[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4991797B2 - Sampling waveform measuring device - Google Patents

Sampling waveform measuring device Download PDF

Info

Publication number
JP4991797B2
JP4991797B2 JP2009166256A JP2009166256A JP4991797B2 JP 4991797 B2 JP4991797 B2 JP 4991797B2 JP 2009166256 A JP2009166256 A JP 2009166256A JP 2009166256 A JP2009166256 A JP 2009166256A JP 4991797 B2 JP4991797 B2 JP 4991797B2
Authority
JP
Japan
Prior art keywords
optical
optical modulator
pulse
electric pulse
electroabsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009166256A
Other languages
Japanese (ja)
Other versions
JP2011021957A (en
Inventor
隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2009166256A priority Critical patent/JP4991797B2/en
Publication of JP2011021957A publication Critical patent/JP2011021957A/en
Application granted granted Critical
Publication of JP4991797B2 publication Critical patent/JP4991797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、高分解能の等価サンプリングを行うサンプリング波形測定装置に関する。   The present invention relates to a sampling waveform measuring apparatus that performs high-resolution equivalent sampling.

電界吸収型光変調器の相互吸収飽和特性を用いた光サンプリングが提案されている(例えば、特許文献1参照。)。図7は、サンプリング波形測定装置の一例を示す概略構成図である。図7に示すサンプリング波形測定装置は、一定周期の光パルスPsを発生する光パルス発生器11と、被測定光信号Pxと光パルスPsが入力されて光信号Pyを出力する電界吸収型光変調器12と、電界吸収型光変調器12に逆バイアス電圧を入力する逆バイアス電圧発生器13と、電界吸収型光変調器12から出射されたサンプリング後の光信号Pyを光電変換する受光器15と、を有する。光パルスPsが入力された際の電界吸収型光変調器12の相互吸収飽和による光ゲート動作を利用して被測定光信号Pxをサンプリングし、受光器15からの電気信号Dyを観察することで、等価サンプリング方式で被測定光信号Pxを測定/評価する。   Optical sampling using the mutual absorption saturation characteristic of an electroabsorption optical modulator has been proposed (see, for example, Patent Document 1). FIG. 7 is a schematic configuration diagram illustrating an example of a sampling waveform measuring apparatus. The sampling waveform measuring apparatus shown in FIG. 7 includes an optical pulse generator 11 that generates an optical pulse Ps having a constant period, and an electroabsorption optical modulation that receives an optical signal Px and an optical pulse Ps and outputs an optical signal Py. , A reverse bias voltage generator 13 for inputting a reverse bias voltage to the electroabsorption optical modulator 12, and a photoreceiver 15 for photoelectrically converting the sampled optical signal Py emitted from the electroabsorption optical modulator 12. And having. By sampling the optical signal to be measured Px using the optical gate operation due to the mutual absorption saturation of the electroabsorption optical modulator 12 when the optical pulse Ps is input, and observing the electric signal Dy from the light receiver 15. The optical signal Px to be measured is measured / evaluated by the equivalent sampling method.

国際公開2008/087809International Publication 2008/088709

多重量子井戸構造の電界吸収型光変調器12の消光特性は、図8に示すように、逆バイアス電圧の増加にしたがって光の透過率が減少するが、ある電圧以上では逆に透過率が増加する。電界吸収型光変調器12の相互吸収飽和を用いた光サンプリングでは、光パルスがないときの被測定光信号の透過率が増えるとサンプリング時以外の被測定光信号の漏洩が増えてノイズが増加する。測定結果の波形のS/N比を大きくするためには光パルスがない時の被測定光信号の透過率を低くする必要がある。このため、S/N比の観点からは、透過率が最小となるA点の逆バイアス電圧Vが適している。 As shown in FIG. 8, the extinction characteristic of the electro-absorption optical modulator 12 having the multiple quantum well structure is such that the light transmittance decreases as the reverse bias voltage increases, but the transmittance increases at a certain voltage or higher. To do. In the optical sampling using the mutual absorption saturation of the electroabsorption optical modulator 12, when the transmittance of the optical signal under measurement increases when there is no optical pulse, the leakage of the optical signal under measurement other than during sampling increases and noise increases. To do. In order to increase the S / N ratio of the waveform of the measurement result, it is necessary to reduce the transmittance of the optical signal to be measured when there is no optical pulse. For this reason, from the viewpoint of the S / N ratio, the reverse bias voltage V A at the point A at which the transmittance is minimum is suitable.

一方、逆バイアス電圧と光ゲート動作の時間幅の関係は、図9に示すように、逆バイアス電圧の増加に従って単調にゲート幅が減少する。このため、時間分解能の観点からは、ゲート幅が最小となるB点の逆バイアス電圧V、すなわち電界吸収型光変調器に印加可能な最大の逆バイアス電圧Vが望ましい。よって、高いS/N比と短いゲート幅が両立しないという問題があった。 On the other hand, as shown in FIG. 9, the relationship between the reverse bias voltage and the time width of the optical gate operation is such that the gate width decreases monotonously as the reverse bias voltage increases. For this reason, from the viewpoint of time resolution, the reverse bias voltage V B at the point B at which the gate width is minimum, that is, the maximum reverse bias voltage V B that can be applied to the electroabsorption optical modulator is desirable. Therefore, there is a problem that a high S / N ratio and a short gate width are not compatible.

そこで、本発明の目的は、多量子井戸構造の電界吸収型光変調器を用いた光サンプリングにおいて高いS/N比と短いゲート幅を両立することにある。   Therefore, an object of the present invention is to achieve both a high S / N ratio and a short gate width in optical sampling using an electroabsorption optical modulator having a multi-quantum well structure.

上記目的を達成するために、本願発明のサンプリング波形測定装置は、多量子井戸構造の電界吸収型光変調器を用いて光サンプリングを行うサンプリング波形測定装置において、少なくとも光ゲートが開いている間だけ逆バイアス電圧を高くするバイアス調整手段を備えることを特徴とする。   In order to achieve the above object, the sampling waveform measuring apparatus of the present invention is a sampling waveform measuring apparatus that performs optical sampling using an electroabsorption optical modulator having a multi-quantum well structure, at least while the optical gate is open. Bias adjustment means for increasing the reverse bias voltage is provided.

具体的には、本願発明のサンプリング波形測定装置は、光パルスを発生する光パルス発生器(11)と、被測定光信号及び前記光パルスが入力される電界吸収型光変調器(12)と、前記電界吸収型光変調器から出力された光信号を電気信号に変換する受光器(15)と、を備え、前記光パルスが入力された際の前記電界吸収型光変調器の相互吸収飽和による光ゲート動作を利用して前記被測定光信号をサンプリングし、等価サンプリング方式で前記被測定光信号の波形を測定するサンプリング波形測定装置(101)において、前記電界吸収型光変調器の逆バイアス電圧を高くするバイアス調整用電気パルスを、少なくとも前記光ゲートが開いている間、前記電界吸収型光変調器に入力するバイアス調整手段(16)を備えることを特徴とする。   Specifically, the sampling waveform measuring apparatus of the present invention includes an optical pulse generator (11) that generates an optical pulse, an electroabsorption optical modulator (12) that receives an optical signal to be measured and the optical pulse, and A light receiver (15) that converts an optical signal output from the electroabsorption optical modulator into an electrical signal, and mutual absorption saturation of the electroabsorption optical modulator when the optical pulse is input In the sampling waveform measuring apparatus (101) for sampling the optical signal to be measured using the optical gate operation of the optical signal and measuring the waveform of the optical signal to be measured by an equivalent sampling method, the reverse bias of the electroabsorption optical modulator is measured. Bias adjustment means (16) for inputting a bias adjustment electric pulse for increasing the voltage to the electroabsorption optical modulator at least while the optical gate is open. That.

バイアス調整手段(16)を備えることで、光ゲートが閉じている間は被測定光信号の透過率を低くしてS/N比の低下を防ぎ、少なくとも光ゲートが開いている間は電界吸収型光変調器の逆バイアス電圧を高くしてゲート幅を狭くすることができる。これにより、本願発明のサンプリング波形測定装置は、多量子井戸構造の電界吸収型光変調器を用いた光サンプリングにおいて高いS/N比と短いゲート幅を両立することができる。   By providing the bias adjusting means (16), while the optical gate is closed, the transmittance of the optical signal to be measured is lowered to prevent the S / N ratio from decreasing, and at least when the optical gate is open, the electric field is absorbed. The gate width can be reduced by increasing the reverse bias voltage of the optical modulator. Thus, the sampling waveform measuring apparatus of the present invention can achieve both a high S / N ratio and a short gate width in optical sampling using an electroabsorption optical modulator having a multi-quantum well structure.

本願発明のサンプリング波形測定装置では、前記バイアス調整手段は、前記光パルスと同期したバイアス調整用電気パルスを発生する電気パルス発生器(21)を有し、少なくとも前記光ゲートが開いている間、前記電気パルス発生器からの前記バイアス調整用電気パルスを前記電界吸収型光変調器に入力することが好ましい。   In the sampling waveform measuring apparatus of the present invention, the bias adjusting means has an electric pulse generator (21) for generating a bias adjusting electric pulse synchronized with the optical pulse, and at least while the optical gate is open. Preferably, the electric pulse for bias adjustment from the electric pulse generator is input to the electroabsorption optical modulator.

独立した電気パルス発生器を備えることで、任意の振幅電圧で任意の形状のバイアス調整用電気パルスを発生させることができる。これにより、少なくとも光ゲートが開いている間は電界吸収型光変調器に印加可能な最大の逆バイアス電圧を印加して、高いS/N比と最短のゲート幅を両立することができる。   By providing an independent electric pulse generator, an electric pulse for bias adjustment having an arbitrary shape can be generated with an arbitrary amplitude voltage. Thus, at least while the optical gate is open, the maximum reverse bias voltage that can be applied to the electroabsorption optical modulator can be applied to achieve both a high S / N ratio and the shortest gate width.

本願発明のサンプリング波形測定装置では、前記バイアス調整手段は、前記光パルスが入力されバイアス調整用電気パルスを出力する第2の受光器(31)を有し、少なくとも前記光ゲートが開いている間、前記第2の受光器からの前記バイアス調整用電気パルスを前記電界吸収型光変調器に入力することが好ましい。   In the sampling waveform measuring apparatus of the present invention, the bias adjusting means has a second light receiver (31) that receives the optical pulse and outputs an electrical pulse for bias adjustment, and at least while the optical gate is open. It is preferable that the bias adjusting electric pulse from the second light receiver is input to the electroabsorption optical modulator.

第2の受光器を備えることで、光パルスと同期したタイミングで、タイミングジッタの少ないバイアス調整用電気パルスを発生させることができる。これにより、バイアス調整用電気パルスのパルス幅が短い場合でも、少なくとも光ゲートが開いている間に電界吸収型光変調器に印加可能な最大の逆バイアス電圧を印加でき、高いS/N比と最短のゲート幅を両立することができる。また、変換効率の高い第2の受光器を用いたり、第2の受光器の出力に電気増幅器を挿入したりすることにより、振幅の大きなバイアス調整用電気パルスを発生することができる。   By providing the second light receiver, it is possible to generate a bias adjusting electric pulse with little timing jitter at a timing synchronized with the optical pulse. As a result, even when the pulse width of the electrical pulse for bias adjustment is short, the maximum reverse bias voltage that can be applied to the electroabsorption optical modulator can be applied at least while the optical gate is open, and a high S / N ratio can be obtained. The shortest gate width can be achieved at the same time. Further, a bias adjusting electric pulse having a large amplitude can be generated by using a second light receiving device having a high conversion efficiency or by inserting an electric amplifier into the output of the second light receiving device.

本願発明のサンプリング波形測定装置では、前記バイアス調整手段は、前記サンプリング用光パルスが入力された際に前記電界吸収型光変調器の電極に発生する電気パルスの極性を反転させ、所定の遅延時間後に前記電界吸収型光変調器の電極に戻すことによって、少なくとも前記光ゲートが開いている間、前記バイアス調整用電気パルスを前記電界吸収型光変調器に入力することが好ましい。   In the sampling waveform measuring apparatus according to the present invention, the bias adjusting means inverts the polarity of an electric pulse generated at the electrode of the electroabsorption optical modulator when the sampling optical pulse is input, and a predetermined delay time. It is preferable to input the bias adjusting electric pulse to the electroabsorption optical modulator at least while the optical gate is opened by returning to the electrode of the electroabsorption optical modulator later.

電界吸収型光変調器の電極に発生する電気パルスを用いるため、バイアス調整用電気パルスを発生させるための手段を別途設けることなく電界吸収型光変調器のS/N比とゲート幅を調整することができる。これにより、簡易な構成で本発明に係るサンプリング波形測定装置を構成することができる。   Since the electric pulse generated at the electrode of the electroabsorption optical modulator is used, the S / N ratio and the gate width of the electroabsorption optical modulator are adjusted without providing a separate means for generating an electric pulse for bias adjustment. be able to. Thereby, the sampling waveform measuring apparatus according to the present invention can be configured with a simple configuration.

本願発明のサンプリング波形測定装置では、前記バイアス調整手段は、一端が前記電界吸収型光変調器の電極に接続された同軸ケーブル(41)と、前記同軸ケーブルに設けられ、前記電界吸収型光変調器に印加された直流バイアス電圧を遮断する直流遮断コンデンサ(42)と、前記同軸ケーブルの他端に接続された短絡器(43)とを備え、前記電界吸収型光変調器の電極で発生した電気パルスを前記同軸ケーブルに伝搬させた後、前記短絡器で前記電気パルスの極性を反転させて反射させ、前記バイアス調整用電気パルスとして前記電界吸収型光変調器の電極に戻すことが好ましい。   In the sampling waveform measuring apparatus according to the present invention, the bias adjusting means is provided at one end of the coaxial cable (41) connected to the electrode of the electroabsorption optical modulator and the coaxial cable, and the electroabsorption optical modulation A DC blocking capacitor (42) for cutting off a DC bias voltage applied to the device, and a short circuit (43) connected to the other end of the coaxial cable, and generated at the electrode of the electroabsorption optical modulator. After propagating the electric pulse to the coaxial cable, it is preferable that the polarity of the electric pulse is reversed and reflected by the short circuit, and returned to the electrode of the electroabsorption optical modulator as the electric pulse for bias adjustment.

バイアス調整手段が同軸ケーブルと短絡器と直流遮断コンデンサからなることで、簡易な構成で本発明に係るサンプリング波形測定装置を構成することができる。   Since the bias adjusting means includes a coaxial cable, a short circuit, and a DC cutoff capacitor, the sampling waveform measuring apparatus according to the present invention can be configured with a simple configuration.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、本願発明のサンプリング波形測定装置は、多量子井戸構造の電界吸収型光変調器を用いた光サンプリングにおいて高いS/N比と短いゲート幅を両立することができる。   According to the present invention, the sampling waveform measuring apparatus of the present invention can achieve both a high S / N ratio and a short gate width in optical sampling using an electroabsorption optical modulator having a multi-quantum well structure.

実施形態1に係るサンプリング波形測定装置の一例を示す構成概略図である。1 is a schematic configuration diagram illustrating an example of a sampling waveform measuring apparatus according to Embodiment 1. FIG. バイアス調整用電気パルスと光信号のパルス形状との関係の一例であり、(a)は負のバイアス調整用電気パルスVpmを示し、(b)は光パルスPsによる電界吸収型光変調器の透過率変化を示す。It is an example of the relationship between the electric pulse for bias adjustment and the pulse shape of an optical signal, (a) shows the electric pulse Vpm for negative bias adjustment, (b) is transmission of the electroabsorption optical modulator by the optical pulse Ps. Shows rate change. 実施形態2に係るサンプリング波形測定装置の一例を示す構成概略図である。FIG. 6 is a schematic configuration diagram illustrating an example of a sampling waveform measuring apparatus according to a second embodiment. 実施形態3に係るサンプリング波形測定装置の一例を示す構成概略図である。FIG. 10 is a schematic configuration diagram illustrating an example of a sampling waveform measuring apparatus according to a third embodiment. 実施形態4に係るサンプリング波形測定装置の一例を示す構成概略図である。FIG. 6 is a schematic configuration diagram illustrating an example of a sampling waveform measuring apparatus according to a fourth embodiment. 同軸ケーブルの往復の遅延時間の設定例であり、(a)は電界吸収型光変調器に発生する電気パルスVppを示し、(b)は電界吸収型光変調器に戻すバイアス調整用電気パルスVpmを示し、(c)は光パルスPsによる電界吸収型光変調器の透過率変化を示す。It is an example of setting the round-trip delay time of a coaxial cable, (a) shows an electric pulse Vpp generated in the electroabsorption optical modulator, and (b) shows an electric pulse Vpm for bias adjustment returned to the electroabsorption optical modulator. (C) shows the change in transmittance of the electroabsorption optical modulator due to the light pulse Ps. サンプリング波形測定装置の一例を示す構成概略図である。It is a composition schematic diagram showing an example of a sampling waveform measuring device. 多重量子井戸構造の電界吸収型光変調器の消光特性の一例を示す。An example of the extinction characteristic of an electroabsorption optical modulator having a multiple quantum well structure is shown. 逆バイアス電圧と光ゲート動作の時間幅の関係の一例を示す。An example of the relationship between a reverse bias voltage and the time width of optical gate operation is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、本実施形態に係るサンプリング波形測定装置の一例を示す構成概略図である。本実施形態に係るサンプリング波形測定装置101は、光パルス発生器11と、電界吸収型光変調器12と、逆バイアス電圧発生器13と、光カプラ14と、受光器15と、バイアス調整手段16を備える。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram illustrating an example of a sampling waveform measuring apparatus according to the present embodiment. The sampling waveform measuring apparatus 101 according to the present embodiment includes an optical pulse generator 11, an electroabsorption optical modulator 12, a reverse bias voltage generator 13, an optical coupler 14, a light receiver 15, and a bias adjusting unit 16. Is provided.

電界吸収型光変調器12に被測定光信号Pxが入射される。光パルス発生器11は、光パルスPsを発生する。逆バイアス電圧発生器13は、電界吸収型光変調器12に直流の逆バイアス電圧を印加する。電界吸収型光変調器12は、被測定光信号Px及び光パルスPsが入力され、光信号Pyを出力する。光パルスPsが入力された際の電界吸収型光変調器12の相互吸収飽和による光ゲート動作を利用して被測定光信号Pxをサンプリングし、等価サンプリング方式で被測定光信号Pxの波形を測定する。   The measured optical signal Px is incident on the electroabsorption optical modulator 12. The optical pulse generator 11 generates an optical pulse Ps. The reverse bias voltage generator 13 applies a DC reverse bias voltage to the electroabsorption optical modulator 12. The electroabsorption optical modulator 12 receives the measured optical signal Px and the optical pulse Ps, and outputs an optical signal Py. The optical signal to be measured Px is sampled by using the optical gate operation by the mutual absorption saturation of the electroabsorption optical modulator 12 when the optical pulse Ps is input, and the waveform of the optical signal to be measured Px is measured by the equivalent sampling method. To do.

サンプリング後の光信号Pyは、電界吸収型光変調器12から出射され、受光器15に入射される。受光器15は、電界吸収型光変調器12から出力された光信号Pyを電気信号に変換し、電気信号Dyを出力する。電気信号Dyを観察することで、等価サンプリング方式で被測定光信号Pxの波形評価を行うことができる。   The sampled optical signal Py is emitted from the electroabsorption optical modulator 12 and enters the light receiver 15. The light receiver 15 converts the optical signal Py output from the electroabsorption optical modulator 12 into an electrical signal and outputs an electrical signal Dy. By observing the electric signal Dy, the waveform of the measured optical signal Px can be evaluated by the equivalent sampling method.

バイアス調整手段16は、電界吸収型光変調器12の逆バイアス電圧を高くするバイアス調整用電気パルスVpmを発生し、少なくとも光ゲートが開いている間、バイアス調整用電気パルスVpmを電界吸収型光変調器12に入力する。図2は、バイアス調整用電気パルスと光信号のパルス形状との関係の一例であり、(a)は負のバイアス調整用電気パルスVpmを示し、(b)は光パルスPsによる電界吸収型光変調器の透過率変化を示す。   The bias adjusting means 16 generates a bias adjusting electric pulse Vpm that increases the reverse bias voltage of the electroabsorption optical modulator 12, and the bias adjusting electric pulse Vpm is generated at least while the optical gate is open. Input to the modulator 12. FIG. 2 shows an example of the relationship between the electrical pulse for bias adjustment and the pulse shape of the optical signal, where (a) shows the negative bias adjustment electrical pulse Vpm, and (b) shows the electroabsorption light by the optical pulse Ps. The change in transmittance of the modulator is shown.

図1に示す逆バイアス電圧発生器13は、S/N比が最大となる図8のA点の逆バイアス電圧Vに設定する。バイアス調整手段16により光パルスPsに同期した負のバイアス調整用電気パルスVpmを発生し、電界吸収型光変調器12に入力する。バイアス調整用電気パルスVpmのパルス幅を光パルスPsによる透過率変化のパルス幅よりも広くし、図2(b)に示すように光パルスPsによる光ゲート動作時間がバイアス調整用電気パルスVpm内に含まれるようにすると、光パルスPsによる光ゲート動作時は逆バイアス電圧が増加することになり、ゲート幅が短縮される。 The reverse bias voltage generator 13 shown in FIG. 1 is set to the reverse bias voltage V A at the point A in FIG. 8 where the S / N ratio is maximized. A negative bias adjusting electric pulse Vpm synchronized with the optical pulse Ps is generated by the bias adjusting means 16 and input to the electroabsorption optical modulator 12. The pulse width of the electrical pulse Vpm for bias adjustment is made wider than the pulse width of the transmittance change by the optical pulse Ps, and the optical gate operation time by the optical pulse Ps is within the electrical pulse Vpm for bias adjustment as shown in FIG. In this case, the reverse bias voltage increases during the optical gate operation by the optical pulse Ps, and the gate width is shortened.

直流の逆バイアス電圧Vと負のバイアス調整用電気パルスVpmの電圧の和が電界吸収型光変調器12に印加可能な最大の逆バイアス電圧Vとなるようにすると、図9に示すB点での最小のゲート幅となる。負のバイアス調整用電気パルスVpmを入力すると、電界吸収型光変調器12の透過率が一時的に増加するが、バイアス調整用電気パルスVpmのパルス幅を受光器15のインパルス応答の時間幅よりも狭くしておくと、受光器15の出力においてはバイアス調整用電気パルスVpmによる被測定光信号Pxの漏洩増加の影響は少ない。従って、バイアス調整用電気パルスVpmによるS/N比の低下は少なく、高いS/N比と短いゲート幅を両立することができる。 When the sum of the voltage of the DC reverse bias voltage V A and the negative bias adjusting electric pulse Vpm becomes the maximum reverse bias voltage V B that can be applied to the electroabsorption optical modulator 12, B shown in FIG. This is the minimum gate width at a point. When a negative bias adjusting electric pulse Vpm is input, the transmittance of the electroabsorption optical modulator 12 temporarily increases. The pulse width of the bias adjusting electric pulse Vpm is greater than the time width of the impulse response of the light receiver 15. However, the influence of the increase in leakage of the optical signal to be measured Px due to the bias adjusting electric pulse Vpm is small in the output of the light receiver 15. Therefore, the S / N ratio is not significantly lowered by the bias adjusting electric pulse Vpm, and both a high S / N ratio and a short gate width can be achieved.

(実施形態2)
図3は、本実施形態に係るサンプリング波形測定装置の一例を示す構成概略図である。本実施形態に係るサンプリング波形測定装置102では、バイアス調整手段16は、光パルスPsと同期したバイアス調整用電気パルスVpmを発生する電気パルス発生器21を有し、少なくとも電界吸収型光変調器12の光ゲートが開いている間、電気パルス発生器21からのバイアス調整用電気パルスVpmを電界吸収型光変調器12の電極に入力する。
(Embodiment 2)
FIG. 3 is a schematic configuration diagram illustrating an example of the sampling waveform measuring apparatus according to the present embodiment. In the sampling waveform measuring apparatus 102 according to the present embodiment, the bias adjusting unit 16 includes an electric pulse generator 21 that generates a bias adjusting electric pulse Vpm synchronized with the optical pulse Ps, and at least the electroabsorption optical modulator 12. While the optical gate is open, the bias adjusting electric pulse Vpm from the electric pulse generator 21 is input to the electrode of the electroabsorption optical modulator 12.

ここで、バイアス調整用電気パルスVpmと光パルスPsとの同期は、光パルス発生器11から同期信号を電気パルス発生器21に入力する場合と、電気パルス発生器21から同期信号を光パルス発生器11に入力する場合と、別途設けた同期信号発生器(不図示)からの同期信号を光パルス発生器11と電気パルス発生器21の両方に入力する場合、のいずれでもよい。   Here, the synchronization of the bias adjusting electric pulse Vpm and the optical pulse Ps is performed when the synchronizing signal is input from the optical pulse generator 11 to the electric pulse generator 21 and when the synchronizing signal is generated from the electric pulse generator 21. Either the case of inputting to the generator 11 or the case of inputting a synchronizing signal from a separately provided synchronizing signal generator (not shown) to both the optical pulse generator 11 and the electric pulse generator 21 may be used.

また、必要に応じて、可変遅延器22を、電気パルス発生器21の出力、又は光パルス発生器11の出力、又は同期信号発生器(不図示)の出力に挿入することにより、光ゲートに対するバイアス調整用電気パルスVpmの相対タイミングを調整することができる。   Further, if necessary, the variable delay device 22 is inserted into the output of the electric pulse generator 21, the output of the optical pulse generator 11, or the output of a synchronization signal generator (not shown) to The relative timing of the electrical pulse Vpm for bias adjustment can be adjusted.

逆バイアス電圧発生器13は、直流電源13a、バイアスT13b、終端器13cからなり、電界吸収型光変調器12に直流のバイアス電圧を印加するとともに、バイアス調整手段16からのバイアス調整用電気パルスVpmや光パルスPsによって電界吸収型光変調器12の電極に発生する電気パルスが反射しないようにインピーダンス整合をとって終端する。   The reverse bias voltage generator 13 includes a DC power supply 13a, a bias T13b, and a terminator 13c. The reverse bias voltage generator 13 applies a DC bias voltage to the electroabsorption optical modulator 12, and the bias adjusting electric pulse Vpm from the bias adjusting means 16. The impedance matching is performed so that the electric pulse generated at the electrode of the electroabsorption optical modulator 12 is not reflected by the light pulse Ps.

(実施形態3)
図4は、本実施形態に係るサンプリング波形測定装置の一例を示す構成概略図である。本実施形態に係るサンプリング波形測定装置103では、バイアス調整手段16は、光パルスPsが入力されバイアス調整用電気パルスVpmを出力する第2の受光器31を有し、少なくとも電界吸収型光変調器12の光ゲートが開いている間、第2の受光器31からのバイアス調整用電気パルスVpmを電界吸収型光変調器12に入力する。
(Embodiment 3)
FIG. 4 is a schematic configuration diagram illustrating an example of the sampling waveform measuring apparatus according to the present embodiment. In the sampling waveform measuring apparatus 103 according to the present embodiment, the bias adjusting unit 16 includes the second light receiver 31 that receives the optical pulse Ps and outputs the bias adjusting electric pulse Vpm, and at least the electroabsorption optical modulator. While the 12 optical gates are open, the bias adjusting electric pulse Vpm from the second light receiver 31 is input to the electroabsorption optical modulator 12.

ここで、必要に応じて、可変遅延器32を、第2の受光器31の入力又は出力に挿入することにより、光ゲートに対するバイアス調整用電気パルスVpmの相対タイミングを調整することができる。また、必要に応じて第2の受光器31の出力に電気増幅器を挿入することにより、バイアス調整用電気パルスVpmの電圧振幅を大きくすることができる。   Here, if necessary, the relative delay of the electrical pulse Vpm for bias adjustment with respect to the optical gate can be adjusted by inserting the variable delay device 32 into the input or output of the second light receiver 31. Further, the voltage amplitude of the bias adjusting electric pulse Vpm can be increased by inserting an electric amplifier into the output of the second light receiver 31 as necessary.

(実施形態4)
図5は、本実施形態に係るサンプリング波形測定装置の一例を示す構成概略図である。本実施形態に係るサンプリング波形測定装置104では、バイアス調整手段16は、光パルスPsが入力された際に電界吸収型光変調器12の電極(不図示)に発生する電気パルスVppの極性を反転させ、反転後の電気パルスをバイアス調整用電気パルスVpmとして所定の遅延時間後に電界吸収型光変調器12の電極に戻すことによって、少なくとも電界吸収型光変調器12の光ゲートが開いている間、電気パルスVppの極性を反転させたバイアス調整用電気パルスVpmを電界吸収型光変調器12に入力することを特徴とする。
(Embodiment 4)
FIG. 5 is a schematic configuration diagram illustrating an example of the sampling waveform measuring apparatus according to the present embodiment. In the sampling waveform measuring apparatus 104 according to the present embodiment, the bias adjusting unit 16 inverts the polarity of the electric pulse Vpp generated at the electrode (not shown) of the electroabsorption optical modulator 12 when the optical pulse Ps is input. The inverted electric pulse is returned as the bias adjusting electric pulse Vpm to the electrode of the electroabsorption optical modulator 12 after a predetermined delay time, so that at least the optical gate of the electroabsorption optical modulator 12 is open. The bias adjusting electric pulse Vpm in which the polarity of the electric pulse Vpp is inverted is input to the electroabsorption optical modulator 12.

具体的には、サンプリング波形測定装置104では、バイアス調整手段16は、一端が電界吸収型光変調器12の電極に接続された同軸ケーブル41と、同軸ケーブル41に設けられ、電界吸収型光変調器12に印加された直流バイアス電圧を遮断する直流遮断コンデンサ42と、同軸ケーブル41の他端に接続された短絡器43とを備え、電界吸収型光変調器12の電極で発生した電気パルスVppを同軸ケーブル41に伝搬させた後、短絡器43で電気パルスVppの極性を反転させて反射し、電気パルスVppの極性を反転させた電気パルスをバイアス調整用電気パルスVpmとして電界吸収型光変調器12の電極に戻す。   Specifically, in the sampling waveform measuring apparatus 104, the bias adjusting unit 16 is provided on the coaxial cable 41 having one end connected to the electrode of the electroabsorption optical modulator 12 and the coaxial cable 41, and the electroabsorption optical modulation is performed. An electric pulse Vpp generated at the electrode of the electroabsorption optical modulator 12, comprising a DC blocking capacitor 42 for cutting off the DC bias voltage applied to the converter 12, and a short circuit 43 connected to the other end of the coaxial cable 41. Is propagated to the coaxial cable 41, and then the electric pulse Vpp is inverted and reflected by the short circuit 43, and the electric pulse obtained by inverting the polarity of the electric pulse Vpp is used as the bias adjusting electric pulse Vpm. Return to electrode of vessel 12.

電界吸収型光変調器12に光パルスPsを入力すると、電界吸収型光変調器12の電気入力端子に正の電気パルスVppが発生する。この正の電気パルスVppが同軸ケーブル41を伝搬し、短絡器43で極性が反転し、負の電気パルスが同軸ケーブル41を逆に伝搬して電界吸収型光変調器12に戻る。   When the optical pulse Ps is input to the electroabsorption optical modulator 12, a positive electric pulse Vpp is generated at the electric input terminal of the electroabsorption optical modulator 12. The positive electric pulse Vpp propagates through the coaxial cable 41, the polarity is reversed by the short circuit 43, and the negative electric pulse propagates backward through the coaxial cable 41 and returns to the electroabsorption optical modulator 12.

直流遮断コンデンサ42は電界吸収型光変調器12に直流バイアスを印加するためのものであり、図5では短絡器43の近くに配置されているが、電界吸収型光変調器12の近くに配置してもよい。電気パルスVppが発生してからバイアス調整用電気パルスVpmが電界吸収型光変調器12に戻るまでの時間は、同軸ケーブル41及び直流遮断コンデンサ42の往復の遅延時間となる。   The DC blocking capacitor 42 is for applying a DC bias to the electroabsorption optical modulator 12, and is arranged near the short-circuiting device 43 in FIG. 5, but is arranged near the electroabsorption optical modulator 12. May be. The time from the generation of the electric pulse Vpp to the return of the bias adjusting electric pulse Vpm to the electroabsorption optical modulator 12 is a round trip delay time of the coaxial cable 41 and the DC blocking capacitor 42.

図6に、同軸ケーブルの往復の遅延時間の設定例を示す。光パルスPsによる光ゲート動作時間がバイアス調整用電気パルスVpmに内に含まれるように同軸ケーブル41の遅延時間を設定すると、ゲート幅が狭くなる効果が得られる。図6では、光パルスPsによって発生した電気パルスVppを、その次の光パルスPsによって光ゲートが開いている間に電界吸収型光変調器12に戻す例を示したが、これに限られるものではない。例えば、ある光パルスによって電界吸収型光変調器12で発生した電気パルスをn周期(nは1以上の整数。)後の光パルスによる光ゲート動作に合うように遅延して電界吸収型光変調器12に戻してもよい。   FIG. 6 shows an example of setting the round trip delay time of the coaxial cable. If the delay time of the coaxial cable 41 is set so that the optical gate operation time by the optical pulse Ps is included in the bias adjusting electric pulse Vpm, an effect of narrowing the gate width is obtained. FIG. 6 shows an example in which the electric pulse Vpp generated by the optical pulse Ps is returned to the electroabsorption optical modulator 12 while the optical gate is opened by the next optical pulse Ps. However, the present invention is limited to this. is not. For example, an electric pulse generated by the electroabsorption optical modulator 12 by a certain optical pulse is delayed so as to match the optical gate operation by the optical pulse after n periods (n is an integer of 1 or more), and the electroabsorption optical modulation is performed. It may be returned to the vessel 12.

以上の実施形態1から実施形態4までの説明は、通常の電界吸収型光変調器12の極性である信号側がp型、接地側がn型の場合について説明したが、これに限られるものではなく、逆極性の電界吸収型光変調器の場合にも適用することができる。この場合、実施形態2又は実施形態3のように別途電気パルス発生器21又は第2の受光器31を用いる場合は、電気パルス発生器21又は第2の受光器31は、バイアス調整用電気パルスとして、正の電気パルスを発生するようにする必要がある。実施形態4における電界吸収型光変調器12では負の電気パルスが発生し、短絡器43で極性が反転し、正の電気パルスがバイアス調整用電気パルスとして電界吸収型光変調器12に戻る。   In the above description of the first to fourth embodiments, the case where the signal side which is the polarity of the normal electroabsorption optical modulator 12 is p-type and the ground side is n-type has been described. However, the present invention is not limited to this. The present invention can also be applied to an electroabsorption optical modulator having a reverse polarity. In this case, when the electric pulse generator 21 or the second light receiver 31 is separately used as in the second embodiment or the third embodiment, the electric pulse generator 21 or the second light receiver 31 may be used as the bias adjusting electric pulse. It is necessary to generate a positive electric pulse. In the electroabsorption optical modulator 12 according to the fourth embodiment, a negative electric pulse is generated, the polarity is inverted by the short circuit 43, and the positive electric pulse returns to the electroabsorption optical modulator 12 as a bias adjusting electric pulse.

また、本実施例では、光パルスを電界吸収型光変調器12の後方から入力する構成を示したが、これに限られるものではなく前方から入力する構成においても本発明を適用することができる。   In the present embodiment, the configuration in which the optical pulse is input from the back of the electroabsorption optical modulator 12 is shown. However, the present invention is not limited to this, and the present invention can be applied to a configuration in which the optical pulse is input from the front. .

本発明は、高分解能の光サンプリングを行うことができるので、情報通信産業及び光を用いる各種産業に適用することができる。   Since the present invention can perform high-resolution optical sampling, it can be applied to the information communication industry and various industries using light.

11:光パルス発生器
12:電界吸収型光変調器
13:逆バイアス電圧発生器
13a:直流電源
13b:バイアスT
13c:終端器
14:光カプラ
15:受光器
16:バイアス調整手段
41:同軸ケーブル
42:直流遮断コンデンサ
43:短絡器
21:電気パルス発生器
22:可変遅延器
31:第2の受光器
32:可変遅延器
101、102、103、104:サンプリング波形測定装置
11: Optical pulse generator 12: Electroabsorption optical modulator 13: Reverse bias voltage generator 13a: DC power supply 13b: Bias T
13c: Terminator 14: Optical coupler 15: Light receiver 16: Bias adjusting means 41: Coaxial cable 42: DC blocking capacitor 43: Short circuit 21: Electric pulse generator 22: Variable delay device 31: Second light receiver 32: Variable delay devices 101, 102, 103, 104: sampling waveform measuring apparatus

Claims (5)

光パルスを発生する光パルス発生器(11)と、
被測定光信号及び前記光パルスが入力される電界吸収型光変調器(12)と、
前記電界吸収型光変調器から出力された光信号を電気信号に変換する受光器(15)と、を備え、
前記光パルスが入力された際の前記電界吸収型光変調器の相互吸収飽和による光ゲート動作を利用して前記被測定光信号をサンプリングし、等価サンプリング方式で前記被測定光信号の波形を測定するサンプリング波形測定装置(101)において、
前記電界吸収型光変調器の逆バイアス電圧を高くするバイアス調整用電気パルスを、少なくとも前記光ゲートが開いている間、前記電界吸収型光変調器に入力するバイアス調整手段(16)を備えることを特徴とするサンプリング波形測定装置。
An optical pulse generator (11) for generating optical pulses;
An electroabsorption optical modulator (12) to which an optical signal to be measured and the optical pulse are input;
A light receiver (15) for converting an optical signal output from the electroabsorption optical modulator into an electric signal,
The optical signal to be measured is sampled using the optical gate operation due to the mutual absorption saturation of the electroabsorption optical modulator when the optical pulse is input, and the waveform of the optical signal to be measured is measured by an equivalent sampling method. In the sampling waveform measuring apparatus (101) to
Bias adjusting means (16) for inputting a bias adjusting electric pulse for increasing a reverse bias voltage of the electroabsorption optical modulator to the electroabsorption optical modulator at least while the optical gate is open. A sampling waveform measuring apparatus characterized by the above.
前記バイアス調整手段は、
前記光パルスと同期したバイアス調整用電気パルスを発生する電気パルス発生器(21)を有し、
少なくとも前記光ゲートが開いている間、前記電気パルス発生器からの前記バイアス調整用電気パルスを前記電界吸収型光変調器に入力することを特徴とする請求項1に記載のサンプリング波形測定装置。
The bias adjusting means includes
An electric pulse generator (21) for generating an electric pulse for bias adjustment synchronized with the optical pulse,
2. The sampling waveform measuring apparatus according to claim 1, wherein the bias adjusting electric pulse from the electric pulse generator is input to the electroabsorption optical modulator at least while the optical gate is open.
前記バイアス調整手段は、
前記光パルスが入力されバイアス調整用電気パルスを出力する第2の受光器(31)を有し、
少なくとも前記光ゲートが開いている間、前記第2の受光器からの前記バイアス調整用電気パルスを前記電界吸収型光変調器に入力することを特徴とする請求項1に記載のサンプリング波形測定装置。
The bias adjusting means includes
A second light receiver (31) that receives the light pulse and outputs an electric pulse for bias adjustment;
2. The sampling waveform measuring apparatus according to claim 1, wherein the bias adjusting electric pulse from the second light receiver is input to the electroabsorption optical modulator at least while the optical gate is open. .
前記バイアス調整手段は、
前記サンプリング用光パルスが入力された際に前記電界吸収型光変調器の電極に発生する電気パルスの極性を反転させ、所定の遅延時間後に前記電界吸収型光変調器の電極に戻すことによって、少なくとも前記光ゲートが開いている間、前記バイアス調整用電気パルスを前記電界吸収型光変調器に入力することを特徴とする請求項1に記載のサンプリング波形測定装置。
The bias adjusting means includes
By inverting the polarity of the electric pulse generated at the electrode of the electroabsorption optical modulator when the sampling optical pulse is input, and returning it to the electrode of the electroabsorption optical modulator after a predetermined delay time, 2. The sampling waveform measuring apparatus according to claim 1, wherein the bias adjusting electric pulse is input to the electroabsorption optical modulator at least while the optical gate is open.
前記バイアス調整手段は、
一端が前記電界吸収型光変調器の電極に接続された同軸ケーブル(41)と、
前記同軸ケーブルに設けられ、前記電界吸収型光変調器に印加された直流バイアス電圧を遮断する直流遮断コンデンサ(42)と、
前記同軸ケーブルの他端に接続された短絡器(43)とを備え、
前記電界吸収型光変調器の電極で発生した電気パルスを前記同軸ケーブルに伝搬させた後、前記短絡器で前記電気パルスの極性を反転させて反射させ、前記バイアス調整用電気パルスとして前記電界吸収型光変調器の電極に戻すことを特徴とする請求項4に記載のサンプリング波形測定装置。
The bias adjusting means includes
A coaxial cable (41) having one end connected to the electrode of the electroabsorption optical modulator;
A DC blocking capacitor (42) provided in the coaxial cable and blocking a DC bias voltage applied to the electroabsorption optical modulator;
A short circuit (43) connected to the other end of the coaxial cable;
After propagating the electric pulse generated at the electrode of the electroabsorption optical modulator to the coaxial cable, the electric pulse is inverted and reflected by the short circuit, and the electric field absorption is performed as the electric pulse for bias adjustment. The sampling waveform measuring apparatus according to claim 4, wherein the sampling waveform measuring apparatus is returned to the electrode of the optical modulator.
JP2009166256A 2009-07-15 2009-07-15 Sampling waveform measuring device Expired - Fee Related JP4991797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166256A JP4991797B2 (en) 2009-07-15 2009-07-15 Sampling waveform measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166256A JP4991797B2 (en) 2009-07-15 2009-07-15 Sampling waveform measuring device

Publications (2)

Publication Number Publication Date
JP2011021957A JP2011021957A (en) 2011-02-03
JP4991797B2 true JP4991797B2 (en) 2012-08-01

Family

ID=43632180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166256A Expired - Fee Related JP4991797B2 (en) 2009-07-15 2009-07-15 Sampling waveform measuring device

Country Status (1)

Country Link
JP (1) JP4991797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715660B2 (en) * 2013-05-27 2015-05-13 アンリツ株式会社 Optical sampling apparatus and optical sampling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152361A (en) * 1994-11-29 1996-06-11 Nippon Telegr & Teleph Corp <Ntt> Apparatus for measuring waveform of optical signal
JP3805216B2 (en) * 2001-07-31 2006-08-02 三菱電機株式会社 Optical SNR measurement device, optical transmission device, and optical communication system
JP2005337844A (en) * 2004-05-26 2005-12-08 Nippon Telegr & Teleph Corp <Ntt> Optical sampling device
WO2008087809A1 (en) * 2007-01-15 2008-07-24 Anritsu Corporation Optical signal quality monitoring device and its method

Also Published As

Publication number Publication date
JP2011021957A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
US8432153B2 (en) Time stretch enhanced recording scope
JP3796357B2 (en) Optical signal quality monitor
Keeler et al. The benefits of ultrashort optical pulses in optically interconnected systems
JP5604042B2 (en) Optical signal quality monitoring apparatus and method
JP4991797B2 (en) Sampling waveform measuring device
US8044655B2 (en) Pulse measurement apparatus and method
US6563895B2 (en) Optical bit rate converter
CN103901262A (en) Nanosecond level pulse peak value detection method
JP5372634B2 (en) Sampling waveform measuring device
JP2008502896A (en) A device that measures the waveform of a very short single pulse.
EP1695465B1 (en) All-optical converter
JP7375029B2 (en) Method and apparatus for measuring pulse signals with high dynamic range
Dorrer et al. Ultra-sensitive optical sampling by coherent-linear detection
Lonappan et al. Time-stretch accelerated processor for real-time, in-service, signal analysis
Nakahara et al. Single optical clock pulse generator for processing ultrafast asynchronous optical packets
CN111693157B (en) Time-frequency multiplexing-based large pump bandwidth ultrafast pulse time domain measurement method and system
Maguire et al. Highly-efficient optical sampling based on two-photon absorption in a semiconductor micro-cavity device
JP4255806B2 (en) Optical packet head timing synchronization method and optical packet head timing synchronization device
JP4732156B2 (en) Polarization direction conversion apparatus and polarization direction conversion method
Konatham et al. Photonic-Enabled Real-Time Frequency-Spectrum Tracking of Broadband Microwave Signals at a Nanosecond Scale
Porzi et al. All-optical self-synchronizing scheme for contention resolution in asynchronous optical packet switched networks using continuously tunable optical delay line
JP4991830B2 (en) Sampling waveform measuring apparatus and sampling waveform measuring method
JP5455053B2 (en) Apparatus and method for removing waveform distortion of ultrafast optical pulse
CN105652100B (en) Photoelectric tube pulsewidth controllable measuring device and its application method
Zhang et al. On-line electro-optic cross-correlation for ultra-wideband wireless channel sounding based on dual optical frequency comb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4991797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees