[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4997521B2 - Piezoelectric materials and nonlinear piezoelectric elements - Google Patents

Piezoelectric materials and nonlinear piezoelectric elements Download PDF

Info

Publication number
JP4997521B2
JP4997521B2 JP2004331245A JP2004331245A JP4997521B2 JP 4997521 B2 JP4997521 B2 JP 4997521B2 JP 2004331245 A JP2004331245 A JP 2004331245A JP 2004331245 A JP2004331245 A JP 2004331245A JP 4997521 B2 JP4997521 B2 JP 4997521B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
mol
nonlinear
piezoelectric
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004331245A
Other languages
Japanese (ja)
Other versions
JP2006137654A (en
Inventor
暁兵 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004331245A priority Critical patent/JP4997521B2/en
Priority to PCT/JP2005/021323 priority patent/WO2006052033A1/en
Publication of JP2006137654A publication Critical patent/JP2006137654A/en
Application granted granted Critical
Publication of JP4997521B2 publication Critical patent/JP4997521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Description

この出願の発明は、圧電材料と圧電素子に係るものであって、特に、小さい電圧で大きく変位させることができる非線形圧電性の材料とその素子に関するものである。   The invention of this application relates to a piezoelectric material and a piezoelectric element, and particularly to a nonlinear piezoelectric material that can be greatly displaced with a small voltage and the element.

従来、電界による変形を得る方法としては以下に示す二通りのものが知られている。   Conventionally, there are two known methods for obtaining deformation due to an electric field.

(1)強誘電体の強誘電相を用いて、分極処理した後、ほぼ線形的な圧電効果(電界による変形)を得る。この方法の特徴は、強誘電体を用いて、ドメインを分極処理によって固定し(つまり、ドメインを回転させない)、結晶中の正イオンと負イオンを電場印加によって移動させ、線形的圧電変位を得るものである。代表的なものとして圧電材料のPb(ZrTi)O3(PZT)はこの方法を用いて圧電効果を得ている。これは、いわゆる
、分極処理したPZTセラミックスと呼ばれるものである。
(1) A substantially linear piezoelectric effect (deformation by an electric field) is obtained after polarization treatment using a ferroelectric phase of a ferroelectric. The feature of this method is that a ferroelectric is used to fix the domain by polarization (that is, the domain is not rotated), and positive ions and negative ions in the crystal are moved by applying an electric field to obtain a linear piezoelectric displacement. Is. As a representative example, the piezoelectric material Pb (ZrTi) O 3 (PZT) obtains a piezoelectric effect by using this method. This is a so-called polarized PZT ceramic.

(2)反強誘電体の電界誘起相転移を用いて非線形的圧電効果を得る。この方法の特徴は、反強誘電体を用いて、強い電場を加えることにより、強誘電状態に変態させ、非線形変位を得る〔いわゆる、PNZSTセラミックスの電界誘起反誘電体−誘電体相転移によう変形を利用する型がこれに相当する〕。   (2) A nonlinear piezoelectric effect is obtained by using the electric field induced phase transition of the antiferroelectric material. A feature of this method is that an anti-ferroelectric material is used to transform into a ferroelectric state by applying a strong electric field, thereby obtaining a nonlinear displacement. This is the type that uses deformation.

以上いずれかの方法として電界によって変形を得る圧電材料そして圧電素子については、近年、加速度センサー、ノックセンサー、AEセンサー等のセンサーや超音波マイクロホン、圧電スピーカー、圧電アクチュエーター、超音波モーター、プリンターヘッド、インクジェットプリンター用ガン等への応用が急速に拡大するにつれて、アクチュエーターやセンサーへの応用上、圧電素子には高い変換効率が求められている。特に、電圧から変位へ変換するアクチュエーターに関しては、低電圧でも大きなストローク(変位)を得るものが求められる。また、変位が非線形的であることが望ましい(例えば臨界電圧で変位が急激に増加するなど)。しかしながら、上記のような従来の技術では、以下の問題点があった。   As a piezoelectric material and a piezoelectric element that can be deformed by an electric field as one of the above methods, in recent years, sensors such as acceleration sensors, knock sensors, AE sensors, ultrasonic microphones, piezoelectric speakers, piezoelectric actuators, ultrasonic motors, printer heads, As application to guns for ink jet printers and the like rapidly expands, high conversion efficiency is required for piezoelectric elements for application to actuators and sensors. In particular, an actuator that converts voltage to displacement is required to obtain a large stroke (displacement) even at a low voltage. Further, it is desirable that the displacement is non-linear (for example, the displacement rapidly increases at a critical voltage). However, the conventional techniques as described above have the following problems.

例えば、上記(1)の従来技術の場合、1)低電圧では変位が小さい(1000V/mmの電界下で0.01−0.1%しか変形しない)。2)電場のほぼ線形関数でしか変形できない。3)電極方向に分極処理が必要となる。   For example, in the case of the prior art (1) above, 1) the displacement is small at a low voltage (deforms only 0.01-0.1% under an electric field of 1000 V / mm). 2) It can be deformed only by an almost linear function of the electric field. 3) Polarization treatment is required in the electrode direction.

また、上記(2)の従来技術の場合には、1)駆動電界が大きい(>2500V/mm)。2)最大変形が小さい(0.01−0.08%)。3)特性が温度に非常に敏感であるという問題がある。   In the case of the prior art (2), 1) the driving electric field is large (> 2500 V / mm). 2) The maximum deformation is small (0.01-0.08%). 3) There is a problem that the characteristics are very sensitive to temperature.

そこで、この出願の発明者は、従来の圧電材料について根本的な再検討を行ってきた。その際に注目したことは、従来の圧電材料における逆圧電・電歪効果は圧電材料中のイオンが電場下で微小に移動することによって結晶構造が少し伸縮することに起因し、このような過程による電歪は非常に小さいことである。一方、圧電材料には電気分極方向が異なる領域(ドメイン)が存在することが注目される。ドメインの間の分極方向は結晶対称性によって、180°や90°などの角度がある。電場を加えると、分極方向が電圧方向に沿うようにドメイン変換が起こる。例えば、分極が電場に対し垂直であるa−ドメインが、電場印加後に電場に一致するように、c−ドメインに変換される。このドメイン変換に伴い、低い対称性を持つ強誘電相の長軸方向と短軸方向が交換することになる。この過程で得られる歪の大きさは長軸と短軸の差であり、材料にもよるが、この歪は最大1−5%
である。この値は通常の圧電効果より数十倍以上大きい。しかし、この巨大電歪効果は通常は不可逆であるため、その有用性は低い。
Therefore, the inventor of this application has fundamentally reviewed the conventional piezoelectric material. Attention was paid to the inverse piezoelectric / electrostrictive effect of conventional piezoelectric materials due to the fact that the crystal structure slightly expands and contracts as ions in the piezoelectric material move minutely under an electric field. The electrostriction due to is very small. On the other hand, it is noted that the piezoelectric material has regions (domains) having different electric polarization directions. The polarization direction between domains has an angle such as 180 ° or 90 ° depending on crystal symmetry. When an electric field is applied, domain conversion occurs so that the polarization direction follows the voltage direction. For example, an a-domain whose polarization is perpendicular to the electric field is converted to a c-domain so that it matches the electric field after application of the electric field. With this domain conversion, the major axis direction and minor axis direction of the ferroelectric phase having low symmetry are exchanged. The magnitude of strain obtained in this process is the difference between the major and minor axes, and depending on the material, this strain is 1-5% at maximum.
It is. This value is several tens of times larger than the normal piezoelectric effect. However, since this giant electrostrictive effect is usually irreversible, its usefulness is low.

しかしながら、発明者は、このようなドメイン交換を可逆的なものにすることで巨大な電歪効果を得ることができるとの観点に注目した。   However, the inventor paid attention to the viewpoint that a huge electrostrictive effect can be obtained by making such domain exchange reversible.

そして、発明者は、以上のような状況に鑑みて鋭意検討を進め、新しい原理に基づいて、低電圧でも変位が大きく、かつ変位が急峻で非線形特性を顕著に発現することのできる圧電材料とこれを用いた非線形圧電素子、その応用としての電気機器あるいは機械を提供することを課題としてきた。   Then, the inventor has proceeded diligently in consideration of the above situation, and based on a new principle, a piezoelectric material that has a large displacement even at a low voltage and has a sharp displacement and can exhibit a nonlinear characteristic remarkably. It has been an object to provide a non-linear piezoelectric element using this, and an electric device or machine as its application.

発明者による検討の結果として、上記の課題を解決する新しい手段を見出し、これを発明としてすでに提案している(非特許文献1)(特許文献1)。この発明は以下のような特徴を有している。
〔1〕可動性の点欠陥を有する強誘電体圧電材料であって、可動性の点欠陥が、その短範囲秩序の対称性が強誘電相の結晶対称性に一致するように配置されており、ドメインの電場下での可逆的変換によって非線形圧電効果が発現されることを特徴とする圧電材料である。
〔2〕可動性の点欠陥は、化学平衡によって、または添加元素によって導入された強誘電体を構成する元素の空孔である。
〔3〕キュリー温度以下で時効処理されて点欠陥の短範囲秩序の対称性が強誘電相の結晶対称性に一致するように配置されている。
〔4〕単結晶体または多結晶体である。
〔5〕薄膜である。
〔6〕多層膜である。
〔7〕強誘電体がABO3型のものである。
〔8〕強誘電体がBaTiO3または(Ba,Sr)TiO3型である。
〔9〕強誘電体がPb(Zr,Ti)O3または(Pb,希土類元素)(Zr,Ti)O3型である。
〔10〕他元素が添加されている上記いずれかの圧電材料である。
〔11〕他元素はアルカリ金属、アルカリ土類金属および遷移金属のうちの1種以上の元素である。
〔12〕他元素が20モル%以下の割合で添加されている。
〔13〕添加される他元素は、Na,K,Mg,Ca,Al,V,Cr,Mn,Fe,Co,Ni,Zn,Ga,Rb,Sr,Y,Zr,Nb,Mo,Ru,Rh,Ag,Sn,Hf,Ta,W,Os,Ir,Pt,Pb,Bl,および、希土類元素のうちの1種以上である。
As a result of examination by the inventors, a new means for solving the above problem has been found and this has already been proposed as an invention (Non-Patent Document 1) (Patent Document 1). The present invention has the following features.
[1] A ferroelectric piezoelectric material having a movable point defect, and the movable point defect is arranged so that the symmetry of the short range order coincides with the crystal symmetry of the ferroelectric phase. The piezoelectric material is characterized in that a nonlinear piezoelectric effect is manifested by reversible transformation under an electric field of a domain.
[2] Movable point defects are vacancies of elements constituting a ferroelectric substance introduced by chemical equilibrium or by additive elements.
[3] Arranged so that the short-range order symmetry of point defects coincides with the crystal symmetry of the ferroelectric phase after aging treatment at a Curie temperature or lower.
[4] A single crystal or a polycrystal.
[5] A thin film.
[6] A multilayer film.
[7] The ferroelectric is of the ABO 3 type.
[8] The ferroelectric is BaTiO 3 or (Ba, Sr) TiO 3 type.
[9] The ferroelectric is a Pb (Zr, Ti) O 3 or (Pb, rare earth element) (Zr, Ti) O 3 type.
[10] Any one of the above piezoelectric materials to which other elements are added.
[11] The other element is one or more elements selected from alkali metals, alkaline earth metals, and transition metals.
[12] Other elements are added in a proportion of 20 mol% or less.
[13] Other elements added include Na, K, Mg, Ca, Al, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Ru, One or more of Rh, Ag, Sn, Hf, Ta, W, Os, Ir, Pt, Pb, B1, and rare earth elements.

以上のとおりの発明は、発明者がすでにその基本的な検討を行ってきた結晶における点欠陥の普遍的なナノ秩序の対称性についての知見(Xiaobing Ren and Kazuhiro
Otuka PHYSICAL REVIEW LETTERS Vol.85, No.5, 2000 July 31, pp.1016-1019)を踏まえて、前記巨大な電歪効果を得るための手段として、点欠陥の対称性を利用して圧電材料の電気分極方向が異なる領域:ドメインの変換を可逆的なものとしたことにより導かれたものである。すなわち、上記のような新しい技術的知見に基づく新規な技術思想として完成されている。
Nature Materials, 3, 91(2004) PCT/JP2004/006761
The invention as described above is based on the knowledge about the symmetry of universal nano-orders of point defects in crystals that the inventor has already conducted basic research (Xiaobing Ren and Kazuhiro
Based on Otuka PHYSICAL REVIEW LETTERS Vol.85, No.5, 2000 July 31, pp.1016-1019), as a means for obtaining the enormous electrostrictive effect, a piezoelectric material utilizing the symmetry of point defects Regions with different electric polarization directions: derived from reversible domain conversion. That is, it has been completed as a new technical idea based on the above new technical knowledge.
Nature Materials, 3, 91 (2004) PCT / JP2004 / 006761

上記のとおりの発明として、この出願の発明者は全く新しい原理に基づく圧電材料をすでに提示しているが、さらにより低電圧で、より大きな電歪効果を実現するための方策についての検討は必ずしも充分ではなく、この点が今後の技術発展のための極めて重要な課題となっていた。   As an invention as described above, the inventor of this application has already presented a piezoelectric material based on a completely new principle, but it is not always necessary to examine a measure for realizing a larger electrostrictive effect at a lower voltage. This is not enough, and this has become a very important issue for future technological development.

そこで、この出願の発明は、発明者が提示している上記のとおりの新しい圧電材料についてより低電圧で、より大きな電歪効果を簡便に、かつ確実に実現するための手段を提供することを課題としている。   Therefore, the invention of this application provides a means for easily and reliably realizing a larger electrostrictive effect at a lower voltage with respect to the new piezoelectric material as described above presented by the inventor. It is an issue.

この出願の発明は以下の特徴を有している。   The invention of this application has the following features.

第1: ABO型強誘電体材料において、ホスト原子AおよびBの少くともいずれかよりも価数の小さいイオン価を有するアクセプターとともに、価数の大きいドナーが添加されている圧電材料であって、前記ABO型強誘電体材料がBaTiO、(Ba,Sr)TiOもしくはそれらの固溶体であり、前記アクセプターが、Tiに置換する場合はTi(+4価)よりイオン価が小さいMnであり、前記ドナーがBaもしくはTiよりイオン価が大きいLa又はbでり、アクセプターが、0.01mol%〜10mol%の範囲で、ドナーが、0.01mol%〜10mol%の範囲で添加されており、1400℃の焼結により製造されたことを特徴とする非線形圧電材料。
1: A piezoelectric material in which a donor having a high valence is added together with an acceptor having an ion valence smaller than at least one of host atoms A and B in an ABO 3 type ferroelectric material, the ABO 3 type ferroelectric material is BaTiO 3, (Ba, Sr) a TiO 3 or their solid solutions, the acceptor, when replacing the Ti in Mn have small ionic valence than Ti (+4 valence) There, the donor Ri Ah with Ba or Ti than the ion valence is large La or N b, acceptor, in the range of 0.01 mol% 10 mol%, donors, are added in an amount of 0.01 mol% 10 mol% A nonlinear piezoelectric material produced by sintering at 1400 ° C.

:単結晶体または多結晶体であることを特徴とする。
Second : It is a single crystal or a polycrystal.

:薄膜であることを特徴とする。
Third : It is a thin film.

:キュリー温度以下で時効処理あるいは室温までゆっくり冷却されていることを特徴とする。
Fourth : Aging treatment at a temperature below the Curie temperature or a slow cooling to room temperature.

:上記いずれかの圧電材料が少くともその構成の一部とされていることを特徴とする非線形圧電素子。
Fifth : A nonlinear piezoelectric element characterized in that any one of the above piezoelectric materials is at least a part of the configuration.

:上記の非線形圧電素子が構成の少くとも一部として組込まれていることを特徴とする電気機器もしくは機器、あるいはその部品。


Sixth : An electric device or apparatus, or a part thereof, characterized in that the above-described nonlinear piezoelectric element is incorporated as at least a part of the configuration.


以上のとおりのこの出願の発明は、すでに提案している前記の発明においても点欠陥の導入のために、KやFe等の金属元素の添加が有効であることを提示しているが、これをさらに発展させ、アクセプター原子とともにドナー原子をともに添加することが電歪効果の顕著な増大をもたらすとの全く新しい知見を踏まえている。   The invention of this application as described above suggests that the addition of metal elements such as K and Fe is effective for the introduction of point defects in the previously proposed invention. Based on the new knowledge that the addition of donor atoms together with acceptor atoms leads to a significant increase in electrostrictive effect.

以上のとおり、この出願の発明によれば、可動性の点欠陥の存在による非線形圧電効果を実現する圧電材料について、アクセプターとドナーの添加によって、さらに大きな電歪効果を発現可能としている。   As described above, according to the invention of this application, a piezoelectric material that realizes a nonlinear piezoelectric effect due to the presence of a movable point defect can exhibit a larger electrostrictive effect by adding an acceptor and a donor.

この出願の発明の実施に際しては、ABO3型の強誘電体材料に各種の方法によりアク
セプター、そしてドナー元素を添加、ドープすることができる。
In practicing the invention of this application, an acceptor and a donor element can be added and doped to the ABO 3 type ferroelectric material by various methods.

たとえばABO3型材料の単結晶育成時や焼結時における添加、ドープでもよいし、そ
の他の液相法、気相法の各種であってよい。
For example, addition or dope at the time of single crystal growth or sintering of the ABO 3 type material may be used, or various other liquid phase methods and gas phase methods may be used.

ABO3型強誘電体材料については、たとえばBaTiO3、(Ba,Sr)TiO3
Pb(Zr,Ti)O3等のように、ホスト原子A,Bは1種または2種以上の各種のも
のであってよく、アクセプターは、ホスト原子A,Bの少くともいずれかよりイオン価が小さく、ドナーは、イオン価が大きいものとして選択されればよい。たとえばBaTiO3型、(Ba,Sr)TiO3型のものにおいては、アクセプターとして、BaまたはBa,Srに係わるものとしてK,Li,Naというアルカリ金属が、Tiに係わるものとして
Fe、Mn、Co,Cr,Ni,Cu,Zn,Al等が、ドナーとして、Ba,Srより
イオン価の大きいLa、Ce,Pr,Nd,Sm,Eu,Gd等のランタノイドやY,Bi等や、Tiよりイオン価の大きいNb、Ta,Sb,Bi等が例示される。
As for the ABO 3 type ferroelectric material, for example, BaTiO 3 , (Ba, Sr) TiO 3 ,
Like Pb (Zr, Ti) O 3 , the host atoms A and B may be one kind or two or more kinds, and the acceptor has an ionic valence from at least one of the host atoms A and B. And the donor may be selected as having a high ionic valence. For example, in the BaTiO 3 type and the (Ba, Sr) TiO 3 type, the acceptor is an alkali metal such as K, Li, or Na as Ba, Ba, or Sr, and Fe, Mn, or Co as Ti. , Cr, Ni, Cu, Zn, Al, etc. are lanthanoids such as La, Ce, Pr, Nd, Sm, Eu, Gd, etc., which have a higher ionic value than Ba, Sr, ions such as Y, Bi, etc. Nb, Ta, Sb, Bi etc. with large value are illustrated.

これらのアクセプターとドナーについては、各々、一般的には0.01mol%〜10mol%の範囲内において添加されることが好適に考慮される。   These acceptors and donors are preferably considered to be generally added in the range of 0.01 mol% to 10 mol%, respectively.

そこで以下に実施例を示し、さらに詳しくこの出願の発明について説明する。もちろん以下の例によって発明が限定されることはない。   Then, an Example is shown below and invention of this application is demonstrated in detail. Of course, the invention is not limited by the following examples.

<1>1mol%のMnを添加したBa(Ti0.99Mn0.01)O3結晶と、このものにさ
らにLa0.4mol%を添加した結晶を1400℃、4時間の焼結により製造した。この各々のセラミックス圧電材料について電界−変位特性を測定した。
<1> A Ba (Ti 0.99 Mn 0.01 ) O 3 crystal added with 1 mol% of Mn and a crystal further added with La 0.4 mol% were produced by sintering at 1400 ° C. for 4 hours. Electric field-displacement characteristics were measured for each of these ceramic piezoelectric materials.

その結果、後者のLa0.4mol%添加したBa(Ti,Mn)O3結晶においては
、Laを添加しない場合に比べて歪みが、30〜40%も増大することが確認された。
As a result, in the latter Ba (Ti, Mn) O 3 crystal added with 0.4 mol% of La, it was confirmed that the strain increased by 30 to 40% as compared with the case where La was not added.

図1は、このLa添加した結晶の電界−変位特性の測定結果を例示したものであり、図2は、ヒステリシス曲線を例示したものである。   FIG. 1 illustrates the measurement results of the electric field-displacement characteristics of the La-added crystal, and FIG. 2 illustrates the hysteresis curve.

このように、アクセプターとしてのMnとともにドナーとしてのLaの添加によって、電歪効果は極めて顕著に大きなものとなることが確認された。
<2>同様にしてBa(Ti0.99Mn0.01)O3に、Laを1mol%添加した圧電材料
を製造し、その電界−変位特性を測定した。
As described above, it was confirmed that the electrostrictive effect is extremely remarkably increased by adding La as a donor together with Mn as an acceptor.
<2> Similarly, a piezoelectric material in which 1 mol% of La was added to Ba (Ti 0.99 Mn 0.01 ) O 3 was manufactured, and the electric field-displacement characteristics were measured.

その結果を図3に例示した。Laを添加しない場合に比べて、電歪効果の増大が確認された。
<3>さらに、Ba(Ti0.99Mn0.01)O3に、Laを0.1mol%、0.2mol
%、0.3mol%、0.4mol%の各々を添加した場合についても電歪効果を評価し
た。
The results are illustrated in FIG. An increase in the electrostrictive effect was confirmed as compared with the case where La was not added.
<3> Further, Ba (Ti 0.99 Mn 0.01 ) O 3 is added with 0.1 mol% and 0.2 mol of La.
%, 0.3 mol%, and 0.4 mol% were added to evaluate the electrostrictive effect.

図4はその結果を例示したものであって、0.2mol%La添加の場合に最も大きな増大効果が確認された。
<4>上記と同様にして、焼結法によって、Ba(Ti0.99 Mn0.01)O3
、Nbを、0.1mol%、1.0mol%、そして2.0mol%の各々を添加した場合の結晶体を製造した。これら各々について電歪効果を評価した。その結果を例示したものが図5、図6および図7である。いずれの場合も電歪効果の増大が見られる。
FIG. 4 exemplifies the result, and the largest increase effect was confirmed when 0.2 mol% La was added.
<4> in the same manner as described above, the sintering method, the Ba (Ti0.99 Mn0.01) O 3, the Nb, 0.1 mol%, were added to each of 1.0 mol%, and 2.0 mol% A crystal of the case was produced. The electrostrictive effect was evaluated for each of these. FIG. 5, FIG. 6 and FIG. 7 illustrate the results. In either case, the electrostriction effect is increased.

特に、図7に示した1mol%Mnと2mol%Nbから添加されているものの場合は、ヒステリシスが小さく、臨界電場が小さいことが注目される。   In particular, in the case of the material added from 1 mol% Mn and 2 mol% Nb shown in FIG. 7, it is noted that the hysteresis is small and the critical electric field is small.

0.4mol%La添加Ba(Ti,Mn)O3の場合の電界−変位特性の測定結果を例示した図である。0.4 mol% La added Ba (Ti, Mn) field in the case of O 3 - is illustrated FIG measurement results of the displacement characteristic. 図1の場合のヒステリシス曲線を例示した図である。It is the figure which illustrated the hysteresis curve in the case of FIG. 1mol%Laを添加したBa(Ti,Mn)O2の場合の電界−変位特性の測定結果を例示した図である。Ba (Ti, Mn) added with 1 mol% La in the case of O 2 field - is illustrated FIG measurement results of the displacement characteristic. Laを0.2〜0.4mol%添加したBa(Ti,Mn)O3の電界−変位特性の測定結果を例示した図である。La the 0.2~0.4Mol% added with Ba (Ti, Mn) O 3 field - which is illustrated FIG measurement results of the displacement characteristic. Ba(Ti,Mn)O3に0.1mol%Nbを添加した場合の電界−変位特性の測定結果を例示した図である。Ba (Ti, Mn) of the case of adding 0.1 mol% Nb to O 3 field - is illustrated FIG measurement results of the displacement characteristic. Ba(Ti,Mn)O3に1mol%Nbを添加した場合の電界−変位特性のを例示した図である。Ba (Ti, Mn) in the case of addition of 1 mol% Nb to O 3 field - is illustrated figure of displacement characteristics. Ba(Ti,Mn)O3に2mol%Nbを添加した場合の電界−変位特性を例示した図である。Ba (Ti, Mn) of the case of adding 2 mol% Nb to O 3 field - is a diagram illustrating a displacement characteristics.

Claims (6)

ABO型強誘電体材料において、ホスト原子AおよびBの少くともいずれかよりも価数の小さいイオン価を有するアクセプターとともに、価数の大きいドナーが添加されている圧電材料であって、前記ABO型強誘電体材料がBaTiO、(Ba,Sr)TiOもしくはそれらの固溶体であり、前記アクセプターが、Tiに置換する場合はTi(+4価)よりイオン価が小さいMnであり、前記ドナーがBaもしくはTiよりイオン価が大きいLa又はbでり、アクセプターが、0.01mol%〜10mol%の範囲で、ドナーが、0.01mol%〜10mol%の範囲で添加されており、1400℃の焼結により製造されたことを特徴とする非線形圧電材料。 ABO 3- type ferroelectric material comprising: a piezoelectric material to which a donor having a high valence is added together with an acceptor having an ion valence smaller than at least one of host atoms A and B, wherein the ABO 3 type ferroelectric material is BaTiO 3, a (Ba, Sr) TiO 3 or their solid solutions, the acceptor, when replacing the Ti is Mn have small ionic valence than Ti (+4 valence), wherein donor Ri Ah with Ba or Ti than the ion valence is large La or N b, acceptor, in the range of 0.01 mol% 10 mol%, donors are added in a range of 0.01 mol% 10 mol%, A non-linear piezoelectric material produced by sintering at 1400 ° C. 単結晶体または多結晶体であることを特徴とする請求項1の非線形圧電材料。 The nonlinear piezoelectric material according to claim 1, wherein the nonlinear piezoelectric material is a single crystal or a polycrystal. 薄膜であることを特徴とする請求項1又は2の非線形圧電材料。 3. The nonlinear piezoelectric material according to claim 1, wherein the nonlinear piezoelectric material is a thin film. キュリー温度以下で時効処理あるいは室温までゆっくり冷却されていることを特徴とする請求項1からのいずれかの非線形圧電材料。 The nonlinear piezoelectric material according to any one of claims 1 to 3 , wherein the nonlinear piezoelectric material is aged at a Curie temperature or lower or slowly cooled to room temperature. 請求項1からのうちのいずれかの非線形圧電材料が少くともその構成の一部とされていることを特徴とする非線形圧電素子。 A non-linear piezoelectric element characterized in that the non-linear piezoelectric material according to any one of claims 1 to 4 is at least a part of its configuration. 請求項の非線形圧電素子が構成の少くとも一部として組込まれていることを特徴とする電気機器もしくは機器、あるいはその部品。
6. An electric device or apparatus, or a component thereof, wherein the nonlinear piezoelectric element according to claim 5 is incorporated as at least a part of the structure.
JP2004331245A 2004-11-15 2004-11-15 Piezoelectric materials and nonlinear piezoelectric elements Expired - Fee Related JP4997521B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004331245A JP4997521B2 (en) 2004-11-15 2004-11-15 Piezoelectric materials and nonlinear piezoelectric elements
PCT/JP2005/021323 WO2006052033A1 (en) 2004-11-15 2005-11-15 Piezoelectric material and nonlinear piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331245A JP4997521B2 (en) 2004-11-15 2004-11-15 Piezoelectric materials and nonlinear piezoelectric elements

Publications (2)

Publication Number Publication Date
JP2006137654A JP2006137654A (en) 2006-06-01
JP4997521B2 true JP4997521B2 (en) 2012-08-08

Family

ID=36336685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331245A Expired - Fee Related JP4997521B2 (en) 2004-11-15 2004-11-15 Piezoelectric materials and nonlinear piezoelectric elements

Country Status (2)

Country Link
JP (1) JP4997521B2 (en)
WO (1) WO2006052033A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305263B2 (en) * 2007-10-17 2013-10-02 独立行政法人産業技術総合研究所 Piezoelectric material for power generation
JP2010150126A (en) 2008-11-18 2010-07-08 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic composition, piezoelectric/electro-stric sintered compact, piezoelectric/electrostrictive element, method for producing piezoelectric/electrostrictive composition, and method for producing piezoelectric/electrostrictive element
FR2956869B1 (en) 2010-03-01 2014-05-16 Alex Hr Roustaei SYSTEM FOR PRODUCING HIGH CAPACITY FLEXIBLE FILM FOR PHOTOVOLTAIC AND OLED CELLS BY CYCLIC LAYER DEPOSITION
KR101092464B1 (en) 2010-05-07 2011-12-13 경북대학교 산학협력단 piezoelectric element using of bulk heterojunction layer, and thereof manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244357A (en) * 1988-03-26 1989-09-28 Olympus Optical Co Ltd Method for forming ultrasonic wave image
JPH08333158A (en) * 1995-06-02 1996-12-17 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition and production of piezoelectric resonator using the same
JP2000327415A (en) * 1998-10-21 2000-11-28 Teikoku Chem Ind Corp Ltd Ferroelectric thin film forming composition
JP4748291B2 (en) * 2001-01-10 2011-08-17 Tdk株式会社 Laminate displacement element
DE10229086A1 (en) * 2001-09-29 2003-04-17 Ceramtec Ag Piezoelectric ceramic materials based on lead zirconate titanate (PZT) with the crystal structure of the perovskite
US6702952B2 (en) * 2001-12-19 2004-03-09 Ngk Insulators, Ltd. Piezoelectric/electrostrictive material and method for preparing the same
JP3678234B2 (en) * 2002-07-25 2005-08-03 株式会社村田製作所 Method for manufacturing multilayer piezoelectric component and multilayer electronic component
JP4698161B2 (en) * 2003-05-13 2011-06-08 独立行政法人科学技術振興機構 Piezoelectric material and manufacturing method thereof

Also Published As

Publication number Publication date
WO2006052033A1 (en) 2006-05-18
JP2006137654A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4698161B2 (en) Piezoelectric material and manufacturing method thereof
EP2691351B1 (en) Oriented piezoelectric ceramic, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP5885931B2 (en) Bismuth iron oxide powder, method for producing the same, dielectric ceramics, piezoelectric element, liquid discharge head, and ultrasonic motor
CN101599527B (en) Piezoelectric thin film element and piezoelectric thin film device
Guo et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range
US7618551B2 (en) Piezoelectric ceramic and method of manufacturing the same
CN101139202B (en) Piezoelectric/electrostrictive body, manufacturing method of the same, and piezoelectric/electrostrictive element
US7911117B2 (en) Piezoelectric/electrostrictive body, and piezoelectric/electrostrictive element
JP4450636B2 (en) Method for manufacturing piezoelectric ceramics
JP5537931B2 (en) Piezoelectric ceramic composition and piezoelectric element
Xing et al. Structure and electrical properties of (0.965− x)(K 0.48 Na 0.52) NbO 3–x BiGaO 3–0.035 (Bi 0.5 Na 0.5) ZrO 3 piezoelectric ceramics
Jin et al. Enhanced ferroelectric and piezoelectric response in Mn-doped Bi0. 5Na0. 5TiO3–BaTiO3 lead-free film by pulsed laser deposition
US8480918B2 (en) Piezoelectric material
JP4997521B2 (en) Piezoelectric materials and nonlinear piezoelectric elements
Hur et al. Structural and Piezoelectric Properties of (1− x) Pb (Zr1− yTiy) O3–xPb (Zn0. 4Ni0. 6) 1/3Nb2/3O3 Ceramics Near Triple Point
Zhao et al. Outstanding piezoelectric performance of BiScO3-PbTiO3-based ceramics over a wide high-temperature region
Chen et al. Abnormal frequency dependent polarization fatigue behavior in aged Pb (Mn1/3Sb2/3) O3-Pb (Zr, Ti) O3 ferroelectric ceramics
Bochenek et al. Microstructure and physical properties of the multicomponent PZT-type ceramics doped by calcium, sodium, bismuth and cadmium
JPH0748172A (en) Piezoelectric material composition for actuator
Bafandeh et al. Enhanced electric field induced strain in complex-ion Ga 3+ and Ta 5+-doped 0.93 BNT-0.07 BT piezoceramic
Pathak et al. Improvement in shape memory in magnesium niobate modified PZST
JP6146453B2 (en) Bismuth iron oxide powder, method for producing the same, dielectric ceramics, piezoelectric element, liquid discharge head, and ultrasonic motor
CN100418243C (en) Piezoelectric material, manufacturing method thereof, and non-linear piezoelectric element
Yang et al. High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi 0.5 Na 0.5 TiO 3 relaxor ferroelectrics
Alzaid et al. Synthesis and enhanced electromechanical properties of Bi (Mg 0.5 Zr 0.5) O 3-modified BiFeO 3–BaTiO 3 piezoceramics by ordinary firing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees