[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4997066B2 - Photodetector - Google Patents

Photodetector Download PDF

Info

Publication number
JP4997066B2
JP4997066B2 JP2007280861A JP2007280861A JP4997066B2 JP 4997066 B2 JP4997066 B2 JP 4997066B2 JP 2007280861 A JP2007280861 A JP 2007280861A JP 2007280861 A JP2007280861 A JP 2007280861A JP 4997066 B2 JP4997066 B2 JP 4997066B2
Authority
JP
Japan
Prior art keywords
light
light receiving
resin
region
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007280861A
Other languages
Japanese (ja)
Other versions
JP2009111089A (en
Inventor
正敏 石原
直 井上
洋夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007280861A priority Critical patent/JP4997066B2/en
Priority to US12/259,740 priority patent/US7791016B2/en
Publication of JP2009111089A publication Critical patent/JP2009111089A/en
Application granted granted Critical
Publication of JP4997066B2 publication Critical patent/JP4997066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光検出装置に関する。   The present invention relates to a light detection device.

光検出装置として、複数の受光素子と、これらの受光素子から出力された電気信号が入力される信号処理素子と、を備えているものが知られている(例えば、特許文献1参照)。特許文献1に記載された光検出装置では、信号処理装置は、各受光素子に対向して配置されると共に導電性バンプを介して接続されており、各受光素子と信号処理素子との間の空隙に電気絶縁性を有する樹脂が充填されている。
米国特許第6828545号明細書
2. Description of the Related Art As a light detection device, a device including a plurality of light receiving elements and a signal processing element to which an electrical signal output from these light receiving elements is input is known (for example, see Patent Document 1). In the photodetection device described in Patent Document 1, the signal processing device is arranged to face each light receiving element and is connected via a conductive bump, and between each light receiving element and the signal processing element. The gap is filled with a resin having electrical insulation.
US Pat. No. 6,828,545

しかしながら、特許文献1に記載された光検出装置では、迷光が発生し、この迷光が受光素子に入射し、ノイズとして検出されてしまうという問題点を有している。すなわち、特許文献1に記載された光検出装置では、上述した樹脂における受光素子及び信号処理素子から露出する表面から光が入射すると、当該表面で散乱すると共に樹脂を透過して信号処理素子の表面(受光素子に対向する面)で反射し、これらの散乱光及び反射光が迷光となって、受光素子の裏面(信号処理素子に対向する面)又は側面から入射する懼れがある。   However, the light detection device described in Patent Document 1 has a problem in that stray light is generated, and this stray light enters the light receiving element and is detected as noise. That is, in the light detection device described in Patent Document 1, when light is incident from the surface exposed from the light receiving element and the signal processing element in the resin, the surface of the signal processing element is scattered on the surface and transmitted through the resin. There is a possibility that these scattered light and reflected light become stray light that is reflected from (the surface facing the light receiving element) and enters from the back surface (surface facing the signal processing element) or the side surface of the light receiving element.

そこで、本発明はこのような事情に鑑みてなされたものであり、迷光が発生して受光素子に入射することを防ぎ、測定光の検出精度を高めることが可能な光検出装置を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and provides a photodetection device that can prevent stray light from being incident on a light receiving element and can increase the detection accuracy of measurement light. With the goal.

本発明に係る光検出装置は、入射した光の光量に応じた電気信号をそれぞれ出力する複数の受光素子と、複数の受光素子に対向して配置されていると共に、導電性バンプを介して接続されており、複数の受光素子から出力された電気信号が入力される信号処理素子と、電気絶縁性を有し、少なくとも複数の受光素子と信号処理素子との間の空隙に充填されている樹脂と、樹脂における複数の受光素子及び信号処理素子から露出する表面を覆うように配置された遮光部材と、を備えている。   The light detection device according to the present invention includes a plurality of light receiving elements that respectively output electrical signals corresponding to the amount of incident light, and are disposed to face the plurality of light receiving elements, and are connected via conductive bumps. A signal processing element to which electrical signals output from a plurality of light receiving elements are input, and a resin having electrical insulation and filling at least a gap between the plurality of light receiving elements and the signal processing elements And a light shielding member disposed so as to cover a surface exposed from the plurality of light receiving elements and signal processing elements in the resin.

本発明に係る光検出装置では、遮光部材が、複数の受光素子と信号処理素子との間の空隙に充填された樹脂における受光素子及び信号処理素子から露出する表面を覆うように配置されていることから、樹脂における受光素子及び信号処理素子から露出する表面からの光の入射が抑制され、迷光の発生を防ぐことができる。これにより、迷光が発生してノイズとして検出されることはなく、光検出装置における測定光の検出精度を高めることができる。   In the light detection device according to the present invention, the light blocking member is disposed so as to cover the surface exposed from the light receiving element and the signal processing element in the resin filled in the gap between the plurality of light receiving elements and the signal processing element. Accordingly, the incidence of light from the surface exposed from the light receiving element and the signal processing element in the resin is suppressed, and generation of stray light can be prevented. Thereby, stray light is not generated and detected as noise, and the detection accuracy of the measurement light in the light detection device can be improved.

また、複数の受光素子は、互いに所定の間隔を有して配置されており、樹脂は、信号処理素子における受光素子間に対応する領域を覆っており、遮光部材は、樹脂における上記領域を覆っている部分の表面を覆うように配置されていることが好ましい。この場合、信号処理素子における受光素子間に対応する領域が樹脂に覆われている構成にあっても、樹脂における上記領域を覆っている部分の表面を覆うように遮光部材が配置されているので、樹脂における上記領域を覆っている部分の表面からの光の入射が抑制され、迷光の発生を防ぐことができる。   The plurality of light receiving elements are arranged at a predetermined interval from each other, the resin covers a region corresponding to the space between the light receiving elements in the signal processing element, and the light shielding member covers the region in the resin. It is preferable that it is arrange | positioned so that the surface of the part which has may be covered. In this case, since the region corresponding to the space between the light receiving elements in the signal processing element is covered with the resin, the light shielding member is disposed so as to cover the surface of the portion of the resin covering the region. The incidence of light from the surface of the portion of the resin that covers the region can be suppressed, and stray light can be prevented from being generated.

また、遮光部材は、複数の受光素子の側面を覆うように配置されていることが好ましい。この場合、受光素子の側面からの迷光を抑制することができる。この結果、光検出装置における測定光の検出精度をより一層高めることができる。   The light shielding member is preferably arranged so as to cover the side surfaces of the plurality of light receiving elements. In this case, stray light from the side surface of the light receiving element can be suppressed. As a result, the detection accuracy of the measurement light in the light detection device can be further enhanced.

また、信号処理素子は、複数の受光素子が対向する第1の領域と、第1の領域の外周側に位置する第2の領域と、を含み、樹脂は、第2の領域を覆っており、遮光部材は、樹脂における第2の領域を覆っている部分の表面を覆うように配置されていることが好ましい。この場合、第2の領域が樹脂に覆われている構成にあっても、樹脂における第2の領域を覆っている部分の表面からの光の入射が抑制され、迷光の発生を防ぐことができる。   The signal processing element includes a first region where a plurality of light receiving elements face each other, and a second region located on the outer peripheral side of the first region, and the resin covers the second region. The light shielding member is preferably disposed so as to cover the surface of the portion covering the second region of the resin. In this case, even when the second region is covered with the resin, the incidence of light from the surface of the portion of the resin covering the second region is suppressed, and the generation of stray light can be prevented. .

また、遮光部材は、遮光性を有するフィラーが含有された樹脂層であることが好ましく、さらには、入射光を吸収することにより遮光することが好ましい。   The light shielding member is preferably a resin layer containing a light-shielding filler, and further preferably shields by absorbing incident light.

また、導電性バンプは、はんだからなり、溶融はんだへのディップにより形成されていることが好ましい。   The conductive bump is preferably made of solder and formed by dipping into molten solder.

本発明によれば、迷光が発生して受光素子に入射することを防ぎ、測定光の検出精度を高めることが可能な光検出装置を提供することができる。   According to the present invention, it is possible to provide a photodetection device that can prevent stray light from entering the light receiving element and increase the detection accuracy of measurement light.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

図1を参照して、本実施形態に係る光検出装置の構成を説明する。図1は、本実施形態に係る光検出装置の断面構成を示す模式図である。光検出装置PD1は、複数の受光素子1と、信号処理素子10と、樹脂20と、遮光部材30と、を備えている。   With reference to FIG. 1, the structure of the photon detector according to the present embodiment will be described. FIG. 1 is a schematic diagram illustrating a cross-sectional configuration of the photodetecting device according to the present embodiment. The light detection device PD1 includes a plurality of light receiving elements 1, a signal processing element 10, a resin 20, and a light shielding member 30.

各受光素子1は、互いに所定の間隔を有すると共に、信号処理素子10に対向して配置されている。各受光素子1は、1次元又は2次元に配列されている。受光素子1は、信号処理素子10に対向する主面1a側において、複数のpn接合領域3が配列されており、各pn接合領域3が受光素子1の光感応領域として機能する。   Each light receiving element 1 has a predetermined distance from each other and is disposed to face the signal processing element 10. Each light receiving element 1 is arranged in one or two dimensions. In the light receiving element 1, a plurality of pn junction regions 3 are arranged on the main surface 1 a side facing the signal processing element 10, and each pn junction region 3 functions as a photosensitive region of the light receiving element 1.

受光素子1は、いわゆるホトダイオードアレイであり、Siからなるn型(第1導電型)の半導体基板5を有している。n型半導体基板5には主面1a側において、複数のp型(第2導電型)領域7がアレイ状に配列(1次元又は2次元配列)されている。各p型領域7とn型半導体基板5との間で形成されるpn接合領域3により、各ホトダイオードの光感応領域が構成されている。   The light receiving element 1 is a so-called photodiode array, and includes an n-type (first conductivity type) semiconductor substrate 5 made of Si. A plurality of p-type (second conductivity type) regions 7 are arrayed (one-dimensional or two-dimensional array) on the n-type semiconductor substrate 5 on the main surface 1a side. The pn junction region 3 formed between each p-type region 7 and the n-type semiconductor substrate 5 constitutes a photosensitive region of each photodiode.

主面1aには、アンダーバンプメタル(UBM)としての電極8、9が配置されている。電極8は、対応するp型領域7に電気的に接続されている。電極9は、n型半導体基板5に電気的に接続されている。各電極8、9は、p型領域7又はn型半導体基板5に接続された電極配線(図示せず)上に例えばNi、Auを順次メッキすることにより形成される。   Electrodes 8 and 9 as under bump metal (UBM) are arranged on the main surface 1a. The electrode 8 is electrically connected to the corresponding p-type region 7. The electrode 9 is electrically connected to the n-type semiconductor substrate 5. Each of the electrodes 8 and 9 is formed by sequentially plating, for example, Ni and Au on an electrode wiring (not shown) connected to the p-type region 7 or the n-type semiconductor substrate 5.

受光素子1は、光が入射すると、光が入射したp型領域7において入射した光の光量に応じてキャリアが生成される。生成されたキャリアによる光電流は、p型領域7に接続された電極8から取り出される。これにより、各受光素子1は、入射した光の光量に応じた電気信号をそれぞれ出力することとなる。   When light is incident on the light receiving element 1, carriers are generated according to the amount of incident light in the p-type region 7 where the light is incident. The photocurrent generated by the generated carriers is taken out from the electrode 8 connected to the p-type region 7. Thereby, each light receiving element 1 outputs an electrical signal corresponding to the amount of incident light.

受光素子1は、上述した構成のホトダイオードアレイに限られることなく、pn接合を有する量子型検出素子や、熱型検出素子等であれば、いずれの検出素子を用いてもよい。量子型検出素子としては、Siホトダイオードアレイのような検出素子の他、InGaAs、GaAs、AlGaAs、InSb、HgCdTe、又はInAsSn等の光起電力型の検出素子、あるいは、PbS、PbSe、InSb、又はHgCdTe等の光導電型の検出素子が挙げられる。熱型検出素子としては、サーモパイル、ボロメータ、又はニューマチックセル等が挙げられる。量子型検出素子の構造も、MQW(multiple-quantum-well)構造であってもよい。熱型検出素子の構造は、メンブレン構造であってもよい。   The light receiving element 1 is not limited to the photodiode array having the above-described configuration, and any detecting element may be used as long as it is a quantum type detecting element having a pn junction, a thermal type detecting element, or the like. As a quantum type detection element, in addition to a detection element such as a Si photodiode array, a photovoltaic type detection element such as InGaAs, GaAs, AlGaAs, InSb, HgCdTe, or InAsSn, or PbS, PbSe, InSb, or HgCdTe. And the like. Examples of the thermal detection element include a thermopile, a bolometer, or a pneumatic cell. The structure of the quantum detection element may also be an MQW (multiple-quantum-well) structure. The structure of the thermal detection element may be a membrane structure.

信号処理素子10は、上述したように、各受光素子1に対向して配置されており、信号読み出し回路、信号処理回路、及び信号出力回路(いずれも図示せず)等を有している。本実施形態では、信号処理素子10は、SiやGaAs等の半導体結晶からなる基板11を有しており、各回路は基板11に形成されている。信号処理素子10はセラミックスやPCB等の配線材料からなる配線パターンにより構成してもよい。   As described above, the signal processing element 10 is disposed to face each of the light receiving elements 1 and includes a signal readout circuit, a signal processing circuit, a signal output circuit (all not shown), and the like. In the present embodiment, the signal processing element 10 includes a substrate 11 made of a semiconductor crystal such as Si or GaAs, and each circuit is formed on the substrate 11. The signal processing element 10 may be constituted by a wiring pattern made of a wiring material such as ceramics or PCB.

基板11は、各受光素子1が対向する第1の領域11aと、各第1の領域11aの外周側に位置する第2の領域11bと、を含んでいる。第1の領域11aにおける、各受光素子1に対向する面側には、各電極8、9に対応して、アンダーバンプメタル(UBM)としての複数の電極13が配置されている。各電極13は、信号読み出し回路等に接続された電極配線(図示せず)上に例えばNi、Auを順次メッキすることにより形成される。   The substrate 11 includes a first region 11a facing each light receiving element 1 and a second region 11b located on the outer peripheral side of each first region 11a. A plurality of electrodes 13 serving as under bump metal (UBM) are arranged on the surface side of the first region 11 a facing each light receiving element 1 in correspondence with the electrodes 8 and 9. Each electrode 13 is formed by sequentially plating, for example, Ni and Au on an electrode wiring (not shown) connected to a signal readout circuit or the like.

対応する電極8、9と電極13とは、導電性バンプ15により電気的かつ物理的にそれぞれ接続されている。これにより、各受光素子1と信号処理素子10とが、電極8、9、13及び導電性バンプ15を通して、電気的に接続されることとなる。そして、信号処理素子10には、受光素子1から出力された電気信号が入力される。   Corresponding electrodes 8, 9 and electrode 13 are electrically and physically connected by conductive bumps 15, respectively. Thereby, each light receiving element 1 and the signal processing element 10 are electrically connected through the electrodes 8, 9, 13 and the conductive bump 15. The electrical signal output from the light receiving element 1 is input to the signal processing element 10.

導電性バンプ15は、はんだからなる。導電性バンプ15は、以下の過程により形成することができる。まず、各受光素子1の電極8、9を溶融はんだにディップし、電極8、9上にはんだ電極を形成する。そして、各受光素子1を、はんだ電極が対応する信号処理素子10の電極13に接触するように、信号処理素子10に載置した後、加熱してはんだ電極を溶解する。   The conductive bump 15 is made of solder. The conductive bump 15 can be formed by the following process. First, the electrodes 8 and 9 of each light receiving element 1 are dipped in molten solder, and solder electrodes are formed on the electrodes 8 and 9. Then, each light receiving element 1 is placed on the signal processing element 10 so that the solder electrode contacts the electrode 13 of the corresponding signal processing element 10, and then heated to melt the solder electrode.

樹脂20は、電気絶縁性を有すると共に、各受光素子1と信号処理素子10との間の空隙に充填されている。樹脂20は、導電性バンプ15の機械的強度を確保すると共に、各受光素子1と信号処理素子10との間の空隙への異物の混入を防ぎ、アンダーフィル材として機能する。本実施形態では、樹脂20は、第2の領域11bを覆っている。樹脂20には、例えば。エポキシ系樹脂、ウレタン系樹脂、シリコーン系樹脂、若しくはアクリル系樹脂、又はこれらを複合させたものを用いることができる。   The resin 20 has electrical insulation and is filled in a gap between each light receiving element 1 and the signal processing element 10. The resin 20 secures the mechanical strength of the conductive bumps 15, prevents foreign matters from entering the gaps between the light receiving elements 1 and the signal processing elements 10, and functions as an underfill material. In the present embodiment, the resin 20 covers the second region 11b. Examples of the resin 20 include: An epoxy resin, a urethane resin, a silicone resin, an acrylic resin, or a composite of these can be used.

遮光部材30は、樹脂20における受光素子1及び信号処理素子10から露出する表面を覆うように配置されている。本実施形態では、遮光部材30は、第1の領域11aにおける受光素子1間に対応する領域を覆っている部分の表面、及び、第2の領域11bを覆っている部分の表面をそれぞれ覆っている。更に、遮光部材30は、各受光素子1の側面も覆っている。   The light shielding member 30 is disposed so as to cover the surface of the resin 20 exposed from the light receiving element 1 and the signal processing element 10. In the present embodiment, the light shielding member 30 covers the surface of the portion covering the region corresponding to the space between the light receiving elements 1 in the first region 11a and the surface of the portion covering the second region 11b. Yes. Further, the light shielding member 30 also covers the side surface of each light receiving element 1.

遮光部材30は、遮光性を有するフィラー(例えば、カーボン粒子、アルミナ粒子、PbS、又はPbSe等)が含有された樹脂層である。フィラーとしてPbS、又はPbSe等の所定波長帯域において吸光特性を示す材料を用いた場合、遮光部材30は、入射光を吸収することにより遮光することとなる。遮光部材30は、入射光を反射することにより遮光してもよいが、反射光が迷光となる懼れがあることから、入射光が吸収することにより遮光することが好ましい。遮光部材30は、遮光性を有するフィラーが含有された樹脂を樹脂20における受光素子1及び信号処理素子10から露出する表面に付与することにより形成できる。   The light shielding member 30 is a resin layer containing a light-shielding filler (for example, carbon particles, alumina particles, PbS, PbSe, or the like). When a material that exhibits light absorption characteristics in a predetermined wavelength band, such as PbS or PbSe, is used as the filler, the light shielding member 30 shields light by absorbing incident light. The light shielding member 30 may shield the incident light by reflecting it. However, since the reflected light may be stray light, the light shielding member 30 is preferably shielded by absorbing the incident light. The light shielding member 30 can be formed by applying a resin containing a light-shielding filler to the surface of the resin 20 exposed from the light receiving element 1 and the signal processing element 10.

以上のように、本実施形態においては、遮光部材30が、各受光素子1と信号処理素子10との間の空隙に充填された樹脂20における受光素子1及び信号処理素子10から露出する表面を覆うように配置されているため、樹脂20における受光素子1及び信号処理素子10から露出する表面からの光の入射が抑制され、迷光の発生を防ぐことができる。これにより、迷光が受光素子1に入射し、ノイズとして検出されることはなく、光検出装置PD1における測定光の検出精度を高めることができる。   As described above, in this embodiment, the light shielding member 30 has the surface exposed from the light receiving element 1 and the signal processing element 10 in the resin 20 filled in the gap between each light receiving element 1 and the signal processing element 10. Since it arrange | positions so that it may cover, incidence | injection of the light from the surface exposed from the light receiving element 1 and the signal processing element 10 in the resin 20 is suppressed, and generation | occurrence | production of a stray light can be prevented. Thereby, stray light enters the light receiving element 1 and is not detected as noise, and the detection accuracy of the measurement light in the light detection device PD1 can be increased.

遮光部材30が存在しない場合には、図2に示されるように、樹脂20における受光素子1及び信号処理素子10から露出する表面から光Lが入射すると、当該表面で散乱すると共に樹脂20を透過して信号処理素子10における受光素子1に対向する面で反射する。そして、これらの散乱光及び反射光(図中、破線で示す)が迷光となって、受光素子1における信号処理素子10に対向する主面又は側面から入射する懼れがある。これに対して、本実施形態では、上述したように、これらの迷光が発生することはない。   When the light shielding member 30 is not present, as shown in FIG. 2, when the light L is incident from the surface of the resin 20 exposed from the light receiving element 1 and the signal processing element 10, the light L is scattered and transmitted through the resin 20. Then, the signal processing element 10 reflects on the surface facing the light receiving element 1. These scattered light and reflected light (indicated by broken lines in the figure) become stray light and may be incident from the main surface or side surface of the light receiving element 1 facing the signal processing element 10. On the other hand, in the present embodiment, as described above, such stray light does not occur.

本実施形態においては、遮光部材30は、樹脂20における、第2の領域11bの受光素子1間に対応する領域を覆っている部分の表面を覆うように配置されている。これにより、第2の領域11bの受光素子1間に対応する領域が樹脂20に覆われている構成にあっても、樹脂20における上記領域を覆っている部分の表面を覆うように遮光部材30が配置されているので、樹脂20における上記領域を覆っている部分の表面からの光の入射が抑制され、迷光の発生を防ぐことができる。   In the present embodiment, the light shielding member 30 is disposed so as to cover the surface of the portion of the resin 20 that covers the region corresponding to the space between the light receiving elements 1 in the second region 11b. Thereby, even if it is the structure where the area | region corresponding to between the light receiving elements 1 of the 2nd area | region 11b is covered with the resin 20, the light shielding member 30 is covered so that the surface of the part which covers the said area | region in the resin 20 may be covered. Therefore, the incidence of light from the surface of the portion of the resin 20 that covers the region is suppressed, and the generation of stray light can be prevented.

本実施形態においては、遮光部材30は、樹脂20における、第2の領域11bの基板11の外縁部に対応する領域を覆っている部分の表面を覆うように配置されている。これにより、第2の領域11bの基板11の外縁部に対応する領域が樹脂20に覆われている構成にあっても、樹脂20における上記領域を覆っている部分の表面を覆うように遮光部材30が配置されているので、樹脂20における上記領域を覆っている部分の表面からの光の入射が抑制され、迷光の発生を防ぐことができる。   In the present embodiment, the light shielding member 30 is disposed so as to cover the surface of the portion of the resin 20 that covers the region corresponding to the outer edge of the substrate 11 in the second region 11b. Thereby, even if the region corresponding to the outer edge portion of the substrate 11 of the second region 11b is covered with the resin 20, the light shielding member covers the surface of the portion of the resin 20 that covers the region. Since 30 is disposed, the incidence of light from the surface of the portion of the resin 20 covering the region is suppressed, and the generation of stray light can be prevented.

本実施形態においては、遮光部材30は、各受光素子1の側面を覆うように配置されている。これにより、迷光が受光素子1の側面から入射することが抑制できる。この結果、光検出装置PD1における測定光の検出精度をより一層高めることができる。特に、本実施形態では、遮光部材30が、受光素子1の上端(信号処理素子10に対向する主面1aに対向する主面の端)まで覆っており、迷光の入射をより一層確実に防ぐことができる。   In the present embodiment, the light shielding member 30 is disposed so as to cover the side surface of each light receiving element 1. Thereby, stray light can be prevented from entering from the side surface of the light receiving element 1. As a result, the detection accuracy of the measurement light in the light detection device PD1 can be further increased. In particular, in the present embodiment, the light shielding member 30 covers the upper end of the light receiving element 1 (the end of the main surface facing the main surface 1a facing the signal processing element 10), thereby preventing the stray light from entering more reliably. be able to.

本実施形態では、導電性バンプ15(はんだ電極)を溶融はんだへのディップにより形成している(以下、ディップ法と称する)。ディップ法によれば、他の形成方法に比して、導電性バンプ15を容易かつ低コストにて形成することができるものの、導電性バンプ15の高さを安定して高くすることが難しくなる。安定した高さ(例えば、アスペクト比が1以上)を有する導電性バンプ15を形成するためには、電極8、9、13の間隔(ピッチ)を30μmより大きな値に設定する必要がある。ここで「アスペクト比」とは、導電性バンプ15の高さを、導電性バンプ15における高さ方向での端部の幅で除した値を示す。上述したディップ法以外の形成方法としては、厚膜レジストや2層レジストにより蒸着、異方性めっき等で形成する方法や、インクジェット方式(例えば特開2004−179205号公報参照)、ピラミッド方式(例えば特開2005−243714号公報参照)等が挙げられる。   In this embodiment, the conductive bumps 15 (solder electrodes) are formed by dipping into molten solder (hereinafter referred to as a dipping method). According to the dip method, although it is possible to form the conductive bump 15 easily and at a low cost as compared with other forming methods, it is difficult to stably increase the height of the conductive bump 15. . In order to form the conductive bump 15 having a stable height (for example, an aspect ratio of 1 or more), it is necessary to set the interval (pitch) between the electrodes 8, 9, and 13 to a value larger than 30 μm. Here, the “aspect ratio” indicates a value obtained by dividing the height of the conductive bump 15 by the width of the end of the conductive bump 15 in the height direction. As a formation method other than the above-described dip method, a method of forming by vapor deposition, anisotropic plating, or the like using a thick film resist or a two-layer resist, an ink jet method (see, for example, JP-A-2004-179205), a pyramid method (for example, JP, 2005-243714, A) etc. are mentioned.

電極8、9、13について、上記ピッチ、サイズ(面積及び形状)、及び高さ、並びに、導電性バンプ15の高さ及び形状は、それぞれ単独で決定される事項ではなく、導電性バンプ15に用いられる材料、その形成方法、受光素子1や信号処理素子10の大きさ、製造時の反り等に依存して決定される事項である。また、p型領域7の間隔(ピッチ)は、受光素子1からの出力信号の用途に応じて、様々な値を取り得る。   Regarding the electrodes 8, 9, and 13, the pitch, size (area and shape), and height, and the height and shape of the conductive bump 15 are not matters that are determined independently, and the conductive bump 15 This is a matter determined depending on the material used, the forming method thereof, the size of the light receiving element 1 and the signal processing element 10, warpage during manufacturing, and the like. Further, the interval (pitch) between the p-type regions 7 can take various values depending on the use of the output signal from the light receiving element 1.

したがって、電極8、9、13の間隔(ピッチ)が30μm以下の値に設定される場合には、電極8、9、13の高さ、面積の設計上の自由度が少なくなり、導電性バンプ15として安定した高いバンプ(アスペクト比が1以上)を得ることが難しくなる。この場合、受光素子1と信号処理素子10との間隔は極めて小さくなる。このため、受光素子1と信号処理素子10との間隔には、遮光性を有する上述したようなフィラーを含む樹脂を充填することは困難となってしまう。本実施形態では、樹脂20は、上述したようなフィラーを含んでいないため、受光素子1と信号処理素子10との間の空隙への充填を容易に行うことができる。そして、遮光部材30により、迷光の発生を抑制している。すなわち、本実施形態では、導電性バンプ15の機械的強度を確保した上で、迷光の発生を抑制している。   Therefore, when the distance (pitch) between the electrodes 8, 9, and 13 is set to a value of 30 μm or less, the degree of freedom in designing the height and area of the electrodes 8, 9, and 13 is reduced, and the conductive bumps are reduced. 15, it becomes difficult to obtain a stable high bump (an aspect ratio of 1 or more). In this case, the distance between the light receiving element 1 and the signal processing element 10 is extremely small. For this reason, it becomes difficult to fill the space between the light receiving element 1 and the signal processing element 10 with the resin containing the filler as described above having light shielding properties. In the present embodiment, since the resin 20 does not include the filler as described above, it is possible to easily fill the gap between the light receiving element 1 and the signal processing element 10. Then, the occurrence of stray light is suppressed by the light shielding member 30. In other words, in the present embodiment, generation of stray light is suppressed while ensuring the mechanical strength of the conductive bump 15.

次に、図3に基づいて、本実施形態の変形例に係る光検出装置PD2について説明する。本変形例に係る光検出装置PD2は、樹脂20の構成の点で上述した光検出装置PD1と異なる。図3は、本実施形態の変形例に係る光検出装置の断面構成を示す模式図である。光検出装置PD2は、光検出装置PD1と同様に、複数の受光素子1と、信号処理素子10と、樹脂20と、遮光部材30と、を備えている。   Next, a photodetecting device PD2 according to a modification of the present embodiment will be described based on FIG. The light detection device PD2 according to this modification differs from the light detection device PD1 described above in terms of the configuration of the resin 20. FIG. 3 is a schematic diagram illustrating a cross-sectional configuration of a light detection device according to a modification of the present embodiment. Similar to the light detection device PD1, the light detection device PD2 includes a plurality of light receiving elements 1, a signal processing element 10, a resin 20, and a light shielding member 30.

本変形例においては、信号処理素子10における第2の領域11bの受光素子1間に対応する領域が、樹脂20により覆われていない。遮光部材30は、受光素子1間において、第2の領域11bの受光素子1間に対応する領域、及び、受光素子1の側面を覆うように配置されている。   In this modification, the region corresponding to the space between the light receiving elements 1 in the second region 11 b in the signal processing element 10 is not covered with the resin 20. The light shielding member 30 is disposed between the light receiving elements 1 so as to cover the region corresponding to the space between the light receiving elements 1 in the second region 11 b and the side surface of the light receiving element 1.

以上のように、本変形例においても、本実施形態と同様に、遮光部材30により、樹脂20における受光素子1及び信号処理素子10から露出する表面からの光の入射が抑制され、迷光の発生を防ぐことができる。したがって、迷光が受光素子1に入射し、ノイズとして検出されることはなく、光検出装置PD2における測定光の検出精度を高めることができる。   As described above, also in the present modification, the light shielding member 30 suppresses the incidence of light from the surface exposed from the light receiving element 1 and the signal processing element 10 in the resin 20 as in the present embodiment, and the generation of stray light. Can be prevented. Therefore, stray light is incident on the light receiving element 1 and is not detected as noise, and the detection accuracy of the measurement light in the light detection device PD2 can be improved.

ところで、本実施形態及び変形例に係る光検出装置PD1、PD2は、例えば、ガス分析の非分散赤外分析計(NDIR)に適用することができる。回折格子など分散型グレーティングを利用したミニ分光器の受光素子には、ホトダイオードアレイやイメージセンサ等の受光素子が用いられている。連続スペクトルを観察するには、1チップからなるホトダイオードアレイやイメージセンサが必要となるが、用途によっては、複数の固定波長が検出できればよい場合もある。例えば、上述した非分散赤外分析計では、必要とするサンプル波長とリファレンス波長は決まっており、画素が連続した長尺の高価なホトダイオードアレイやイメージセンサは不要である。したがって、必要な波長を検出し得る画素数の小さな受光素子を複数配置することで、受光素子にかかる費用を低減することができる。回折格子から出射された連続スペクトル上に複数の受光素子を配置させた時に、受光素子間で反射する光等が迷光として作用し問題となる。しかしながら、本実施形態及び変形例に係る光検出装置PD1、PD2では上述したように迷光の発生が抑制されるため、非分散赤外分析計等にも適用することができる。   By the way, the photodetectors PD1 and PD2 according to the present embodiment and the modification can be applied to, for example, a non-dispersive infrared analyzer (NDIR) for gas analysis. A light receiving element such as a photodiode array or an image sensor is used as a light receiving element of a mini-spectrometer using a dispersion type grating such as a diffraction grating. To observe a continuous spectrum, a photodiode array or image sensor consisting of one chip is required. However, depending on the application, it may be sufficient to detect a plurality of fixed wavelengths. For example, in the non-dispersive infrared analyzer described above, the required sample wavelength and reference wavelength are determined, and a long and expensive photodiode array or image sensor with continuous pixels is unnecessary. Therefore, by arranging a plurality of light receiving elements with a small number of pixels that can detect a necessary wavelength, the cost of the light receiving elements can be reduced. When a plurality of light receiving elements are arranged on the continuous spectrum emitted from the diffraction grating, the light reflected between the light receiving elements acts as stray light and becomes a problem. However, since the generation of stray light is suppressed as described above in the photodetectors PD1 and PD2 according to the present embodiment and the modification, it can be applied to a non-dispersive infrared analyzer or the like.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。例えば、受光素子1の数及び配列、p型領域7の数及び配列は、図示されたものに限られない。また、受光素子1は、p型半導体基板に光感応領域としてn型領域を配列したものであっても良い。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the number and arrangement of the light receiving elements 1 and the number and arrangement of the p-type regions 7 are not limited to those illustrated. The light receiving element 1 may be an n-type region arranged as a photosensitive region on a p-type semiconductor substrate.

また、遮光部材30は、必ずしも各受光素子1の側面を覆う必要はない。しかしながら、上述したように迷光が受光素子1の側面から入射することを抑制するためには、遮光部材30は受光素子1の側面を覆っている必要がある。   Further, the light shielding member 30 is not necessarily required to cover the side surface of each light receiving element 1. However, in order to suppress the stray light from entering from the side surface of the light receiving element 1 as described above, the light shielding member 30 needs to cover the side surface of the light receiving element 1.

本実施形態に係る光検出装置の断面構成を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the photon detection apparatus which concerns on this embodiment. 迷光が受光素子に入射する状態を説明するための模式図である。It is a schematic diagram for demonstrating the state in which a stray light injects into a light receiving element. 本実施形態の変形例に係る光検出装置の断面構成を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the photon detection apparatus which concerns on the modification of this embodiment.

符号の説明Explanation of symbols

1…受光素子、10…信号処理素子、11a…第1の領域、11b…第2の領域、15…導電性バンプ、20…樹脂、30…遮光部材、PD1、PD2…光検出装置。   DESCRIPTION OF SYMBOLS 1 ... Light receiving element, 10 ... Signal processing element, 11a ... 1st area | region, 11b ... 2nd area | region, 15 ... Conductive bump, 20 ... Resin, 30 ... Light-shielding member, PD1, PD2 ... Photodetection apparatus.

Claims (3)

入射した光の光量に応じた電気信号をそれぞれ出力する複数の受光素子と、
前記複数の受光素子に対向して配置されていると共に、導電性バンプを介して接続されており、前記複数の受光素子から出力された電気信号が入力される信号処理素子と、
電気絶縁性を有し、少なくとも前記複数の受光素子と前記信号処理素子との間の空隙に充填されている樹脂と、
前記樹脂における前記複数の受光素子及び前記信号処理素子から露出する表面、及び、前記複数の受光素子の側面を覆うように配置された遮光部材と、を備え
前記複数の受光素子は、互いに所定の間隔を有して配置されていると共に、前記信号処理素子に対向する主面側に1次元又は2次元配列された複数の光感応領域を有し、
前記樹脂は、前記信号処理素子における前記受光素子間に対応する領域を覆っており、
前記遮光部材は、前記樹脂における前記領域を覆っている部分の表面を覆うように配置されていると共に、遮光性を有するフィラーが含有された樹脂層であり、入射光を吸収することにより遮光することを特徴とする光検出装置。
A plurality of light receiving elements that each output an electrical signal corresponding to the amount of incident light;
A signal processing element that is disposed so as to face the plurality of light receiving elements and is connected via a conductive bump, to which an electrical signal output from the plurality of light receiving elements is input,
A resin having electrical insulation and filling at least gaps between the plurality of light receiving elements and the signal processing elements;
A surface exposed from the plurality of light receiving elements and the signal processing element in the resin , and a light shielding member disposed to cover a side surface of the plurality of light receiving elements ,
The plurality of light receiving elements are arranged at a predetermined interval from each other, and have a plurality of photosensitive regions arranged one-dimensionally or two-dimensionally on the main surface side facing the signal processing elements,
The resin covers a region corresponding to the space between the light receiving elements in the signal processing element,
The light shielding member is a resin layer that is disposed so as to cover a surface of a portion of the resin covering the region and contains a filler having a light shielding property, and shields light by absorbing incident light. An optical detection device characterized by that.
前記信号処理素子は、前記複数の受光素子が対向する第1の領域と、前記第1の領域の外周側に位置する第2の領域と、を含み、
前記樹脂は、前記第2の領域を覆っており、
前記遮光部材は、前記樹脂における前記第2の領域を覆っている部分の表面を覆うように配置されていることを特徴とする請求項1に記載の光検出装置。
The signal processing element includes a first region where the plurality of light receiving elements face each other, and a second region located on the outer peripheral side of the first region,
The resin covers the second region;
The photodetection device according to claim 1, wherein the light shielding member is disposed so as to cover a surface of a portion of the resin that covers the second region.
前記導電性バンプは、はんだからなり、溶融はんだへのディップにより形成されていることを特徴とする請求項1又は2に記載の光検出装置。 The conductive bump is made of solder, the light detecting device according to claim 1 or 2, characterized in that it is formed by dip into the molten solder.
JP2007280861A 2007-10-29 2007-10-29 Photodetector Active JP4997066B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007280861A JP4997066B2 (en) 2007-10-29 2007-10-29 Photodetector
US12/259,740 US7791016B2 (en) 2007-10-29 2008-10-28 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280861A JP4997066B2 (en) 2007-10-29 2007-10-29 Photodetector

Publications (2)

Publication Number Publication Date
JP2009111089A JP2009111089A (en) 2009-05-21
JP4997066B2 true JP4997066B2 (en) 2012-08-08

Family

ID=40779271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280861A Active JP4997066B2 (en) 2007-10-29 2007-10-29 Photodetector

Country Status (1)

Country Link
JP (1) JP4997066B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002062B2 (en) * 2013-02-28 2016-10-05 浜松ホトニクス株式会社 Semiconductor photodetection device
JP2014241376A (en) * 2013-06-12 2014-12-25 住友電気工業株式会社 Image sensor
JP6748486B2 (en) * 2016-06-08 2020-09-02 浜松ホトニクス株式会社 Photodetection unit, photodetection device, and method for manufacturing photodetection unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226080A (en) * 1988-07-14 1990-01-29 Olympus Optical Co Ltd Semiconductor device
JPH05240701A (en) * 1992-02-28 1993-09-17 Hamamatsu Photonics Kk Semiconductor photodetector
JP2002214351A (en) * 2001-01-12 2002-07-31 Canon Inc Radiation detector
US6828545B1 (en) * 2001-05-15 2004-12-07 Raytheon Company Hybrid microelectronic array structure having electrically isolated supported islands, and its fabrication
JP2003318478A (en) * 2002-04-26 2003-11-07 Sumitomo Electric Ind Ltd Optical communication apparatus
JP2004235254A (en) * 2003-01-28 2004-08-19 Fujitsu Ltd Infrared detector and its manufacturing method
JP4534484B2 (en) * 2003-12-26 2010-09-01 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
JP2005241457A (en) * 2004-02-26 2005-09-08 Hamamatsu Photonics Kk Infrared sensor, and manufacturing method therefor
JP2006049512A (en) * 2004-08-03 2006-02-16 Ngk Insulators Ltd Optical device

Also Published As

Publication number Publication date
JP2009111089A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US7791016B2 (en) Photodetector
JP5405512B2 (en) Semiconductor light detection element and radiation detection apparatus
KR101075626B1 (en) Photo-detection device
JP5092251B2 (en) Photodetector
KR101617473B1 (en) Spectral module and method for manufacturing spectral module
US8624189B2 (en) Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP4786035B2 (en) Semiconductor device
JP2005045073A (en) Backface incident photo detection element
JP2010151690A5 (en)
JP5001788B2 (en) Photodetector
JP2015230950A (en) Array type photodetector
CN109659300B (en) Light detection device
KR20220070560A (en) Spectrometer, and spectrometer production method
JP4997066B2 (en) Photodetector
US9123605B2 (en) Image sensor
US8084836B2 (en) Semiconductor photodetector and radiation detecting apparatus
KR101047671B1 (en) Photodiode Arrays, Manufacturing Methods and Radiation Detectors
JP2008047587A (en) Optical detector
JP2004296825A (en) Photo diode array, its manufacturing method and radiation detector
US20230031456A1 (en) Light detection device
JP2019062094A (en) Infrared detection device, image pick-up device, and imaging system
JP4627402B2 (en) Spectrometer using photodetector
US9947706B2 (en) Semiconductor device having a light receiving element
JP2006080306A (en) Photodiode array and spectroscope
JP6217907B2 (en) Optical sensor device and spectral imaging imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4997066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250