JP4996876B2 - High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger - Google Patents
High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger Download PDFInfo
- Publication number
- JP4996876B2 JP4996876B2 JP2006126273A JP2006126273A JP4996876B2 JP 4996876 B2 JP4996876 B2 JP 4996876B2 JP 2006126273 A JP2006126273 A JP 2006126273A JP 2006126273 A JP2006126273 A JP 2006126273A JP 4996876 B2 JP4996876 B2 JP 4996876B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- material layer
- aluminum alloy
- heat exchanger
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Description
本発明は、耐食性に優れたアルミニウム合金複合材及びアルミニウム合金製熱交換器に関する。詳しくは、自動車用ラジエータ、ヒータ、エバポレータ等ろう付けによって接合される熱交換器構成部材として好適に使用できるアルミニウム合金複合材及びアルミニウム合金製熱交換器に関する。 The present invention relates to an aluminum alloy composite material excellent in corrosion resistance and an aluminum alloy heat exchanger. More specifically, the present invention relates to an aluminum alloy composite material and an aluminum alloy heat exchanger that can be suitably used as heat exchanger components that are joined by brazing, such as automobile radiators, heaters, and evaporators.
従来、熱交換器用の耐食性に優れたブレージングシートは、自動車のラジエーター、ヒーターコア、エバポレーターのチューブ、プレート材に用いられ、Al−Mn系合金からなる芯材の片面にAl−Si系ろう材をクラッドし、芯材の他方の面に犠牲陽極皮材として芯材よりも卑なアルミニウム合金からなるAl−Zn系合金をクラッドした3層のアルミニウム合金複合材が使用されている(例えば、特許文献1参照)。
このようなアルミニウム合金複合材のAl−Siろう材は、ろう付け時にチューブ材とフィン材の接合、およびチューブ材とヘッダープレートとの接合に用いられ、犠牲陽極皮材は芯材と電気化学的性質の違いにより皮材を主として腐食し、芯材の孔食を抑制する作用をなすものである。
しかしながら、近年、環境問題、さらには省エネルギー、低コスト化に対する要求から、自動車の軽量化が推進されており、これに伴って自動車用熱交換器に対する軽量化も強く要求され、チューブ材、フィン材、プレート材などの熱交換器構成部材をさらに薄肉化することが必要となってきている。しかしながら、各種構成部材を薄肉化し、特定の強度を維持するために各種の元素を添加すると、耐食性が低減したり、材料の薄肉化に起因して腐食寿命が低下する場合があり、より高耐食性の熱交換器用材料が求められていた。
Such an aluminum alloy composite Al-Si brazing material is used for joining a tube material and a fin material, and joining a tube material and a header plate at the time of brazing, and a sacrificial anode skin material is used as a core material and an electrochemical material. Due to the difference in properties, the skin material is mainly corroded, and the pitting corrosion of the core material is suppressed.
However, in recent years, the weight reduction of automobiles has been promoted due to environmental problems, and further demands for energy saving and cost reduction. Accordingly, weight reduction for automobile heat exchangers has been strongly demanded, and tube materials, fin materials Further, it has become necessary to further reduce the thickness of heat exchanger components such as plate materials. However, if various components are thinned and various elements are added to maintain a specific strength, the corrosion resistance may decrease or the corrosion life may decrease due to the thinning of the material. There was a need for materials for heat exchangers.
本発明は、薄肉化しても良好な耐食性を有する熱交換器用アルミニウム合金複合材及びアルミニウム合金製熱交換器を提供することを目的とする。 An object of the present invention is to provide an aluminum alloy composite material for a heat exchanger and an aluminum alloy heat exchanger that have good corrosion resistance even when the thickness is reduced.
本発明者らは上記課題に鑑み鋭意検討を行った結果、薄肉化された熱交換器構成部材を構成する犠牲材、芯材、又はろう材を、特定のVを含有させた組織を有するものより構成することにより、耐食性として問題となる孔食進行を制御しうることを見出し、本発明をなすに至った。
すなわち本発明は、
(1)犠牲材層、芯材層及びろう材層を有してなる熱交換器用アルミニウム合金複合材において、前記犠牲材層が0.5〜5mass%のZn、0.05〜0.4mass%のVを含有し、残部がAl及び不可避不純物からなる犠牲材層であり、かつ
前記犠牲材層においてV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下である熱交換器用アルミニウム合金複合材、
(2)犠牲材層、芯材層及びろう材層を有してなる熱交換器用アルミニウム合金複合材において、前記犠牲材層が0.5〜5mass%のZnを含有し、残部がAl及び不可避不純物からなる犠牲材層であり、前記芯材層が0.05〜2.0mass%のMn、0.003〜1.2mass%のCu、0.05〜1.2mass%のSi及び0.05〜0.4mass%のVを含有し残部がAl及び不可避不純物からなる芯材層であり、かつ
前記芯材層においてV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下である熱交換器用アルミニウム合金複合材、
(3)犠牲材層、芯材層及びろう材層を有してなる熱交換器用アルミニウム合金複合材において、前記犠牲材層が0.5〜5mass%のZnを含有し、残部がAl及び不可避不純物からなる犠牲材層であり、前記芯材層が0.05〜2.0mass%のMn、0.003〜1.2mass%のCu、0.05〜1.2mass%のSi、0.05〜0.4mass%のV及び0.03〜0.3mass%のTiを含有し残部がAl及び不可避不純物からなる芯材層であり、かつ
前記芯材層においてV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下である熱交換器用アルミニウム合金複合材、および
(4)上記(1)〜(3)のいずれか1項記載のアルミニウム合金複合材を用いて部材を製造し、この部材を560〜585℃の温度でろう付け加熱してなることを特徴とするアルミニウム合金製熱交換器
を提供するものである。
As a result of intensive studies in view of the above problems, the present inventors have a structure in which a specific V is contained in the sacrificial material, core material, or brazing material constituting the thinned heat exchanger constituting member. As a result of the construction, it was found that the progress of pitting corrosion, which is a problem as corrosion resistance, can be controlled, and the present invention has been made.
That is, the present invention
(1) In an aluminum alloy composite material for a heat exchanger having a sacrificial material layer, a core material layer, and a brazing material layer, the sacrificial material layer is 0.5 to 5 mass% Zn, 0.05 to 0.4 mass%. by weight of V, the balance being a sacrificial material layer made of Al and unavoidable impurities, and lower the high first solid solution phase and V concentrations of V concentrations in the sacrificial material layer a second solid solution phase and is double mixture member An aluminum alloy composite material for a heat exchanger having a structure in which the first phases in the stacking direction in the structure are alternately stacked in a thickness direction of 4 μm or more and 15 μm or less,
(2) In an aluminum alloy composite material for a heat exchanger having a sacrificial material layer, a core material layer, and a brazing material layer, the sacrificial material layer contains 0.5 to 5 mass% of Zn, and the balance is Al and inevitable It is a sacrificial material layer made of impurities, and the core material layer is 0.05 to 2.0 mass% Mn, 0.003 to 1.2 mass% Cu, 0.05 to 1.2 mass% Si, and 0.05. remainder containing ~0.4Mass% of V is Ri core layer der of Al and unavoidable impurities, and the first high Oite V concentration in the core layer a solid solution phase and V low concentration second Aluminum alloy composite material for heat exchangers having a structure in which a solid solution phase is alternately laminated in the thickness direction of the composite material, and the mutual interval between the first phases in the lamination direction in the structure is 4 μm or more and 15 μm or less ,
(3) In an aluminum alloy composite material for a heat exchanger having a sacrificial material layer, a core material layer, and a brazing material layer, the sacrificial material layer contains 0.5 to 5 mass% of Zn, and the balance is Al and inevitable It is a sacrificial material layer made of impurities, and the core material layer is 0.05 to 2.0 mass% Mn, 0.003 to 1.2 mass% Cu, 0.05 to 1.2 mass% Si, 0.05 remainder containing ~0.4Mass% of V and 0.03~0.3Mass% of Ti is Ri core layer der of Al and unavoidable impurities, and high Oite V concentration in said core layer first And a second solid solution phase having a low V concentration are alternately laminated in the thickness direction of the composite material, and the interval between the first phases in the lamination direction in the structure is 4 μm or more, above aluminum alloy composite material is 15μm or less, you (4) A member is produced using the aluminum alloy composite material according to any one of (1) to (3) above, and the member is brazed and heated at a temperature of 560 to 585 ° C. An aluminum alloy heat exchanger is provided.
本発明のアルミニウム合金複合材は薄肉化した状態で厳しい腐食環境においても優れた耐食性を有する。したがって、アルミ合金製熱交換器用として使用することで、軽量化に寄与でき、長期にわたる信頼性も確保できるなど工業上顕著な効果を奏する。 The aluminum alloy composite of the present invention has excellent corrosion resistance even in a severe corrosive environment in a thin state. Therefore, by using it for an aluminum alloy heat exchanger, it can contribute to weight reduction, and can provide long-term reliability.
本発明における添加元素の含有量の規定理由を以下に記載する。
バナジウム(V)は、Vを含有させた犠牲材又は芯材の耐食性を向上させるように機能する。つまり、Vは濃度の高い領域と低い領域とに分かれ、それらが板厚方向に交互に分布して層状(固溶体の積層相)となり、V濃度の低い領域が高い領域に比較して優先的に腐食することにより、腐食形態が層状となるため板厚方向への腐食の進行が妨げられ、その結果、材料の耐孔食性が向上する。Vの含有量が0.05%未満ではその効果が十分ではなく、0.4%を越えると鋳造時に粗大な化合物を生成し、素材の圧延加工が阻害されると同時に、腐食環境での腐食進行点となる。
The reasons for defining the content of the additive element in the present invention will be described below.
Vanadium (V) functions to improve the corrosion resistance of the sacrificial material or core material containing V. In other words, V is divided into a high-concentration region and a low region, and they are distributed alternately in the thickness direction to form a layer (lamination phase of solid solution), with the low-concentration region preferentially compared to the high region. Corrosion causes the corrosion form to be layered, preventing the progress of corrosion in the thickness direction, and as a result, the pitting corrosion resistance of the material is improved. If the V content is less than 0.05%, the effect is not sufficient. If it exceeds 0.4%, a coarse compound is produced at the time of casting, and the rolling process of the material is hindered. It becomes a progress point.
次にV以外の各元素の添加理由とその好ましい含有範囲の規定理由について述べる。
(1)芯材
芯材中のMnはろう付け後にマトリックス中に固溶し、強度向上に効果がある。さらに本発明のVの含有との組み合わせで使用する場合には、Mn量を本発明で規定することは上記腐食対策上も非常に有効である。Mnの好ましい含有量を0.05〜2.0mass%としたのは、0.05mass%未満では強度向上の面では効果がなく、2.0mass%を越えると加工性が低下するおそれがあるためである。より好ましくは0.3〜1.5mass%とするのがよい。
芯材中のCuの好ましい含有量を0.003〜1.2mass%としたのは、0.003mass%未満では上記の面では効果がなく、1.2mass%を越えると芯材の自己耐食性が低下し、粒界腐食が助長されるおそれがあるからである。なお、使用環境に応じてより好ましくは0.005〜0.5mass%である。
Next, the reason for adding each element other than V and the reason for defining the preferred content range will be described.
(1) Core material Mn in the core material dissolves in the matrix after brazing and is effective in improving strength. Furthermore, when used in combination with the inclusion of V of the present invention, it is very effective for the above-mentioned corrosion countermeasure to define the amount of Mn in the present invention. The reason why the preferable content of Mn is 0.05 to 2.0 mass% is that if it is less than 0.05 mass%, there is no effect in terms of improving the strength, and if it exceeds 2.0 mass%, the workability may decrease. It is. More preferably, it is 0.3 to 1.5 mass%.
The preferable content of Cu in the core material is set to 0.003 to 1.2 mass%. If the content is less than 0.003 mass%, there is no effect in the above aspect, and if it exceeds 1.2 mass%, the core material has self-corrosion resistance. This is because it may decrease and intergranular corrosion may be promoted. In addition, it is 0.005-0.5 mass% more preferably according to use environment.
芯材中のSi含有量が0.05mass%未満であると強度向上の面では効果がなく、1.2mass%を越えると単体Siによる深い孔食を引き起こすおそれがある。より好ましくは0.3〜0.9mass%とするのがよい。
芯材中のZr,Tiは、アルミニウム合金中に微細に金属間化合物として分散し、強度向上させる効果を有するので必要に応じて添加するが、各々好ましくは0.03〜0.3mass%である。0.03mass%未満ではその効果はなく、0.3mass%を越えると、鋳造時の凝固割れを誘発するおそれがある。より好ましくは、各々0.08〜0.25mass%がよい。
その他元素は諸特性を低下させない限り、含有しても構わない。
If the Si content in the core material is less than 0.05 mass%, there is no effect in terms of strength improvement, and if it exceeds 1.2 mass%, deep pitting corrosion may occur due to single Si. More preferably, it is 0.3 to 0.9 mass%.
Zr and Ti in the core material are finely dispersed in the aluminum alloy as an intermetallic compound and have an effect of improving the strength. Therefore, Zr and Ti are added as necessary, but each is preferably 0.03 to 0.3 mass%. . If it is less than 0.03 mass%, the effect is not obtained. If it exceeds 0.3 mass%, solidification cracking at the time of casting may be induced. More preferably, 0.08 to 0.25 mass% is good for each.
Other elements may be contained as long as various properties are not deteriorated.
(2)ろう材
ろう材中のSiはAlと共存して低融点化合物となるので、良好な流動性を有するろう材を得るための基本的組成である。ろう材中のSi含有量が、ろう材全質量あたり5mass%未満であると、ろう材融点が高くなるので、所定の流動性を得ることができず、ろう付け性が低下するおそれがある。一方、ろう材中のSi含有量が15mass%を超える場合であっても、同様に、ろう材の融点が高くなって、所定の流動性を得ることができないおそれがある。また、粗大な初晶Siが生成されるので、ろう材の加工性が阻害されてしまうおそれがある。従って、ろう材中の好ましいSi含有量は、ろう材全質量あたり5〜15mass%である。
(2) Brazing material Since Si in the brazing material coexists with Al to form a low melting point compound, it is a basic composition for obtaining a brazing material having good fluidity. If the Si content in the brazing material is less than 5 mass% with respect to the total mass of the brazing material, the melting point of the brazing material becomes high, so that the predetermined fluidity cannot be obtained and the brazing property may be lowered. On the other hand, even when the Si content in the brazing material exceeds 15 mass%, similarly, the melting point of the brazing material becomes high, and there is a possibility that the predetermined fluidity cannot be obtained. Moreover, since coarse primary crystal Si is produced | generated, there exists a possibility that the workability of a brazing material may be inhibited. Therefore, the preferable Si content in the brazing material is 5 to 15 mass% with respect to the total mass of the brazing material.
ろう材中のCuは合金の融点を下げ、ろう流れを向上させる。さらにCuはろう材の外部耐食性を高める働きを有し、ろう付け処理後芯材へのCu拡散により、芯材の強度向上及び犠牲材との電位差形成による耐食性の向上が見込める。しかし、耐食性の点からは、0.4mass%以下のCu含有量では効果が十分とはいえず、また、安定したろう付け性を確保するためには、1.0mass%を越えるCu含有量がより好ましい。また、Cuの量が4.0mass%を越えるとろうの電位が貴になりすぎて、犠牲材側が極端に優先腐食をするおそれがあり、耐食性が低下するおそれがある上に、合金の圧延加工性が低下するおそれもある。よって、Cuはより好ましくは1.0mass%を越え4.0mass%以下とするが、特に好ましくは1.0〜3.0mass%で安定した特性を示す。 Cu in the brazing material lowers the melting point of the alloy and improves the brazing flow. Further, Cu has a function of enhancing the external corrosion resistance of the brazing material, and by the diffusion of Cu into the core material after the brazing treatment, it is expected that the strength of the core material is improved and the corrosion resistance is improved by forming a potential difference with the sacrificial material. However, from the point of corrosion resistance, a Cu content of 0.4 mass% or less cannot be said to be sufficiently effective, and in order to ensure stable brazing, a Cu content exceeding 1.0 mass% is necessary. More preferred. Moreover, if the amount of Cu exceeds 4.0 mass%, the brazing potential becomes too noble, the sacrificial material side may be extremely preferentially corroded, and the corrosion resistance may be lowered. There is also a possibility that the property may be lowered. Therefore, Cu is more preferably more than 1.0 mass% and 4.0 mass% or less, and particularly preferably 1.0 to 3.0 mass%, showing stable characteristics.
ろう材へのZnの含有は合金の融点を下げ、ろう付け性を安定させるため好ましい。さらに560〜585℃の温度でろう付け処理をさせるためにCuの含有を行うことが好ましいが、この場合ろうの電位が芯材の電位より極端に貴になり、過防食を起こすおそれがある。Znの添加は、融点の低下に付与すると同時に、芯材、犠牲材の電位に対して適正な電位差をろう材に持たせ、耐食性を向上させることができるため好ましい。Znの含有量は、0.5mass%以下ではその効果が十分でなく、2.0mass%を越えるとろうの自己腐食性が低下するおそれがある上に、合金の圧延加工性が低下するおそれがあり、熱交換器用ブレージングシートに用いるろうとしては十分満足しうるものとはいえない場合がある。その他元素は諸特性を低下させない限り、添加しても構わない。 The inclusion of Zn in the brazing material is preferable because it lowers the melting point of the alloy and stabilizes the brazing property. Further, it is preferable to contain Cu in order to perform the brazing treatment at a temperature of 560 to 585 ° C. In this case, the potential of the brazing becomes extremely noble than the potential of the core material, which may cause overcorrosion protection. The addition of Zn is preferable because it can give the brazing material an appropriate potential difference with respect to the potentials of the core material and the sacrificial material and improve the corrosion resistance at the same time. If the Zn content is 0.5 mass% or less, the effect is not sufficient. If it exceeds 2.0 mass%, the self-corrosion property of the braze may be lowered, and the rolling workability of the alloy may be lowered. In some cases, the brazing sheet for a heat exchanger may not be sufficiently satisfactory. Other elements may be added as long as various characteristics are not deteriorated.
(3)犠牲材
本発明のアルミニウム合金複合材を構成する犠牲材は、前述の犠牲陽極皮材と同様の作用を有するものであればよく、Al−Zn系合金が好適である。Znは、腐食形態を面食にする効果を持ち、犠牲陽極皮材の電位を卑にして芯材に対する犠牲陽極効果を向上させ、芯材に孔食が発生するのを防止する作用がある。その含有量が0.5mass%未満では、犠牲陽極効果が十分に働かないので好ましくなく、5mass%を越えると自己腐食性が増大する。その他元素を犠牲効果を低下させない限り含有しても構わない。
(3) Sacrificial material The sacrificial material constituting the aluminum alloy composite of the present invention may be any material as long as it has the same action as the above-described sacrificial anode skin material, and an Al-Zn alloy is suitable. Zn has the effect of making the corrosion form a surface corrosion, has the effect of preventing the occurrence of pitting corrosion in the core material by lowering the potential of the sacrificial anode skin material and improving the sacrificial anode effect on the core material. If the content is less than 0.5 mass%, the sacrificial anode effect does not work sufficiently, which is not preferable. If the content exceeds 5 mass%, self-corrosion increases. Other elements may be contained as long as the sacrifice effect is not lowered.
本発明の熱交換器用アルミニウム合金複合材は、犠牲材、芯材、ろう材を有してなるアルミニウム合金複合材であり、通常、犠牲材、芯材、ろう材の順にクラッドされてなるものであるが、さらにその他の機能を有する材料がクラッドされていてもよい。 The aluminum alloy composite material for a heat exchanger of the present invention is an aluminum alloy composite material having a sacrificial material, a core material, and a brazing material, and is usually clad in the order of the sacrificial material, the core material, and the brazing material. However, a material having another function may be clad.
犠牲材、芯材、ろう材の製造方法については、鋳造はDC法、連続鋳造ストリップ(キャスター)等、限定されない。均質化処理条件、熱間圧延、冷間圧延、中間焼鈍条件等も特に限定されるものではなく適宜常法によることができる。但し、Vを含有させた犠牲材層又は芯材層におけるV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが前記複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下であるように製造条件を調整するものとする。このような組織とすることにより、前記Vを含有させた犠牲材層又は芯材層の耐食性が良好になる。
As for the manufacturing method of the sacrificial material, the core material, and the brazing material, casting is not limited to DC method, continuous casting strip (caster), or the like. Homogenization treatment conditions, hot rolling, cold rolling, intermediate annealing conditions and the like are not particularly limited, and can be appropriately determined by conventional methods. However, the tissue and the lower high first solid solution phase and V concentrations V concentration definitive sacrificing material layer or the core layer was contained V second solid solution phase were alternately stacked in the thickness direction of the composite material The manufacturing conditions are adjusted so that the mutual interval between the first phases in the stacking direction in the structure is 4 μm or more and 15 μm or less. By setting it as such a structure | tissue, the corrosion resistance of the sacrificial material layer or core material layer containing the said V becomes favorable.
本発明のアルミニウム合金複合材を560〜585℃の温度でろう付け加熱することにより、アルミニウム合金製熱交換器を製造することができる。本発明のアルミニウム合金複合材は自動車のラジエーター、ヒーターコア、エバポレーターのチューブ、プレート材等にも使用でき、その他本発明の目的と同様であればいかなる部材としても充分に使用できる。 An aluminum alloy heat exchanger can be manufactured by brazing and heating the aluminum alloy composite of the present invention at a temperature of 560 to 585 ° C. The aluminum alloy composite material of the present invention can be used for a radiator of an automobile, a heater core, an evaporator tube, a plate material, etc., and any other member can be used as long as it is the same as the object of the present invention.
次に本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
表1に示す組成の犠牲材と芯材とろう材の組合わせ合金28種類を金型鋳造により鋳造して、各々両面面削後、犠牲材は500℃で熱間圧延を開始し、厚さ5mmに圧延した。ろう材は常法により製造した。芯材は520℃×6時間の均質化処理を行い、面削で厚さ40mmに仕上げた。即ち、犠牲材の複合材全体に対するクラッド率が10%となるようにした。
犠牲材、芯材、ろう材の3枚をこの順に重ねて、500℃で熱間圧延を開始し、厚さ3.5mmの3層のクラッド材とした。その後冷間圧延により0.35mm厚とし、360℃×2時間の中間焼鈍を施して最終的には厚さ0.25mmまで冷間圧延し、H14のアルミニウム合金複合材の試料とした。
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.
Twenty-eight kinds of combinations of sacrificial material, core material, and brazing material having the composition shown in Table 1 were cast by die casting, and after both sides were cut, the sacrificial material started hot rolling at 500 ° C. Rolled to 5 mm. The brazing material was produced by a conventional method. The core material was homogenized at 520 ° C. for 6 hours, and finished to a thickness of 40 mm by chamfering. That is, the clad ratio of the sacrificial material to the entire composite material was set to 10%.
The sacrificial material, the core material, and the brazing material were stacked in this order, and hot rolling was started at 500 ° C. to obtain a three-layer clad material having a thickness of 3.5 mm. Thereafter, the thickness was reduced to 0.35 mm by cold rolling, subjected to intermediate annealing at 360 ° C. for 2 hours, and finally cold-rolled to a thickness of 0.25 mm to obtain a sample of an aluminum alloy composite material of H14.
これらの試料を熱交換器を製造する際のろう付け条件と同様にノコロックろう付け加熱処理(NB加熱)として、フラックスを塗布した後、窒素ガス雰囲気中、570℃×3分の加熱を行った。
得られたろう付け処理された試料を切断して、幅30mm、長さ80mmの形状として、耐食試験面(犠牲面(表面))の端部から中央よりの5mmの位置までの四辺部と、裏面全面をシールテープによってシールして、耐食試験サンプルとした。
These samples were subjected to heating at 570 ° C. for 3 minutes in a nitrogen gas atmosphere after applying a flux as Nocolok brazing heating treatment (NB heating) in the same manner as brazing conditions for manufacturing a heat exchanger. .
The obtained brazed sample was cut into a shape having a width of 30 mm and a length of 80 mm, and four sides from the end of the corrosion resistance test surface (sacrificial surface (front surface)) to a position 5 mm from the center, and the back surface The entire surface was sealed with a sealing tape to prepare a corrosion resistance test sample.
以上のようにして、下記表1に示す組成を有する、本発明合金複合材(No1、4、5、7、9〜12、14〜17、19、20)、比較例合金複合材(No21〜27)及び従来合金複合材(No28)の各サンプルを作製した。本発明合金複合材(No1、4、5、7、9〜12、14〜17、19、20)では、Vを含有する各材層は、V濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下であった。これに対し、V濃度の高い固溶体相の間隔は、No.21〜23では20〜35μm、No.24〜25では1〜2μm、No.27では約3μmであった。ここで、固溶体相間の長さは、サンプル板の横断面を研磨し、電子顕微鏡にて拡大観察後、EPMA分析でV元素のマッピング分析を10視野で行い、各視野でのマッピング分析で確認できる高V濃度部の相間間隔を測定し、その平均値とした。
As described above, the alloy composites of the present invention (No1 , 4, 5, 7, 9-12, 14-17, 19, 20) and comparative alloy composites (No21 to 21) having the compositions shown in Table 1 below. 27) and a conventional alloy composite material (No. 28) were prepared. In the alloy composite of the present invention (No. 1 , 4, 5, 7, 9-12, 14-17, 19, 20), each material layer containing V has a first solid solution phase having a high V concentration and a V concentration. The low second solid solution phase had a structure alternately laminated in the thickness direction of the composite material, and the distance between the first phases in the lamination direction in the structure was 4 μm or more and 15 μm or less. On the other hand, the interval between the solid solution phases having a high V concentration is No. No. 21 to 23, 20 to 35 μm, no. 24-25, 1-2 μm, No. 27 was about 3 μm. Here, the length between the solid solution phases can be confirmed by polishing the cross-section of the sample plate, magnifying with an electron microscope, performing mapping analysis of V element with 10 visual fields by EPMA analysis, and mapping analysis with each visual field. The interphase spacing of the high V concentration part was measured and taken as the average value.
これらサンプルに下記の腐食試験を実施し、犠牲材部からの孔食深さを測定した。
(腐食試験)
液種:Cu2+100ppm、5%NaClの水溶液を酢酸にてpH3に調整したものを腐食液とした。
試験条件:約50℃で連続噴霧を4週間実施
The following corrosion tests were conducted on these samples, and the pitting depth from the sacrificial material portion was measured.
(Corrosion test)
Liquid type: An aqueous solution of Cu 2+ 100 ppm, 5% NaCl adjusted to pH 3 with acetic acid was used as a corrosive solution.
Test conditions: Continuous spraying at about 50 ° C for 4 weeks
試験結果を表2に示す。 The test results are shown in Table 2.
上記表1及び2の結果から明らかなように、Vを含むがVの含有量が本発明で規定する合金組成の範囲から外れる比較例合金複合材No21〜27のサンプルは腐食が顕著に進行しており、また、Vを含まない従来例のサンプルでは貫通孔を発生するに至っている。これに対し、本発明合金複合材No1、4、5、7、9〜12、14〜17、19、20のサンプルは、厳しい腐食環境においても孔食深さは100μm以下と耐食性が良好で、孔食成長が抑制されていることが確認できる。
As is clear from the results of Tables 1 and 2 above, the samples of Comparative Example Alloy Composites Nos. 21 to 27 containing V, but the V content deviates from the range of the alloy composition defined in the present invention, are significantly corroded. In addition, in the sample of the conventional example not including V, a through hole is generated. In contrast, the samples of the present invention alloy composite Nos. 1 , 4, 5, 7, 9-12, 14-17, 19, 20 have good corrosion resistance with a pitting depth of 100 μm or less even in a severe corrosive environment, It can be confirmed that pitting growth is suppressed.
Claims (4)
前記犠牲材層においてV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下である熱交換器用アルミニウム合金複合材。 In the aluminum alloy composite material for a heat exchanger having a sacrificial material layer, a core material layer, and a brazing material layer, the sacrificial material layer contains 0.5-5 mass% Zn, 0.05-0.4 mass% V. contained, the balance is the sacrificial material layer made of Al and unavoidable impurities, and a second solid solution phase low high first solid solution phase and V concentrations of V concentrations in the sacrificial material layer thickness of the double coupling member An aluminum alloy composite material for heat exchangers having a structure in which the layers are alternately stacked in a direction, and a mutual interval between the first phases in the stacking direction in the structure is 4 μm or more and 15 μm or less.
前記芯材層においてV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下である熱交換器用アルミニウム合金複合材。 In the aluminum alloy composite material for a heat exchanger having a sacrificial material layer, a core material layer, and a brazing material layer, the sacrificial material layer contains 0.5 to 5 mass% Zn, and the balance is made of Al and inevitable impurities. A sacrificial material layer, wherein the core material layer is 0.05 to 2.0 mass% Mn, 0.003 to 1.2 mass% Cu, 0.05 to 1.2 mass% Si, and 0.05 to 0. 4 mass% core layer der remainder containing V being Al and inevitable impurities is, and the Oite V high concentration first solid solution phase and V low concentration second solid solution phase in the core layer Is an aluminum alloy composite material for heat exchangers having a structure in which the layers are alternately laminated in the thickness direction of the composite material, and the interval between the first phases in the lamination direction in the structure is 4 μm or more and 15 μm or less.
前記芯材層においてV濃度の高い第一の固溶体相とV濃度の低い第二の固溶体相とが複合材の板厚方向に交互に積層した組織を有し、当該組織中の積層方向における第一の相の相互の間隔が4μm以上、15μm以下である熱交換器用アルミニウム合金複合材。 In the aluminum alloy composite material for a heat exchanger having a sacrificial material layer, a core material layer, and a brazing material layer, the sacrificial material layer contains 0.5 to 5 mass% Zn, and the balance is made of Al and inevitable impurities. It is a sacrificial material layer, and the core material layer is 0.05 to 2.0 mass% Mn, 0.003 to 1.2 mass% Cu, 0.05 to 1.2 mass% Si, 0.05 to 0.00. remainder containing 4 mass% of V and 0.03~0.3Mass% of Ti is Ri core layer der of Al and unavoidable impurities, and the first solid solution phase high Oite V concentration in said core layer And a second solid solution phase having a low V concentration are alternately stacked in the thickness direction of the composite material, and the interval between the first phases in the stacking direction in the structure is 4 μm or more and 15 μm or less. An aluminum alloy composite for a heat exchanger.
A member is manufactured using the aluminum alloy composite material according to any one of claims 1 to 3, and the member is brazed and heated at a temperature of 560 to 585 ° C. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126273A JP4996876B2 (en) | 2006-04-28 | 2006-04-28 | High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126273A JP4996876B2 (en) | 2006-04-28 | 2006-04-28 | High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007297673A JP2007297673A (en) | 2007-11-15 |
JP4996876B2 true JP4996876B2 (en) | 2012-08-08 |
Family
ID=38767410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006126273A Expired - Fee Related JP4996876B2 (en) | 2006-04-28 | 2006-04-28 | High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4996876B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5873343B2 (en) * | 2012-01-29 | 2016-03-01 | 株式会社デンソー | High corrosion resistance aluminum alloy brazing sheet and flow path forming part of automobile heat exchanger using the same |
JP5992499B2 (en) * | 2014-12-22 | 2016-09-14 | 株式会社神戸製鋼所 | Method for joining aluminum materials used in power devices |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6389498A (en) * | 1986-09-30 | 1988-04-20 | Toshiba Corp | Production of silicon-added gallium arsenide single crystal |
JPS6389641A (en) * | 1986-10-03 | 1988-04-20 | Sumitomo Light Metal Ind Ltd | Radiator core plant material |
JPH0797651A (en) * | 1993-08-10 | 1995-04-11 | Furukawa Electric Co Ltd:The | Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy |
JP3702971B2 (en) * | 1995-03-24 | 2005-10-05 | 三菱アルミニウム株式会社 | Brazing sheet and frame material for heat exchanger |
JP4058650B2 (en) * | 1997-11-07 | 2008-03-12 | 三菱アルミニウム株式会社 | Clad material for heat exchangers with excellent pitting corrosion resistance in a strong alkaline environment |
JP4019337B2 (en) * | 1998-09-07 | 2007-12-12 | 三菱アルミニウム株式会社 | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance |
-
2006
- 2006-04-28 JP JP2006126273A patent/JP4996876B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007297673A (en) | 2007-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5073290B2 (en) | High strength aluminum alloy brazing sheet | |
JP5054404B2 (en) | Aluminum alloy clad material and brazing sheet for heat exchanger | |
JP5622349B2 (en) | Aluminum alloy material and aluminum alloy brazing sheet | |
JP2011202285A (en) | Brazing sheet | |
JP4023760B2 (en) | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance | |
JP5180565B2 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP2011068933A (en) | Aluminum alloy clad material for heat exchanger | |
JP2012057183A (en) | Aluminum alloy clad material and heat exchanging device using the same | |
JP6399438B2 (en) | Heat exchanger | |
JP2002066786A (en) | Manufacturing method of high corrosion resistant aluminum alloy matching material | |
JP5302114B2 (en) | Aluminum alloy brazing sheet for vacuum brazing | |
JP4996876B2 (en) | High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger | |
WO2019026658A1 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP3360026B2 (en) | Brazing method of aluminum alloy brazing sheet for heat exchanger | |
JP4190295B2 (en) | Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material | |
JP5275592B2 (en) | Aluminum alloy brazing sheet for automotive heat exchangers | |
JP5159709B2 (en) | Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same | |
JP4263160B2 (en) | Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same | |
JP5184112B2 (en) | Aluminum alloy clad material | |
JP5219550B2 (en) | Aluminum alloy brazing sheet for vacuum brazing | |
JP4596618B2 (en) | High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger | |
JP2017172025A (en) | Aluminum alloy clad material for heat exchanger | |
JP2007247021A (en) | Brazing sheet made of aluminum alloy for heat exchanger | |
JP4386225B2 (en) | Automotive heat exchanger components | |
JP2004225062A (en) | Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120514 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4996876 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |