —ZrO 2 layer is converted to the content ratio of Zr and accounts for the total amount of Al and Zr contained in the layer. The ratio [= Zr / (Al + Zr)] is within a range of 0.01 to 0.20 (atomic ratio). When this value indicating the content ratio of ZrO 2 in the Al 2 O 3 —ZrO 2 layer is less than 0.01, the effect of improving the high-temperature strength of the upper layer is small, whereas this value exceeds 0.20. And the relative decrease in the amount of Al 2 O 3 in the upper layer causes a decrease in high-temperature hardness and heat resistance. As a result, there is a tendency for wear resistance to deteriorate, so the Al 2 O 3 —ZrO 2 layer As described above, the ZrO 2 content ratio [Zr / (Al + Zr) value converted in terms of atomic ratio) is set to a value within the range of 0.01 to 0.20.
Further, if the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
(b)TiN研磨材層
上記の通り、TiN研磨材層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したAl2O3微粒によって粉砕微粒化し、TiN微粒となって前記Al2O3微粒との共存下で研磨材として作用し、硬質被覆層の上部層を構成するAl 2 O 3 −ZrO 2 層の表面を研磨するが、この場合、その平均層厚が0.5μm未満では、ウエットブラスト時における粉砕化TiN微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚が5μmを越えると、研磨液に噴射研磨材として配合したAl2O3微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合もAl 2 O 3 −ZrO 2 層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由で、その平均層厚を0.5〜5μmと定めた。
(B) TiN abrasive layer As described above, TiN abrasive layer during wet blasting, the Al 2 O 3 fine formulated as injection abrasive in the polishing liquid milled micronized, the Al 2 O 3 becomes TiN fine Acts as an abrasive in the presence of fine particles and polishes the surface of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer. In this case, if the average layer thickness is less than 0.5 μm, When the ratio of the pulverized TiN fine particles at the time of wet blasting is too small, the polishing function cannot be sufficiently exhibited. On the other hand, when the average layer thickness exceeds 5 μm, Al 2 blended in the polishing liquid as a jetting abrasive. The balance with the O 3 fine particles is lost, and the balance is excessively increased. In this case, the polishing function is rapidly deteriorated. In each case, the surface of the Al 2 O 3 —ZrO 2 layer is set to Ra: 0. 2 μm or less Because it is can not be polished to a surface roughness, it determined the average layer thickness and 0.5 to 5 [mu] m.
(c)研磨液のAl2O3微粒の割合
研磨液のAl2O3微粒には、ウエットブラスト時にTiN研磨材層の粉砕化TiN微粒と共存した状態で、Al 2 O 3 −ZrO 2 層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, while coexisting with pulverized TiN fine of TiN abrasive layer during wet blasting, Al 2 O 3 -ZrO 2 layers However, even if the ratio is less than 15% by mass or more than 60% by mass with respect to the total amount of water, the polishing function will rapidly decrease. The ratio was determined to be 15 to 60% by mass.
この発明の方法で表面研磨された被覆切削チップは、硬質被覆層の上部層を構成するAl 2 O 3 −ZrO 2 層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在するTiN研磨材層が、工具本体への被覆切削チップの取り付けに際して、高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、前記Al 2 O 3 −ZrO 2 層に対する圧縮応力が著しく小さなものとなり、この結果剥離やチッピング発生の原因となる割れ発生が防止されるようになることと相俟って、各種の鋼や鋳鉄などの切削加工を、切削速度が350m/min.を越える高速で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cutting tip surface-polished by the method of the present invention has a rake face and a flank face including the cutting edge ridge line portion of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer, with Ra: 0.2 μm. The TiN abrasive layer polished to the following surface roughness and present around the tool mounting hole acts as a buffer layer with a high clamping force, which is indispensable for high-speed cutting when attaching the coated cutting tip to the tool body. Accordingly, the compressive stress on the Al 2 O 3 —ZrO 2 layer is extremely small, and as a result, cracking that causes peeling and chipping is prevented, and various steels are combined. Cutting of cast iron and cast iron, the cutting speed is 350 m / min. Even when used for high-speed operation exceeding the above, excellent chipping resistance is exhibited, and the service life can be further extended.
つぎに、この発明の被覆切削チップの表面研磨方法を実施例により具体的に説明する。 Next, the method for polishing the surface of the coated cutting tip according to the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.
ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)および表4に示される条件にて、表6に示される目標層厚のTi化合物層およびAl 2 O 3 −ZrO 2 層を硬質被覆層の下部層および上部層として蒸着形成し(図3参照)、
ついで、同じく表3に示されるTiN層形成条件でTiN研磨材層を、同じく表6に示される目標層厚で蒸着形成し(図2参照)、
引き続いて、上記のTiN研磨材層形成の被覆切削チップに、表5に示されるブラスト条件で、かつ表6に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部にTiN研磨材層を存在させた状態で、前記Al 2 O 3 −ZrO 2 層からなる上部層の切刃稜線部を含むすくい面および逃げ面を、同じく表6に示される表面粗さに研磨することにより本発明被覆切削チップ1〜13をそれぞれ製造した(図1参照)。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. The Ti compound layer and the Al 2 O 3 —ZrO 2 layer having the target layer thicknesses shown in Table 6 are used as the lower and upper layers of the hard coating layer under the conditions shown in Table 4 and the conditions shown in Table 4. Vapor deposition (see Figure 3)
Next, a TiN abrasive material layer was formed by vapor deposition with a target layer thickness also shown in Table 6 under the TiN layer formation conditions shown in Table 3 (see FIG. 2).
Subsequently, the coated cutting tip for forming the TiN abrasive layer was wet-blasted under the blast conditions shown in Table 5 and in the combinations shown in Table 6, and the TiN abrasive layer was formed around the tool mounting hole. In the state of being present, the rake face and flank face including the cutting edge ridge line portion of the upper layer composed of the Al 2 O 3 —ZrO 2 layer are polished to the surface roughness shown in Table 6 to cover the present invention. Cutting tips 1 to 13 were manufactured (see FIG. 1).
また、比較の目的で、表7に示される通り、上記TiN研磨材層の形成を行なわないで、ウエットブラストを硬質被覆層のAl 2 O 3 −ZrO 2 層の表面に直接施す以外は同一の条件で従来被覆切削チップ1〜13をそれぞれ製造した。
この結果得られた従来被覆切削チップ1〜13の硬質被覆層を構成するAl 2 O 3 −ZrO 2 層のウエットブラスト後の表面粗さを表7に示した。
Further, for comparison purposes, as shown in Table 7, it is the same except that wet blasting is directly applied to the surface of the Al 2 O 3 —ZrO 2 layer of the hard coating layer without forming the TiN abrasive layer. Conventional coated cutting chips 1 to 13 were manufactured under the conditions.
Table 7 shows the surface roughness after wet blasting of the Al 2 O 3 —ZrO 2 layer constituting the hard coating layer of the conventional coated cutting chips 1 to 13 obtained as a result.
また、上記本発明被覆切削チップ1〜13の硬質被覆層および研磨材層の組成、さらに従来被覆切削チップ1〜13の硬質被覆層の組成を、それぞれ厚さ方向中央部をオージェ分光分析装置で測定したところ、いずれも目標組成と実質的に同じ組成を示し、さらに同構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 In addition, the composition of the hard coating layer and the abrasive layer of the above-described coated cutting chips 1 to 13 of the present invention, and the composition of the hard coating layer of the conventional coated cutting chips 1 to 13 are each measured with an Auger spectroscopic analyzer at the center in the thickness direction. When measured, all showed substantially the same composition as the target composition, and when the thickness of the same constituent layer was measured using a scanning electron microscope (longitudinal section measurement), both were substantially the same as the target layer thickness. The same average layer thickness (average value of 5-point measurement) was shown.
つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 580 m/min、
切り込み: 2.0 mm、
送り: 0.2 mm/rev、
切削時間: 8 分、
の条件(切削条件Aという)での普通鋳鉄の乾式断続高速切削試験(通常の切削速度は200m/min)、
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 2.0 mm、
送り: 0.4 mm/rev、
切削時間: 11 分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・SCM435の丸棒、
切削速度: 450 m/min、
切り込み: 2.0 mm、
送り: 0.5 mm/rev、
切削時間: 7 分、
の条件(切削条件Cという)での合金鋼の乾式連続高速切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 580 m / min,
Cutting depth: 2.0 mm,
Feed: 0.2 mm / rev,
Cutting time: 8 minutes,
Dry interrupted high-speed cutting test of normal cast iron under the conditions (cutting condition A) (normal cutting speed is 200 m / min),
Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 400 m / min,
Cutting depth: 2.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 11 minutes,
Dry intermittent high speed cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting conditions B),
Work material: JIS / SCM435 round bar,
Cutting speed: 450 m / min,
Cutting depth: 2.0 mm,
Feed: 0.5 mm / rev,
Cutting time: 7 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 200 m / min) of the alloy steel under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.
表6〜8に示される結果から、本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成するAl 2 O 3 −ZrO 2 層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在するTiN研磨材層が、工具本体への被覆切削チップの取り付けに際して、350m/minを越える高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、剥離やチッピング発生の原因となる割れ発生が防止され、鋼および鋳鉄の高速切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成するAl 2 O 3 −ZrO 2 層の表面粗さが、Ra:0.3〜0.6μmを示す従来被覆切削チップ1〜13においては、いずれも350m/minを越える高速切削加工では、工具取り付けに高い締め付け力を必要とすることと相俟って、前記Al 2 O 3 −ZrO 2 層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 6 to 8, the coated cutting tips 1 to 13 of the present invention all have a rake face and a relief including the cutting edge ridge portion of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer. The surface is polished to a surface roughness of Ra: 0.2 μm or less, and the TiN abrasive layer existing around the tool mounting hole has a high speed cutting exceeding 350 m / min when the coated cutting tip is attached to the tool body. Since it acts as a buffer layer with a high clamping force, which is indispensable in machining, it prevents cracks that can cause peeling and chipping, and exhibits excellent chipping resistance in high-speed cutting of steel and cast iron for a long time. whereas exhibit excellent cutting performance Te, the surface roughness of the Al 2 O 3 -ZrO 2 layer constituting the upper layer of the hard coating layer, Ra: conventional coating showing a 0.3~0.6μm In cutting chips 1-13, both in high-speed cutting of over 350 meters / min, coupled with the fact that require high clamping force to the tool mounting, chipping occurring in the Al 2 O 3 -ZrO 2 layers It is clear that the service life is reached in a relatively short time.
上述のように、この発明の方法によって表面研磨された被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を350m/minを越えた高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip surface-polished by the method of the present invention exceeds 350 m / min in particular, in addition to continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Excellent chipping resistance even when performed at high speeds, and excellent cutting performance over a long period of time. Higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction It is possible to cope with the above sufficiently.
Claims (1)
下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、化学蒸着した状態で、酸化アルミニウムと酸化ジルコニウムの2相混合酸化物組織を有し、かつ、前記酸化ジルコニウムは、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(原子比)で、0.01〜0.20である、酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al2O3−ZrO2層)、
で構成された硬質被覆層を化学蒸着形成してなる、表面被覆サーメット製切削スローアウエイチップの表面研磨方法にして、
(a)上記硬質被覆層の上部層である酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al2O3−ZrO2層)の全面に、0.5〜5μmの平均層厚を有する窒化チタン層で構成された研磨材層を化学蒸着形成し、
(b)ついで、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
この場合工具取り付け孔周辺部の上記研磨材層を研磨せず、工具本体取り付け時における高い締め付け力の緩衝層として残した状態で、残りの研磨面における上記の研磨材層が噴射研磨材である酸化アルミニウム微粒の噴射により粉砕微粒化してなる粉砕化窒化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の上部層を構成する酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al2O3−ZrO2層)の表面を研磨して、前記酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al2O3−ZrO2層)の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたことを特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップの表面研磨方法。 It is composed of a tungsten carbide base cemented carbide or a titanium carbonitride base cermet, and the entire rake face and flank face including the cutting edge ridge line part of the chip base having a tool attachment hole in the center part,
The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and has an overall average layer thickness of 3 to 20 μm. Having a Ti compound layer,
As an upper layer, it has an average layer thickness of 1 to 15 μm, has a two-phase mixed oxide structure of aluminum oxide and zirconium oxide in the state of chemical vapor deposition, and the zirconium oxide is converted into a content ratio of Zr Then, the ratio (atomic ratio) of the total amount of Al and Zr contained in the layer is 0.01 to 0.20, and the two-phase mixed oxide layer of aluminum oxide and zirconium oxide (Al 2 O 3 -ZrO 2 layer),
In the surface polishing method of the surface coated cermet cutting throwaway tip, formed by chemical vapor deposition of a hard coating layer composed of
(A) the entire surface of the 2-phase mixed oxide layer of aluminum oxide and zirconium oxide, which is the upper layer of the hard coating layer (Al 2 O 3 -ZrO 2 layer), nitride having an average layer thickness of 0.5~5μm Chemical vapor deposition of an abrasive layer composed of a titanium layer,
( B ) Next , in wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed.
In this case, the abrasive layer around the tool mounting hole is not polished, and remains as a buffer layer having a high clamping force when the tool body is mounted, and the abrasive layer on the remaining polishing surface is a jet abrasive. Two-phase mixing of aluminum oxide and zirconium oxide constituting the upper layer of the hard coating layer in the coexistence of pulverized titanium nitride particles formed by pulverizing and atomizing aluminum oxide particles and aluminum oxide particles as a spray abrasive The surface of the oxide layer (Al 2 O 3 —ZrO 2 layer) is polished to include a cutting edge ridge line portion of the two-phase mixed oxide layer of aluminum oxide and zirconium oxide (Al 2 O 3 —ZrO 2 layer) Rigid surface and roughness of rake face measured according to JIS B0601-1994, Ra: 0.2 μm or less Surface polishing method of the surface-coated cermet cutting throw-away tip layer exhibits excellent chipping resistance in high-speed cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357085A JP4900652B2 (en) | 2005-12-12 | 2005-12-12 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357085A JP4900652B2 (en) | 2005-12-12 | 2005-12-12 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007160425A JP2007160425A (en) | 2007-06-28 |
JP4900652B2 true JP4900652B2 (en) | 2012-03-21 |
Family
ID=38243905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005357085A Expired - Fee Related JP4900652B2 (en) | 2005-12-12 | 2005-12-12 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4900652B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111575682A (en) * | 2020-05-21 | 2020-08-25 | 江西江钨硬质合金有限公司 | Numerical control coating blade treated by surface double-color modification method and treatment method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136489A (en) * | 1978-04-14 | 1979-10-23 | Ngk Spark Plug Co Ltd | Keeper |
JP2825693B2 (en) * | 1991-08-29 | 1998-11-18 | 京セラ株式会社 | Coating tool and method of manufacturing the same |
SE509201C2 (en) * | 1994-07-20 | 1998-12-14 | Sandvik Ab | Aluminum oxide coated tool |
JP4432097B2 (en) * | 1999-08-12 | 2010-03-17 | 三菱マテリアル株式会社 | Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent surface lubricity against chips during high-speed cutting of highly viscous difficult-to-cut materials |
JP2003170311A (en) * | 2001-11-30 | 2003-06-17 | Sumitomo Electric Ind Ltd | Rotary cutting tool and its accessory |
SE526526C3 (en) * | 2003-04-01 | 2005-10-26 | Sandvik Intellectual Property | Ways of coating cutting with A1203 and a cutting tool with A1203 |
JP4360620B2 (en) * | 2004-01-29 | 2009-11-11 | 京セラ株式会社 | Cutting tool holder and cutting tool using the same |
JP2005297145A (en) * | 2004-04-13 | 2005-10-27 | Sumitomo Electric Hardmetal Corp | Surface-coated end mill and surface-coated drill |
-
2005
- 2005-12-12 JP JP2005357085A patent/JP4900652B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007160425A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4900652B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4853822B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4900653B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2008149390A (en) | Surface coated cutting tool | |
JP4853621B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857752B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4853612B2 (en) | Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting | |
JP4857751B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4853613B2 (en) | Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting | |
JP4857711B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4888688B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4888759B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4883389B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2007118155A (en) | Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP4888762B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4873289B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2008137130A (en) | Surface coated cutting tool | |
JP4857705B2 (en) | Surface polishing method for surface-coated cermet cutting throwaway tips with hard coating layer providing excellent chipping resistance in high-speed cutting | |
JP4888689B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2007090457A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP4853820B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2007111814A (en) | Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work | |
JP2007118108A (en) | Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP2007118103A (en) | Surface coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP2007090455A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4900652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |