[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4990593B2 - Underground heat exchanger buried structure - Google Patents

Underground heat exchanger buried structure Download PDF

Info

Publication number
JP4990593B2
JP4990593B2 JP2006277010A JP2006277010A JP4990593B2 JP 4990593 B2 JP4990593 B2 JP 4990593B2 JP 2006277010 A JP2006277010 A JP 2006277010A JP 2006277010 A JP2006277010 A JP 2006277010A JP 4990593 B2 JP4990593 B2 JP 4990593B2
Authority
JP
Japan
Prior art keywords
heat exchanger
ground
spiral
underground heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006277010A
Other languages
Japanese (ja)
Other versions
JP2008096015A (en
Inventor
均 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUST THOKAI CO., LTD.
Original Assignee
JUST THOKAI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUST THOKAI CO., LTD. filed Critical JUST THOKAI CO., LTD.
Priority to JP2006277010A priority Critical patent/JP4990593B2/en
Publication of JP2008096015A publication Critical patent/JP2008096015A/en
Application granted granted Critical
Publication of JP4990593B2 publication Critical patent/JP4990593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、地中に埋設され大地との間で熱交換を行う地中熱交換器の埋設構造に関するものである。   The present invention relates to a buried structure of a ground heat exchanger that is buried in the ground and exchanges heat with the ground.

地中の深部(例えば深さ5m以上)は年間を通じて温度がほぼ一定であり(例えば15℃)、外気と比べて夏は冷たく冬は暖かいという性質を有している。この性質を利用して地中からの採熱、或いは地中への放熱を行うため、地中に埋設する地中熱交換器が知られている。地中熱交換器はヒートポンプ,冷暖房装置,融雪装置等の負荷装置に接続され、負荷装置との間で空気,水,不凍液等の熱媒が循環され、負荷装置において熱媒から冷熱や温熱が取り出されることで大地熱が利用されるものである。
従来、地中熱交換器としては、例えば、(特許文献1)の「熱交換器の外径より大きい直径の鉛直孔を穿設し、鉛直孔に熱交換器を挿入し、鉛直孔と熱交換器との間に珪砂を充填した不凍液循環式地中熱利用装置」、(特許文献2)の「大地に掘削された坑井内に挿入され、下端部が封鎖された外筒と、下端が開放されるとともに下部の側壁部分に流体が流通する流通孔が設けられ外筒内に隙間を有して挿入される内筒と、坑井と外筒との間に注入されて外筒を大地に固定するシリカサンド等の良熱伝導性素材を混練したグラウトと、を備えた地中熱交換器」が知られている。
以上のように地中熱交換器は、地中に穿設された鉛直孔と熱交換器との間に、珪砂等の砂や、シリカサンド等の良熱伝導性素材を混練したグラウトを充填することによって、熱交換器を大地に固定することができるとともに、熱交換器と大地との熱伝導を実現することができる。
特開2003−307353号公報 特開2003−130471号公報
The depth in the ground (for example, a depth of 5 m or more) has a substantially constant temperature throughout the year (for example, 15 ° C.), and has a property that it is colder in summer and warmer than winter. An underground heat exchanger embedded in the ground is known to collect heat from the ground using this property or to dissipate heat to the ground. The underground heat exchanger is connected to a load device such as a heat pump, an air conditioner, or a snow melting device, and a heat medium such as air, water, or antifreeze is circulated between the load devices. The earth heat is used by being taken out.
Conventionally, as an underground heat exchanger, for example, a vertical hole having a diameter larger than the outer diameter of the heat exchanger is drilled, and a heat exchanger is inserted into the vertical hole. An antifreeze circulating geothermal heat utilization device filled with silica sand between the exchanger and “Patent Document 2”, “an outer cylinder inserted into a well drilled in the ground and sealed at its lower end, A flow hole through which a fluid flows is provided in the lower side wall portion and the inner cylinder is inserted between the well and the outer cylinder, and the outer cylinder is grounded. An underground heat exchanger provided with a grout kneaded with a highly heat-conductive material such as silica sand to be fixed on the ground is known.
As described above, the underground heat exchanger is filled with a grout kneaded with sand such as silica sand and good heat conductive material such as silica sand between the vertical hole drilled in the ground and the heat exchanger. By doing so, the heat exchanger can be fixed to the ground, and heat conduction between the heat exchanger and the ground can be realized.
JP 2003-307353 A JP 2003-130471 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)一般に地中熱交換器は、大地に掘削した1本の鉛直孔を使って利用できる地熱量に限度があり、経験上、地中からの採熱及び地中への放熱によって地熱を利用できる範囲は、鉛直孔の外周から直径0.4mの範囲までであり、熱交換器の表面積(伝熱面積)にはほとんど依存しないことが知られている。従って、(特許文献1)や(特許文献2)に開示されたような地中熱交換器において、熱交換量を大きくするためには、掘削する鉛直孔を深くするか鉛直孔の本数を増やさなければならず、この場合は施工工数が増え工期も長期化し、施工コストも増大するという課題を有していた。
(2)上記の現象は、熱交換器の表面積(伝熱面積)にはほとんど依存しないことから、鉛直孔に充填される砂やグラウトに混練されるシリカサンドの主成分が二酸化ケイ素であり、二酸化ケイ素の熱伝導率(理論値)は2W/m・Kしかないこととも関係していると推察される。このため、熱交換器の表面積(伝熱面積)を増やす等の熱交換器の構造を変えても熱交換量を大きくすることができず、有効利用できる地熱量に一定の限界があるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) In general, geothermal heat exchangers have a limit to the amount of geothermal heat that can be used using a single vertical hole excavated in the ground, and experience has shown that geothermal heat can be collected by collecting heat from the ground and dissipating it into the ground. The available range is from the outer periphery of the vertical hole to the range of 0.4 m in diameter, and it is known that it hardly depends on the surface area (heat transfer area) of the heat exchanger. Therefore, in the underground heat exchanger as disclosed in (Patent Document 1) and (Patent Document 2), in order to increase the amount of heat exchange, the vertical holes to be excavated are deepened or the number of vertical holes is increased. In this case, the construction man-hours increase, the construction period becomes longer, and the construction cost also increases.
(2) Since the above phenomenon hardly depends on the surface area (heat transfer area) of the heat exchanger, the main component of the sand filled in the vertical holes and the silica sand kneaded into the grout is silicon dioxide, It is presumed that the thermal conductivity (theoretical value) of silicon dioxide is related to only 2 W / m · K. For this reason, even if it changes the structure of a heat exchanger, such as increasing the surface area (heat transfer area) of a heat exchanger, the amount of heat exchange cannot be enlarged, but the subject that there is a certain limit in the amount of geothermal heat that can be used effectively Had.

本発明は上記従来の課題を解決するもので、地中熱交換器と大地との熱交換率を飛躍的に向上させ、地中からの採熱及び地中への放熱によって地熱を利用できる大地の範囲を広げることができ、地熱の利用効率を飛躍的に高めることができ、さらに竪穴を深くしたり竪穴の本数を増やしたりしなくても必要な熱交換量を確保することができるので、工期の長期化や施工コストが増加するのを防止できる施工性に優れた地中熱交換器の埋設構造を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, dramatically improves the heat exchange rate between the underground heat exchanger and the ground, and can use the ground heat by collecting heat from the ground and radiating heat to the ground. Because it can expand the range of the geothermal heat, it is possible to dramatically increase the use efficiency of geothermal heat, and can secure the necessary heat exchange amount without deepening the pits or increasing the number of pits, An object of the present invention is to provide a buried structure of an underground heat exchanger excellent in workability capable of preventing an increase in construction period and construction cost.

上記従来の課題を解決するために本発明の地中熱交換器の埋設構造は、以下の構成を有している。
本発明の請求項1に記載の地中熱交換器の埋設構造は、大地に形成された竪穴と、前記竪穴に配設された地中熱交換器と、前記竪穴に充填され大地内を流動する地下水が粒子間に浸透し、前記地下水によって前記地中熱交換器と大地との熱交換が促進される粒状の充填材と、を備えた地中熱交換器の埋設構造であって、前記充填材が、純度90%以上のケイ素粒を含有し、前記ケイ素粒が、粒度範囲毎に複数種に分級されており、分級された複数種の前記ケイ素粒が混合された構成を有している。
この構成により、以下のような作用が得られる。
(1)充填材が純度90%以上のケイ素粒を含有しており、ケイ素の熱伝導率は148W/m・Kなので、地中熱交換器と大地との熱交換率を飛躍的に向上させ、地中からの採熱及び地中への放熱によって地熱を利用できる大地の範囲を広げることができる。
(2)このため、竪穴を深くしたり竪穴の本数を増やしたりしなくても必要な熱交換量を確保することができるので、工期の長期化や施工コストが増加するのを防止できる。
(3)充填材は、熱伝導率が高いためケイ素粒からなることが好ましいが、ケイ素粒の他に、コンクリート,モルタル等の水硬材ではなく、土砂,土,砂等の粒状の充填材を用いることにより、大地内を流動する地下水が竪穴内の充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換が促進される。
(4)ケイ素粒が、粒度範囲毎に複数種に分級されており、分級された複数種のケイ素粒が混合されているので、竪穴内に充填されたケイ素粒を高い密度で充填させることができ、熱交換量を向上させることができる。
In order to solve the above conventional problems, the underground heat exchanger embedding structure of the present invention has the following configuration.
The underground heat exchanger embedding structure according to claim 1 of the present invention includes a pothole formed in the ground, a ground heat exchanger disposed in the pothole, and the earth filled in the pothole and flowing in the ground. A ground heat exchanger that includes a granular filler that permeates between particles and promotes heat exchange between the ground heat exchanger and the ground by the ground water , The filler contains silicon particles having a purity of 90% or more, the silicon particles are classified into a plurality of types for each particle size range, and the plurality of classified silicon particles are mixed. Yes.
With this configuration, the following effects can be obtained.
(1) Since the filler contains silicon particles with a purity of 90% or more and the thermal conductivity of silicon is 148 W / m · K, the heat exchange rate between the underground heat exchanger and the ground is dramatically improved. The range of the earth where geothermal heat can be used can be expanded by collecting heat from the ground and radiating heat to the ground.
(2) For this reason, since the necessary heat exchange amount can be ensured without deepening the pits or increasing the number of pits, it is possible to prevent the construction period from increasing and the construction cost from increasing.
(3) The filler is preferably composed of silicon particles because of its high thermal conductivity, but in addition to silicon particles, it is not a hydraulic material such as concrete or mortar, but a granular filler such as earth or sand, earth or sand. By using this, groundwater flowing in the ground permeates between the particles of the filler in the pit, and the groundwater promotes heat exchange between the underground heat exchanger and the ground.
(4) Since the silicon particles are classified into a plurality of types for each particle size range, and the plurality of classified silicon particles are mixed, the silicon particles filled in the potholes can be filled at a high density. And the amount of heat exchange can be improved.

ここで、竪穴としては、地中にボーリングによって形成された竪穴、先端にスクリュー状のフィンを設けた杭を回転させながら埋設することによって形成された竪穴等が挙げられ、直径が10〜25cm、深さが10〜200mに形成されたものを用いることができる。竪穴に地中熱交換器を配設した後、竪穴は充填材を地面又は地面付近まで充填して埋め戻される。   Here, examples of the pothole include a pothole formed by boring in the ground, a pothole formed by burying a pile provided with screw-like fins at the tip, and having a diameter of 10 to 25 cm, What was formed in the depth of 10-200 m can be used. After placing the underground heat exchanger in the pothole, the pothole is backfilled with filling material to or near the ground.

地中熱交換器としては、二重管方式、Uチューブ方式、WUチューブ方式等の公知のものを用いることができる。
二重管方式は内管と外管の二重管で構成されており、外管を流下する熱媒が、最下端から内管を通って返送される循環方式である。熱媒が、内管から外管を通って循環する方式も可能である。Uチューブ方式は二本の直管をU字型のチューブで連結して構成されており、チューブの一端から他端に熱媒を通して熱交換させるものである。WUチューブ方式は二組のU字型のチューブを十字状に配置して構成されており、Uチューブ方式の熱交換量を増大させたものである。
また、Uチューブ方式の直管の少なくとも1本を、又は、二重管方式の外管を螺旋状に形成された螺旋状流路に代えたものも用いることができる。螺旋状流路を備えた地中熱交換器は、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができるので、竪穴の深さを従来の1/3〜1/20程度に浅くすることができ掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れ、さらに少量の充填材で竪穴を埋め戻すことができ、埋め戻し作業性にも優れるため好適に用いられる。
As an underground heat exchanger, well-known things, such as a double pipe system, a U tube system, and a WU tube system, can be used.
The double pipe system is composed of a double pipe consisting of an inner pipe and an outer pipe, and a heat medium flowing down the outer pipe is returned from the lowest end through the inner pipe. A system in which the heat medium circulates from the inner pipe through the outer pipe is also possible. The U tube system is configured by connecting two straight pipes with a U-shaped tube, and heat is exchanged from one end of the tube to the other end through a heat medium. The WU tube system is configured by arranging two sets of U-shaped tubes in a cross shape, and increases the heat exchange amount of the U tube system.
Further, at least one U-tube type straight pipe or a double-pipe type outer pipe replaced with a helical channel formed in a spiral shape can be used. The underground heat exchanger provided with the spiral channel has a length in the spiral axis direction of 1/3 to 1 in order to obtain a heat transfer area equivalent to that of the underground heat exchanger having a long straight pipe portion. / 20 can be shortened, so that the depth of the hole can be reduced to about 1/3 to 1/20 of the conventional depth, and the excavation cost can be greatly reduced. It is excellent in that it can be backfilled with a small amount of filler and is excellent in backfilling workability.

充填材としては、純度90%以上好ましくは95%以上のケイ素粒を含有したものが用いられる。ケイ素粒の純度が95%より低くなるにつれケイ素粒の熱伝導率が低下する傾向がみられ、90%より低くなると、この傾向が著しくなるため好ましくない。   As the filler, a material containing silicon grains having a purity of 90% or more, preferably 95% or more is used. As the purity of the silicon particles becomes lower than 95%, the thermal conductivity of the silicon particles tends to decrease. When the purity is lower than 90%, this tendency becomes remarkable, which is not preferable.

ケイ素粒の粒度としては、平均粒径が0.01〜40mmのものを適宜選択して用いることができる。ケイ素粒の平均粒径が0.01mmより小さくなると、竪穴内に充填されたケイ素粒の充填密度が上がらず、また多数のケイ素粒を介して伝熱されるため熱交換量が低下し、40mmより大きくなると竪穴内に充填する際の流動性が乏しいため充填性が悪くなり施工性に欠けるととともに、地中熱交換器との接触面積が低下し熱交換量が低下するため、いずれも好ましくない。
なお、地下水が伏流している場所では、少なくとも地下水層に充填するケイ素粒を、地下水の流動を妨げないような粒度にするのが好ましい。大地内の地下水層を流動する地下水が竪穴内の充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換を促進させるためである。
As the particle size of the silicon particles, those having an average particle size of 0.01 to 40 mm can be appropriately selected and used. When the average particle size of the silicon particles is smaller than 0.01 mm, the packing density of the silicon particles filled in the pits does not increase, and the heat exchange amount decreases because the heat is transferred through a large number of silicon particles. If it becomes large, the fluidity when filling the pothole will be poor, so the filling property will be poor and the workability will be poor, and the contact area with the underground heat exchanger will be reduced and the amount of heat exchange will be reduced. .
In a place where underground water is flowing down, it is preferable that at least the silicon particles filling the groundwater layer have a particle size that does not hinder the flow of groundwater. This is because the groundwater flowing through the groundwater layer in the ground permeates between the filler particles in the pit and promotes heat exchange between the underground heat exchanger and the ground.

充填材は、熱伝導率が高いためケイ素粒からなることが好ましいが、ケイ素粒の他に、コンクリート,モルタル等の水硬材ではなく、土砂,土,砂等の粒状の充填材を用いることにより、大地内を流動する地下水が竪穴内の充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換が促進されるので好ましい。
分級するケイ素粒の粒度範囲としては、竪穴内を高い密度で充填することができるように調整されたものであれば、特に制限なく用いることができる。例えば、平均粒径が0.1〜5mmの細粒分と、平均粒径が10〜30mmの粗粒分とに分けて分級され、細粒分と粗粒分とが混合され充填されたものは、細粒分だけが充填されたものや粗粒分だけが充填されたものと比較して熱伝導性能に優れており、好適に用いられる。
The filler is preferably composed of silicon particles because of its high thermal conductivity, but in addition to silicon particles, it is not a hydraulic material such as concrete or mortar, but a granular filler such as earth, sand or sand. Therefore, the groundwater flowing in the ground permeates between the particles of the filler in the pothole, and the groundwater promotes heat exchange between the underground heat exchanger and the ground, which is preferable.
As the particle size range of the silicon particles to be classified, any particle can be used without particular limitation as long as it is adjusted so that the inside of the pit can be filled with high density. For example, the fine particles having an average particle size of 0.1 to 5 mm and the coarse particles having an average particle size of 10 to 30 mm are classified and mixed with the fine particles and the coarse particles. Is excellent in heat conduction performance as compared with those filled only with fine particles and those filled only with coarse particles, and is preferably used.

本発明の請求項2に記載の発明は、請求項1に記載の地中熱交換器の埋設構造であって、前記ケイ素粒が、半導体素子材料の製造過程で発生する廃棄ケイ素粒、又は、シリコンウェーハの破砕屑である構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)ケイ素粒が、半導体素子材料の製造過程で発生する廃棄ケイ素粒、又は、シリコンウェーハの破砕屑なので、ケイ素の純度が高いため熱伝導率が高く、また廃棄物を有効に活用することができる。
The invention according to claim 2 of the present invention is the buried structure of the underground heat exchanger according to claim 1, wherein the silicon particles are waste silicon particles generated in the process of manufacturing a semiconductor element material, or It has the structure which is the crushing waste of a silicon wafer.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since silicon particles are waste silicon particles generated during the manufacturing process of semiconductor element materials or silicon wafer crushed debris, the thermal conductivity is high due to the high purity of silicon, and wastes are used effectively. Can do.

ここで、廃棄ケイ素粒としては、半導体素子材料の製造過程で二酸化ケイ素を還元してケイ素を製造する際に発生する純度90〜99%程度のケイ素粒が用いられる。シリコンウェーハの破砕屑としては、シリコンウェーハの不良品の破砕屑等が用いられる。これらのケイ素粒は、粉砕せずにそのまま、若しくは適宜所定の粒度になるように粉砕して用いることができる。   Here, as the discarded silicon particles, silicon particles having a purity of about 90 to 99% generated when silicon is produced by reducing silicon dioxide in the manufacturing process of the semiconductor element material are used. As the silicon wafer crushing waste, defective silicon wafer crushing waste or the like is used. These silicon particles can be used as they are without being pulverized, or can be appropriately pulverized to have a predetermined particle size.

本発明の請求項3に記載の発明は、請求項1又は2に記載の地中熱交換器の埋設構造であって、前記地中熱交換器が、少なくとも一部が螺旋状に形成され内部を熱媒が流れる螺旋状流路と、前記螺旋状流路の内側の螺旋軸の周囲に形成された螺旋軸空間と、前記螺旋状流路の下端に接続された連結部材と、直管状に形成され前記連結部材を介して前記螺旋状流路の下端と接続され前記螺旋状流路の螺旋軸方向と略平行に前記螺旋軸空間内に配設された地中熱媒流路と、前記地中熱媒流路に沿って間隔をあけて配設された間隔保持部材と、を有し、前記間隔保持部材が、環状に形成され前記地中熱媒流路が嵌挿された基部と、前記基部に延設されたアーム部と、前記アーム部端部に形成され前記螺旋状流路が嵌着された嵌着部と、を備えた構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)熱媒が内部を流れる螺旋状流路を備えているので、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができる。そのため、地中熱交換器を配設する竪穴の深さを、従来の直管状の地中熱交換器の場合の竪穴の深さの1/3〜1/20程度にすることができ、竪穴の掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れるとともに施工性に優れる。
(2)地中熱交換器を埋設するための竪穴を浅くできるので、少量の充填材で竪穴を埋め戻すことができ、埋め戻し作業性にも優れる。
(3)螺旋状流路の間隔を保持する間隔保持部材を備えているので、埋め戻される際の充填材の圧力によって螺旋状流路3が変形することがなく、局部的に過剰な応力が働き難くピッチングが生じ難いので耐久性に優れる。
(4)また、間隔保持部材を備えているので、充填材の圧力によって螺旋状流路の間隔が狭くなったり広くなったりするのを防止して、竪穴内に螺旋状流路を間隔保持部材の間隔で均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる。
(5)間隔保持部材で螺旋状流路の間隔を保持できるので、合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路を形成することができ、汎用性に著しく優れる。
(6)合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路3を形成した場合は、螺旋軸方向に伸縮するので施工現場まで輸送する際は縮んだ状態のためコンパクトで搬送性に優れ、施工現場では伸ばしながら間隔保持部材で固定して容易に施工することができ施工性に優れる。
The invention according to claim 3 of the present invention is the underground heat exchanger embedding structure according to claim 1 or 2, wherein the underground heat exchanger is at least partially formed in a spiral shape. A helical flow path through which the heat medium flows, a helical shaft space formed around the helical axis inside the helical flow path, a connecting member connected to the lower end of the helical flow path, and a straight tube shape An underground heat transfer medium channel formed and connected to the lower end of the spiral channel via the connecting member and disposed in the spiral axis space substantially parallel to the spiral axis direction of the spiral channel; A gap holding member disposed at intervals along the underground heat medium flow path, and the gap holding member is formed in an annular shape, and a base portion into which the underground heat medium flow path is inserted , configuration in which the arm portion extending to the base, and a fitting portion in which the spiral flow path is formed in the arm portion end has been fitted, the It has.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since the heat medium has a spiral flow path through which the heat medium flows, in order to obtain a heat transfer area equivalent to the underground heat exchanger having a long straight pipe portion, the length in the direction of the spiral axis is set. It can be shortened to about 1/3 to 1/20. Therefore, the depth of the pothole in which the underground heat exchanger is disposed can be about 1/3 to 1/20 of the depth of the pothole in the case of the conventional straight tubular underground heat exchanger, The excavation cost can be significantly reduced, and the excavation amount is small, so excavation workability and workability are excellent.
(2) Since the pothole for embedding the underground heat exchanger can be made shallow, the pothole can be backfilled with a small amount of filler, and the backfilling workability is excellent.
(3) Since the space holding member for holding the space between the spiral channels is provided, the spiral channel 3 is not deformed by the pressure of the filler when being backfilled, and excessive stress is locally generated. It is difficult to work and difficult to pitch, so it has excellent durability.
(4) Since the gap holding member is provided, the gap between the spiral channels is prevented from being narrowed or widened by the pressure of the filler, and the spiral channel is placed in the pothole. It is possible to arrange them evenly at intervals, and it is difficult to generate heat exchange spots, and high heat exchange efficiency can be maintained.
(5) Since the interval of the spiral channel can be maintained by the interval holding member, the spiral channel can be formed by a spiral tube made of a synthetic resin and formed in a coil shape, which is remarkably versatile. Excellent.
(6) When the spiral flow path 3 is formed by a spiral tube made of a synthetic resin and formed in a coil shape, since it expands and contracts in the direction of the spiral axis, it is in a contracted state when transported to the construction site. It is compact and has excellent transportability, and it can be easily installed by fixing it with a spacing member while stretching at the construction site.

ここで、地中熱媒流路に配設固定された間隔保持部材は、螺旋状流路の間隔を保持できるように、その間隔や数量を適宜選択することができる。Here, the interval holding member disposed and fixed in the underground heat medium flow channel can be appropriately selected for the interval and quantity so that the interval of the spiral flow channel can be maintained.

以上のように、本発明の地中熱交換器及びその埋設構造によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)充填材が純度90%以上のケイ素粒を含有しているので、地中熱交換器と大地との熱交換率を飛躍的に向上させ、地中からの採熱及び地中への放熱によって地熱を利用できる大地の範囲を広げることができ、地熱の利用効率を飛躍的に高めることができる地中熱交換器の埋設構造を提供できる。
(2)竪穴を深くしたり竪穴の本数を増やしたりしなくても必要な熱交換量を確保することができるので、工期の長期化や施工コストが増加するのを防止できる施工性に優れた地中熱交換器の埋設構造を提供できる。
(3)充填材は、熱伝導率が高いためケイ素粒からなることが好ましいが、ケイ素粒の他に、コンクリート,モルタル等の水硬材ではなく、土砂,土,砂等の粒状の充填材を用いることにより、大地内を流動する地下水が竪穴内の充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換が促進される。
(4)ケイ素粒が、粒度範囲毎に複数種に分級されており、分級された複数種のケイ素粒が混合されているので、竪穴内に充填されたケイ素粒を密充填させることができ、熱交換量を向上させることができる地中熱交換器の埋設構造を提供できる。
As described above, according to the underground heat exchanger and its embedded structure of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since the filler contains silicon grains having a purity of 90% or more, the heat exchange rate between the underground heat exchanger and the ground is dramatically improved, and heat is collected from the ground and into the ground. It is possible to provide a buried structure of the underground heat exchanger that can expand the range of the earth where heat can be used by heat radiation and can dramatically increase the use efficiency of the heat.
(2) Since the necessary amount of heat exchange can be secured without deepening the pits or increasing the number of pits, it has excellent workability that can prevent the construction period from increasing and construction costs from increasing. A buried structure of the underground heat exchanger can be provided.
(3) The filler is preferably composed of silicon particles because of its high thermal conductivity, but in addition to silicon particles, it is not a hydraulic material such as concrete or mortar, but a granular filler such as earth or sand, earth or sand. By using this, groundwater flowing in the ground permeates between the particles of the filler in the pit, and the groundwater promotes heat exchange between the underground heat exchanger and the ground.
(4) Since the silicon particles are classified into a plurality of types for each particle size range, and the plurality of classified silicon particles are mixed, the silicon particles filled in the potholes can be closely packed, A buried structure of the underground heat exchanger that can improve the heat exchange amount can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)ケイ素粒が、半導体素子材料の製造過程で発生する廃棄ケイ素粒、又は、シリコンウェーハの破砕屑なので、純度が高いため熱伝導率が高く、また廃棄物を有効に活用することができる省資源性に優れた地中熱交換器の埋設構造を提供できる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since the silicon grains are waste silicon grains generated during the manufacturing process of the semiconductor element material or silicon wafer crushed debris, the thermal conductivity is high due to high purity, and the waste can be effectively utilized. It is possible to provide a buried structure for underground heat exchangers with excellent resource saving.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)熱媒が内部を流れる螺旋状流路を備えているので、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができる。そのため、地中熱交換器を配設する竪穴の深さを、従来の直管状の地中熱交換器の場合の竪穴の深さの1/3〜1/20程度にすることができ、竪穴の掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れるとともに施工性に優れる。
(2)地中熱交換器を埋設するための竪穴を浅くできるので、少量の充填材で竪穴を埋め戻すことができ、埋め戻し作業性にも優れる。
(3)螺旋状流路の間隔を保持する間隔保持部材を備えているので、埋め戻される際の充填材の圧力によって螺旋状流路3が変形することがなく、局部的に過剰な応力が働き難くピッチングが生じ難いので耐久性に優れる。
(4)また、間隔保持部材を備えているので、充填材の圧力によって螺旋状流路の間隔が狭くなったり広くなったりするのを防止して、竪穴内に螺旋状流路を間隔保持部材の間隔で均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる。
(5)間隔保持部材で螺旋状流路の間隔を保持できるので、合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路を形成することができ、汎用性に著しく優れる。
(6)合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路3を形成した場合は、螺旋軸方向に伸縮するので施工現場まで輸送する際は縮んだ状態のためコンパクトで搬送性に優れ、施工現場では伸ばしながら間隔保持部材で固定して容易に施工することができ施工性に優れる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since the heat medium has a spiral flow path through which the heat medium flows, in order to obtain a heat transfer area equivalent to the underground heat exchanger having a long straight pipe portion, the length in the direction of the spiral axis is set. It can be shortened to about 1/3 to 1/20. Therefore, the depth of the pothole in which the underground heat exchanger is disposed can be about 1/3 to 1/20 of the depth of the pothole in the case of the conventional straight tubular underground heat exchanger, The excavation cost can be significantly reduced, and the excavation amount is small, so excavation workability and workability are excellent.
(2) Since the pothole for embedding the underground heat exchanger can be made shallow, the pothole can be backfilled with a small amount of filler, and the backfilling workability is excellent.
(3) Since the space holding member for holding the space between the spiral channels is provided, the spiral channel 3 is not deformed by the pressure of the filler when being backfilled, and excessive stress is locally generated. It is difficult to work and difficult to pitch, so it has excellent durability.
(4) Since the gap holding member is provided, the gap between the spiral channels is prevented from being narrowed or widened by the pressure of the filler, and the spiral channel is placed in the pothole. It is possible to arrange them evenly at intervals, and it is difficult to generate heat exchange spots, and high heat exchange efficiency can be maintained.
(5) Since the interval of the spiral channel can be maintained by the interval holding member, the spiral channel can be formed by a spiral tube made of a synthetic resin and formed in a coil shape, which is remarkably versatile. Excellent.
(6) When the spiral flow path 3 is formed by a spiral tube made of a synthetic resin and formed in a coil shape, since it expands and contracts in the direction of the spiral axis, it is in a contracted state when transported to the construction site. It is compact and has excellent transportability, and it can be easily installed by fixing it with a spacing member while stretching at the construction site.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は実施の形態1における地中熱交換器の埋設構造を示す模式図であり、図2は実施の形態1における地中熱交換器の斜視図である。
図1において、1は本発明の実施の形態1における地中熱交換器の埋設構造、100は大地、101は大地100にボーリングや先端にスクリュー状のフィンを設けた杭を回転させながら埋設する等によって形成された竪穴、102は竪穴101に充填された純度90%以上のケイ素粒を含有した充填材である。
2は竪穴101に配設された地中熱交換器、3はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、チタン等の金属製等で少なくとも一部が螺旋状に形成され内部を空気,水,不凍液等の熱媒が流れる螺旋状流路、4は螺旋状流路3の内側(螺旋内)の螺旋軸の周囲に形成された螺旋軸空間、5は螺旋状流路3の下端に接続されたエルボ管からなる連結部材、6はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、ステンレス製,チタン等の金属製等で直管状に形成され連結部材5を介して螺旋状流路3の下端と接続され螺旋状流路3の螺旋軸方向と略平行に螺旋軸空間4内に配設された地中熱媒流路、7は地中熱媒流路6に沿って適当な間隔をあけて配設された間隔保持部材、8は環状に形成され地中熱媒流路6が嵌挿された間隔保持部材7の基部、9は基部8に延設されたアーム部、10はアーム部9の端部に形成され螺旋状流路3が嵌着された嵌着部である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing a buried structure of the underground heat exchanger in the first embodiment, and FIG. 2 is a perspective view of the underground heat exchanger in the first embodiment.
In FIG. 1, 1 is an underground heat exchanger embedding structure according to Embodiment 1 of the present invention, 100 is the ground, 101 is embedded in the ground 100 while rotating a pile provided with boring and screw-like fins at the tip. A pothole 102 formed by the above method is a filler containing silicon particles with a purity of 90% or more filled in the pothole 101.
2 is an underground heat exchanger disposed in the pothole 101, 3 is made of a synthetic resin such as polypropylene, polybutene, and polyamide, and is made of a metal such as titanium, and at least a part thereof is formed in a spiral shape with air, water, A spiral flow path through which a heat medium such as antifreeze liquid flows, 4 is a spiral axis space formed around the spiral axis inside (inside the spiral) of the spiral flow path 3, and 5 is connected to the lower end of the spiral flow path 3. A connecting member 6 made of an elbow pipe, 6 is formed in a straight tube shape made of a synthetic resin such as polypropylene, polybutene, polyamide, etc., stainless steel, titanium or the like, and is connected to the lower end of the spiral flow path 3 via the connecting member 5. The underground heat medium flow path 7 connected and disposed in the helical axis space 4 substantially parallel to the direction of the helical axis of the helical flow path 3, 7 is spaced along the underground heat medium flow path 6. The disposed spacing holding member 8 is formed in an annular shape, and the underground heat medium flow path 6 is inserted therein. The base of the spacing members 7, 9 arm portion extending to the base 8, 10 is a fitting portion with a helical flow path 3 is formed on the end portion of the arm portion 9 is fitted.

以上のように構成された本発明の実施の形態1における地中熱交換器の埋設構造について、以下その施工方法の一例を説明する。
まず、大地100に所定の径(本実施の形態では200mm)で地中熱交換器2の先端部を残して埋設できる深さの竪穴101を形成する。
螺旋状流路3、地中熱媒流路6、連結部材5、間隔保持部材7を準備し、地中熱媒流路6に間隔保持部材7の基部8を適当な間隔をあけて配設固定する。次に、地中熱媒流路6を螺旋状流路3の内側に挿入し、その下端に連結部材5を装着した後、連結部材5に螺旋状流路3の下端を接続する。地中熱媒流路6に配設固定した間隔保持部材7の嵌着部10に螺旋状流路3を嵌着しながら、地中熱媒流路6の下端から竪穴101に挿入し、竪穴101の全長に亘って地中熱媒流路6及び螺旋状流路3を配設する。
最後に、竪穴101内に配設された地中熱交換器2の地中熱媒流路6及び螺旋状流路3の周囲に純度90%以上のケイ素粒からなる充填材102、又は、純度90%以上のケイ素粒の他に土砂等を含有した充填材102を地面又は地面付近まで充填して、竪穴101を埋め戻す。
An example of the construction method will be described below with respect to the buried structure of the underground heat exchanger according to Embodiment 1 of the present invention configured as described above.
First, a pothole 101 having a predetermined diameter (200 mm in the present embodiment) is formed in the ground 100 with a depth that allows embedding while leaving the tip of the underground heat exchanger 2.
A spiral flow path 3, a ground heat medium flow path 6, a connecting member 5, and a gap holding member 7 are prepared, and a base 8 of the gap holding member 7 is disposed in the ground heat medium flow path 6 at an appropriate interval. Fix it. Next, the underground heat medium flow path 6 is inserted inside the spiral flow path 3, the connecting member 5 is attached to the lower end thereof, and then the lower end of the spiral flow path 3 is connected to the connecting member 5. The helical flow path 3 is fitted into the fitting portion 10 of the spacing member 7 disposed and fixed in the underground heat medium flow path 6, and inserted into the pothole 101 from the lower end of the underground heat medium flow path 6. The underground heat medium flow path 6 and the spiral flow path 3 are disposed over the entire length of 101.
Finally, the filler 102 made of silicon particles having a purity of 90% or more around the underground heat medium flow path 6 and the helical flow path 3 of the underground heat exchanger 2 disposed in the pothole 101, or the purity The filling material 102 containing earth and sand in addition to 90% or more of silicon grains is filled to the ground or near the ground, and the pothole 101 is refilled.

以上のようにして地中に配設された実施の形態1における地中熱交換器2は、螺旋状流路3及び地中熱媒流路6の上端をヒートポンプ,冷暖房装置,融雪装置等の図示しない負荷装置に接続し、負荷装置で冷熱や温熱が熱交換された熱媒を螺旋状流路3の上端から下端に向かって流し大地100との間で熱交換させ、熱交換した熱媒を地中熱媒流路6の上端から負荷装置に流して循環させる。
なお、熱媒を流す方向はこれに限定するものではなく、これとは逆に、熱媒を地中熱媒流路6の上端から地中熱交換器2に導入し、螺旋状流路3の上端から取り出し、負荷装置に流すようにしてもよい。この場合も同様の作用が得られる。
As described above, the underground heat exchanger 2 according to the first embodiment disposed in the ground is configured such that the upper ends of the spiral flow path 3 and the underground heat transfer medium path 6 are connected to a heat pump, an air conditioner, a snow melting apparatus, or the like. A heat medium that is connected to a load device (not shown) and that exchanges heat or cold heat with the load device flows from the upper end to the lower end of the spiral flow path 3 and exchanges heat with the ground 100 to exchange heat. Is circulated from the upper end of the underground heat medium flow path 6 to the load device.
Note that the direction in which the heat medium flows is not limited to this, and conversely, the heat medium is introduced into the underground heat exchanger 2 from the upper end of the underground heat medium flow path 6, and the spiral flow path 3. You may make it take out from the upper end of this, and let it flow to a load apparatus. In this case, the same effect can be obtained.

以上のように構成された本発明の実施の形態1における地中熱交換器の埋設構造によれば、以下のような作用が得られる。
(1)充填材102が純度90%以上のケイ素粒を含有しており、ケイ素の熱伝導率は148W/m・Kなので、地中熱交換器2と大地100との熱交換率を飛躍的に向上させ、地中からの採熱及び地中への放熱によって地熱を利用できる大地100の範囲を広げることができる。
(2)このため、竪穴100を深くしたり竪穴100の本数を増やしたりしなくても必要な熱交換量を確保することができるので、工期の長期化や施工コストが増加するのを防止できる。
According to the buried structure of the underground heat exchanger according to Embodiment 1 of the present invention configured as described above, the following operation is obtained.
(1) Since the filler 102 contains silicon particles having a purity of 90% or more and the thermal conductivity of silicon is 148 W / m · K, the heat exchange rate between the underground heat exchanger 2 and the ground 100 is dramatically improved. The range of the ground 100 where the geothermal heat can be used can be expanded by heat collection from the ground and heat radiation to the ground.
(2) For this reason, since a necessary heat exchange amount can be ensured without deepening the pit hole 100 or increasing the number of pit holes 100, it is possible to prevent the construction period from increasing and the construction cost from increasing. .

また、以上のような本発明の実施の形態1における地中熱交換器2によれば、以下のような作用が得られる。
(1)熱媒が内部を流れる螺旋状流路3を備えているので、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができる。そのため、地中熱交換器2を配設する竪穴101の深さを、従来の直管状の地中熱交換器の場合の竪穴の深さの1/3〜1/20程度にすることができ、竪穴101の掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れるとともに施工性に優れる。
(2)地中熱交換器2を埋設するための竪穴101を浅くできるので、少量の充填材102で竪穴101を埋め戻すことができ、埋め戻し作業性にも優れる。
(3)螺旋状流路3の間隔を保持する間隔保持部材7を備えているので、埋め戻される際の充填材102の圧力によって螺旋状流路3が変形することがなく、局部的に過剰な応力が働き難くピッチングが生じ難いので耐久性に優れる。
(4)また、間隔保持部材7を備えているので、充填材102の圧力によって螺旋状流路3の間隔が狭くなったり広くなったりするのを防止して、竪穴101内に螺旋状流路3を間隔保持部材7の間隔で均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる。
(5)間隔保持部材7で螺旋状流路3の間隔を保持できるので、合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路3を形成することができ、汎用性に著しく優れる。
(6)合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路3を形成した場合は、螺旋軸方向に伸縮するので施工現場まで輸送する際は縮んだ状態のためコンパクトで搬送性に優れ、施工現場では伸ばしながら間隔保持部材7で固定して容易に施工することができ施工性に優れる。
Moreover, according to the underground heat exchanger 2 in Embodiment 1 of this invention as mentioned above, the following effects are obtained.
(1) Since the heating medium is provided with the spiral flow path 3, the length in the direction of the spiral axis is obtained in order to obtain a heat transfer area equivalent to that of the underground heat exchanger having a long straight pipe portion. Can be shortened to about 1/3 to 1/20. Therefore, the depth of the pothole 101 in which the underground heat exchanger 2 is disposed can be set to about 1/3 to 1/20 of the depth of the pothole in the case of a conventional straight tubular underground heat exchanger. The excavation cost of the hole 101 can be greatly reduced, and the excavation workability is excellent as well as the excavation workability is excellent because the excavation amount is small.
(2) Since the pothole 101 for embedding the underground heat exchanger 2 can be made shallow, the pothole 101 can be backfilled with a small amount of filler 102, and the backfilling workability is excellent.
(3) Since the gap holding member 7 that holds the gap of the spiral flow path 3 is provided, the spiral flow path 3 is not deformed by the pressure of the filler 102 when being backfilled, and is locally excessive. It is excellent in durability because it does not work easily and does not cause pitting.
(4) Further, since the interval holding member 7 is provided, it is possible to prevent the interval between the spiral channels 3 from being narrowed or widened due to the pressure of the filler 102, and the spiral channel in the pit 101. 3 can be evenly arranged at intervals of the interval holding member 7, and heat exchange spots hardly occur, and high heat exchange efficiency can be maintained.
(5) Since the interval of the spiral flow path 3 can be held by the interval holding member 7, the spiral flow path 3 can be formed by a spiral tube made of synthetic resin and formed in a coil shape. Remarkably excellent in properties.
(6) When the spiral flow path 3 is formed by a spiral tube made of a synthetic resin and formed in a coil shape, since it expands and contracts in the direction of the spiral axis, it is in a contracted state when transported to the construction site. It is compact and has excellent transportability, and can be easily fixed by being fixed by the spacing member 7 while being stretched at the construction site, so that it is excellent in workability.

なお、地中熱媒流路6に配設固定された間隔保持部材7は、螺旋状流路3の間隔を保持できるように、その間隔や数量を適宜選択することができる。   In addition, the space | interval holding member 7 arrange | positioned and fixed to the underground heat medium flow path 6 can select the space | interval and quantity suitably so that the space | interval of the helical flow path 3 can be hold | maintained.

ここで、本実施の形態においては、竪穴101の全長に亘って地中熱交換器2の螺旋状流路3が配設された場合について説明したが、竪穴101の一部、例えば、深さ5m以上の深部にだけ螺旋状流路3を配設し、そこから地表までは直管状の流路を接続する場合もある。地表から深さ5m程度までの大地は季節によって温度変化が大きく、熱媒との熱交換に適さないため(冬季は地表付近の大地100の温度が低下するため熱媒が大地100へ放熱したり、夏季は地表付近の大地100の温度が上昇するため熱媒が大地100から採熱したりする。)、地表付近の大地100内を熱媒が通過する時間を短くして熱損失を少なくするためである。
また、同様の理由から、グラスウール等の断熱材を地中熱交換器2の地表付近の流路の外面に配設する場合もある。また、竪穴101内に充填する充填材102として、地表付近だけ軽石,発泡ガラス等の断熱材を用いる場合もある。これにより、熱媒と地表付近の大地100との熱交換を抑制して熱損失を少なくすることができる。
また、本実施の形態においては、螺旋状流路3を備えた地中熱交換器2について説明したが、二重管方式、Uチューブ方式、WUチューブ方式等の公知の地中熱交換器を用いることもできる。この場合も、充填材102の熱伝導率が高いため、地中熱交換器2と大地100との熱交換率を飛躍的に向上させることができる。
Here, in the present embodiment, the case where the spiral flow path 3 of the underground heat exchanger 2 is disposed over the entire length of the pothole 101 has been described, but a part of the pothole 101, for example, the depth In some cases, the spiral flow path 3 is disposed only at a depth of 5 m or more, and a straight tubular flow path is connected from there to the ground surface. The ground from the ground surface to a depth of about 5m has a large temperature change depending on the season, and is not suitable for heat exchange with the heat medium (in winter, the temperature of the ground 100 near the surface decreases, so the heat medium radiates heat to the ground 100) In the summer, the temperature of the ground 100 near the surface rises, so the heat medium collects heat from the ground 100.) In order to reduce the heat loss by shortening the time for the heat medium to pass through the ground 100 near the surface. It is.
For the same reason, a heat insulating material such as glass wool may be disposed on the outer surface of the flow path near the ground surface of the underground heat exchanger 2. In some cases, a heat insulating material such as pumice or foamed glass is used only near the ground surface as the filler 102 to be filled in the pothole 101. Thereby, heat exchange between the heat medium and the ground 100 near the ground surface can be suppressed and heat loss can be reduced.
Moreover, in this Embodiment, although the underground heat exchanger 2 provided with the spiral flow path 3 was demonstrated, well-known underground heat exchangers, such as a double tube system, a U tube system, and a WU tube system, are used. It can also be used. Also in this case, since the thermal conductivity of the filler 102 is high, the heat exchange rate between the underground heat exchanger 2 and the ground 100 can be dramatically improved.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実験例1)
図3は充填材の効果を確認するための実験装置の一部断面模式図である。
20は深さ8cm,長さ40cm,幅8cmに組み立てられた矩形状の木枠、21は木枠20内に充填された充填材、22は木枠20の端から深さ4cm,幅4cmの位置に埋設された長さ10cm,太さ0.8cmの棒状の300Wのヒータ、23はヒータ22の先端から2.5cm離れた深さ4cm,幅4cmの位置に埋設された熱電対、24はヒータ22の先端から5.0cm離れた深さ4cm,幅4cmの位置に埋設された熱電対、25はヒータ22の先端から7.5cm離れた深さ4cm,幅4cmの位置に埋設された熱電対、26はヒータ22の先端から10.0cm離れた深さ4cm,幅4cmの位置に埋設された熱電対である。
充填材21としては、平均粒径0.1mmのケイ素粒を用いた。ケイ素粒は、半導体素子材料の製造過程で二酸化ケイ素を還元してケイ素を製造する際に発生した純度97%のケイ素粒を用いた。
充填材21を木枠20の上方5cmの高さから落下させ、木枠20内に充填材21を堆積させた。木枠20に山盛りになった充填材21は、平板ですり落とした。
木枠20に充填材21を充填した後、ヒータ22のスイッチを入れ、熱電対23,24,25,26の温度を10秒毎に測定した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Experimental example 1)
FIG. 3 is a partial cross-sectional schematic view of an experimental apparatus for confirming the effect of the filler.
20 is a rectangular wooden frame assembled to a depth of 8 cm, a length of 40 cm, and a width of 8 cm, 21 is a filler filled in the wooden frame 20, and 22 is a depth of 4 cm and a width of 4 cm from the edge of the wooden frame 20. A rod-shaped 300 W heater embedded in a position of 10 cm in length and 0.8 cm in thickness, 23 is a thermocouple embedded in a position 4 cm deep and 4 cm wide, 2.5 cm away from the tip of the heater 22, 24 A thermocouple embedded at a depth of 4 cm and a width of 4 cm 5.0 cm away from the tip of the heater 22, and 25 is a thermocouple embedded at a depth of 4 cm and a width of 4 cm 7.5 cm away from the tip of the heater 22. The pair 26 is a thermocouple embedded at a position 4 cm deep and 4 cm wide, which is 10.0 cm away from the tip of the heater 22.
As the filler 21, silicon particles having an average particle diameter of 0.1 mm were used. As the silicon particles, 97% pure silicon particles generated when silicon dioxide was produced by reducing silicon dioxide during the production process of the semiconductor element material were used.
The filler 21 was dropped from a height of 5 cm above the wooden frame 20 to deposit the filler 21 in the wooden frame 20. The filling material 21 piled up on the wooden frame 20 was scraped off with a flat plate.
After filling the wooden frame 20 with the filler 21, the heater 22 was turned on, and the temperatures of the thermocouples 23, 24, 25, and 26 were measured every 10 seconds.

(実験例2)
充填材21として、平均粒径20mmのケイ素粒と平均粒径0.1mmのケイ素粒を7:3の重量比で混合したものを用いた以外は実験例1と同様にして、熱電対23,24,25,26の温度を10秒毎に測定した。
(Experimental example 2)
The thermocouple 23, the same as in Experimental Example 1 except that the filler 21 is a mixture of silicon particles having an average particle diameter of 20 mm and silicon particles having an average particle diameter of 0.1 mm in a weight ratio of 7: 3. The temperature of 24, 25, 26 was measured every 10 seconds.

(比較例1)
充填材21として、平均粒径0.1mmの海砂を用いた以外は実験例1と同様にして、熱電対23,24,25,26の温度を10秒毎に測定した。
(Comparative Example 1)
The temperature of the thermocouples 23, 24, 25, and 26 was measured every 10 seconds in the same manner as in Experimental Example 1 except that sea sand having an average particle diameter of 0.1 mm was used as the filler 21.

図4は実験例1における充填材の伝熱状態を示す図であり、図5は実験例2における充填材の伝熱状態を示す図であり、図6は比較例1における充填材の伝熱状態を示す図である。横軸はヒータのスイッチを入れてからの経過時間、縦軸は熱電対による各温度測定点における温度を示している。比較のため、外気温も示している。
図4〜6によれば、実験例1,2における充填材は、比較例1と比較して、いずれも各温度測定点における温度上昇が大きく、熱伝導性能が優れていることが明らかになった。特に実験例2では、充填材が粒度範囲毎に複数種に分級されており、分級された複数種のケイ素粒が混合されているため、ヒータのスイッチを入れてから35分後には、ヒータから10cm離れた位置の温度も外気温を約5度上回っており、熱伝導性能が特に優れていることが明らかになった。
以上の実施例によれば、純度90%以上のケイ素粒を用いることにより熱伝導性能を高められることから、地中熱交換器に適用した場合には、地中熱交換器と大地との熱交換率を飛躍的に向上させ、地中からの採熱及び地中への放熱による地熱の利用効率を高められることが明らかである。
4 is a diagram showing a heat transfer state of the filler in Experimental Example 1, FIG. 5 is a diagram showing a heat transfer state of the filler in Experimental Example 2, and FIG. 6 is a heat transfer of the filler in Comparative Example 1. It is a figure which shows a state. The horizontal axis represents the elapsed time since the heater was turned on, and the vertical axis represents the temperature at each temperature measurement point by the thermocouple. The outside air temperature is also shown for comparison.
According to FIGS. 4 to 6, it is clear that the fillers in Experimental Examples 1 and 2 both have a large temperature rise at each temperature measurement point and have excellent heat conduction performance as compared with Comparative Example 1. It was. Particularly in Experimental Example 2, the filler is classified into a plurality of types for each particle size range, and a plurality of types of classified silicon particles are mixed. Therefore, 35 minutes after the heater is turned on, The temperature at a position 10 cm away was also about 5 degrees above the outside air temperature, and it was revealed that the heat conduction performance was particularly excellent.
According to the above embodiment, the heat conduction performance can be enhanced by using silicon grains having a purity of 90% or more. Therefore, when applied to the underground heat exchanger, the heat of the underground heat exchanger and the ground It is clear that the exchange rate can be dramatically improved and the utilization efficiency of geothermal heat can be enhanced by heat collection from the ground and heat radiation to the ground.

本発明は、地中に埋設され大地との間で熱交換を行う地中熱交換器の埋設構造に関し、地中熱交換器と大地との熱交換率を飛躍的に向上させ、地中からの採熱及び地中への放熱によって地熱を利用できる大地の範囲を広げることができ、地熱の利用効率を飛躍的に高めることができ、さらに竪穴を深くしたり竪穴の本数を増やしたりしなくても必要な熱交換量を確保することができるので、工期の長期化や施工コストが増加するのを防止できる施工性に優れた地中熱交換器の埋設構造を提供することができる。   The present invention relates to a buried structure of a ground heat exchanger that is buried in the ground and performs heat exchange with the ground, and dramatically improves the heat exchange rate between the ground heat exchanger and the ground, from the ground. The range of the earth that can use geothermal heat can be expanded by heat collection and heat radiation to the ground, the use efficiency of geothermal heat can be dramatically increased, and without further increasing the number of pits or the number of pits However, since the necessary heat exchange amount can be ensured, it is possible to provide a buried structure of the underground heat exchanger excellent in workability capable of preventing the construction period from being prolonged and the construction cost from increasing.

実施の形態1における地中熱交換器の埋設構造の模式図Schematic diagram of buried structure of underground heat exchanger according to Embodiment 1 実施の形態1における地中熱交換器の斜視図The perspective view of the underground heat exchanger in Embodiment 1 充填材の効果を確認するための実験装置の一部断面模式図Partial cross-sectional schematic diagram of the experimental device for confirming the effect of the filler 実験例1における充填材の伝熱状態を示す図The figure which shows the heat-transfer state of the filler in Experimental example 1 実験例2における充填材の伝熱状態を示す図The figure which shows the heat-transfer state of the filler in Experimental example 2 比較例1における充填材の伝熱状態を示す図The figure which shows the heat-transfer state of the filler in the comparative example 1

符号の説明Explanation of symbols

1 地中熱交換器の埋設構造
2 地中熱交換器
3 螺旋状流路
4 螺旋軸空間
5 連結部材
6 地中熱媒流路
7 間隔保持部材
8 基部
9 アーム部
10 嵌着部
20 木枠
21 充填材
22 ヒータ
23,24,25,26 熱電対
100 大地
101 竪穴
102 充填材
DESCRIPTION OF SYMBOLS 1 Embedment structure of underground heat exchanger 2 Underground heat exchanger 3 Spiral flow path 4 Spiral shaft space 5 Connecting member 6 Underground heat medium flow path 7 Spacing holding member 8 Base 9 Arm part 10 Fitting part 20 Wooden frame 21 Filler 22 Heater 23, 24, 25, 26 Thermocouple 100 Ground 101 Pothole 102 Filler

Claims (3)

大地に形成された竪穴と、前記竪穴に配設された地中熱交換器と、前記竪穴に充填され大地内を流動する地下水が粒子間に浸透し、前記地下水によって前記地中熱交換器と大地との熱交換が促進される粒状の充填材と、を備えた地中熱交換器の埋設構造であって、
前記充填材が、純度90%以上のケイ素粒を含有し、前記ケイ素粒が、粒度範囲毎に複数種に分級されており、分級された複数種の前記ケイ素粒が混合されていることを特徴とする地中熱交換器の埋設構造。
A pit formed in the ground, a ground heat exchanger disposed in the pit, and groundwater filled in the hole and flowing in the ground permeate between the particles, and the ground heat exchanger and the ground heat exchanger An underground heat exchanger embedded structure comprising a granular filler that promotes heat exchange with the ground,
The filler contains silicon particles having a purity of 90% or more, the silicon particles are classified into a plurality of types for each particle size range, and the plurality of classified silicon particles are mixed. An underground heat exchanger buried structure.
前記ケイ素粒が、半導体素子材料の製造過程で発生する廃棄ケイ素粒、又は、シリコンウェーハの破砕屑であることを特徴とする請求項1に記載の地中熱交換器の埋設構造。   2. The underground heat exchanger embedded structure according to claim 1, wherein the silicon particles are waste silicon particles generated in the process of manufacturing a semiconductor element material or silicon wafer crushing waste. 前記地中熱交換器が、少なくとも一部が螺旋状に形成され内部を熱媒が流れる螺旋状流路と、前記螺旋状流路の内側の螺旋軸の周囲に形成された螺旋軸空間と、前記螺旋状流路の下端に接続された連結部材と、直管状に形成され前記連結部材を介して前記螺旋状流路の下端と接続され前記螺旋状流路の螺旋軸方向と略平行に前記螺旋軸空間内に配設された地中熱媒流路と、前記地中熱媒流路に沿って間隔をあけて配設された間隔保持部材と、を有し、前記間隔保持部材が、環状に形成され前記地中熱媒流路が嵌挿された基部と、前記基部に延設されたアーム部と、前記アーム部端部に形成され前記螺旋状流路が嵌着された嵌着部と、を備えていることを特徴とする請求項1又は2の記載の地中熱交換器の埋設構造。 The underground heat exchanger is formed at least partially in a spiral shape, a spiral flow path in which a heat medium flows, and a spiral axis space formed around a spiral axis inside the spiral flow path; A connecting member connected to the lower end of the spiral flow path; and a straight tube formed through the connection member and connected to the lower end of the spiral flow path and substantially parallel to the spiral axis direction of the spiral flow path. A ground heat medium passage disposed in the spiral shaft space, and a spacing member disposed at intervals along the underground heat medium passage, wherein the spacing member is A base formed in an annular shape with the underground heat medium flow passage inserted therein, an arm portion extended to the base portion, and an attachment formed in the end of the arm portion with the helical flow passage fitted therein buried structure of the underground heat exchanger according to claim 1 or 2, characterized in that it comprises a part, a.
JP2006277010A 2006-10-10 2006-10-10 Underground heat exchanger buried structure Expired - Fee Related JP4990593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277010A JP4990593B2 (en) 2006-10-10 2006-10-10 Underground heat exchanger buried structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277010A JP4990593B2 (en) 2006-10-10 2006-10-10 Underground heat exchanger buried structure

Publications (2)

Publication Number Publication Date
JP2008096015A JP2008096015A (en) 2008-04-24
JP4990593B2 true JP4990593B2 (en) 2012-08-01

Family

ID=39379043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277010A Expired - Fee Related JP4990593B2 (en) 2006-10-10 2006-10-10 Underground heat exchanger buried structure

Country Status (1)

Country Link
JP (1) JP4990593B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468496B (en) * 2009-03-10 2011-09-14 Mark Brice Percussion mole
JP2012215377A (en) * 2011-03-25 2012-11-08 Tohoku Univ Underground heat exchange system and installing method of heat exchange well
JP6148847B2 (en) * 2012-11-19 2017-06-14 清水建設株式会社 Construction method of underground heat exchanger and underground heat exchanger
JP6164461B2 (en) * 2013-04-03 2017-07-19 清水建設株式会社 Geothermal utilization system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127916A (en) * 1992-10-16 1994-05-10 Tonen Chem Corp Production of spherical high-purity polycrystalline silicon
JP2001199792A (en) * 2000-01-14 2001-07-24 Komatsu Electronic Metals Co Ltd Silicon ingot and wafer each high in silicon 28 purity
JP2002054850A (en) * 2000-08-08 2002-02-20 Nippon Steel Corp Underground heat exchange system
JP2002303088A (en) * 2001-04-06 2002-10-18 Nippon Steel Corp Method of installing heat-exchanger tube for utilizing underground heat
JP2004101115A (en) * 2002-09-11 2004-04-02 Nippon Steel Corp Underground heat exchange system using underground continuous wall
JP2004271129A (en) * 2003-03-11 2004-09-30 Tone Boring Co Ltd Underground heat exchange system
JP2006038256A (en) * 2004-07-22 2006-02-09 Toko Kogyo:Kk Underground heat exchanger

Also Published As

Publication number Publication date
JP2008096015A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4594956B2 (en) Underground heat exchanger buried structure
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
JP4990593B2 (en) Underground heat exchanger buried structure
JP2003148079A (en) Manufacturing method for equipment for exchanging heat with ground, and pile for civil engineering and construction, used for the manufacturing method
CN106168418A (en) A kind of CCHP diaphram wall device and construction method thereof
JP5621218B2 (en) Underground heat exchanger and filler
JP5067956B1 (en) Heat exchange system
JP2004309124A (en) Underground heat exchanger
JP2008309382A (en) Heat pump utilizing groundwater and ground heat
US20180172318A1 (en) Induced groundwater flow closed loop geothermal system
JP2004271129A (en) Underground heat exchange system
JP2007139370A (en) Underground heat exchanger
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP2015055365A (en) Heat collecting pipe for underground thermal heat pump system
JP4136847B2 (en) Buried pipe for heat exchange
Benhammou et al. Evaluating cooling and thermal performances of a double pipe rectangular Earth-to-Air Heat Exchanger provided with a convection zone
JP2009041231A (en) Buried heat exchanger and its manufacturing method
JP5921891B2 (en) Panel heat exchanger for underground heat source heat pump
JP2014025688A (en) Heat exchange unit
JP2015210008A (en) Heat exchange system
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
JP2014020645A (en) Holding member
JP2005069537A (en) Buried pipe for heat exchange
JP2004177012A (en) Steel pipe pile for heat exchange
JP6738596B2 (en) Underground heat exchange mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees