[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4990125B2 - Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst - Google Patents

Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst Download PDF

Info

Publication number
JP4990125B2
JP4990125B2 JP2007503806A JP2007503806A JP4990125B2 JP 4990125 B2 JP4990125 B2 JP 4990125B2 JP 2007503806 A JP2007503806 A JP 2007503806A JP 2007503806 A JP2007503806 A JP 2007503806A JP 4990125 B2 JP4990125 B2 JP 4990125B2
Authority
JP
Japan
Prior art keywords
catalyst
alkali metal
formate
methanol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007503806A
Other languages
Japanese (ja)
Other versions
JPWO2006088253A1 (en
Inventor
典之 山根
健一郎 藤本
薫 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2007503806A priority Critical patent/JP4990125B2/en
Publication of JPWO2006088253A1 publication Critical patent/JPWO2006088253A1/en
Application granted granted Critical
Publication of JP4990125B2 publication Critical patent/JP4990125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ギ酸エステル及びメタノールの製造方法に関する。さらに詳しくは、一酸化炭素と水素からメタノールを製造する際に、水、二酸化炭素などによる活性低下に対する耐性の高い触媒を用いて、高効率で生成物を得る方法及びその触媒に関する。   The present invention relates to a method for producing formate and methanol. More specifically, the present invention relates to a method for obtaining a product with high efficiency by using a catalyst having high resistance to decrease in activity due to water, carbon dioxide and the like when methanol is produced from carbon monoxide and hydrogen, and the catalyst.

一般的に、工業的にメタノールを合成する際には、メタンを主成分とする天然ガスを水蒸気改質して得られる一酸化炭素と水素(合成ガス)を原料とし、銅・亜鉛系等の触媒を用いて固定床気相法にて、200〜300℃、5〜25MPaという厳しい条件で合成される(J.C.J.Bart et al.,Catal.Today,2,1(1987))。反応機構としては以下に示すように、二酸化炭素の水素化により、メタノール、水が生成し、次いで生成水が一酸化炭素と反応し二酸化炭素と水素が生成(水性ガスシフト反応)する逐次反応であるとする説が一般的に受け入れられている。
CO2 + 3H2 → CH3OH + H2O (1)
2 O + CO → CO 2 + H 2 (2)
CO + 2H2 → CH3OH (3)
In general, when industrially synthesizing methanol, carbon monoxide and hydrogen (synthetic gas) obtained by steam reforming natural gas mainly composed of methane are used as raw materials. Synthesized under severe conditions of 200 to 300 ° C. and 5 to 25 MPa by a fixed bed gas phase method using a catalyst (JCJ Bart et al., Catal. Today, 2, 1 (1987)) . As shown below, the reaction mechanism is a sequential reaction in which methanol and water are produced by hydrogenation of carbon dioxide, and then the produced water reacts with carbon monoxide to produce carbon dioxide and hydrogen (water gas shift reaction). The theory is generally accepted.
CO 2 + 3H 2 → CH 3 OH + H 2 O (1)
H 2 O + CO → CO 2 + H 2 (2)
CO + 2H 2 → CH 3 OH (3)

本反応は発熱反応であるが、気相法では熱伝導が悪いために、効率的な抜熱が困難であることから、反応器通過時の転化率を低く抑えて、未反応の高圧原料ガスをリサイクルするという効率に難点のあるプロセスとなっている。しかし、合成ガス中に含まれる、水、二酸化炭素による反応阻害は受けにくいという長所を活かして、様々なプラントが稼働中である。   Although this reaction is an exothermic reaction, it is difficult to remove heat efficiently due to poor heat conduction in the gas phase method, so the conversion rate when passing through the reactor is kept low, and unreacted high-pressure raw material gas Recycling is a difficult process in terms of efficiency. However, taking advantage of the fact that reaction inhibition by water and carbon dioxide contained in synthesis gas is difficult, various plants are in operation.

一方、液相でメタノールを合成して、抜熱速度を向上させる様々の方法が検討されている。中でも、低温(100〜180℃程度)で活性の高い触媒を用いる方法は、熱力学的にも生成系に有利であり、注目を集めている(たとえば、大山聖一,PETROTECH,18(1),27(1995))。使用される触媒はアルカリ金属アルコキサイドであるが、これらの方法では、合成ガス中に必ず含有される水、二酸化炭素による活性低下が報告され、何れも実用には至っていない(S.Ohyama,Applied Catalysis A: General,180,217(1999))。これは活性の高いアルカリ金属アルコキサイドが反応中に、低活性で安定なギ酸塩等に変化するためである。活性低下を防ぐためにはppbオーダーまで、原料ガス中の水、二酸化炭素を除去する必要があるが、そのような前処理を行うとコストが高くなり現実的ではない。   On the other hand, various methods for improving the heat removal rate by synthesizing methanol in a liquid phase have been studied. Among them, a method using a catalyst having high activity at a low temperature (about 100 to 180 ° C.) is advantageous for a production system thermodynamically and attracts attention (for example, Seiichi Oyama, PETROTECH, 18 (1) , 27 (1995)). The catalyst used is an alkali metal alkoxide, but in these methods, it is reported that the activity is reduced by water and carbon dioxide which are always contained in the synthesis gas, and none of them has been put into practical use (S. Ohyama, Applied Catalysis). A: General, 180, 217 (1999)). This is because a highly active alkali metal alkoxide is converted into a low activity and stable formate during the reaction. In order to prevent a decrease in activity, it is necessary to remove water and carbon dioxide in the raw material gas up to the ppb order. However, such pretreatment increases the cost and is not practical.

本発明者らはこれまでに、水、二酸化炭素による活性低下が小さい触媒として、アルカリ金属アルコキサイドを除くアルカリ金属系触媒とアルカリ土類金属系触媒の一方又は双方を使用する系を回分式反応器による評価において見出している(特願2001−561711号)。しかし、その後の検討で、半回分式反応器を用いた連続反応では、仕込んだアルカリ金属系触媒は低活性で安定なアルカリ金属ギ酸塩に変化し、CO転化率は時間の経過と共に減少することが判明した。   In the past, the present inventors have used a batch reactor in which one or both of an alkali metal catalyst and an alkaline earth metal catalyst excluding alkali metal alkoxide are used as a catalyst with a small decrease in activity due to water and carbon dioxide. (Japanese Patent Application No. 2001-561711). However, in a subsequent study, in a continuous reaction using a semi-batch reactor, the charged alkali metal catalyst was changed to a low activity and stable alkali metal formate, and the CO conversion decreased with time. There was found.

本発明は、上記の課題を解決することを目的とするものであり、低活性で安定なアルカリ金属ギ酸塩の活性を向上することで、ギ酸エステルまたはメタノールの合成原料ガス中に、二酸化炭素、水等が混在しても触媒の活性低下の度合いが低く、かつ、低温、低圧で連続反応においても安定的にギ酸エステルまたはメタノールを合成することを可能とする、触媒及び方法を提供するものである。   The present invention aims to solve the above problems, and by improving the activity of a low activity and stable alkali metal formate, carbon dioxide, The present invention provides a catalyst and a method capable of synthesizing formate ester or methanol stably even in continuous reaction at low temperature and low pressure even when water is mixed. is there.

本発明の特徴とするところは、以下に記す通りである。
(1) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてギ酸エステルを製造する方法であって、アルカリ金属ギ酸塩に加えて、分子構造に芳香環を有するエーテル、及びアルコール類の存在下に反応を行うことを特徴とするギ酸エステルの製造方法。
(2) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてメタノールを製造する方法であって、アルカリ金属ギ酸塩に加えて、分子構造に芳香環を有するエーテル、水素化分解触媒、及びアルコール類の存在下に反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。
(3) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを、アルカリ金属ギ酸塩に加えて、分子構造に芳香環を有するエーテル、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。
(4) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてギ酸エステルを製造する方法であって、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの双方、及びアルコール類の存在下に反応を行うことを特徴とするギ酸エステルの製造方法。
(5) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてメタノールを製造する方法であって、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの双方、水素化分解触媒、及びアルコール類の存在下に反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。
(6) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの双方、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。
) 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする(1)〜()のいずれかに記載の製造方法。
) 前記アルカリ金属ギ酸塩がギ酸カリウムであることを特徴とする(1)〜()のいずれかに記載の製造方法。
) 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする()に記載の製造方法。
(1) 前記アルカリ土類金属系触媒が、カルシウム塩を含む触媒であることを特徴とする(4)〜(6)のいずれかに記載の製造方法。
(1) 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする(1)に記載の製造方法。
(1) 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする(1)に記載の製造方法。
(1) 前記分子構造に芳香環を有するエーテルの芳香環が単環であることを特徴とする(1)〜(6),(1)〜(1)のいずれかに記載の製造方法。
(1) 前記分子構造に芳香環を有するエーテルがジフェニルエーテルであることを特徴とする(1)〜(6),(1)〜(1)のいずれかに記載の製造方法。
(1) 前記分子構造に芳香環を有するエーテルがベンジルエーテルであることを特徴とする(1)〜(6),(1)〜(1)のいずれかに記載の製造方法。
(1) 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする(1)〜(1)のいずれかに記載の製造方法。
17) 前記アルカリ金属ギ酸塩がギ酸カリウムであることを特徴とする(1)〜(1)のいずれかに記載の製造方法。
18) 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする(1)に記載の製造方法。
19) 前記水素化分解触媒がCuに加え、Mn、Reの少なくともいずれか、及びアルカリ金属元素を含有する触媒であることを特徴とする(2),(3),(5),(6)のいずれかに記載のメタノールの製造方法。
(2) 前記水素化分解触媒がCu、アルカリ土類金属元素、及びアルカリ金属元素を含有する触媒であることを特徴とする(2),(3),(5),(6)のいずれかに記載のメタノールの製造方法。
(2) 前記水素化分解触媒が固体触媒であり、この固体触媒にアルカリ金属ギ酸塩及びアルカリ土類金属系触媒を担持して、反応に供することを特徴とする(2),(3),(5),(6)のいずれかに記載のメタノールの製造方法。
(2) 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする(19)〜(2)のいずれかに記載の製造方法。
(2) 前記アルカリ金属ギ酸塩がギ酸カリウムであることを特徴とする(19)〜(2)のいずれかに記載の製造方法。
(2) 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする(2)に記載の製造方法。
(2) 前記アルコール類が第一級アルコールであることを特徴とする(1)〜(2)のいずれかに記載の製造方法。
26) アルカリ金属ギ酸塩及びアルカリ土類金属系触媒と分子構造に芳香環を有するエーテルの一方又は双方に加え、Cu、アルカリ土類金属元素、及びアルカリ金属元素を含有する水素化分解触媒から構成されることを特徴とするメタノール製造用触媒。
27) アルカリ金属ギ酸塩及びアルカリ土類金属系触媒と分子構造に芳香環を有するエーテルの一方又は双方に加え、Cuと、Mn、Reの少なくともいずれか、及びアルカリ金属元素を含有する水素化分解触媒から構成されることを特徴とするメタノール製造用触媒。
28) 前記アルカリ土類金属系触媒が、カルシウム塩を含む触媒であることを特徴とする(26)または(27)に記載のメタノール製造用触媒。
29) 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を有することを特徴とする(2)〜(28)のいずれかに記載のメタノール製造用触媒。
(3) 前記水素化分解触媒に含有されるアルカリ土類金属元素がマグネシウムであることを特徴とする(26)、(28)又は(29)に記載のメタノール製造用触媒。
(3) 前記水素化分解触媒に含有されるアルカリ金属元素がナトリウムであることを特徴とする(26)〜(3)のいずれかに記載のメタノール製造用触媒。
(3) 前記分子構造に芳香環を有するエーテルの芳香環が単環であることを特徴とする(26)〜(3)のいずれかに記載のメタノール製造用触媒。
(3) 前記分子構造に芳香環を有するエーテルがジフェニルエーテルであることを特徴とする(26)〜(3)のいずれかに記載のメタノール製造用触媒。
(3) 前分子構造に芳香環を有するエーテルがベンジルエーテルであることを特徴とする(26)〜(3)のいずれかに記載のメタノール製造用触媒。
(3) 前記水素化分解触媒が、共沈法においてpH=8〜11の範囲で一定に保ちながら調製することを特徴とする(2)〜(3)のいずれかに記載のメタノール製造用触媒の製造方法。
The features of the present invention are as described below.
(1) A method for producing a formate by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide and hydrogen, and an ether having an aromatic ring in a molecular structure in addition to an alkali metal formate And a method for producing a formate ester, wherein the reaction is carried out in the presence of an alcohol.
(2) A method for producing methanol by reacting at least one of carbon monoxide and carbon dioxide and hydrogen, and an ether having an aromatic ring in the molecular structure in addition to the alkali metal formate, A process for producing methanol, wherein a reaction is carried out in the presence of a hydrocracking catalyst and an alcohol to produce a formate ester and methanol, and the produced formate ester is hydrogenated to produce methanol.
(3) A source gas containing at least one of carbon monoxide and carbon dioxide and hydrogen is added to an alkali metal formate, and the reaction is performed in the presence of an ether having an aromatic ring in the molecular structure and alcohols. A method for producing methanol, comprising separating the product obtained in (1) from a reaction system and then hydrogenating a formate in the product with a hydrocracking catalyst to produce methanol.
(4) A method for producing a formate by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to an alkali metal formate, an alkaline earth metal catalyst, a molecule A method for producing a formate ester, wherein the reaction is carried out in the presence of both an ether having an aromatic ring in the structure and an alcohol.
(5) A method for producing methanol by reacting a source gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to an alkali metal formate, an alkaline earth metal catalyst, a molecular structure The reaction is carried out in the presence of both an ether having an aromatic ring, a hydrogenolysis catalyst, and an alcohol to produce a formate ester and methanol, and the produced formate ester is hydrogenated to produce methanol. A method for producing methanol.
(6) A source gas containing at least one of carbon monoxide, carbon dioxide, and hydrogen is added to an alkali metal formate, both an alkaline earth metal catalyst, an ether having an aromatic ring in the molecular structure, and an alcohol. The product obtained by carrying out the reaction in the presence of a kind is separated from the reaction system, and then the formic acid ester in the product is hydrogenated with a hydrocracking catalyst to produce methanol. Production method.
( 7 ) The production method according to any one of (1) to ( 6 ), wherein an alkali metal catalyst that can change into an alkali metal formate during the reaction is used instead of the alkali metal formate.
( 8 ) The method according to any one of (1) to ( 7 ), wherein the alkali metal formate is potassium formate.
( 9 ) The production method as described in ( 7 ), wherein the alkali metal catalyst capable of changing to an alkali metal formate during the reaction is potassium carbonate.
(1 0 ) The production method according to any one of (4) to (6), wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt.
(1 1 ) The production method according to (1 0 ), wherein an alkali metal catalyst that can be converted into an alkali metal formate during the reaction is used instead of the alkali metal formate.
(1 2 ) The production method according to (1 1 ), wherein the alkali metal catalyst capable of changing to an alkali metal formate during the reaction is potassium carbonate.
(1 3 ) The production according to any one of (1) to (6), (1 0 ) to (1 2 ), wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring Method.
(1 4 ) The production method according to any one of (1) to (6) and (1 0 ) to (1 2 ), wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
(1 5 ) The production method according to any one of (1) to (6) and (1 0 ) to (1 2 ), wherein the ether having an aromatic ring in the molecular structure is benzyl ether.
(1 6) in place of the alkali metal formate salt, which comprises using an alkali metal-based catalyst which can change into an alkali metal formate salt during the reaction (1 3) - according to any one of (1 5) Production method.
( 17 ) The production method according to any one of (1 3 ) to (1 5 ), wherein the alkali metal formate is potassium formate.
(18) the production method according to (1 6), wherein the alkali metal-based catalyst which can change into an alkali metal formate salt during the reaction is potassium carbonate.
( 19 ) (2), (3), (5), (6), wherein the hydrocracking catalyst is a catalyst containing at least one of Mn and Re and an alkali metal element in addition to Cu. The method for producing methanol according to any one of the above.
(2 0 ) Any one of (2), (3), (5), and (6 ), wherein the hydrocracking catalyst is a catalyst containing Cu, an alkaline earth metal element, and an alkali metal element A method for producing methanol according to claim 1.
(2 1 ) The hydrocracking catalyst is a solid catalyst, and an alkali metal formate and an alkaline earth metal catalyst are supported on the solid catalyst and used for the reaction (2), (3) , (5), (6 ) The manufacturing method of methanol in any one of (6 ) .
(2 2 ) The production according to any one of ( 19 ) to (2 1 ), wherein an alkali metal catalyst capable of changing to an alkali metal formate during the reaction is used instead of the alkali metal formate. Method.
(2 3 ) The production method according to any one of ( 19 ) to (2 1 ), wherein the alkali metal formate is potassium formate.
(2 4 ) The production method as described in (2 2 ), wherein the alkali metal catalyst capable of changing to an alkali metal formate during the reaction is potassium carbonate.
(2 5 ) The production method according to any one of (1) to (2 4 ), wherein the alcohol is a primary alcohol.
( 26 ) From a hydrocracking catalyst containing Cu, an alkaline earth metal element, and an alkali metal element in addition to one or both of an alkali metal formate and alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure A catalyst for methanol production, comprising:
( 27 ) In addition to one or both of alkali metal formate and alkaline earth metal catalyst and ether having an aromatic ring in the molecular structure, hydrogenation containing Cu, at least one of Mn and Re, and an alkali metal element A catalyst for methanol production comprising a cracking catalyst.
( 28 ) The catalyst for methanol production according to ( 26 ) or ( 27 ), wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt.
( 29 ) The methanol production according to any one of (2 6 ) to ( 28 ), which has an alkali metal catalyst that can be changed to an alkali metal formate during the reaction instead of the alkali metal formate. Catalyst.
(3 0) alkaline earth metal element contained in the hydrocracking catalyst is characterized in that it is a magnesium (26), (28) or (29) in methanol production catalyst described.
(3 1 ) The catalyst for methanol production according to any one of ( 26 ) to (3 0 ), wherein the alkali metal element contained in the hydrocracking catalyst is sodium.
(3 2 ) The catalyst for methanol production according to any one of ( 26 ) to (3 1 ), wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring.
(3 3 ) The catalyst for methanol production according to any one of ( 26 ) to (3 2 ), wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
(3 4 ) The catalyst for producing methanol according to any one of ( 26 ) to (3 2 ), wherein the ether having an aromatic ring in the previous molecular structure is benzyl ether.
(3 5 ) The methanol according to any one of (2 6 ) to (3 4 ), wherein the hydrocracking catalyst is prepared while being kept constant in the range of pH = 8 to 11 in the coprecipitation method. A method for producing a catalyst for production.

以下、本発明を詳細に説明する。
本発明者らは、鋭意検討した結果、半回分式の連続反応においてアルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの一方又は双方を用いると、一酸化炭素、二酸化炭素の少なくともいずれか、及び水素とアルコール類からギ酸エステル又はメタノールの製造において、高収率で製造可能であることを見出し、本発明に至った。
Hereinafter, the present invention will be described in detail.
As a result of intensive studies, the present inventors have found that when one or both of an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure are used in addition to an alkali metal formate in a semi-batch continuous reaction, In the production of formate ester or methanol from at least one of carbon oxide and carbon dioxide, and hydrogen and alcohols, it was found that it can be produced in high yield, and the present invention has been achieved.

例えば、図1に示すような反応プロセスで連続的にメタノールを製造し得る。半回分式反応器2にアルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの一方又は双方、及び粉状の水素化分解触媒を溶媒アルコールと共に仕込み、合成ガス1を供給する。反応器出口の生成物(ギ酸エステル、メタノール)、未反応ガスの混合物3を冷却器4で冷却し、未反応ガス5、ギ酸エステルとアルコールの液体混合物6に分離する。後者は次段に設置した蒸留塔7においてギ酸エステル8、メタノール9に分離する。転化率が低い場合は未反応ガス5を再度半回分式反応器2に供給することも可能であるが、高収率で得られる場合は未反応ガスを合成ガス製造の熱源(燃料)として利用する。   For example, methanol can be continuously produced by a reaction process as shown in FIG. In addition to alkali metal formate, semi-batch reactor 2 is charged with an alkaline earth metal catalyst, one or both ethers having an aromatic ring in the molecular structure, and a powdered hydrocracking catalyst together with solvent alcohol, and synthesized. Gas 1 is supplied. The product 3 at the outlet of the reactor (formate ester, methanol) and the unreacted gas mixture 3 are cooled by a cooler 4 and separated into an unreacted gas 5 and a liquid mixture 6 of formate ester and alcohol. The latter is separated into formate ester 8 and methanol 9 in distillation column 7 installed in the next stage. When the conversion rate is low, it is possible to supply the unreacted gas 5 to the semi-batch reactor 2 again, but when it is obtained in a high yield, the unreacted gas is used as a heat source (fuel) for syngas production. To do.

また、ギ酸エステルを製品として得る場合は、半回分式反応器2にアルカリ金属ギ酸塩、アルカリ土類金属系触媒と分子構造に芳香環を有するエーテルの一方又は双方を溶媒アルコールと共に仕込み、合成ガス1を供給する。このようにして得たギ酸エステルを水素化分解してメタノールを得ることも可能であり、ギ酸エステルと未反応ガスの混合物を水素化分解触媒を充填した管型反応器に供給し、該混合物中のギ酸エステルを水素化分解してメタノールを製造する。   When a formate ester is obtained as a product, a semi-batch reactor 2 is charged with one or both of an alkali metal formate, an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure together with a solvent alcohol, and a synthesis gas. 1 is supplied. It is also possible to hydrocrack the formate ester thus obtained to obtain methanol. A mixture of formate ester and unreacted gas is supplied to a tubular reactor packed with a hydrocracking catalyst, The formate is hydrocracked to produce methanol.

従来の低温液相法で使用される高活性アルカリ金属アルコキサイドは、反応中にアルカリ金属ギ酸塩に徐々に変化し、アルカリ金属ギ酸塩が低活性でかつ安定であるため、収率の経時劣化があった。   The highly active alkali metal alkoxide used in the conventional low-temperature liquid phase method gradually changes into an alkali metal formate during the reaction, and the alkali metal formate is low in activity and stable. there were.

本発明のアルカリ金属ギ酸塩は単独では低活性であるが、アルカリ土類金属系触媒、又は分子構造に芳香環を有するエーテルの1種又は2種以上と共存すると著しく活性が向上し、また、収率の経時劣化は確認されない。   The alkali metal formate of the present invention has low activity by itself, but when it coexists with one or more of an alkaline earth metal catalyst or an ether having an aromatic ring in the molecular structure, the activity is remarkably improved, Yield deterioration over time is not confirmed.

アルカリ金属ギ酸塩としてはギ酸カリウム、ギ酸ナトリウム、ギ酸セシウム、ギ酸ルビジウム等が挙げられる。特にギ酸カリウムを用いると触媒活性が高くなり好ましい。   Examples of the alkali metal formate include potassium formate, sodium formate, cesium formate, and rubidium formate. In particular, use of potassium formate is preferred because the catalytic activity is increased.

また、アルカリ金属ギ酸塩に替えて、反応中にギ酸塩の形態を取り得るアルカリ金属系触媒を用いても良く、反応仕込み時の形態は特に限定されない。   Moreover, it may replace with an alkali metal formate and may use the alkali metal catalyst which can take the form of a formate during reaction, and the form at the time of reaction preparation is not specifically limited.

このようなアルカリ金属系触媒としては、例えば炭酸カリウムやカリウムメトキサイドが挙げられる。炭酸カリウムを用いた場合、以下に示す反応でギ酸カリウムに変化していると推察される。他の形態で仕込んだ場合も、安定なギ酸塩に変化するものと推察される。
2CO3+H2O→2KOH+CO2 (4)
KOH+CO→HCOOK (5)
アルカリ土類金属系触媒としては、カルシウム、マグネシウム、バリウム、ストロンチウム等の金属化合物もしくは単体が挙げられる。これらの金属化合物としては、金属塩もしくは金属酸化物が好ましく、より好ましくは金属塩、例えば炭酸塩、硝酸塩、リン酸塩、酢酸塩、ギ酸塩が挙げられ、更に好ましくは炭酸塩、ギ酸塩である。中でも、カルシウム塩を用いると触媒活性が高くなり好ましい。
Examples of such an alkali metal catalyst include potassium carbonate and potassium methoxide. When potassium carbonate is used, it is presumed that it has changed to potassium formate by the reaction shown below. When charged in other forms, it is presumed to change to a stable formate.
K 2 CO 3 + H 2 O → 2 KOH + CO 2 (4)
KOH + CO → HCOOK (5)
Examples of the alkaline earth metal catalyst include metal compounds such as calcium, magnesium, barium and strontium or simple substances. These metal compounds are preferably metal salts or metal oxides, more preferably metal salts such as carbonates, nitrates, phosphates, acetates and formates, and even more preferably carbonates and formates. is there. Among these, use of a calcium salt is preferable because the catalytic activity is increased.

アルカリ金属ギ酸塩とアルカリ土類金属系触媒のモル比は、特に限定されることは無いが、アルカリ土類金属系触媒は少量存在すれば十分であり、(アルカリ金属ギ酸塩モル数)/(アルカリ土類金属モル数)比は0.5〜100の範囲が好ましく、より好ましくは1〜50であり、更に好ましくは2〜20である。アルカリ金属ギ酸塩に対してアルカリ土類金属系触媒は微量でもギ酸エステル、メタノール収率が高くなる。   The molar ratio of the alkali metal formate and the alkaline earth metal catalyst is not particularly limited, but it is sufficient that the alkaline earth metal catalyst is present in a small amount, and (alkaline metal formate moles) / ( The alkaline earth metal mole ratio) is preferably in the range of 0.5 to 100, more preferably 1 to 50, and even more preferably 2 to 20. The yield of formic acid ester and methanol is high even with a small amount of alkaline earth metal catalyst relative to alkali metal formate.

これらアルカリ金属系触媒、アルカリ土類金属系触媒の反応仕込み時の形態は、それぞれ1種類である必要は無く、ギ酸塩の形態を取り得るアルカリ金属系触媒の複数種類と、アルカリ土類金属系触媒の複数種類を混合しても良い。   These alkali metal catalysts and alkaline earth metal catalysts do not have to be in one form each, and there are a plurality of types of alkali metal catalysts that can take the form of formate and alkaline earth metal catalysts. A plurality of types of catalysts may be mixed.

これらの触媒は、常法により一般的な担体に担持させて用いることもできる。
分子構造に芳香環を有するエーテルとしては、アニソールのような単環を有する化合物の他、エトキシナフタレンのような2環を有する化合物、それ以上の複環を有する化合物が挙げられる。また、芳香環を複数有する化合物、例えば、ジフェニルエーテル、ベンジルエーテルが挙げられるが、これらに限定されない。
These catalysts can be used by supporting them on a general carrier by a conventional method.
Examples of ethers having an aromatic ring in the molecular structure include compounds having a single ring such as anisole, compounds having two rings such as ethoxynaphthalene, and compounds having more than one ring. In addition, compounds having a plurality of aromatic rings, such as diphenyl ether and benzyl ether, are exemplified, but not limited thereto.

中でもジフェニルエーテル、ベンジルエーテル、アニソールを用いると触媒活性が高くなり好ましい。
また、これらの分子構造に芳香環を有するエーテルは複数種を組み合わせて使用することも可能である。
Of these, diphenyl ether, benzyl ether, and anisole are preferred because of high catalytic activity.
These ethers having an aromatic ring in the molecular structure can be used in combination of two or more.

アルカリ金属ギ酸塩と分子構造に芳香環を有するエーテルのモル比は、特に限定されることは無いが、分子構造に芳香環を有するエーテルは少量存在すれば良く、(アルカリ金属ギ酸塩モル数)/(分子構造に芳香環を有するエーテルのモル数)は0.5〜100の範囲が好ましく、より好ましくは1〜50であり、更に好ましくは2〜20である。アルカリ土類金属系触媒と同様に微量の存在でもギ酸エステル、メタノール収率が向上する。   The molar ratio of the alkali metal formate and the ether having an aromatic ring in the molecular structure is not particularly limited, but a small amount of the ether having an aromatic ring in the molecular structure may be present (number of moles of alkali metal formate). / (Number of moles of ether having an aromatic ring in the molecular structure) is preferably in the range of 0.5 to 100, more preferably 1 to 50, and still more preferably 2 to 20. As with alkaline earth metal catalysts, the yield of formate and methanol is improved even in the presence of a trace amount.

アルカリ土類金属系触媒と分子構造に芳香環を有するエーテルは同時に使用することもできる。
反応に用いるアルコール類としては、鎖状または脂環式炭化水素類に水酸基が付いたものの他、フェノール及びその置換体、更には、チオール及びその置換体でも良い。これらアルコール類は、第1級、第2級および第3級のいずれでもよいが、反応効率等の点からは第1級アルコールが好ましく、メチルアルコール、エチルアルコール等の低級アルコールが最も一般的である。
The alkaline earth metal catalyst and the ether having an aromatic ring in the molecular structure can be used at the same time.
The alcohol used in the reaction may be a chain or alicyclic hydrocarbon having a hydroxyl group, a phenol and a substituted product thereof, or a thiol and a substituted product thereof. These alcohols may be any of primary, secondary, and tertiary, but primary alcohols are preferred from the viewpoint of reaction efficiency and the like, and lower alcohols such as methyl alcohol and ethyl alcohol are the most common. is there.

反応は、液相、気相のいずれでも行うことができるが、温和な条件を選定しうる系を採用することができる。具体的には、温度70〜250℃、圧力3〜70気圧、程度から選ばれ、液相となる条件が好ましいが、これらに限定されない。アルコール類は、反応が進行する程度の量、例えば触媒全体が浸かる程度の量があればよいが、それ以下でも反応は進行する。また、それ以上の量を溶媒として用いることもできる。また、上記反応に際してアルコール類の他に、適宜有機溶媒を併せて用いることができる。溶媒アルコールと芳香環を有するエーテルのモル比は、特に限定されることはないが、芳香環を有するエーテルは微量存在していれば良く、(溶媒アルコールモル数)/(芳香環を有するエーテルモル数)=50以上で好結果を得られやすい。   The reaction can be carried out in either the liquid phase or the gas phase, but a system in which mild conditions can be selected can be employed. Specifically, conditions selected from a temperature of 70 to 250 ° C., a pressure of 3 to 70 atm, and a liquid phase are preferable, but not limited thereto. Alcohols may be in an amount sufficient for the reaction to proceed, for example, an amount sufficient to soak the entire catalyst, but the reaction proceeds even below that amount. Further, a larger amount can be used as the solvent. In the above reaction, in addition to alcohols, an organic solvent can be used as appropriate. The molar ratio of the solvent alcohol and the ether having an aromatic ring is not particularly limited, but a small amount of the ether having an aromatic ring may be present, and (solvent alcohol mole number) / (ether mole having an aromatic ring). Number) = 50 or more, good results are likely to be obtained.

得られるギ酸エステルは、蒸留等の常法により精製することができるが、そのままメタノールの製造に供することもできる。すなわち、ギ酸エステルを水素化分解してメタノールを製造しうる。   The resulting formic acid ester can be purified by conventional methods such as distillation, but can also be used for the production of methanol as it is. That is, methanol can be produced by hydrogenolysis of formate.

水素化分解には水素化分解触媒が用いられ、たとえばCu、Pt、Ni、Co、Ru、Pd系の一般的な水素化分解触媒を用いることができ、具体的にはCu/MgOX/NaY(Xは化学的に許容し得る値、Yは化学的に許容し得る元素又は化合物)、Cu/MnOX(Xは化学的に許容し得る値)、Cu/ReOX(Xは化学的に許容し得る値)、Cu/ZnO、Cu/Cr23、ラネー銅等の銅系触媒、さらにはニッケル系触媒が好適である。 For hydrocracking, a hydrocracking catalyst is used. For example, a general hydrocracking catalyst of Cu, Pt, Ni, Co, Ru, Pd can be used, and specifically, Cu / MgO x / NaY. (X is a chemically acceptable value, Y is a chemically acceptable element or compound), Cu / MnO x (X is a chemically acceptable value), Cu / ReO x (X is a chemically acceptable value) Acceptable values), copper-based catalysts such as Cu / ZnO, Cu / Cr 2 O 3 , Raney copper, and nickel-based catalysts are preferred.

中でも、共沈法でCu/MgOXを調製し、これに蒸発乾固法でNaを添加したCu/MgOX/NaYは本反応に極めて高い活性を有し、水と二酸化炭素の一方又は双方が混在しても高メタノール収率を得ることができる。図2に示すように共沈法で調製する際に制御するpHによって、CO転化率は大きく異なり、共沈法でCu/MgOXを調製する際のpHは8〜11が好ましく、より好ましくは8.5〜10.5であり、更に好ましくは9〜10.5である。pHが11を超える範囲については、高アルカリ雰囲気に保持する為に沈殿剤として使用するアルカリ性化合物の使用量が著しく増加する為、経済的でない。Cu/MgOXに対するNaの担持量は、特に限定されることは無いが、0.1〜60wt%の範囲が好ましく、より好ましくは1〜40wt%であり、更に好ましくは3〜30wt%である。また、NaYはギ酸ナトリウム、炭酸ナトリウムなどが好ましい。 Among them, a Cu / MgO X was prepared in the coprecipitation method, Cu / MgO X / NaY addition of Na evaporation to dryness method which has a very high activity in the reaction, one or both of water and carbon dioxide A high methanol yield can be obtained even if the mixture is mixed. As shown in FIG. 2, the CO conversion rate varies greatly depending on the pH controlled when preparing by the coprecipitation method, and the pH when preparing Cu / MgO x by the coprecipitation method is preferably 8 to 11, more preferably It is 8.5-10.5, More preferably, it is 9-10.5. About the range where pH exceeds 11, since the usage-amount of the alkaline compound used as a precipitating agent to maintain in a highly alkaline atmosphere increases remarkably, it is not economical. Loading amount of Na relative to Cu / MgO X is not limited in particular, preferably in the range of 0.1~60Wt%, more preferably 1-40 wt%, more preferably from 3 to 30 wt% . NaY is preferably sodium formate, sodium carbonate or the like.

これら水素化分解触媒の調製は、含浸法、沈殿法、ゾルゲル法、共沈法、イオン交換法、混練法、蒸発乾固法などの通常の方法によれば良く、特に限定されるものではないが、共沈法によると高担持率触媒の調製が可能となり、好結果が得られやすい。   The preparation of these hydrocracking catalysts may be carried out by ordinary methods such as impregnation method, precipitation method, sol-gel method, coprecipitation method, ion exchange method, kneading method, evaporation to dryness method, and is not particularly limited. However, according to the coprecipitation method, it is possible to prepare a catalyst with a high loading rate, and good results are easily obtained.

本発明においては、一酸化炭素とアルコール類からギ酸エステルを生成させる前記反応系にこれらの水素化分解触媒および水素を共存させておくことにより、いわゆる一段階でメタノールを製造することができる。この水素化分解反応は、基本的には前記反応条件で行うことができるが、温度、圧力を適宜変更してより適正化を図ることができる。この場合、水素/一酸化炭素比は0.2〜5程度から選定するのが一般的である。   In the present invention, by making these hydrocracking catalyst and hydrogen coexist in the reaction system for producing formate from carbon monoxide and alcohols, methanol can be produced in a so-called one stage. This hydrocracking reaction can be basically performed under the above reaction conditions, but can be further optimized by appropriately changing the temperature and pressure. In this case, the hydrogen / carbon monoxide ratio is generally selected from about 0.2 to 5.

上記のように、水素化分解触媒をアルカリ金属系触媒等と共存させて反応を行う場合、単純な混合物として用いても良いが、水素化分解固体触媒にアルカリ金属系触媒等を担持させて用いると不均一系となり、触媒の反応系からの分離は固液分離となるため、回収が容易になり好適である。担持の方法自体は、上述したような触媒調製の常法によることができる。   As described above, when the reaction is carried out in the presence of a hydrocracking catalyst with an alkali metal catalyst or the like, it may be used as a simple mixture, but the hydrocracking solid catalyst is supported with an alkali metal catalyst or the like. Since the catalyst is separated from the reaction system by solid-liquid separation, recovery is easy, which is preferable. The supporting method itself can be a conventional method for preparing a catalyst as described above.

また、ギ酸エステル選択率が高い特性の触媒を使用し、一段階でメタノールを製造することが困難な場合は、反応で得られた生成物を反応系から蒸留法等で分離した後、該生成物中のギ酸エステルを水素化分解触媒および水素を共存させて、水素化分解してメタノールを得ることも可能である。   In addition, when it is difficult to produce methanol in one step using a catalyst with a high selectivity for formate ester, the product obtained by the reaction is separated from the reaction system by distillation or the like, and then the product is produced. It is also possible to obtain methanol by hydrocracking the formate in the product in the presence of a hydrocracking catalyst and hydrogen.

本発明の触媒を用いた方法では、原料ガス中に含有されるCO2、H2O濃度は、低いほど高収率でメタノールを得ることができるが、それぞれ1%程度含有しても、CO転化率、メタノール収率はほとんど影響を受けない。しかし、それ以上の濃度で含有するとCO転化率、メタノール収率は低下する。 In the method using the catalyst of the present invention, the lower the concentration of CO 2 and H 2 O contained in the raw material gas, the higher the yield of methanol can be obtained. Conversion and methanol yield are hardly affected. However, if it is contained at a concentration higher than that, the CO conversion rate and methanol yield decrease.

本発明におけるギ酸エステル、そしてメタノールの製造方法は、次の反応式に基づくものと推定される(アルコール類が鎖状または脂環式炭化水素類に水酸基が付いたものである場合を例にとって示す)。
ROH+CO→HCOOR (6)
HCOOR+2H2→CH3OH+ROH (7)
(ここでRはアルキル基を示す)
したがって、メタノールの製造原料は、一酸化炭素と水素であり、アルコール類は回収、再利用しうる。
The production method of formate ester and methanol in the present invention is presumed to be based on the following reaction formula (an example in which the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto) ).
ROH + CO → HCOOR (6)
HCOOR + 2H 2 → CH 3 OH + ROH (7)
(Where R represents an alkyl group)
Therefore, the raw materials for producing methanol are carbon monoxide and hydrogen, and alcohols can be recovered and reused.

また、本発明のアルカリ金属ギ酸塩、アルカリ土類金属系触媒と分子構造に芳香環を有するエーテルの一方又は双方を用いることで、原料ガス中に水、二酸化炭素が、かなりの量で存在していても触媒の活性が失われることなく、ギ酸エステル、メタノールを得ることができる。   Further, by using one or both of the alkali metal formate, the alkaline earth metal catalyst of the present invention and the ether having an aromatic ring in the molecular structure, water and carbon dioxide are present in a considerable amount in the raw material gas. Formic acid ester and methanol can be obtained without losing the activity of the catalyst.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。
以下の実施例に記載した、CO転化率、メタノール収率はそれぞれ次に示す式により算出した。
・CO転化率(%)=[1−(反応後に回収されたCOモル数)/(仕込んだCOモル数)]×100
・ギ酸エステル収率(%)=[(生成したギ酸エステルモル数)/(仕込んだCOモル数)]×100
・メタノール収率(%)=[(生成したメタノールモル数)/(仕込んだCO+CO2モル数)]×100
*CO2からメタノールが生成する経路も並行して進行していると考えられる為、CO2共存系の場合は仕込んだCO2モル数も考慮する。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
The CO conversion rate and methanol yield described in the following examples were calculated by the following formulas.
CO conversion rate (%) = [1− (number of CO moles recovered after reaction) / (number of charged CO moles)] × 100
Formate ester yield (%) = [(number of moles of formate ester produced) / (number of moles of charged CO)] × 100
Methanol yield (%) = [(number of moles of methanol produced) / (number of moles of charged CO + CO 2 )] × 100
* Since the pathway for the production of methanol from CO 2 is thought to proceed in parallel, the number of moles of CO 2 charged is also considered in the case of a CO 2 coexisting system.

参考例1
内容積100mlのオートクレーブを用い、溶媒としてメタノール15mlに、ギ酸カリウム5mmolとギ酸カルシウム1mmolを添加し、合成ガス(CO 48%、H2 48%、Arバランス)を3.0MPaで充填し、150℃、1時間、反応を行い、反応生成物をガスクロマトグラフィーで分析した。CO転化率15.9%で、5.57mmolのギ酸メチルが得られた。
Reference example 1
Using an autoclave with an internal volume of 100 ml, 5 mmol of potassium formate and 1 mmol of calcium formate were added to 15 ml of methanol as a solvent, and synthesis gas (CO 48%, H 2 48%, Ar balance) was charged at 3.0 MPa, and 150 ° C. The reaction was performed for 1 hour, and the reaction product was analyzed by gas chromatography. With a CO conversion of 15.9%, 5.57 mmol of methyl formate was obtained.

参考例2
ギ酸カルシウム1mmolの代わりに炭酸カルシウム1mmolを添加する他は、参考例1に記載の方法で反応を行った。CO転化率13.5%で、5.21mmolのギ酸メチルが得られた。
Reference example 2
The reaction was carried out by the method described in Reference Example 1 except that 1 mmol of calcium carbonate was added instead of 1 mmol of calcium formate. A CO conversion of 13.5% gave 5.21 mmol of methyl formate.

実施例1
ギ酸カルシウム1mmolの代わりにジフェニルエーテル1mmolを添加する他は、参考例1に記載の方法で反応を行った。CO転化率は31.8で、11.55mmolのギ酸メチルが得られた。
Example 1
The reaction was carried out by the method described in Reference Example 1 except that 1 mmol of diphenyl ether was added instead of 1 mmol of calcium formate. The CO conversion was 31.8, and 11.55 mmol methyl formate was obtained.

実施例2
ギ酸カルシウム1mmolの代わりにベンジルエーテル1mmolを添加する他は、参考例1に記載の方法で反応を行った。CO転化率30.1%で、10.91mmolのギ酸メチルが得られた。
Example 2
The reaction was carried out by the method described in Reference Example 1 except that 1 mmol of benzyl ether was added instead of 1 mmol of calcium formate. With a CO conversion of 30.1%, 10.91 mmol of methyl formate was obtained.

参考例3
ギ酸カルシウム1mmolの代わりにアニソールを添加する他は、参考例1に記載の方法で反応を行った。CO転化率27.5%で、9.98mmolのギ酸メチルが得られた。
Reference example 3
The reaction was carried out by the method described in Reference Example 1 except that anisole was added instead of 1 mmol of calcium formate. 9.98 mmol of methyl formate was obtained with a CO conversion of 27.5%.

比較例1
ギ酸カリウム5mmolのみを添加する他は、参考例1に記載の方法で反応を行った。CO転化率10.7%で、3.00mmolのギ酸メチルが得られた。
Comparative Example 1
The reaction was carried out by the method described in Reference Example 1 except that only 5 mmol of potassium formate was added. With a CO conversion of 10.7%, 3.00 mmol of methyl formate was obtained.

参考例4
ギ酸カルシウム1mmolの代わりに炭酸カルシウム10mmolを添加する他は、参考例1に記載の方法で反応を行った。CO転化率7.4%で、3.55mmolのギ酸メチルが得られた。
Reference example 4
The reaction was carried out by the method described in Reference Example 1 except that 10 mmol of calcium carbonate was added instead of 1 mmol of calcium formate. 3.55 mmol methyl formate was obtained with a CO conversion of 7.4%.

参考例5
ギ酸カルシウム1mmolの代わりに炭酸カルシウム0.5mmolを添加する他は、参考例1に記載の方法で反応を行った。CO転化率12.2%で、5.18mmolのギ酸メチルが得られた。
Reference Example 5
The reaction was carried out by the method described in Reference Example 1 except that 0.5 mmol of calcium carbonate was added instead of 1 mmol of calcium formate. With a CO conversion of 12.2%, 5.18 mmol of methyl formate was obtained.

参考例6
内容積100mlのオートクレーブを用い、溶媒としてメタノール27.8mlに、ギ酸カリウム10mmolと炭酸カルシウム2mmolを添加し、合成ガス(CO 48%、H2 48%、Arバランス)を60ml/minで供給し、150℃−5.0MPaの条件で20時間の連続反応を行った。反応生成物はガスクロマトグラフで分析した。CO転化率1.98%でギ酸メチルのみが得られた。
Reference Example 6
Using an autoclave with an internal volume of 100 ml, adding 2 mmol of potassium formate and 2 mmol of calcium carbonate to 27.8 ml of methanol as a solvent, and supplying synthesis gas (CO 48%, H 2 48%, Ar balance) at 60 ml / min, The continuous reaction was performed for 20 hours under the condition of 150 ° C.-5.0 MPa. The reaction product was analyzed by gas chromatography. Only methyl formate was obtained with a CO conversion of 1.98%.

実施例3
炭酸カルシウム2mmolの代わりにジフェニルエーテル2mmolを添加する他は、参考例5に記載の方法で反応を行った。CO転化率3.95%でギ酸メチルのみが得られた。
Example 3
The reaction was carried out by the method described in Reference Example 5 except that 2 mmol of diphenyl ether was added instead of 2 mmol of calcium carbonate. Only methyl formate was obtained with a CO conversion of 3.95%.

比較例2
ギ酸カリウム10mmolのみを添加する他は、参考例3に記載の方法で反応を行った。CO転化率1.45%でギ酸メチルのみが得られた。
Comparative Example 2
The reaction was performed by the method described in Reference Example 3 except that only 10 mmol of potassium formate was added. Only methyl formate was obtained with a CO conversion of 1.45%.

参考例7
内容積100mlのオートクレーブを用い、溶媒としてメタノール27.8mlに、ギ酸カリウム10mmolと炭酸カルシウム2mmol、水素化分解触媒としてCu(NO32・3H2O、Mg(NO32・6H2Oを原料として、pH=10.0に保ちながら共沈法によりCu/MgOX(Xは化学的に許容し得る値)を調製し、これにNa2CO3を原料として蒸発乾固法でNaを担持したCu/MgOX/Na2CO3(Xは化学的に許容し得る値)を3g添加し、合成ガス(CO 48%、H2 48%、Arバランス)を60ml/minで供給し、170℃−5.0MPaの条件で20時間の連続反応を行った。反応生成物はガスクロマトグラフで分析した。CO転化率32.9%、メタノール収率32.7%であった。
Reference Example 7
Using an autoclave with an internal volume of 100 ml, 27.8 ml of methanol as a solvent, 10 mmol of potassium formate and 2 mmol of calcium carbonate, Cu (NO 3 ) 2 .3H 2 O, Mg (NO 3 ) 2 .6H 2 O as hydrocracking catalysts As a raw material, Cu / MgO x (X is a chemically acceptable value) is prepared by a coprecipitation method while maintaining pH = 10.0, and Na 2 CO 3 is used as a raw material to prepare Na / CO3 by evaporation to dryness. 3 g of Cu / MgO x / Na 2 CO 3 supporting X (X is a chemically acceptable value) is added, and synthesis gas (CO 48%, H 2 48%, Ar balance) is supplied at 60 ml / min. The continuous reaction was performed for 20 hours under the condition of 170 ° C.-5.0 MPa. The reaction product was analyzed by gas chromatography. The CO conversion was 32.9%, and the methanol yield was 32.7%.

実施例4
炭酸カルシウム2mmolの代わりにジフェニルエーテルを使用する他は、参考例7に記載の方法で反応を行った。CO転化率55.6%、メタノール収率54.3%であった。
Example 4
The reaction was carried out by the method described in Reference Example 7 except that diphenyl ether was used instead of 2 mmol of calcium carbonate. The CO conversion was 55.6% and the methanol yield was 54.3%.

比較例3
Cu/MgOX/NaYの代わりにCu/Cr23(ENGELHARD、Cu−1987T 1/8)を添加する他は、参考例4に記載の方法で反応を行った。CO転化率27.7%、メタノール収率27.5%であった。
Comparative Example 3
The reaction was carried out by the method described in Reference Example 4 except that Cu / Cr 2 O 3 (ENGELHARD, Cu-1987T 1/8) was added instead of Cu / MgO x / NaY. The CO conversion was 27.7%, and the methanol yield was 27.5%.

比較例4
Cu/MgOX/NaYの代わりにCu/SiO2(ENGELHARD、Cu−0860 E 1/8)を添加する他は、参考例4に記載の方法で反応を行った。CO転化率11.1%、メタノール収率10.9%であった。
Comparative Example 4
The reaction was carried out by the method described in Reference Example 4 except that Cu / SiO 2 (ENGELHARD, Cu-0860 E 1/8) was added instead of Cu / MgO x / NaY. The CO conversion was 11.1% and the methanol yield was 10.9%.

参考例8
合成ガスの供給量を30ml/minとする他は、参考例4に記載の方法で反応を行った。CO転化率60.9%、メタノール収率60.1%であった。
Reference Example 8
The reaction was carried out by the method described in Reference Example 4 except that the supply amount of synthesis gas was 30 ml / min. The CO conversion was 60.9%, and the methanol yield was 60.1%.

参考例9
合成ガスの供給量を90ml/minとする他は、参考例4に記載の方法で反応を行った。CO転化率28.0%、メタノール収率27.9%であった。
Reference Example 9
The reaction was carried out by the method described in Reference Example 4 except that the supply amount of synthesis gas was 90 ml / min. The CO conversion was 28.0% and the methanol yield was 27.9%.

参考例10
組成の異なる合成ガス(CO 48%、H2 48%、CO2 1%、Arバランス)を使用する他は、参考例4に記載の方法で反応を行った。CO転化率28.5%、メタノール収率27.9%であった。
Reference Example 10
The reaction was carried out by the method described in Reference Example 4 except that synthesis gas having a different composition (CO 48%, H 2 48%, CO 2 1%, Ar balance) was used. The CO conversion was 28.5%, and the methanol yield was 27.9%.

参考例11
原料ガスを温度制御したH2Oにバブリングすることで、H2O1%を連続的に添加する他は、参考例4に記載の方法で反応を行った。CO転化率29.3%、メタノール収率28.6%であった。
Reference Example 11
The reaction was carried out by the method described in Reference Example 4 except that 1% of H 2 O was continuously added by bubbling the source gas to H 2 O with temperature control. The CO conversion was 29.3%, and the methanol yield was 28.6%.

Figure 0004990125
Figure 0004990125
Figure 0004990125
Figure 0004990125

本発明における、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの一方又は双方を用いた系、またはアルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの一方又は双方、及び水素化分解触媒を用いた系、中でも、水素化分解触媒としてCu、アルカリ土類金属元素、及びアルカリ金属元素を含有する触媒、又はCuとMn、Reの少なくともいずれか、及びアルカリ金属元素を含有する触媒を共存させた系で、合成原料ガスである、一酸化炭素、二酸化炭素の少なくともいずれか及び水素から溶媒アルコールの存在下ギ酸エステル及びメタノールを製造すると、低温、低圧で連続反応において安定的にギ酸エステルまたはメタノールを高効率で合成することが可能となった。また、合成原料ガス中に水、二酸化炭素等が混在しても触媒の活性低下の度合いが低いため安価でギ酸エステルまたはメタノールを製造することが可能となった。   In the present invention, in addition to the alkali metal formate, an alkaline earth metal catalyst, a system using one or both of ethers having an aromatic ring in the molecular structure, or an alkaline earth metal system in addition to the alkali metal formate Catalyst, one or both of ethers having an aromatic ring in the molecular structure, and a system using a hydrocracking catalyst, among them, a catalyst containing Cu, an alkaline earth metal element, and an alkali metal element as a hydrocracking catalyst, or Formic acid in the presence of solvent alcohol from at least one of carbon monoxide and carbon dioxide, which is a synthesis raw material gas, in a system in which a catalyst containing at least one of Cu, Mn, and Re and an alkali metal element coexists. When ester and methanol are produced, formate or methanol is stably synthesized with high efficiency in a continuous reaction at low temperature and low pressure. Theft has become possible. In addition, even if water, carbon dioxide, or the like is mixed in the synthetic raw material gas, it is possible to produce formate or methanol at a low cost because the degree of decrease in the activity of the catalyst is low.

本発明の低温液相メタノール合成を実施する反応装置である。図において、1:合成ガス、2:半回分式反応器、3:生成物、未反応ガスの混合物、4:冷却器、5:未反応ガス、6:ギ酸エステルとメタノールの液体混合物、7:蒸留塔、8:ギ酸エステル、9:メタノール。1 is a reactor for carrying out the low-temperature liquid phase methanol synthesis of the present invention. In the figure, 1: synthesis gas, 2: semi-batch reactor, 3: product, mixture of unreacted gas, 4: cooler, 5: unreacted gas, 6: liquid mixture of formate ester and methanol, 7: Distillation tower, 8: formate, 9: methanol. Cu/MgOXを共沈法で調製する際に制御するpHとCO転化率の関係である。It is the relationship between pH and CO conversion controlled when Cu / MgO x is prepared by coprecipitation.

Claims (35)

一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてギ酸エステルを製造する方法であって、アルカリ金属ギ酸塩に加えて、分子構造に芳香環を有するエーテル、及びアルコール類の存在下に反応を行うことを特徴とするギ酸エステルの製造方法。  A method for producing a formate by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, an ether having an aromatic ring in the molecular structure in addition to an alkali metal formate, and an alcohol A method for producing a formate ester, characterized in that the reaction is carried out in the presence of an alcohol. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてメタノールを製造する方法であって、アルカリ金属ギ酸塩に加えて、分子構造に芳香環を有するエーテル、水素化分解触媒、及びアルコール類の存在下に反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。  A method for producing methanol by reacting at least one of carbon monoxide and carbon dioxide, and hydrogen-containing source gas, in addition to alkali metal formate, an ether having an aromatic ring in the molecular structure, hydrocracking A method for producing methanol, comprising reacting in the presence of a catalyst and alcohols to produce formate ester and methanol, and producing methanol by hydrogenating the produced formate ester. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを、アルカリ金属ギ酸塩に加えて、分子構造に芳香環を有するエーテル、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。  It is obtained by adding a source gas containing carbon monoxide, carbon dioxide, and hydrogen to an alkali metal formate in the presence of an ether having an aromatic ring in the molecular structure and an alcohol. A method for producing methanol, comprising separating the product from the reaction system and then hydrogenating the formic acid ester in the product with a hydrocracking catalyst to produce methanol. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてギ酸エステルを製造する方法であって、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの双方、及びアルコール類の存在下に反応を行うことを特徴とするギ酸エステルの製造方法。  A method of producing a formate by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide and hydrogen, and in addition to an alkali metal formate, an alkaline earth metal catalyst, and an aromatic structure. A method for producing a formate ester, wherein the reaction is carried out in the presence of both an ether having a ring and an alcohol. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてメタノールを製造する方法であって、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの双方、水素化分解触媒、及びアルコール類の存在下に反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。  A method for producing methanol by reacting a source gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to an alkali metal formate, an alkaline earth metal catalyst, an aromatic ring in the molecular structure The reaction is carried out in the presence of both an ether having a hydrocracking catalyst and an alcohol to produce a formate ester and methanol, and the produced formate ester is hydrogenated to produce methanol. Production method. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを、アルカリ金属ギ酸塩に加えて、アルカリ土類金属系触媒、分子構造に芳香環を有するエーテルの双方、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。  Add source gas containing at least one of carbon monoxide, carbon dioxide, and hydrogen to alkali metal formate, and both alkaline earth metal catalyst, ether having aromatic ring in molecular structure, and presence of alcohol A method for producing methanol, comprising separating a product obtained by carrying out the reaction below from a reaction system and then hydrogenating a formate in the product with a hydrocracking catalyst to produce methanol. 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする請求項1〜のいずれか1項に記載の製造方法。The production method according to any one of claims 1 to 6 , wherein an alkali metal catalyst that can change into an alkali metal formate during the reaction is used instead of the alkali metal formate. 前記アルカリ金属ギ酸塩がギ酸カリウムであることを特徴とする請求項1〜のいずれか1項に記載の製造方法。The process according to any one of claims 1 to 7, wherein the alkali metal formate salt is characterized in that it is a potassium formate. 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする請求項記載の製造方法。8. The production method according to claim 7 , wherein the alkali metal catalyst capable of changing to an alkali metal formate during the reaction is potassium carbonate. 前記アルカリ土類金属系触媒が、カルシウム塩を含む触媒であることを特徴とする請求項4〜6のいずれか1項に記載の製造方法。  The production method according to claim 4, wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt. 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする請求項1に記載の製造方法。The process according to claim 1 0, wherein in place of the alkali metal formate salt, which comprises using an alkali metal-based catalyst which can change into an alkali metal formate salt during the reaction. 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする請求項1に記載の製造方法。The process according to claim 1 1, the alkali metal-based catalyst which can change into an alkali metal formate salt during the reaction is characterized by a potassium carbonate. 前記分子構造に芳香環を有するエーテルの芳香環が単環であることを特徴とする請求項1〜6,1〜1のいずれか1項に記載の製造方法。The method according to any one of claims 1 to 6, 10 to 12 , wherein an aromatic ring of an ether having an aromatic ring in the molecular structure is a single ring. 前記分子構造に芳香環を有するエーテルがジフェニルエーテルであることを特徴とする請求項1〜6,1〜1のいずれか1項に記載の製造方法。The production method according to any one of claims 1 to 6, 10 to 12 , wherein the ether having an aromatic ring in the molecular structure is diphenyl ether. 前記分子構造に芳香環を有するエーテルがベンジルエーテルであることを特徴とする請求項1〜6,1〜1のいずれか1項に記載の製造方法。The manufacturing method according to any one of claims 1 to 6, 10 to 12 , wherein the ether having an aromatic ring in the molecular structure is benzyl ether. 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする請求項1〜1のいずれか1項に記載の製造方法。Instead of the alkali metal formate salt A process according to any one of claims 1 3 to 1 5, which comprises using an alkali metal-based catalyst which can change into an alkali metal formate salt during the reaction. 前記アルカリ金属ギ酸塩がギ酸カリウムであることを特徴とする請求項1〜1のいずれか1項に記載の製造方法。The process according to any one of claims 1 3 to 1 5, wherein the alkali metal formate salt is characterized in that it is a potassium formate. 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする請求項1に記載の製造方法。The production method according to claim 16 , wherein the alkali metal catalyst capable of changing to an alkali metal formate during the reaction is potassium carbonate. 前記水素化分解触媒がCuに加え、Mn、Reの少なくともいずれか、及びアルカリ金属元素を含有する触媒であることを特徴とする請求項2,3,5,6のいずれか1項に記載のメタノールの製造方法。Said hydrocracking catalyst is added to Cu, Mn, at least one of Re, and claims 2, 3 and 5, characterized in that a catalyst containing an alkali metal element, according to any one of the 6 A method for producing methanol. 前記水素化分解触媒がCu、アルカリ土類金属元素、及びアルカリ金属元素を含有する触媒であることを特徴とする請求項2,3,5,6のいずれか1項に記載のメタノールの製造方法。The method for producing methanol according to any one of claims 2, 3, 5, and 6, wherein the hydrocracking catalyst is a catalyst containing Cu, an alkaline earth metal element, and an alkali metal element. . 前記水素化分解触媒が固体触媒であり、この固体触媒にアルカリ金属ギ酸塩及びアルカリ土類金属系触媒を担持して、反応に供することを特徴とする請求項2,3,5,6のいずれか1項に記載のメタノールの製造方法。Is said hydrocracking catalyst is a solid catalyst, either the solid catalyst carries an alkali metal formate salt and alkaline earth metal-based catalyst, according to claim 2, 3, 5, characterized in that for the reaction, 6 The method for producing methanol according to claim 1. 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を用いることを特徴とする請求項19〜2のいずれか1項に記載の製造方法。The method according to any one of claims 19 to 21 , wherein an alkali metal catalyst that can change into an alkali metal formate during the reaction is used instead of the alkali metal formate. 前記アルカリ金属ギ酸塩がギ酸カリウムであることを特徴とする請求項19〜2のいずれか1項に記載の製造方法。The method according to any one of claims 19 to 21, wherein the alkali metal formate is potassium formate. 前記反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒が炭酸カリウムであることを特徴とする請求項2に記載の製造方法。The method according to claim 2 2, alkali metal-based catalyst which can change into an alkali metal formate salt during the reaction is characterized by a potassium carbonate. 前記アルコール類が第一級アルコールであることを特徴とする請求項1〜2のいずれか1項に記載の製造方法。The process according to any one of claims 1-2 4, characterized in that the alcohol is a primary alcohol. アルカリ金属ギ酸塩及びアルカリ土類金属系触媒と分子構造に芳香環を有するエーテルの一方又は双方に加え、Cu、アルカリ土類金属元素、及びアルカリ金属元素を含有する水素化分解触媒から構成されることを特徴とするメタノール製造用触媒。  Consists of a hydrocracking catalyst containing Cu, an alkaline earth metal element, and an alkali metal element in addition to one or both of an alkali metal formate and alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure A catalyst for methanol production. アルカリ金属ギ酸塩及びアルカリ土類金属系触媒と分子構造に芳香環を有するエーテルの一方又は双方に加え、Cuと、Mn、Reの少なくともいずれか、及びアルカリ金属元素を含有する水素化分解触媒から構成されることを特徴とするメタノール製造用触媒。  From a hydrocracking catalyst containing at least one of Cu, Mn, Re, and an alkali metal element in addition to one or both of an alkali metal formate and alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure A catalyst for methanol production, comprising: 前記アルカリ土類金属系触媒が、カルシウム塩を含む触媒であることを特徴とする請求項26または27に記載のメタノール製造用触媒。28. The catalyst for methanol production according to claim 26 or 27 , wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt. 前記アルカリ金属ギ酸塩に替えて、反応中にアルカリ金属ギ酸塩に変化し得るアルカリ金属系触媒を有することを特徴とする請求項228のいずれか1項に記載のメタノール製造用触媒。29. The catalyst for methanol production according to any one of claims 26 to 28 , comprising an alkali metal catalyst that can be changed to an alkali metal formate during the reaction instead of the alkali metal formate. 前記水素化分解触媒に含有されるアルカリ土類金属元素がマグネシウムであることを特徴とする請求項2628又は29に記載のメタノール製造用触媒。30. The methanol production catalyst according to claim 26 , 28 or 29 , wherein the alkaline earth metal element contained in the hydrocracking catalyst is magnesium. 前記水素化分解触媒に含有されるアルカリ金属元素がナトリウムであることを特徴とする請求項26〜3のいずれか1項に記載のメタノール製造用触媒。Methanol production catalyst according to any one of claims 26 to 3 0 wherein the alkali metal element contained in the hydrocracking catalyst is sodium. 前記分子構造に芳香環を有するエーテルの芳香環が単環であることを特徴とする請求項26〜3のいずれか1項に記載のメタノール製造用触媒。The catalyst for methanol production according to any one of claims 26 to 31, wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring. 前記分子構造に芳香環を有するエーテルがジフェニルエーテルであることを特徴とする
請求項26〜3のいずれか1項に記載のメタノール製造用触媒。
Methanol production catalyst according to any one of claims 26 to 3 2, wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
前記分子構造に芳香環を有するエーテルがベンジルエーテルであることを特徴とする請
求項26〜3のいずれか1項に記載のメタノール製造用触媒。
Methanol production catalyst according to any one of claims 26 to 3 2, wherein the ether having an aromatic ring in the molecular structure is benzyl ether.
前記水素化分解触媒が、共沈法においてpH=8〜11の範囲で一定に保ちながら調製
することを特徴とする請求項2〜3のいずれか1項に記載のメタノール製造用触媒の
製造方法。
The hydrocracking catalyst, methanol production catalyst according to any one of claims 2 6-3 4, characterized in that the preparation being kept constant in the range of pH = 8 to 11 in a co-precipitation method Production method.
JP2007503806A 2005-02-21 2006-02-20 Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst Expired - Fee Related JP4990125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007503806A JP4990125B2 (en) 2005-02-21 2006-02-20 Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005044438 2005-02-21
JP2005044438 2005-02-21
PCT/JP2006/303510 WO2006088253A1 (en) 2005-02-21 2006-02-20 Process for production of formic esters and methanol, catalysts for the production thereof, and process for production of the catalysts
JP2007503806A JP4990125B2 (en) 2005-02-21 2006-02-20 Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst

Publications (2)

Publication Number Publication Date
JPWO2006088253A1 JPWO2006088253A1 (en) 2008-07-17
JP4990125B2 true JP4990125B2 (en) 2012-08-01

Family

ID=36916635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007503806A Expired - Fee Related JP4990125B2 (en) 2005-02-21 2006-02-20 Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst

Country Status (2)

Country Link
JP (1) JP4990125B2 (en)
WO (1) WO2006088253A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2015125054A (en) * 2012-11-26 2017-01-10 Басф Се METHOD FOR PRODUCING METHYL FORMAT BY INTERACTION OF METHANOL WITH CARBON MONOXIDE IN THE PRESENCE OF A CATALYTIC SYSTEM CONTAINING AN ALKALIUM METAL AND ALKALINE ALCOHOL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490143A (en) * 1987-09-04 1989-04-06 Shell Int Research Manufacture of methanol and catalyst composition therefor
JPH11279030A (en) * 1998-03-24 1999-10-12 Shiseido Co Ltd Hair cosmetic
WO2001062701A1 (en) * 2000-02-25 2001-08-30 Nippon Steel Corporation Process for preparation of formate esters or methanol and catalyst therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506602B2 (en) * 1997-02-27 2004-03-15 財団法人石油産業活性化センター Method for producing methanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490143A (en) * 1987-09-04 1989-04-06 Shell Int Research Manufacture of methanol and catalyst composition therefor
JPH11279030A (en) * 1998-03-24 1999-10-12 Shiseido Co Ltd Hair cosmetic
WO2001062701A1 (en) * 2000-02-25 2001-08-30 Nippon Steel Corporation Process for preparation of formate esters or methanol and catalyst therefor

Also Published As

Publication number Publication date
WO2006088253A1 (en) 2006-08-24
JPWO2006088253A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5067996B2 (en) Methanol production method and synthesis catalyst thereof
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264084B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264083B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP4990125B2 (en) Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP2005126427A (en) Method for producing formic acid ester and methanol
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5464339B2 (en) Methanol synthesis catalyst production method and methanol production method
JP2011083724A (en) Catalyst for methanol production and methanol production method
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
AU603700B2 (en) Process for the production of methanol and catalyst composition for said process
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JP2010215543A (en) Method for producing methanol
WO2005030686A1 (en) Method for producing organic compound
EP0317669A1 (en) Process for the production of methanol and catalyst composition for said process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees