[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4985288B2 - Decorative sheet for 3D processing - Google Patents

Decorative sheet for 3D processing Download PDF

Info

Publication number
JP4985288B2
JP4985288B2 JP2007256485A JP2007256485A JP4985288B2 JP 4985288 B2 JP4985288 B2 JP 4985288B2 JP 2007256485 A JP2007256485 A JP 2007256485A JP 2007256485 A JP2007256485 A JP 2007256485A JP 4985288 B2 JP4985288 B2 JP 4985288B2
Authority
JP
Japan
Prior art keywords
layer
decorative sheet
meth
resin
dimensional processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007256485A
Other languages
Japanese (ja)
Other versions
JP2008105420A5 (en
JP2008105420A (en
Inventor
礼欧 松川
信雄 齋藤
正義 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007256485A priority Critical patent/JP4985288B2/en
Publication of JP2008105420A publication Critical patent/JP2008105420A/en
Publication of JP2008105420A5 publication Critical patent/JP2008105420A5/ja
Application granted granted Critical
Publication of JP4985288B2 publication Critical patent/JP4985288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、自動車等の車両の内装材又は外装材、幅木、回縁等の造作部材、窓枠、扉枠等の建具、壁、床、天井等の建築物の内装材、テレビ受像機、空調機等の家電製品の筐体、容器などの用途の加飾成形体に用いられる三次元加工用加飾シートに関するものである。   The present invention relates to interior materials or exterior materials for vehicles such as automobiles, construction members such as skirting boards and circular edges, furniture such as window frames and door frames, interior materials for buildings such as walls, floors, and ceilings, and television receivers. The present invention relates to a decorative sheet for three-dimensional processing used in a decorative molded body for uses such as housings and containers of home appliances such as air conditioners.

従来から、樹脂成形物等の被着体の表面を加飾したシートを成形することにより製造される加飾成形体が各種用途で使用されている。この加飾シート成形方法により表面が加飾された加飾成形体が得られる。従って、この製造方法に用いられる加飾シートはシートを伸ばして加飾するので、成形により表面にクラック等が入らない成形性能が求められると同時に、成形体の使用上の観点から、耐擦傷性、耐溶剤性等も良好であることが求められる。
例えば、特許文献1では、特定のガラス転移温度と架橋密度の架橋性組成物のクリア硬化層を熱可塑性樹脂のシート状基材上に積層してなる射出成形体表面被覆用積層シートであって、30〜300%の破断伸度を有する積層シートが提案されている。
しかしながら、三次元加工において、加飾シートの割れを防ぐためには、30〜300%の破断伸度では満足できず、また、300%以上延伸可能なシートでは金型離れが悪く、耐擦傷性、耐溶剤性も悪いのが実情であった。
そこで、三次元加工時の成形性、金型離れ、耐擦傷性、耐溶剤性等のさらなる改良が求められている。
DESCRIPTION OF RELATED ART Conventionally, the decorative molded body manufactured by shape | molding the sheet | seat which decorated the surface of adherends, such as a resin molding, is used for various uses. A decorative molded body whose surface is decorated by this decorative sheet molding method is obtained. Therefore, since the decorative sheet used in this manufacturing method is decorated by extending the sheet, molding performance that does not cause cracks on the surface by molding is required, and at the same time, from the viewpoint of use of the molded product, scratch resistance Also, good solvent resistance and the like are required.
For example, in Patent Document 1, a laminated sheet for covering the surface of an injection molded article obtained by laminating a clear cured layer of a crosslinkable composition having a specific glass transition temperature and crosslink density on a sheet-like base material of a thermoplastic resin. A laminated sheet having a breaking elongation of 30 to 300% has been proposed.
However, in three-dimensional processing, in order to prevent the decorative sheet from cracking, it is not satisfactory at a breaking elongation of 30 to 300%, and a sheet that can be stretched by 300% or more has poor mold separation, scratch resistance, The fact is that the solvent resistance is also poor.
Therefore, further improvements in formability during three-dimensional processing, mold separation, scratch resistance, solvent resistance, and the like are required.

特開2000−202975号公報JP 2000-202975 A

本発明は、このような状況下で、成形性が良好で金型離れが良く、成形により表面にクラック、傷等が入ることがなく、かつ耐擦傷性及び耐溶剤性をも改良した三次元加工用加飾シートを提供することを課題とするものである。   Under such circumstances, the present invention is a three-dimensional that has good moldability, good mold separation, no cracks, scratches, etc. on the surface due to molding, and improved scratch resistance and solvent resistance. It is an object to provide a decorative sheet for processing.

本発明者は、前記課題を達成するために鋭意研究を重ねた結果、表面保護層に改良を加えることにより、前記課題を解決し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明の要旨は下記のとおりである。
1.支持体の上に少なくとも表面保護層を積層してなる三次元加工用加飾シートであって、該支持体のASTM D648法による熱変形温度より40℃高い温度において該三次元加工用加飾シートが300%を超える破断伸度(JIS K 7127に準拠)を有し、かつ該表面保護層が電離放射線硬化性樹脂組成物を架橋硬化してなり、0.2〜6.0μmの膜厚を有することを特徴とする三次元加工用加飾シート。
2.以下の測定条件で測定した140℃における前記表面保護層の貯蔵弾性率が7.7×105〜1.2×108Paの範囲であることを特徴とする上記1に記載の三次元加工用加飾シート。
貯蔵弾性率の測定条件:JIS K7244−1及び7244−4に準拠し、前記電離放射線硬化性樹脂組成物を架橋硬化して製膜した幅10mm、厚さ15μmのシートをクランプ間距離10mm、開始温度30℃、終了温度180℃、昇温速度5℃/分、測定周波数1Hzにて測定する。
3.前記電離放射線硬化性樹脂組成物が電離放射線硬化性樹脂と熱可塑性樹脂を75:25〜20:80の比率(質量比)で含む樹脂組成物である上記1又は2に記載の三次元加工用加飾シート。
4.前記支持体と前記表面保護層との間に、さらに透明熱可塑性樹脂層を設けてなる上記1〜3のいずれかに記載の三次元加工用加飾シート。
5.前記支持体と前記透明熱可塑性樹脂層との間に、さらに第2熱可塑性樹脂層を設けてなる上記4に記載の三次元加工用加飾シート。
6.前記電離放射線硬化性樹脂が電子線硬化性樹脂である上記3〜5のいずれかに記載の三次元加工用加飾シート。
7.三次元加工がインサート成形である上記1〜6のいずれかに記載の三次元加工用加飾シート。
As a result of intensive studies in order to achieve the above object, the present inventor has found that the above object can be solved by improving the surface protective layer. The present invention has been completed based on such findings.
That is, the gist of the present invention is as follows.
1. A decorative sheet for three-dimensional processing formed by laminating at least a surface protective layer on a support, wherein the decorative sheet for three-dimensional processing is at a temperature 40 ° C higher than the thermal deformation temperature of the support according to ASTM D648 method. Has a breaking elongation exceeding 300% (based on JIS K 7127), and the surface protective layer is obtained by crosslinking and curing the ionizing radiation curable resin composition, and has a film thickness of 0.2 to 6.0 μm. A decorative sheet for three-dimensional processing, comprising:
2. The three-dimensional processing according to 1 above, wherein the storage elastic modulus of the surface protective layer at 140 ° C. measured under the following measurement conditions is in the range of 7.7 × 10 5 to 1.2 × 10 8 Pa. Decorative sheet.
Storage elastic modulus measurement conditions: In accordance with JIS K7244-1 and 7244-4, a sheet of 10 mm width and 15 μm thickness formed by crosslinking and curing the ionizing radiation curable resin composition was 10 mm in distance between clamps. The measurement is performed at a temperature of 30 ° C., an end temperature of 180 ° C., a heating rate of 5 ° C./min, and a measurement frequency of 1 Hz.
3. 3. The three-dimensional processing according to 1 or 2 above, wherein the ionizing radiation curable resin composition is a resin composition containing an ionizing radiation curable resin and a thermoplastic resin in a ratio (mass ratio) of 75:25 to 20:80. Decorative sheet.
4). The decorative sheet for three-dimensional processing according to any one of 1 to 3, wherein a transparent thermoplastic resin layer is further provided between the support and the surface protective layer.
5. 5. The decorative sheet for three-dimensional processing as described in 4 above, wherein a second thermoplastic resin layer is further provided between the support and the transparent thermoplastic resin layer.
6). The decorative sheet for three-dimensional processing according to any one of 3 to 5, wherein the ionizing radiation curable resin is an electron beam curable resin.
7). The decorative sheet for three-dimensional processing according to any one of the above 1 to 6, wherein the three-dimensional processing is insert molding.

本発明の三次元加工用加飾シートは、成形性が良好で金型離れが良く、成形により表面にクラック、傷等が入ることがなく、かつ高い耐擦傷性及び耐溶剤性を有する。   The decorative sheet for three-dimensional processing of the present invention has good moldability and good mold separation, does not cause cracks or scratches on the surface by molding, and has high scratch resistance and solvent resistance.

以下、本発明を、図面を参照しながら説明する。図1は、本発明の三次元加工用加飾シートの第1の実施態様の断面を示す模式図である。
本発明の三次元加工用加飾シート10は、支持体11の上に少なくとも表面保護層12を積層してなる。
なお、本発明の加飾シート10の延伸性は、支持体11の延伸性の影響を大きく受ける。そのため、支持体11のASTM D648法による熱変形温度より40℃高い温度において加飾シート10が300%を超える破断伸度を有することを要する。複雑な形状の三次元加工において、加飾シート10の表面クラック又は割れを防ぐためである。この観点から380%以上の破断伸度が好ましい。また、500%以下であれば、延伸後においても必要な膜厚を確保でき形状保持性が良好となるので好ましい。なお、本発明の加飾シート10に用いられる支持体11は、単層又は複数層のいずれでも良い。
また、本発明の加飾シート10に設けられる表面保護層12が0.2〜6.0μmの膜厚を有することを要する。膜厚が0.2μm未満であると耐擦傷性及び耐溶剤性が低下し、6.0μmを超えると成形性、破断伸度及び耐擦傷性が低下するからである。この観点から0.7〜6.0μmの膜厚が好ましい。
Hereinafter, the present invention will be described with reference to the drawings. Drawing 1 is a mimetic diagram showing the section of the 1st embodiment of the decoration sheet for three-dimensional processing of the present invention.
The decorative sheet 10 for three-dimensional processing of the present invention is formed by laminating at least a surface protective layer 12 on a support 11.
The stretchability of the decorative sheet 10 of the present invention is greatly affected by the stretchability of the support 11. Therefore, it is required that the decorative sheet 10 has a breaking elongation exceeding 300% at a temperature 40 ° C. higher than the thermal deformation temperature of the support 11 by the ASTM D648 method. This is for preventing surface cracks or cracks of the decorative sheet 10 in the three-dimensional processing of a complicated shape. From this viewpoint, a breaking elongation of 380% or more is preferable. Moreover, if it is 500% or less, since a required film thickness can be ensured after extending | stretching and shape retention property becomes favorable, it is preferable. In addition, the support body 11 used for the decorative sheet 10 of the present invention may be either a single layer or a plurality of layers.
Moreover, it is required that the surface protective layer 12 provided in the decorative sheet 10 of the present invention has a film thickness of 0.2 to 6.0 μm. This is because if the film thickness is less than 0.2 μm, the scratch resistance and solvent resistance decrease, and if it exceeds 6.0 μm, the moldability, elongation at break and scratch resistance decrease. From this viewpoint, a film thickness of 0.7 to 6.0 μm is preferable.

図2乃至5は、本発明の三次元加工用加飾シートの他の実施態様の断面を示す模式図である。ただし、本発明の三次元加工用加飾シートは、これらの実施態様に限定されるものではない。
図2に記載された本発明の加飾シート10の第2の実施態様は、支持体11と表面保護層12との間に、さらに透明熱可塑性樹脂層13を設けている。
図3に記載された本発明の加飾シート10の第3の実施態様は、支持体11と透明熱可塑性樹脂層13との間に、さらに第2熱可塑性樹脂層14を設けている。
図4に記載された本発明の加飾シート10の第4の実施態様は、支持体11の上に接着剤層16、印刷層15、透明熱可塑性樹脂層13、プライマー層17及び表面保護層12を積層している。ここで、印刷層15は、透明熱可塑性樹脂層13の表側及び裏側のいずれに積層されても良いし、支持体11の表面に積層されていても良い。
また、図5に記載された本発明の加飾シート10の第5の実施態様は、支持体11の上に接着剤層16b、第2熱可塑性樹脂層14、印刷層15、接着剤層16a、透明熱可塑性樹脂層13、プライマー層17及び表面保護層12を積層している。ここで、印刷層15は、透明熱可塑性樹脂層13の表側及び裏側のいずれに積層されても良い。また、第2熱可塑性樹脂層14が透明又は半透明の場合は、印刷層15は支持体11の表面又は第2熱可塑性樹脂層14の裏側に積層されていても良い。接着剤層16aと16bとは同じ材料を用いても良いし、異なっていても良い。
2 to 5 are schematic views showing cross sections of other embodiments of the decorative sheet for three-dimensional processing of the present invention. However, the decorative sheet for three-dimensional processing of the present invention is not limited to these embodiments.
In the second embodiment of the decorative sheet 10 of the present invention shown in FIG. 2, a transparent thermoplastic resin layer 13 is further provided between the support 11 and the surface protective layer 12.
In the third embodiment of the decorative sheet 10 of the present invention illustrated in FIG. 3, a second thermoplastic resin layer 14 is further provided between the support 11 and the transparent thermoplastic resin layer 13.
In the fourth embodiment of the decorative sheet 10 of the present invention shown in FIG. 4, an adhesive layer 16, a printing layer 15, a transparent thermoplastic resin layer 13, a primer layer 17, and a surface protective layer are formed on a support 11. 12 are laminated. Here, the printing layer 15 may be laminated on either the front side or the back side of the transparent thermoplastic resin layer 13, or may be laminated on the surface of the support 11.
Moreover, the 5th embodiment of the decorating sheet 10 of this invention described in FIG. 5 is adhesive layer 16b on the support body 11, the 2nd thermoplastic resin layer 14, the printing layer 15, and adhesive layer 16a. The transparent thermoplastic resin layer 13, the primer layer 17, and the surface protective layer 12 are laminated. Here, the printing layer 15 may be laminated on either the front side or the back side of the transparent thermoplastic resin layer 13. In addition, when the second thermoplastic resin layer 14 is transparent or translucent, the printing layer 15 may be laminated on the surface of the support 11 or the back side of the second thermoplastic resin layer 14. The same material may be used for the adhesive layers 16a and 16b, or they may be different.

本発明に係る表面保護層12は、耐擦傷性及び耐溶剤性の表面保護機能を果たすために電離放射線硬化性樹脂組成物を架橋硬化してなるものであることを要する。ここで、電離放射線硬化性樹脂とは、電磁波又は荷電粒子線の中で分子を架橋、重合させ得るエネルギー量子を有するもの、すなわち、紫外線又は電子線などを照射することにより、架橋、硬化する樹脂を指す。具体的には、従来電離放射線硬化性樹脂として慣用されている重合性モノマー及び重合性オリゴマーないしはプレポリマーの中から適宜選択して用いることができる。   The surface protective layer 12 according to the present invention needs to be formed by crosslinking and curing an ionizing radiation curable resin composition in order to achieve a scratch- and solvent-resistant surface protective function. Here, the ionizing radiation curable resin is a resin having an energy quantum capable of crosslinking and polymerizing molecules in an electromagnetic wave or a charged particle beam, that is, a resin that is crosslinked and cured by irradiation with ultraviolet rays or electron beams. Point to. Specifically, it can be appropriately selected from polymerizable monomers, polymerizable oligomers, or prepolymers conventionally used as ionizing radiation curable resins.

また、本発明に係る表面保護層12は、貯蔵弾性率が7.7×105〜1.2×108Paの範囲であることが好ましい。貯蔵弾性率が1.2×108Pa以下であると真空成形時に表面保護層にクラックを生じることなく成形することができる。また、架橋型の樹脂の場合、ゴム状態での貯蔵弾性率が高いほど、平均架橋点間分子量が低い、すなわち、架橋密度が高いため、表面の耐擦傷性、耐溶剤性等は向上する。よって、貯蔵弾性率がこの範囲内であると、表面保護層を形成した後の成型性及び表面の耐擦傷性が高いレベルで満足しうるバランスの取れた加飾シートが得られる。 The surface protective layer 12 according to the present invention preferably has a storage elastic modulus in the range of 7.7 × 10 5 to 1.2 × 10 8 Pa. When the storage elastic modulus is 1.2 × 10 8 Pa or less, the surface protective layer can be molded without cracking during vacuum molding. In the case of a cross-linked resin, the higher the storage elastic modulus in the rubber state, the lower the average molecular weight between cross-linking points, that is, the higher the cross-linking density, so that the surface scratch resistance, solvent resistance, etc. are improved. Therefore, if the storage elastic modulus is within this range, a well-decorated decorative sheet can be obtained that satisfies a high level of moldability and surface scratch resistance after the surface protective layer is formed.

電離放射線硬化性樹脂として用いられる重合性モノマーとしては、分子中にラジカル重合性不飽和基を持つ(メタ)アクリレート系モノマーが好適であり、中でも2官能以上の多官能性(メタ)アクリレートが好ましい。なお、ここで「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を意味し、他の類似するものも同様の意である。多官能性(メタ)アクリレートとしては、分子内にエチレン性不飽和結合を2個以上有する(メタ)アクリレートであれば良く、特に制限はない。具体的にはエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらの多官能性(メタ)アクリレートは1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。   As the polymerizable monomer used as the ionizing radiation curable resin, a (meth) acrylate monomer having a radical polymerizable unsaturated group in the molecule is preferable, and among them, a polyfunctional (meth) acrylate having two or more functions is preferable. . Here, “(meth) acrylate” means “acrylate or methacrylate”, and other similar ones have the same meaning. The polyfunctional (meth) acrylate is not particularly limited as long as it is a (meth) acrylate having two or more ethylenically unsaturated bonds in the molecule. Specifically, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di (meth) acrylate, ethylene oxide modified diphosphate ( (Meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylo Propane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris ( Acryloxyethyl) isocyanurate, pentaerythritol ethoxytetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, propionic acid modified dipentaerythritol penta ( (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene oxide modified dipentaery Ritoruhekisa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate. These polyfunctional (meth) acrylates may be used alone or in combination of two or more.

本発明においては、前記多官能性(メタ)アクリレートとともに、その粘度を低下させるなどの目的で、単官能性(メタ)アクリレートを、本発明の目的を損なわない範囲で適宜併用することができる。単官能性(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどが挙げられる。これらの単官能性(メタ)アクリレートは1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。   In the present invention, a monofunctional (meth) acrylate can be used in combination with the polyfunctional (meth) acrylate as long as the object of the present invention is not impaired, for the purpose of lowering the viscosity. Examples of monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl ( Examples include meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isobornyl (meth) acrylate. These monofunctional (meth) acrylates may be used alone or in combination of two or more.

次に、重合性オリゴマーとしては、分子中にラジカル重合性不飽和基を持つオリゴマー(2官能、3官能、4官能又はそれ以上の多官能のオリゴマー)、例えばエポキシ(メタ)アクリレート系、ウレタン(メタ)アクリレート系、ポリエステル(メタ)アクリレート系、ポリエーテル(メタ)アクリレート系などが挙げられる。ここで、エポキシ(メタ)アクリレート系オリゴマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。また、このエポキシ(メタ)アクリレート系オリゴマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシ(メタ)アクリレートオリゴマーも用いることができる。ウレタン(メタ)アクリレート系オリゴマーは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアネートの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。ポリエステル(メタ)アクリレート系オリゴマーとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリエーテル(メタ)アクリレート系オリゴマーは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。   Next, as the polymerizable oligomer, an oligomer having a radically polymerizable unsaturated group in the molecule (a bifunctional, trifunctional, tetrafunctional or higher polyfunctional oligomer), such as an epoxy (meth) acrylate, urethane ( Examples include meth) acrylates, polyester (meth) acrylates, and polyether (meth) acrylates. Here, the epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. . Further, a carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used. The urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. Examples of polyester (meth) acrylate oligomers include esterification of hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid. The polyether (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.

さらに、重合性オリゴマーとしては、他にポリブタジエンオリゴマーの側鎖に(メタ)アクリレート基をもつ疎水性の高いポリブタジエン(メタ)アクリレート系オリゴマー、主鎖にポリシロキサン結合をもつシリコーン(メタ)アクリレート系オリゴマー、小さな分子内に多くの反応性基をもつアミノプラスト樹脂を変性したアミノプラスト樹脂(メタ)アクリレート系オリゴマー、あるいはノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、脂肪族ビニルエーテル、芳香族ビニルエーテル等の分子中にカチオン重合性官能基を有するオリゴマーなどがある。   Furthermore, other polymerizable oligomers include polybutadiene (meth) acrylate oligomers with high hydrophobicity that have (meth) acrylate groups in the side chain of polybutadiene oligomers, and silicone (meth) acrylate oligomers that have polysiloxane bonds in the main chain. In a molecule such as an aminoplast resin (meth) acrylate oligomer modified with an aminoplast resin having many reactive groups in a small molecule, or a novolak epoxy resin, bisphenol epoxy resin, aliphatic vinyl ether, aromatic vinyl ether, etc. There are oligomers having a cationic polymerizable functional group.

電離放射線硬化性樹脂として紫外線硬化性樹脂を用いる場合には、光重合用開始剤を樹脂100質量部に対して、0.1〜5質量部程度添加することが望ましい。光重合用開始剤としては、従来慣用されているものから適宜選択することができ、特に限定されず、例えば、分子中にラジカル重合性不飽和基を有する重合性モノマーや重合性オリゴマーに対しては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2(ヒドロキシ−2−プロピル)ケトン、ベンゾフェノン、p−フェニルベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−tert−ブチルアントラキノン、2−アミノアントラキノン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタールなどが挙げられる。
また、分子中にカチオン重合性官能基を有する重合性オリゴマー等に対しては、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等が挙げられる。
また、光増感剤としては、例えばp−ジメチル安息香酸エステル、第三級アミン類、チオール系増感剤などを用いることができる。
When an ultraviolet curable resin is used as the ionizing radiation curable resin, it is desirable to add about 0.1 to 5 parts by mass of the photopolymerization initiator with respect to 100 parts by mass of the resin. The initiator for photopolymerization can be appropriately selected from those conventionally used and is not particularly limited. For example, for a polymerizable monomer or polymerizable oligomer having a radically polymerizable unsaturated group in the molecule. Benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2 -Phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 - 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2 -Tert-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzyldimethyl ketal, acetophenone dimethyl ketal It is done.
Examples of the polymerizable oligomer having a cationic polymerizable functional group in the molecule include aromatic sulfonium salts, aromatic diazonium salts, aromatic iodonium salts, metallocene compounds, and benzoin sulfonic acid esters.
Moreover, as a photosensitizer, p-dimethylbenzoic acid ester, tertiary amines, a thiol type sensitizer, etc. can be used, for example.

本発明に係る電離放射線硬化性樹脂組成物として、電子線硬化性樹脂組成物を用いることが好ましい。電子線硬化性樹脂組成物は無溶剤化が可能であって、環境や健康の観点からより好ましく、また光重合用開始剤を必要とせず、安定な硬化特性が得られるからである。   As the ionizing radiation curable resin composition according to the present invention, an electron beam curable resin composition is preferably used. This is because the electron beam curable resin composition can be made solvent-free, is more preferable from the viewpoint of environment and health, and does not require a photopolymerization initiator and can provide stable curing characteristics.

本発明においては、電離放射線硬化性樹脂組成物は電離放射線硬化性樹脂と熱可塑性樹脂を75:25〜20:80の比率(質量比)で含む樹脂組成物であることが好ましい。この範囲であると、架橋硬化して表面保護層を形成した後の成形性、耐擦傷性及び耐溶剤性のバランスが良好となる。この点から、電離放射線硬化性樹脂と熱可塑性樹脂の質量比は、60:40〜20:80の範囲がさらに好ましく、60:40〜25:75の範囲が特に好ましい。   In the present invention, the ionizing radiation curable resin composition is preferably a resin composition containing an ionizing radiation curable resin and a thermoplastic resin in a ratio (mass ratio) of 75:25 to 20:80. Within this range, the balance of formability, scratch resistance and solvent resistance after cross-linking and curing to form the surface protective layer is good. In this respect, the mass ratio of the ionizing radiation curable resin and the thermoplastic resin is more preferably in the range of 60:40 to 20:80, and particularly preferably in the range of 60:40 to 25:75.

本発明に係る電離放射線硬化性樹脂組成物に用いられる熱可塑性樹脂としては、ポリ(メタ)アクリル酸エステルなどの(メタ)アクリル系樹脂、ポリビニルブチラールなどのポリビニルアセタール(ブチラール樹脂)、ポリエチレンテレフタレート,ポリブチレンテレフタレートなどのポリエステル樹脂、塩化ビニル樹脂、ウレタン樹脂、ポリエチレン,ポリプロピレンなどのポリオレフィン、ポリスチレン,α−メチルスチレンなどのスチレン系樹脂、ポリアミド、ポリカーボネート、ポリオキシメチレン等のアセタール樹脂、エチレン−4フッ化エチレン共重合体等のフッ素樹脂、ポリイミド、ポリ乳酸、ポリビニルアセタール樹脂、液晶性ポリエステル樹脂などが挙げられ、これらは1種単独でも又は2種以上を組み合わせて用いても良い。2種以上組み合わせる場合は、これらの樹脂を構成するモノマーの共重合体でも良いし、それぞれの樹脂を混合して用いても良い。   Examples of the thermoplastic resin used in the ionizing radiation curable resin composition according to the present invention include (meth) acrylic resins such as poly (meth) acrylic acid esters, polyvinyl acetals (butyral resin) such as polyvinyl butyral, polyethylene terephthalate, Polyester resins such as polybutylene terephthalate, vinyl chloride resins, urethane resins, polyolefins such as polyethylene and polypropylene, styrene resins such as polystyrene and α-methylstyrene, acetal resins such as polyamide, polycarbonate, and polyoxymethylene, ethylene-4 fluorine Fluorine resins such as fluorinated ethylene copolymer, polyimide, polylactic acid, polyvinyl acetal resin, liquid crystalline polyester resin, and the like, and these may be used alone or in combination of two or more. Good. When combining 2 or more types, the copolymer of the monomer which comprises these resin may be sufficient, and each resin may be mixed and used.

上記熱可塑性樹脂のうち、本発明では(メタ)アクリル系樹脂を主成分とするものが好ましく、なかでもモノマー成分として少なくとも(メタ)アクリル酸エステルを含有する単量体を重合してなるものが好ましい。
より具体的には、(メタ)アクリル酸エステルの単独重合体、2種以上の異なる(メタ)アクリル酸エステルモノマーの共重合体、又は(メタ)アクリル酸エステルと他のモノマーとの共重合体が好ましい。
Among the above thermoplastic resins, those having a (meth) acrylic resin as a main component are preferred in the present invention, and in particular, those obtained by polymerizing a monomer containing at least a (meth) acrylic acid ester as a monomer component. preferable.
More specifically, a homopolymer of (meth) acrylic acid ester, a copolymer of two or more different (meth) acrylic acid ester monomers, or a copolymer of (meth) acrylic acid ester and other monomers Is preferred.

ここで、(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸プロピル、メタクリル酸プロピルなどが挙げられ、これらのうちメタクリル酸メチルが最も好ましい。   Here, examples of the (meth) acrylic acid ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, and propyl methacrylate. Among these, methyl methacrylate is the most. preferable.

次に、2種以上の異なる(メタ)アクリル酸エステルモノマーの共重合体としては、上記例示されたものから選ばれる2種以上の(メタ)アクリル酸エステルの共重合体が例示され、該共重合体においてもメタクリル酸メチルを主成分とするものが好ましい。すなわち、メタクリル酸メチルと他の(メタ)アクリル酸エステルモノマーの共重合体が好ましく、メタクリル酸メチルとアクリル酸メチルの共重合体、メタクリル酸メチルとメタクリル酸エチルの共重合体などが例示される。これらのうち、効果の点から特にメタクリル酸メチルとアクリル酸メチルの共重合体が最も好ましい。なお、これらの共重合体はランダム共重合体であってもブロック共重合体であっても良い。
また、メタクリル酸メチルと他の(メタ)アクリル酸エステルモノマーの共重合体においては、メタクリル酸メチルに由来する構成単位100モルに対して、他の(メタ)アクリル酸エステルモノマーに由来する構成単位が0.1〜200モルの範囲であることが好ましい。メタクリル酸メチルに由来する構成単位100モルに対して、他の(メタ)アクリル酸エステルモノマーに由来する構成単位が上記範囲内であると、耐擦傷性及び耐溶剤性が向上する。
Next, examples of the copolymer of two or more different (meth) acrylic acid ester monomers include a copolymer of two or more (meth) acrylic acid esters selected from those exemplified above. Also in the polymer, those having methyl methacrylate as a main component are preferable. That is, a copolymer of methyl methacrylate and another (meth) acrylic acid ester monomer is preferable, and a copolymer of methyl methacrylate and methyl acrylate, a copolymer of methyl methacrylate and ethyl methacrylate, and the like are exemplified. . Of these, a copolymer of methyl methacrylate and methyl acrylate is most preferable from the viewpoint of effects. These copolymers may be random copolymers or block copolymers.
Moreover, in the copolymer of methyl methacrylate and other (meth) acrylic acid ester monomers, the structural unit derived from other (meth) acrylic acid ester monomers with respect to 100 moles of the structural unit derived from methyl methacrylate. Is preferably in the range of 0.1 to 200 mol. When the structural unit derived from another (meth) acrylic acid ester monomer is within the above range with respect to 100 moles of the structural unit derived from methyl methacrylate, the scratch resistance and the solvent resistance are improved.

次に、(メタ)アクリル酸エステルと他のモノマーとの共重合体について、他のモノマーとは(メタ)アクリル酸エステルと共重合可能なものであれば特に限定されないが、本発明では、(メタ)アクリル酸、スチレン、(無水)マレイン酸、フマル酸、ジビニルベンゼン、ビニルビフェニル、ビニルナフタレン、ジフェニルエチレン、酢酸ビニル、塩化ビニル、フッ化ビニル、ビニルアルコール、アクリロニトリル、アクリルアミド、ブタジエン、イソプレン、イソブテン、1−ブテン、2−ブテン、N−ビニル−2−ピロリドン、ジシクロペンタジエン、エチリデンノルボルネン,ノルボルネン類等の脂環式オレフィンモノマー、ビニルカプロラクタム、シトラコン酸無水物、N−フェニルマレイミド等のマレイミド類、ビニルエーテル類などが挙げられ、特にスチレン及び(無水)マレイン酸が共重合成分として好適である。すなわち、(メタ)アクリル酸エステルとスチレン又は(無水)マレイン酸の二元共重合体、(メタ)アクリル酸エステルとスチレン及び(無水)マレイン酸の三元共重合体が好適である。
なお、(メタ)アクリル酸エステルと他のモノマーとの共重合体はランダム共重合体であってもブロック共重合体であっても良い。
Next, the copolymer of (meth) acrylate and other monomer is not particularly limited as long as the other monomer can be copolymerized with (meth) acrylate, but in the present invention, ( (Meth) acrylic acid, styrene, (anhydrous) maleic acid, fumaric acid, divinylbenzene, vinylbiphenyl, vinylnaphthalene, diphenylethylene, vinyl acetate, vinyl chloride, vinyl fluoride, vinyl alcohol, acrylonitrile, acrylamide, butadiene, isoprene, isobutene , Cycloaliphatic olefin monomers such as 1-butene, 2-butene, N-vinyl-2-pyrrolidone, dicyclopentadiene, ethylidene norbornene, norbornene, maleimides such as vinylcaprolactam, citraconic anhydride, N-phenylmaleimide , Vinyl ether And the like, particularly styrene and (anhydrous) maleic acid is preferable as a copolymerization component. That is, a binary copolymer of (meth) acrylic acid ester and styrene or (anhydrous) maleic acid, or a terpolymer of (meth) acrylic acid ester, styrene and (anhydrous) maleic acid is preferable.
The copolymer of (meth) acrylic acid ester and another monomer may be a random copolymer or a block copolymer.

また、前記(メタ)アクリル酸エステルと、スチレン及び/又は(無水)マレイン酸との共重合体においては、(メタ)アクリル酸エステルに由来する構成単位100モルに対して、スチレン及び/又は(無水)マレイン酸に由来する構成単位が0.1〜200モルの範囲であることが好ましい。(メタ)アクリル酸エステルに由来する構成単位100モルに対して、スチレン及び/又は(無水)マレイン酸に由来する構成単位が上記範囲内であると、やはり耐擦傷性及び耐溶剤性が向上する。   In the copolymer of the (meth) acrylic acid ester and styrene and / or (anhydrous) maleic acid, styrene and / or (/) with respect to 100 mol of the structural unit derived from the (meth) acrylic acid ester. The structural unit derived from maleic anhydride) is preferably in the range of 0.1 to 200 mol. When the structural unit derived from styrene and / or (anhydrous) maleic acid is within the above range with respect to 100 mol of the structural unit derived from (meth) acrylic acid ester, the scratch resistance and the solvent resistance are also improved. .

前記(メタ)アクリル系樹脂は、特に重量平均分子量が6万〜15万の範囲であることが好ましい。重量平均分子量がこの範囲であると、架橋硬化して表面保護層を形成した後の成形性及び表面の耐擦傷性及び耐溶剤性のいずれも高いレベルで得ることができる。
ここで重量平均分子量は、ゲルパーミエションクロマトグラフィー(GPC)により測定した。測定には、東ソー(株)製高速GPC装置を用いた。用いたカラムは東ソー(株)製TSKgel αM(商品名)であり、溶媒はN−メチル−2−ピロリジノン(NMP)を用い、カラム温度40℃、流速0.5cc/minで測定を行なった。尚、本発明における分子量及び分子量分布はポリスチレン換算を行った。
The (meth) acrylic resin preferably has a weight average molecular weight in the range of 60,000 to 150,000. When the weight average molecular weight is within this range, the moldability after crosslinking and curing to form the surface protective layer, and the surface scratch resistance and solvent resistance can all be obtained at a high level.
Here, the weight average molecular weight was measured by gel permeation chromatography (GPC). For the measurement, a high-speed GPC apparatus manufactured by Tosoh Corporation was used. The column used was TSKgel αM (trade name) manufactured by Tosoh Corporation, the solvent was N-methyl-2-pyrrolidinone (NMP), and the measurement was performed at a column temperature of 40 ° C. and a flow rate of 0.5 cc / min. The molecular weight and molecular weight distribution in the present invention were converted to polystyrene.

また、本発明に係る電離放射線硬化性樹脂組成物には、得られる硬化樹脂層の所望物性に応じて、各種添加剤を配合することができる。この添加剤としては、例えば耐候性改善剤、耐擦傷性向上剤、重合禁止剤、架橋剤、赤外線吸収剤、帯電防止剤、接着性向上剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤、溶剤、着色剤などが挙げられる。
ここで、耐候性改善剤としては、紫外線吸収剤や光安定剤を用いることができる。紫外線吸収剤は、無機系、有機系のいずれでも良く、無機系紫外線吸収剤としては、平均粒径が5〜120nm程度の二酸化チタン、酸化セリウム、酸化亜鉛などを好ましく用いることができる。また、有機系紫外線吸収剤としては、例えばベンゾトリアゾール系、具体的には、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾール、ポリエチレングリコールの3−[3−(ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル]プロピオン酸エステルなどが挙げられる。一方、光安定剤としては、例えばヒンダードアミン系、具体的には2−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−2’−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレートなどが挙げられる。また、紫外線吸収剤や光安定剤として、分子内に(メタ)アクリロイル基などの重合性基を有する反応性の紫外線吸収剤や光安定剤を用いることもできる。
Moreover, various additives can be mix | blended with the ionizing radiation-curable resin composition which concerns on this invention according to the desired physical property of the cured resin layer obtained. Examples of the additive include a weather resistance improver, a scratch resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, a thixotropic agent, a coupling agent, A plasticizer, an antifoamer, a filler, a solvent, a coloring agent, etc. are mentioned.
Here, as the weather resistance improving agent, an ultraviolet absorber or a light stabilizer can be used. The ultraviolet absorber may be either inorganic or organic. As the inorganic ultraviolet absorber, titanium dioxide, cerium oxide, zinc oxide or the like having an average particle size of about 5 to 120 nm can be preferably used. Examples of the organic ultraviolet absorber include benzotriazole-based compounds, specifically 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-). Amylphenyl) benzotriazole, 3- [3- (benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl] propionic acid ester of polyethylene glycol, and the like. On the other hand, examples of the light stabilizer include hindered amines, specifically 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2′-n-butylmalonate bis (1,2,2). , 6,6-pentamethyl-4-piperidyl), bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl)- 1,2,3,4-butanetetracarboxylate and the like. Further, as the ultraviolet absorber or light stabilizer, a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used.

耐擦傷性向上剤としては、例えば無機物ではα−アルミナ、シリカ、カオリナイト、酸化鉄、ダイヤモンド、炭化ケイ素等の球状粒子が挙げられる。粒子形状は、球、楕円体、多面体、鱗片形等が挙げられ、特に制限はないが、球状が好ましい。有機物では、ポリエチレンワックス等のワックス類、架橋アクリル樹脂、ポリカーボネート樹脂等の合成樹脂ビーズが挙げられる。粒径は、通常膜厚の30〜200%程度とする。これらの中でも球状のα−アルミナは、硬度が高く、耐擦傷性の向上に対する効果が大きいこと、また、球状の粒子を比較的得やすい点で特に好ましいものである。
重合禁止剤としては、例えばハイドロキノン、p−ベンゾキノン、ハイドロキノンモノメチルエーテル、ピロガロール、t−ブチルカテコールなどが、架橋剤としては、例えばポリイソシアネート化合物、エポキシ化合物、金属キレート化合物、アジリジン化合物、オキサゾリン化合物などが用いられる。
充填剤としては、例えば硫酸バリウム、タルク、クレー、炭酸カルシウム、水酸化アルミニウムなどが用いられる。
着色剤としては、例えばキナクリドンレッド、イソインドリノンイエロー、フタロシアニンブルー、フタロシアニングリーン、酸化チタン、カーボンブラックなどの公知の着色用顔料などが用いられる。
赤外線吸収剤としては、例えば、ジチオール系金属錯体、フタロシアニン系化合物、ジインモニウム化合物等が用いられる。
Examples of the scratch resistance improver include spherical particles such as α-alumina, silica, kaolinite, iron oxide, diamond, and silicon carbide as inorganic substances. Examples of the particle shape include a sphere, an ellipsoid, a polyhedron, a scale shape, and the like. Although there is no particular limitation, a spherical shape is preferable. Examples of organic substances include waxes such as polyethylene wax, and synthetic resin beads such as crosslinked acrylic resin and polycarbonate resin. The particle size is usually about 30 to 200% of the film thickness. Among these, spherical α-alumina is particularly preferable because it has high hardness and a large effect on improving scratch resistance, and it is relatively easy to obtain spherical particles.
Examples of the polymerization inhibitor include hydroquinone, p-benzoquinone, hydroquinone monomethyl ether, pyrogallol, and t-butylcatechol. Examples of the crosslinking agent include a polyisocyanate compound, an epoxy compound, a metal chelate compound, an aziridine compound, and an oxazoline compound. Used.
As the filler, for example, barium sulfate, talc, clay, calcium carbonate, aluminum hydroxide and the like are used.
Examples of the colorant include known coloring pigments such as quinacridone red, isoindolinone yellow, phthalocyanine blue, phthalocyanine green, titanium oxide, and carbon black.
As the infrared absorber, for example, a dithiol metal complex, a phthalocyanine compound, a diimmonium compound, or the like is used.

また、本発明に係る電離放射線硬化性樹脂組成物を硬化して得られる表面保護層12の所望物性に応じて、各種の添加剤を添加して各種の機能、例えば、高硬度で耐擦傷性を有する、いわゆるハードコート機能、防曇コート機能、防汚コート機能、防眩コート機能、反射防止コート機能、紫外線遮蔽コート機能、赤外線遮蔽コート機能などを付与することもできる。   In addition, depending on the desired physical properties of the surface protective layer 12 obtained by curing the ionizing radiation curable resin composition according to the present invention, various additives may be added for various functions such as high hardness and scratch resistance. A so-called hard coat function, anti-fogging coat function, anti-fouling coating function, anti-glare coating function, anti-reflection coating function, ultraviolet shielding coating function, infrared shielding coating function and the like can be imparted.

本発明の加飾シート10に、意匠効果の拡大等の目的で、所望により積層される透明熱可塑性樹脂層13は、透明性及び真空成形適性を考慮して選定され、代表的には、熱可塑性樹脂からなる樹脂フィルムの、単層シート又は同種もしくは異種樹脂による複層シート単層又は複層で形成されることが好ましい。
透明熱可塑性樹脂層13に用いられる熱可塑性樹脂としては、アクリル樹脂、ポリプロピレン,ポリエチレン等のポリオレフィン系樹脂、ポリカーボネート樹脂、アクリロニトリル−ブタジエン−スチレン樹脂(以下「ABS樹脂」という)、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等のポリエステル樹脂、塩化ビニル樹脂、シクロオレフィン樹脂、ポリイミド樹脂等が使用される。これらの内、アクリル樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ABS樹脂又はポリエステル樹脂が、透明性、成形性の点で好ましい。
アクリル樹脂としては、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート−ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート−スチレン共重合体等のアクリル樹脂〔但し、(メタ)アクリレートとは、アクリレート又はメタクリレートをいう〕が挙げられる。
透明熱可塑性樹脂層13の厚さは、用途に応じて選定されるが、通常、20〜1,000μm程度であり、コスト等を考慮すると50〜500μm程度が好ましい。
The transparent thermoplastic resin layer 13 laminated on demand for the purpose of expanding the design effect or the like on the decorative sheet 10 of the present invention is selected in consideration of transparency and suitability for vacuum forming. The resin film made of a plastic resin is preferably formed of a single layer sheet or a multilayer sheet single layer or multilayer of the same or different resins.
Examples of the thermoplastic resin used for the transparent thermoplastic resin layer 13 include acrylic resins, polyolefin resins such as polypropylene and polyethylene, polycarbonate resins, acrylonitrile-butadiene-styrene resins (hereinafter referred to as “ABS resins”), polyethylene terephthalate resins, poly Polyester resins such as butylene terephthalate resin, vinyl chloride resin, cycloolefin resin, polyimide resin and the like are used. Among these, acrylic resin, polypropylene resin, polyethylene resin, polycarbonate resin, ABS resin or polyester resin are preferable in terms of transparency and moldability.
As an acrylic resin, for example, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, methyl (meth) acrylate-styrene copolymer An acrylic resin such as (meth) acrylate refers to acrylate or methacrylate.
The thickness of the transparent thermoplastic resin layer 13 is selected according to the application, but is usually about 20 to 1,000 μm, and about 50 to 500 μm is preferable in consideration of cost and the like.

本発明に係る透明熱可塑性樹脂層13は、その上に設けられる層との密着性を向上させるために、所望により、片面又は両面に酸化法や凹凸化法などの物理的又は化学的表面処理を施すことができる。
上記酸化法としては、例えばコロナ放電処理、クロム酸化処理、火炎処理、熱風処理、オゾン・紫外線処理法などが挙げられ、凹凸化法としては、例えばサンドブラスト法、溶剤処理法などが挙げられる。これらの表面処理は、基材の種類に応じて適宜選択されるが、一般にはコロナ放電処理法が効果及び操作性などの面から好ましく用いられる。
また透明熱可塑性樹脂層13には所望によりプライマー層17を形成する等の処理を施しても良いし、色彩を整えるための塗装や、デザイン的な観点での模様があらかじめ印刷層15として形成されていても良い。
The transparent thermoplastic resin layer 13 according to the present invention has a physical or chemical surface treatment such as an oxidation method or an unevenness method on one or both sides as desired in order to improve the adhesion with the layer provided thereon. Can be applied.
Examples of the oxidation method include corona discharge treatment, chromium oxidation treatment, flame treatment, hot air treatment, ozone / ultraviolet treatment method, and examples of the unevenness method include a sand blast method and a solvent treatment method. These surface treatments are appropriately selected depending on the type of substrate, but generally, a corona discharge treatment method is preferably used from the viewpoints of effects and operability.
Further, the transparent thermoplastic resin layer 13 may be subjected to a treatment such as forming a primer layer 17 if desired, and a coating for adjusting the color or a pattern from a design viewpoint is formed in advance as the printing layer 15. May be.

本発明の加飾シート10に所望により積層される第2熱可塑性樹脂層14は、代表的には、熱可塑性樹脂からなる樹脂フィルムの、単層シート又は同種もしくは異種樹脂による複層シート単層又は複層で形成されることが好ましい。第2熱可塑性樹脂層14は、隠蔽性を付与する目的で又は意匠的効果を狙って着色熱可塑性樹脂層として設けても良いし、別な意匠的効果を狙って透明又は半透明熱可塑性樹脂層として設けても良い。
第2熱可塑性樹脂層14に用いられる熱可塑性樹脂としては、透明熱可塑性樹脂層13と同様のものが挙げられる。着色熱可塑性樹脂層に用いられる着色剤としては、後述する印刷層15に用いられるものが挙げられる。
第2熱可塑性樹脂層14の厚さは、用途に応じて選定されるが、通常、20〜1,000μm程度であり、コスト等を考慮すると50〜500μm程度が好ましい。
The second thermoplastic resin layer 14 laminated on the decorative sheet 10 of the present invention as desired is typically a single layer sheet of a resin film made of a thermoplastic resin or a multilayer sheet single layer of the same or different resin. Or it is preferable to form with a multilayer. The second thermoplastic resin layer 14 may be provided as a colored thermoplastic resin layer for the purpose of imparting concealment or aiming at a design effect, or a transparent or translucent thermoplastic resin aiming at another design effect. It may be provided as a layer.
Examples of the thermoplastic resin used for the second thermoplastic resin layer 14 include the same ones as the transparent thermoplastic resin layer 13. As a coloring agent used for a colored thermoplastic resin layer, what is used for the printing layer 15 mentioned later is mentioned.
Although the thickness of the 2nd thermoplastic resin layer 14 is selected according to a use, it is about 20-1,000 micrometers normally, and when considering the cost etc., about 50-500 micrometers is preferable.

本発明の加飾シート10に用いられる支持体11としては、ABS樹脂、ポリオレフィン樹脂、スチレン樹脂、アクリル樹脂、塩化ビニル樹脂、ポリカーボネート樹脂等が好ましい。ポリオレフィン樹脂としては、ポリプロピレン樹脂が好ましい。これらの樹脂の内、ABS樹脂及びポリプロピレン樹脂がさらに好ましく、成形体の表面のクラック、傷等を防止するためにはABS樹脂が特に好ましい。支持体11は、加飾シート10を補強し、一体化物の形態を保持するために用いられるので100〜500μmの厚さを有することが好ましい。
上述のように、支持体11は、単層又は複数層のいずれでも良いが、複数層の場合として、例えば、支持体11の表面にブロッキング防止処理、プライマー処理や酸処理がなされ、表面にブロッキング防止層、プライマー層又は酸変性層が形成された場合が挙げられる。
また、印刷層15のみでは表現できない意匠性を出すため、顔料やマット剤等を含有させた樹脂層、例えばマット樹脂層を支持体11と表面保護層12との間に形成しても良い。
As the support 11 used in the decorative sheet 10 of the present invention, an ABS resin, a polyolefin resin, a styrene resin, an acrylic resin, a vinyl chloride resin, a polycarbonate resin, or the like is preferable. As the polyolefin resin, a polypropylene resin is preferable. Among these resins, an ABS resin and a polypropylene resin are more preferable, and an ABS resin is particularly preferable in order to prevent cracks, scratches and the like on the surface of the molded body. Since the support 11 is used to reinforce the decorative sheet 10 and maintain the form of an integrated product, the support 11 preferably has a thickness of 100 to 500 μm.
As described above, the support 11 may be either a single layer or a plurality of layers, but as a case of a plurality of layers, for example, the surface of the support 11 is subjected to blocking prevention treatment, primer treatment or acid treatment, and blocking on the surface. The case where a prevention layer, a primer layer, or an acid modification layer is formed is mentioned.
In addition, a resin layer containing a pigment, a matting agent, or the like, for example, a mat resin layer, may be formed between the support 11 and the surface protective layer 12 in order to produce a design that cannot be expressed only by the printing layer 15.

図4又は5に示される、所望により積層される印刷層15は、絵柄層及び/又は隠蔽層からなることが好ましい。
絵柄層は樹脂成形体に装飾性を与えるものであり、種々の模様をインキと印刷機を使用して印刷することにより形成される。模様としては、木目模様、大理石模様(例えばトラバーチン大理石模様)等の岩石の表面を模した石目模様、布目や布状の模様を模した布地模様、タイル貼模様、煉瓦積模様等があり、これらを複合した寄木、パッチワーク等の模様もある。これらの模様は通常の黄色、赤色、青色、及び黒色のプロセスカラーによる多色印刷によって形成される他、模様を構成する個々の色の版を用意して行う特色による多色印刷等によっても形成される。
The printing layer 15 that is optionally laminated as shown in FIG. 4 or 5 is preferably composed of a picture layer and / or a concealing layer.
The pattern layer gives decorativeness to the resin molded body, and is formed by printing various patterns using ink and a printing machine. As patterns, there are stone patterns imitating the surface of rocks such as wood grain patterns, marble patterns (for example, travertine marble patterns), fabric patterns imitating cloth and cloth patterns, tiled patterns, brickwork patterns, etc. There are also patterns such as marquetry and patchwork that combine these. These patterns can be formed by multicolor printing with normal yellow, red, blue, and black process colors, and also by multicolor printing with special colors prepared by preparing individual color plates that make up the pattern. Is done.

絵柄層に用いる絵柄インキとしては、バインダーに顔料、染料などの着色剤、体質顔料、溶剤、安定剤、可塑剤、触媒、硬化剤などを適宜混合したものが使用される。該バインダーとしては特に制限はなく、例えば、ポリウレタン系樹脂、塩化ビニル/酢酸ビニル系共重合体樹脂、塩化ビニル/酢酸ビニル/アクリル系共重合体樹脂、塩素化ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ブチラール系樹脂、ポリスチレン系樹脂、ニトロセルロース系樹脂、酢酸セルロース系樹脂などの中から任意のものが、1種単独で又は2種以上を混合して用いられる。
着色剤としては、カーボンブラック(墨)、鉄黒、チタン白、アンチモン白、黄鉛、チタン黄、弁柄、カドミウム赤、群青、コバルトブルー等の無機顔料、キナクリドンレッド、イソインドリノンイエロー、フタロシアニンブルー等の有機顔料又は染料、アルミニウム、真鍮等の鱗片状箔片からなる金属顔料、二酸化チタン被覆雲母、塩基性炭酸鉛等の鱗片状箔片からなる真珠光沢(パール)顔料等が用いられる。
As the pattern ink used for the pattern layer, a binder and a colorant such as a pigment and a dye, an extender pigment, a solvent, a stabilizer, a plasticizer, a catalyst, and a curing agent are appropriately mixed. The binder is not particularly limited, and examples thereof include polyurethane resins, vinyl chloride / vinyl acetate copolymer resins, vinyl chloride / vinyl acetate / acrylic copolymer resins, chlorinated polypropylene resins, acrylic resins, and polyesters. Arbitrary resins, polyamide resins, butyral resins, polystyrene resins, nitrocellulose resins, cellulose acetate resins and the like may be used alone or in combination of two or more.
Colorants include carbon black (black), iron black, titanium white, antimony white, yellow lead, titanium yellow, petal, cadmium red, ultramarine, cobalt blue and other inorganic pigments, quinacridone red, isoindolinone yellow, phthalocyanine Organic pigments or dyes such as blue, metallic pigments composed of scaly foil pieces such as aluminum and brass, pearlescent pigments composed of scaly foil pieces such as titanium dioxide-coated mica and basic lead carbonate, and the like are used.

隠蔽層は、一般には所望により設けられる層であり、支持体11表面の色の変化、ばらつきにより、加飾シートの柄の色に影響を及ぼさないようにする目的で設けられることが多い。通常、不透明色で形成することが多く、その厚さは1〜20μm程度の、いわゆるベタ印刷層が好適に用いられる。隠蔽層は、グラビア印刷、ロールコート等の公知の印刷又は塗工手段により形成される。
上記の第2熱可塑性樹脂層14が、着色熱可塑性樹脂として積層され、隠蔽性を奏する場合は、印刷層15としての隠蔽層はなくても良い。
The hiding layer is generally a layer provided as desired, and is often provided for the purpose of preventing the pattern color of the decorative sheet from being affected by changes and variations in the color of the surface of the support 11. Usually, an opaque color is often used, and a so-called solid print layer having a thickness of about 1 to 20 μm is preferably used. The concealing layer is formed by known printing or coating means such as gravure printing or roll coating.
When the second thermoplastic resin layer 14 is laminated as a colored thermoplastic resin and exhibits concealing properties, the concealing layer as the printing layer 15 may not be provided.

本発明において、各層の密着性を向上させるために、所望により接着剤層16を各層間に設けても良い。例えば図4及び5のように、支持体11と印刷層15との密着性を向上させるために、接着剤層16、16bを支持体11と印刷層15との間に設けることができる。また、図5のように、透明熱可塑性樹脂層13と印刷層15との密着性を向上させるために、所望により接着剤層16aを、透明熱可塑性樹脂層13と印刷層15との間に設けることができる。
接着剤層としては、射出樹脂に応じて、熱可塑性樹脂又は硬化性樹脂が用いられる。熱可塑性樹脂としては、アクリル樹脂、アクリル変性ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、塩化ビニル−酢酸ビニル共重合体、熱可塑性ウレタン樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ゴム系樹脂等が挙げられ、これらは1種又は2種以上を混合して用いることができる。また、熱硬化性樹脂としては、ウレタン樹脂(例えば、イソシアネート硬化剤と各種ポリオールからなる2液硬化型)、エポキシ樹脂等が挙げられる。
なお、接着剤層の厚みは要求物性等に応じて適宜厚さとすれば良いが、通常1〜100μm程度である。また、接着剤層の形成方法は特に限定は無いが、通常は、上記樹脂を希釈溶剤で希釈した樹脂液からなるインキ又は塗液として、グラビア印刷、ロールコート等の公知の印刷又は塗工手段により形成する。また、接着剤層中には、更に、インキ(又は塗液)の印刷(又は塗工)適性等の諸物性を調整、向上させる為に、必要に応じて、その他の副材料、例えば、体質顔料等の各種添加剤を添加しても良い。
In this invention, in order to improve the adhesiveness of each layer, you may provide the adhesive bond layer 16 between each layer depending on necessity. For example, as shown in FIGS. 4 and 5, adhesive layers 16 and 16 b can be provided between the support 11 and the printing layer 15 in order to improve the adhesion between the support 11 and the printing layer 15. Further, as shown in FIG. 5, in order to improve the adhesion between the transparent thermoplastic resin layer 13 and the printing layer 15, an adhesive layer 16 a is optionally provided between the transparent thermoplastic resin layer 13 and the printing layer 15. Can be provided.
As the adhesive layer, a thermoplastic resin or a curable resin is used depending on the injection resin. Examples of the thermoplastic resin include acrylic resins, acrylic-modified polyolefin resins, chlorinated polyolefin resins, vinyl chloride-vinyl acetate copolymers, thermoplastic urethane resins, thermoplastic polyester resins, polyamide resins, rubber resins, and the like. Can be used alone or in combination of two or more. Examples of the thermosetting resin include urethane resins (for example, a two-component curable type composed of an isocyanate curing agent and various polyols), epoxy resins, and the like.
The thickness of the adhesive layer may be appropriately determined according to the required physical properties and the like, but is usually about 1 to 100 μm. The method for forming the adhesive layer is not particularly limited, but usually, known printing or coating means such as gravure printing, roll coating, etc. as an ink or coating liquid comprising a resin liquid obtained by diluting the above resin with a diluent solvent. To form. Further, in the adhesive layer, in order to adjust and improve various physical properties such as printing (or coating) suitability of the ink (or coating liquid), other auxiliary materials such as constitution Various additives such as pigments may be added.

本発明において、表面保護層12と透明熱可塑性樹脂層13との密着性を向上するために、プライマー層17を適宜設けることができる。この所望により設けられるプライマー層17の材料としては、例えば、アクリル樹脂、ウレタン樹脂(例えば、イソシアネート硬化剤と各種ポリオールとからなる2液硬化型)、アクリルウレタン樹脂、塩化ビニルー酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体等が挙げられる。表面保護層12と透明熱可塑性樹脂層13との密着性が高まる共に耐候性も高まり、密着性の経時低下が殆どない点から2液硬化型ウレタン樹脂が好ましい。   In the present invention, the primer layer 17 can be appropriately provided in order to improve the adhesion between the surface protective layer 12 and the transparent thermoplastic resin layer 13. Examples of the material of the primer layer 17 provided as desired include, for example, an acrylic resin, a urethane resin (for example, a two-component curing type composed of an isocyanate curing agent and various polyols), an acrylic urethane resin, a vinyl chloride-vinyl acetate copolymer, And ethylene-vinyl acetate copolymer. A two-component curable urethane resin is preferable from the viewpoint that the adhesion between the surface protective layer 12 and the transparent thermoplastic resin layer 13 is enhanced and the weather resistance is enhanced, and the adhesiveness hardly deteriorates with time.

表面保護層12の形成は上記した本発明に係る電離放射線硬化性樹脂組成物を含有する塗工液を調製し、これを支持体11又は透明熱可塑性樹脂層13の表面に、あるいはプライマー層17を介して塗布し、架橋硬化することで得ることができる。なお、塗工液の粘度は、後述の塗工方式により、基材の表面に未硬化樹脂層を形成し得る粘度であれば良く、特に制限はない。
本発明においては、調製された塗工液を、透明熱可塑性樹脂層13の表面に、硬化後の厚さが上述のようになるように、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコートなどの公知の方式、好ましくはグラビアコートにより塗工し、未硬化樹脂層を形成させる。
The surface protective layer 12 is formed by preparing a coating solution containing the ionizing radiation curable resin composition according to the present invention described above, and applying this to the surface of the support 11 or the transparent thermoplastic resin layer 13 or the primer layer 17. It can obtain by apply | coating through and carrying out cross-linking hardening. In addition, the viscosity of a coating liquid should just be a viscosity which can form a non-hardened resin layer on the surface of a base material by the below-mentioned coating system, and there is no restriction | limiting in particular.
In the present invention, the prepared coating liquid is applied to the surface of the transparent thermoplastic resin layer 13 so that the thickness after curing is as described above, gravure coating, bar coating, roll coating, reverse roll coating, Coating is performed by a known method such as comma coating, preferably gravure coating, to form an uncured resin layer.

本発明においては、このようにして形成された未硬化樹脂層に、電子線、紫外線等の電離放射線を照射して該未硬化樹脂層を硬化させる。ここで、電離放射線として電子線を用いる場合、その加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得るが、通常加速電圧70〜300kV程度で未硬化樹脂層を硬化させることが好ましい。
なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、透明熱可塑性樹脂層13として電子線により劣化する樹脂を使用する場合には、電子線の透過深さと樹脂層の厚みが実質的に等しくなるように、加速電圧を選定することにより、透明熱可塑性樹脂層13への余分の電子線の照射を抑制することができ、過剰電子線による樹脂の劣化を最小限にとどめることができる。
また、照射線量は、樹脂層の架橋密度が飽和する量が好ましく、通常5〜300kGy(0.5〜30Mrad)、好ましくは10〜50kGy(1〜5Mrad)の範囲で選定される。
さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。
In the present invention, the uncured resin layer thus formed is irradiated with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer. Here, when an electron beam is used as the ionizing radiation, the acceleration voltage can be appropriately selected according to the resin used and the thickness of the layer, but the uncured resin layer is usually cured at an acceleration voltage of about 70 to 300 kV. preferable.
In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when a resin deteriorated by an electron beam is used as the transparent thermoplastic resin layer 13, the transmission depth of the electron beam and the resin layer By selecting an accelerating voltage so that the thicknesses are substantially equal, it is possible to suppress the irradiation of an extra electron beam to the transparent thermoplastic resin layer 13, and minimize the deterioration of the resin due to the excess electron beam. You can stay.
The irradiation dose is preferably such that the crosslink density of the resin layer is saturated, and is usually selected in the range of 5 to 300 kGy (0.5 to 30 Mrad), preferably 10 to 50 kGy (1 to 5 Mrad).
Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.

電離放射線として紫外線を用いる場合には、波長190〜380nmの紫外線を含むものを放射する。紫外線源としては特に制限はなく、例えば高圧水銀燈、低圧水銀燈、メタルハライドランプ、カーボンアーク燈等が用いられる。   When ultraviolet rays are used as the ionizing radiation, those containing ultraviolet rays having a wavelength of 190 to 380 nm are emitted. There is no restriction | limiting in particular as an ultraviolet-ray source, For example, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a carbon arc lamp, etc. are used.

本発明の三次元加工用加飾シート10を製造する方法は、図1の場合は、支持体11の表面に表面保護層12を印刷又は塗工すれば良い。また、図3の場合は、例えば、透明熱可塑性樹脂層13の表面に表面保護層12を、裏面に第2熱可塑性樹脂層14及び支持体11を順次積層すれば良い。
図4の場合は、例えば、透明熱可塑性樹脂層13の表面側にプライマー層17を積層し、さらにその表面に表面保護層12を積層する共に、透明熱可塑性樹脂層13の裏面側に印刷層15、即ち、絵柄層及び/又は隠蔽層を順次積層する。その後、印刷層15上に接着剤層16を積層した後、支持体11を積層する。
図5のように第2熱可塑性樹脂層14を設ける場合の製造方法の一例を示す。図4の場合のように透明熱可塑性樹脂層13の表面側にプライマー層17を積層し、さらにその表面に表面保護層12を積層する。また、第2熱可塑性樹脂層14の表面側に印刷層15を積層し、さらにその表面に接着剤層16aを積層する。その後、透明熱可塑性樹脂層13の裏面側と第2熱可塑性樹脂層14の表面側の接着剤層16aとをラミネート等により貼り合わせる。その後、第2熱可塑性樹脂層14の裏面側に接着剤層16bを塗工等により積層し、支持体11と貼り合わせる。
通常、例えば図2、3又は5において、透明熱可塑性樹脂層13又は第2熱可塑性樹脂層14と支持体11とが同じ樹脂材料の場合は接着剤層16が必要でない場合がある。また、例えば図3において、透明熱可塑性樹脂層13と第2熱可塑性樹脂層14とが同じ樹脂材料の場合は接着剤層16が必要でない場合がある。
上述の塗布順序は、製造の便宜のため適宜変更して良い。
上記の積層は、グラビア印刷、ロールコート等の公知の印刷又は塗工手段により行なわれる。
In the case of FIG. 1, the method for producing the decorative sheet 10 for three-dimensional processing of the present invention may be printed or coated with the surface protective layer 12 on the surface of the support 11. In the case of FIG. 3, for example, the surface protective layer 12 may be laminated on the surface of the transparent thermoplastic resin layer 13, and the second thermoplastic resin layer 14 and the support 11 may be laminated sequentially on the back surface.
In the case of FIG. 4, for example, the primer layer 17 is laminated on the surface side of the transparent thermoplastic resin layer 13, and the surface protective layer 12 is further laminated on the surface, and the printing layer is formed on the back surface side of the transparent thermoplastic resin layer 13. 15, ie, a picture layer and / or a concealing layer are sequentially laminated. Then, after laminating the adhesive layer 16 on the printing layer 15, the support 11 is laminated.
An example of the manufacturing method in the case where the second thermoplastic resin layer 14 is provided as shown in FIG. As shown in FIG. 4, the primer layer 17 is laminated on the surface side of the transparent thermoplastic resin layer 13, and the surface protective layer 12 is further laminated on the surface. Moreover, the printing layer 15 is laminated | stacked on the surface side of the 2nd thermoplastic resin layer 14, and the adhesive bond layer 16a is further laminated | stacked on the surface. Thereafter, the back surface side of the transparent thermoplastic resin layer 13 and the adhesive layer 16a on the front surface side of the second thermoplastic resin layer 14 are bonded together by lamination or the like. Thereafter, the adhesive layer 16 b is laminated on the back side of the second thermoplastic resin layer 14 by coating or the like, and is bonded to the support 11.
Usually, in FIG. 2, 3 or 5, for example, when the transparent thermoplastic resin layer 13 or the second thermoplastic resin layer 14 and the support 11 are the same resin material, the adhesive layer 16 may not be necessary. For example, in FIG. 3, when the transparent thermoplastic resin layer 13 and the second thermoplastic resin layer 14 are the same resin material, the adhesive layer 16 may not be necessary.
The order of application described above may be changed as appropriate for the convenience of manufacturing.
The above lamination is performed by known printing or coating means such as gravure printing or roll coating.

本発明の加飾シート10を用いた三次元加工方法として好適なインサート成形法では、真空成形工程において、本発明の加飾シート10を真空成形型により予め成形体表面形状に真空成形し、次いで必要に応じて余分な部分をトリミングして成形シートを得る。この成形シートを射出成形型に挿入し、射出成形型を型締めし、流動状態の樹脂を型内に射出し、固化させて、樹脂成形物の外表面に加飾シートを一体化させ、加飾樹脂成形体を製造する。   In an insert molding method suitable as a three-dimensional processing method using the decorative sheet 10 of the present invention, in the vacuum forming step, the decorative sheet 10 of the present invention is previously vacuum-formed into a molded body surface shape by a vacuum forming die, and then Trim the excess part as necessary to obtain a molded sheet. This molded sheet is inserted into an injection mold, the injection mold is clamped, a resin in a fluid state is injected into the mold, solidified, and the decorative sheet is integrated with the outer surface of the resin molded product. A decorative resin molding is manufactured.

射出樹脂は用途に応じた樹脂が使用され、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ABS樹脂、スチレン樹脂、ポリカーボネート樹脂、アクリル樹脂、塩化ビニル樹脂等の熱可塑性樹脂が代表的である。また、ウレタン樹脂、エポキシ樹脂等の熱硬化性樹脂等も用途に応じ用いることができる。   As the injection resin, a resin corresponding to the application is used, and a thermoplastic resin such as a polyolefin resin such as polyethylene or polypropylene, an ABS resin, a styrene resin, a polycarbonate resin, an acrylic resin, or a vinyl chloride resin is representative. In addition, thermosetting resins such as urethane resins and epoxy resins can be used depending on applications.

以上のようにして製造された加飾樹脂成形体は、その表面保護層に成形過程でクラックや割れが入ることがなく、その表面は高い耐擦傷性や耐溶剤性を有する。さらに本発明の製造方法では、加飾シートの製造段階で表面保護層が完全硬化されるので、加飾樹脂成形体を製造した後に表面保護層を架橋硬化する工程が不要である。   The decorative resin molded body produced as described above has no cracks or cracks in its surface protective layer during the molding process, and its surface has high scratch resistance and solvent resistance. Furthermore, in the production method of the present invention, the surface protective layer is completely cured at the production stage of the decorative sheet, and therefore a step of crosslinking and curing the surface protective layer after producing the decorative resin molded body is unnecessary.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、加飾シートの成形性、破断伸度、表面保護層の140℃における貯蔵弾性率E'、耐擦傷性、耐溶剤性及び金型離れ性は、下記の方法に従って測定した。
(1)成形性
各実施例及び比較例で得た加飾シートについて、以下に示す方法でインサート成形を行い、成形後の外観にて評価した。評価基準は以下のとおりである。
○;外観上異常なし
△;3次元形状部又は300%延伸部の大部分で軽微な艶変化又はクラック発生
×;延伸部分全体に著しい艶変化又はクラック発生
<インサート成形>
加飾シートを赤外線ヒーターで140〜160℃に加熱し、軟化させる。次いで、射出成形用雌型と同形状の型を用いて真空成形を行い、型の内部形状に成形する。型より加飾シートを離型し、不要部分をトリミングして成形シートを得た。この成形シートを射出成形型に挿入し、射出成形型を型締めし、流動状態の耐熱ABS樹脂を射出樹脂温度230℃で型内に射出し、固化させて、加飾樹脂成形体を製造した。
(2)破断伸度
本発明の加飾シート10の延伸性は、支持体11の延伸性の影響を大きく受けるため、支持体のASTM D648法による熱変形温度より40℃高い温度において、JIS K 7127に準拠した引張試験を行ない、加飾シートの試料片の初期の長さL0 、及び加飾シートの試料片に目視できる亀裂が発生した時又は破断時(亀裂が発生することなく試料片が破断した場合)の試料片の長さL1 から下式に従って求めた。
破断伸度(%)={(L1 −L0 )×100}/L0
測定条件は、幅25mm、長さ120mmの試験片を用い、引張速度50mm/分、チャック間距離80mm、標線間距離50mmの条件であった。
なお、支持体が複数層を有する場合は、一番厚い層を支持体と見做して測定温度条件を設定する。
(3)貯蔵弾性率E'
表面処理をしていないポリエチレンテレフタレート(以下、「PET」という)フィルムの上に各実施例及び比較例で製造した樹脂組成物を架橋硬化後の膜厚が約15μmになるように塗布した。この未硬化樹脂層に加速電圧165kV、照射線量50kGy(5Mrad)の電子線を照射して、電子線硬化性樹脂組成物を硬化させた。硬化膜をPETフィルムから剥がして、幅10mm、長さ20mmの試験片を切り出した。該試験片を用いて、JIS K7244−1及び7244−4に準拠し、動的粘弾性測定装置(レオメトリック・サイエンス・エフ・イー(株)製「RSA II」)を用い、140℃の貯蔵弾性率E'を測定した。測定は、クランプ間距離10mm、開始温度30℃、終了温度180℃、昇温速度5℃/分、測定周波数1Hzにて測定した。
(4)耐擦傷性
各実施例及び比較例で製造した加飾シートについて、JIS L0849(摩耗試験機II型(学振型))に準拠して試験(500g荷重、100回)を行い、以下の基準で評価した。試験に用いた装置は、(テスター産業(株)製「学振型摩耗試験機」)である。評価基準は以下のとおりである。
○;傷付きなし。
×;傷付き又は艶変化が発生した。
(5)耐溶剤性
エタノール50%水溶液を加飾シート表面に滴下した後、1分経過後にふき取り、表面保護層の塗膜の変化の有無を目視にて判断し、下記の基準で評価した。
〇:全く変化なし。
×:変化が認められる。
(6)金型離れ性
真空成形後の成形体の金型離れ性及び射出成形後の成形体の金型離れ性を評価した。金型から成形体を抜くときに、表面保護層に目視でシワ、フクレ、ハガレ等が起きず外観上問題ない場合、良好(○)とし、金型離れが悪く成形体の表面保護層に目視でシワ、フクレ、ハガレ等が起き外観に問題がある場合、不良(×)とした。真空成形体の金型離れ性は、型と表面保護層が対向するように成形し、評価した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the moldability of the decorative sheet, the elongation at break, the storage elastic modulus E ′ of the surface protective layer at 140 ° C., scratch resistance, solvent resistance, and mold releasability were measured according to the following methods.
(1) Formability About the decorative sheet obtained by each Example and the comparative example, insert molding was performed by the method shown below, and it evaluated by the external appearance after shaping | molding. The evaluation criteria are as follows.
○: No abnormality in appearance Δ: Minor gloss change or crack generation in most of the three-dimensional shape part or 300% stretched part ×: Significant gloss change or crack generation in the entire stretched part <insert molding>
The decorative sheet is heated to 140-160 ° C. with an infrared heater and softened. Next, vacuum molding is performed using a mold having the same shape as the female mold for injection molding, and the inner mold is molded. The decorative sheet was released from the mold, and unnecessary parts were trimmed to obtain a molded sheet. The molded sheet was inserted into an injection mold, the injection mold was clamped, and the fluidized heat-resistant ABS resin was injected into the mold at an injection resin temperature of 230 ° C. and solidified to produce a decorative resin molded body. .
(2) Elongation at break Since the stretchability of the decorative sheet 10 of the present invention is greatly affected by the stretchability of the support 11, at a temperature 40 ° C. higher than the thermal deformation temperature of the support by the ASTM D648 method, JIS K When the tensile test based on 7127 was performed, the initial length L 0 of the sample piece of the decorative sheet, and when a visible crack occurred in the sample piece of the decorative sheet or at the time of breakage (the sample piece without cracking) There was determined according to the following equation from the length L 1 of the sample piece in the case of rupture).
Elongation at break (%) = {(L 1 −L 0 ) × 100} / L 0
The measurement conditions were a test piece having a width of 25 mm and a length of 120 mm, a tensile speed of 50 mm / min, a distance between chucks of 80 mm, and a distance between marked lines of 50 mm.
When the support has a plurality of layers, the measurement temperature condition is set considering the thickest layer as the support.
(3) Storage elastic modulus E '
The resin composition produced in each Example and Comparative Example was applied on a polyethylene terephthalate (hereinafter referred to as “PET”) film that had not been surface-treated so that the film thickness after crosslinking and curing was about 15 μm. The uncured resin layer was irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition. The cured film was peeled off from the PET film, and a test piece having a width of 10 mm and a length of 20 mm was cut out. Using this test piece, in accordance with JIS K7244-1 and 7244-4, using a dynamic viscoelasticity measuring device (“RSA II” manufactured by Rheometric Science F.E.), storage at 140 ° C. The elastic modulus E ′ was measured. The measurement was performed at a distance between clamps of 10 mm, a start temperature of 30 ° C., an end temperature of 180 ° C., a temperature increase rate of 5 ° C./min, and a measurement frequency of 1 Hz.
(4) Scratch resistance The decorative sheet produced in each example and comparative example was tested (500 g load, 100 times) in accordance with JIS L0849 (Abrasion tester type II (Gakushin type)). Evaluation based on the criteria. The apparatus used for the test is “Gakushin Abrasion Tester” manufactured by Tester Sangyo Co., Ltd. The evaluation criteria are as follows.
○: No damage.
X: Scratch or gloss change occurred.
(5) Solvent resistance After dropping a 50% aqueous ethanol solution onto the decorative sheet surface, it was wiped off after 1 minute, and the presence or absence of a change in the coating film of the surface protective layer was visually determined and evaluated according to the following criteria.
○: No change at all.
X: Change is recognized.
(6) Mold releasability The mold releasability of the molded body after vacuum molding and the mold releasability of the molded body after injection molding were evaluated. When the molded product is removed from the mold, if the surface protective layer does not cause wrinkles, blisters, peeling, etc., and there is no problem with the appearance, it is judged as good (○), and the mold is not easily separated from the surface. If wrinkles, blisters, peelings, etc. occurred and there was a problem with the appearance, it was judged as defective (x). The mold releasability of the vacuum molded body was evaluated by molding so that the mold and the surface protective layer face each other.

実施例1及び2ならびに比較例1〜4
電子線硬化性樹脂(以下「EB」という)である4官能のウレタンアクリレート33質量部に、メタクリル酸メチル(MMA)とアクリル酸メチル(MA)のモル比100:5の共重合体(以下「PMMA−1」という、重量平均分子量(Mw):1.0×105、数平均分子量(Mn):0.60×105)を67質量部混合し、電子線硬化性樹脂組成物を得た。EB:PMMA−1の質量比は33:67である。
次に、ASTM D648法による熱変形温度が80℃である厚さ400μmの着色ABS樹脂シートからなる支持体表面に、アクリルウレタン系プライマー1μmをグラビアコートにて形成し、プライマー塗工面に、上記電子線硬化性樹脂組成物を表1に記載された値になるようにグラビアコートにより塗工した。この未硬化樹脂層に加速電圧165kV、照射線量50kGy(5Mrad)の電子線を照射して、電子線硬化性樹脂組成物を硬化させ表面保護層を形成して3次元加工用加飾シートを得た。
以上のようにして得られた6種類の加飾シートの成形性、破断伸度、表面保護層の140℃における貯蔵弾性率E'、耐擦傷性、耐溶剤性及び金型離れ性を上記の方法で評価した。結果を表1に示す。
Examples 1 and 2 and Comparative Examples 1-4
A copolymer having a molar ratio of methyl methacrylate (MMA) and methyl acrylate (MA) of 100: 5 was added to 33 parts by mass of tetrafunctional urethane acrylate which is an electron beam curable resin (hereinafter referred to as “EB”) 67 parts by mass of a weight average molecular weight (Mw): 1.0 × 10 5 and a number average molecular weight (Mn): 0.60 × 10 5 ) called “PMMA-1” is mixed to obtain an electron beam curable resin composition. It was. The mass ratio of EB: PMMA-1 is 33:67.
Next, an acrylic urethane primer 1 μm is formed by gravure coating on the surface of a support made of a colored ABS resin sheet having a thickness of 400 μm with a heat deformation temperature of 80 ° C. according to ASTM D648 method, and the above-mentioned electronic The linear curable resin composition was applied by gravure coating so as to have the values described in Table 1. This uncured resin layer is irradiated with an electron beam with an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to form a surface protective layer to obtain a decorative sheet for three-dimensional processing. It was.
The moldability, elongation at break, storage elastic modulus E ′ of the surface protective layer at 140 ° C., scratch resistance, solvent resistance and mold releasability of the six types of decorative sheets obtained as described above are as described above. The method was evaluated. The results are shown in Table 1.

実施例3〜8
表1に示す透明熱可塑性樹脂層上に印刷層を形成した。実施例3、4、7及び8においては、印刷層とは反対側の透明熱可塑性樹脂層上に、実施例1及び2と同じアクリルウレタン系プライマーをグラビアコートしてプライマー層を形成し、プライマー層上に表1に示す電子線硬化性樹脂組成物をグラビアコートにより塗工した。また、実施例5及び6においては、プライマー層を形成することなく、印刷層とは反対側の透明熱可塑性樹脂層上に表1に示す電子線硬化性樹脂組成物をグラビアコートにより塗工した。これらの未硬化樹脂層に加速電圧165kV、照射線量50kGy(5Mrad)の電子線を照射して、電子線硬化性樹脂組成物を硬化させ表面保護層を形成した。
次に、印刷層上に2液硬化型ウレタン樹脂接着剤を塗布して接着剤層とし実施例1及び2と同じ着色ABS樹脂シートからなる支持体と接着した。得られたシートを40℃、3日間養生し、接着剤層16bの硬化を促進させ、加飾シート10を得た。
以上のようにして得られた6種類の加飾シートの成形性、破断伸度、表面保護層の140℃における貯蔵弾性率E'、耐擦傷性、耐溶剤性及び金型離れ性を上記の方法で評価した。結果を表1に示す。
Examples 3-8
A printing layer was formed on the transparent thermoplastic resin layer shown in Table 1. In Examples 3, 4, 7, and 8, the same acrylic urethane primer as in Examples 1 and 2 was gravure coated on the transparent thermoplastic resin layer on the side opposite to the printed layer to form a primer layer. On the layer, the electron beam curable resin composition shown in Table 1 was applied by gravure coating. In Examples 5 and 6, the electron beam curable resin composition shown in Table 1 was applied by gravure coating on the transparent thermoplastic resin layer opposite to the printed layer without forming a primer layer. . These uncured resin layers were irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to form a surface protective layer.
Next, a two-component curable urethane resin adhesive was applied onto the printed layer to form an adhesive layer, which was adhered to a support made of the same colored ABS resin sheet as in Examples 1 and 2. The obtained sheet was cured at 40 ° C. for 3 days to accelerate the curing of the adhesive layer 16b, and the decorative sheet 10 was obtained.
The moldability, elongation at break, storage elastic modulus E ′ of the surface protective layer at 140 ° C., scratch resistance, solvent resistance and mold releasability of the six types of decorative sheets obtained as described above are as described above. The method was evaluated. The results are shown in Table 1.

実施例9
厚み60μmの着色ポリプロピレンフィルムである第2熱可塑性樹脂層14表面に、印刷層を形成し、一方、厚み60μmの透明ポリプロピレンフィルムである透明熱可塑性樹脂層13表面に、2液硬化型ウレタン樹脂接着剤をグラビアコートにて約5μmの厚みで形成し、接着剤層16aとした。
次に、第2熱可塑性樹脂層14の上の印刷層側と透明熱可塑性樹脂層13の上の接着剤層16a側とを接着した。得られた積層体の透明熱可塑性樹脂層13表面に、実施例1及び2と同じアクリルウレタン系プライマーをグラビアコートしてプライマー層を形成し、プライマー層上に表1に示す電子線硬化性樹脂組成物をグラビアコートにより塗工した。この未硬化樹脂層に加速電圧165kV、照射線量50kGy(5Mrad)の電子線を照射して、電子線硬化性樹脂組成物を硬化させ表面保護層を形成した。
得られた積層体の第2熱可塑性樹脂層14側に2液硬化型ウレタン樹脂接着剤をグラビアコートし、厚み10μmの接着剤層16bを形成し、実施例1及び2と同じ着色ABS樹脂シートからなる支持体と接着した。得られたシートを40℃、3日間養生し、接着剤層16bの硬化を促進させ、加飾シート10を得た。
以上のようにして得られた実施例9の加飾シートの成形性、破断伸度、表面保護層の140℃における貯蔵弾性率E'、耐擦傷性、耐溶剤性及び金型離れ性を上記の方法で評価した。結果を表1に示す。
Example 9
A printing layer is formed on the surface of the second thermoplastic resin layer 14 which is a colored polypropylene film having a thickness of 60 μm, and a two-component curable urethane resin is bonded to the surface of the transparent thermoplastic resin layer 13 which is a transparent polypropylene film having a thickness of 60 μm. The agent was formed with a gravure coat to a thickness of about 5 μm to form an adhesive layer 16a.
Next, the printing layer side on the second thermoplastic resin layer 14 and the adhesive layer 16a side on the transparent thermoplastic resin layer 13 were bonded. On the surface of the transparent thermoplastic resin layer 13 of the obtained laminate, the same acrylic urethane primer as in Examples 1 and 2 is gravure coated to form a primer layer, and the electron beam curable resin shown in Table 1 is formed on the primer layer. The composition was applied by gravure coating. This uncured resin layer was irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to form a surface protective layer.
The two-component curable urethane resin adhesive is gravure coated on the second thermoplastic resin layer 14 side of the obtained laminate to form an adhesive layer 16b having a thickness of 10 μm. The same colored ABS resin sheet as in Examples 1 and 2 Adhered to a support consisting of The obtained sheet was cured at 40 ° C. for 3 days to accelerate the curing of the adhesive layer 16b, and the decorative sheet 10 was obtained.
The decorative sheet of Example 9 obtained as described above has the moldability, elongation at break, storage elastic modulus E ′ of the surface protective layer at 140 ° C., scratch resistance, solvent resistance and mold releasability described above. The method was evaluated. The results are shown in Table 1.

Figure 0004985288
注) 破断伸度(%)において、「387<」とあるのは、破断伸度が387%を超えることを確認して試験を打ち切ったことを示す。
表面保護層の材料A〜C及び透明熱可塑性樹脂層の材料D〜Eの組成内容
表面保護層の材料A:(EB/PMMA−1)=(33/67)(質量部)
表面保護層の材料B:(EB/PMMA−2)=(33/67)(質量部)
表面保護層の材料C:(EB/ポリエステル−1)=(25/75)(質量部)
透明熱可塑性樹脂層の材料D:ポリプロピレン樹脂 無延伸ポリプロピレン(プロピレン−エチレンランダムコポリマー)、軟化点:125℃、ヘイズ(曇価):7.0
透明熱可塑性樹脂層の材料E:アクリル樹脂 メタクリル酸メチル樹脂(PMMA)、軟化点:105℃、ヘイズ(曇価):0.5
ここで、EBは4官能ウレタンアクリレートであり、PMMA−1は上記の通りであり、PMMA−2はメタクリル酸メチル(MMA)単独重合体{重量平均分子量(Mw):1.1×105、数平均分子量(Mn):0.64×105、多分散度(Mw/Mn):1.72}であり、ポリエステル−1はポリエステル樹脂{重量平均分子量(Mw):0.86×105、数平均分子量(Mn):0.41×105、多分散度(Mw/Mn):2.1}である。
Figure 0004985288
Note) In the breaking elongation (%), “387 <” indicates that the test was terminated after confirming that the breaking elongation exceeded 387%.
Composition of surface protective layer materials A to C and transparent thermoplastic resin layer materials D to E Surface protective layer material A: (EB / PMMA-1) = (33/67) (parts by mass)
Surface protective layer material B: (EB / PMMA-2) = (33/67) (parts by mass)
Surface protective layer material C: (EB / polyester-1) = (25/75) (parts by mass)
Material D of transparent thermoplastic resin layer: Polypropylene resin Unstretched polypropylene (propylene-ethylene random copolymer), softening point: 125 ° C., haze (cloudiness value): 7.0
Material of transparent thermoplastic resin layer E: Acrylic resin Methyl methacrylate resin (PMMA), softening point: 105 ° C., haze (cloudiness value): 0.5
Here, EB is a tetrafunctional urethane acrylate, PMMA-1 is as described above, PMMA-2 is a methyl methacrylate (MMA) homopolymer {weight average molecular weight (Mw): 1.1 × 10 5 , Number average molecular weight (Mn): 0.64 × 10 5 , polydispersity (Mw / Mn): 1.72}, polyester-1 is a polyester resin {weight average molecular weight (Mw): 0.86 × 10 5 , Number average molecular weight (Mn): 0.41 × 10 5 , polydispersity (Mw / Mn): 2.1}.

表1から分かるように、実施例1〜9の加飾シートは、成形性、破断伸度、耐擦傷性、及び耐溶剤性のいずれも良好であり、表面保護層の140℃における貯蔵弾性率E' は、7.7×105〜1.2×108Paの範囲内であった。
これに対し、比較例1の加飾シートにおいては、表面保護層の140℃における貯蔵弾性率E' が7.7×105〜1.2×108Paの範囲内であり、破断伸度が高かったが、表面保護層の厚みが薄過ぎるため耐擦傷性及び耐溶剤性のいずれも悪かった。
また、比較例2〜4の加飾シートにおいては、表面保護層の140℃における貯蔵弾性率E' が7.7×105〜1.2×108Paの範囲内であり、耐溶剤性が良好であったが、破断伸度が低く、耐擦傷性も悪かった。
さらに、真空成形後の成形体の金型離れ性、射出成形後の成形体の金型離れ性を評価した結果、実施例1〜9及び比較例1〜4はいずれも、真空成形後及び射出成形後の金型離れ性の双方とも良好であった。
As can be seen from Table 1, the decorative sheets of Examples 1 to 9 have good moldability, breaking elongation, scratch resistance, and solvent resistance, and the storage elastic modulus of the surface protective layer at 140 ° C. E ′ was in the range of 7.7 × 10 5 to 1.2 × 10 8 Pa.
On the other hand, in the decorative sheet of Comparative Example 1, the storage elastic modulus E ′ at 140 ° C. of the surface protective layer is in the range of 7.7 × 10 5 to 1.2 × 10 8 Pa, and the elongation at break However, since the thickness of the surface protective layer was too thin, both scratch resistance and solvent resistance were poor.
Further, in the decorative sheets of Comparative Examples 2 to 4, the storage elastic modulus E ′ at 140 ° C. of the surface protective layer is in the range of 7.7 × 10 5 to 1.2 × 10 8 Pa, and the solvent resistance. However, the elongation at break was low and the scratch resistance was poor.
Furthermore, as a result of evaluating the mold releasability of the molded body after vacuum molding and the mold releasability of the molded body after injection molding, each of Examples 1 to 9 and Comparative Examples 1 to 4 was both after vacuum molding and injection. Both mold releasability after molding was good.

本発明の三次元加工用加飾シートは、例えば、自動車等の車両の内装材又は外装材、幅木、回縁等の造作部材、窓枠、扉枠等の建具、壁、床、天井等の建築物の内装材、テレビ受像機、空調機等の家電製品の筐体、容器などの用途の加飾成形体に好適に用いられる。   The decorative sheet for three-dimensional processing of the present invention includes, for example, interior materials or exterior materials of vehicles such as automobiles, construction members such as baseboards and rims, joinery such as window frames and door frames, walls, floors, ceilings, and the like. It is suitably used as a decorative molded body for uses such as interior materials of buildings, television receivers, casings of household electrical appliances such as air conditioners, and containers.

本発明の三次元加工用加飾シートの一実施態様の断面を示す模式図である。It is a schematic diagram which shows the cross section of one embodiment of the decoration sheet for three-dimensional processing of this invention. 本発明の三次元加工用加飾シートの他の実施態様の断面を示す模式図である。It is a schematic diagram which shows the cross section of the other embodiment of the decorating sheet for three-dimensional processing of this invention. 本発明の三次元加工用加飾シートの他の実施態様の断面を示す模式図である。It is a schematic diagram which shows the cross section of the other embodiment of the decorating sheet for three-dimensional processing of this invention. 本発明の三次元加工用加飾シートの他の実施態様の断面を示す模式図である。It is a schematic diagram which shows the cross section of the other embodiment of the decorating sheet for three-dimensional processing of this invention. 本発明の三次元加工用加飾シートの他の実施態様の断面を示す模式図である。It is a schematic diagram which shows the cross section of the other embodiment of the decorating sheet for three-dimensional processing of this invention.

符号の説明Explanation of symbols

10 加飾シート
11 支持体
12 表面保護層
13 透明熱可塑性樹脂層
14 第2熱可塑性樹脂層
15 印刷層
16 接着剤層
17 プライマー層
DESCRIPTION OF SYMBOLS 10 Decorating sheet 11 Support body 12 Surface protective layer 13 Transparent thermoplastic resin layer 14 2nd thermoplastic resin layer 15 Print layer 16 Adhesive layer 17 Primer layer

Claims (7)

支持体の上に少なくとも表面保護層を積層してなる三次元加工用加飾シートであって、該支持体のASTM D648法による熱変形温度より40℃高い温度において該三次元加工用加飾シートが300%を超える破断伸度(JIS K 7127に準拠)を有し、かつ該表面保護層が電離放射線硬化性樹脂組成物を架橋硬化してなり、0.2〜6.0μmの膜厚を有し、以下の測定条件で測定した140℃における前記表面保護層の貯蔵弾性率が7.7×10 5 〜1.2×10 8 Paの範囲であることを特徴とする三次元加工用加飾シート。
貯蔵弾性率の測定条件:JIS K7244−1及び7244−4に準拠し、前記電離放射線硬化性樹脂組成物を架橋硬化して製膜した幅10mm、厚さ15μmのシートをクランプ間距離10mm、開始温度30℃、終了温度180℃、昇温速度5℃/分、測定周波数1Hzにて測定する。
A decorative sheet for three-dimensional processing formed by laminating at least a surface protective layer on a support, wherein the decorative sheet for three-dimensional processing is at a temperature 40 ° C higher than the thermal deformation temperature of the support according to ASTM D648 method. Has a breaking elongation exceeding 300% (based on JIS K 7127), and the surface protective layer is obtained by crosslinking and curing the ionizing radiation curable resin composition, and has a film thickness of 0.2 to 6.0 μm. Yes, and the following storage modulus of the surface protective layer at 140 ° C. as measured by the measurement condition pressurizing for three-dimensional processing which is a range of 7.7 × 10 5 ~1.2 × 10 8 Pa Decorative sheet.
Storage elastic modulus measurement conditions: In accordance with JIS K7244-1 and 7244-4, a sheet of 10 mm width and 15 μm thickness formed by crosslinking and curing the ionizing radiation curable resin composition was 10 mm in distance between clamps. The measurement is performed at a temperature of 30 ° C., an end temperature of 180 ° C., a temperature increase rate of 5 ° C./min, and a measurement frequency of 1 Hz.
前記電離放射線硬化性樹脂組成物が電離放射線硬化性樹脂と熱可塑性樹脂を75:25〜20:80の比率(質量比)で含む樹脂組成物である請求項1に記載の三次元加工用加飾シート。 The additive for three-dimensional processing according to claim 1, wherein the ionizing radiation curable resin composition is a resin composition containing an ionizing radiation curable resin and a thermoplastic resin in a ratio (mass ratio) of 75:25 to 20:80. Decorative sheet. 前記支持体と前記表面保護層との間に、さらに透明熱可塑性樹脂層を設けてなる請求項1又は2に記載の三次元加工用加飾シート。 The decorative sheet for three-dimensional processing according to claim 1 or 2 , wherein a transparent thermoplastic resin layer is further provided between the support and the surface protective layer. 前記支持体と前記透明熱可塑性樹脂層との間に、さらに第2熱可塑性樹脂層を設けてなる請求項に記載の三次元加工用加飾シート。 The decorative sheet for three-dimensional processing according to claim 3 , wherein a second thermoplastic resin layer is further provided between the support and the transparent thermoplastic resin layer. 前記電離放射線硬化性樹脂が電子線硬化性樹脂である請求項2〜4のいずれかに記載の三次元加工用加飾シート。 The decorative sheet for three-dimensional processing according to any one of claims 2 to 4 , wherein the ionizing radiation curable resin is an electron beam curable resin. 三次元加工がインサート成形である請求項1〜のいずれかに記載の三次元加工用加飾シート。 The decorative sheet for three-dimensional processing according to any one of claims 1 to 5 , wherein the three-dimensional processing is insert molding. 樹脂成形物に請求項1〜のいずれかに記載の三次元加工用加飾シートを一体化させてなる加飾樹脂成形体。 A decorative resin molded product obtained by integrating the decorative sheet for three-dimensional processing according to any one of claims 1 to 6 with a resin molded product.
JP2007256485A 2006-09-29 2007-09-28 Decorative sheet for 3D processing Active JP4985288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256485A JP4985288B2 (en) 2006-09-29 2007-09-28 Decorative sheet for 3D processing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006269913 2006-09-29
JP2006269913 2006-09-29
JP2007256485A JP4985288B2 (en) 2006-09-29 2007-09-28 Decorative sheet for 3D processing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012021216A Division JP2012116200A (en) 2006-09-29 2012-02-02 Decorative sheet for three-dimensional processing

Publications (3)

Publication Number Publication Date
JP2008105420A JP2008105420A (en) 2008-05-08
JP2008105420A5 JP2008105420A5 (en) 2008-06-19
JP4985288B2 true JP4985288B2 (en) 2012-07-25

Family

ID=39439163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256485A Active JP4985288B2 (en) 2006-09-29 2007-09-28 Decorative sheet for 3D processing

Country Status (1)

Country Link
JP (1) JP4985288B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272322B2 (en) * 2006-03-31 2013-08-28 大日本印刷株式会社 Resin composition and decorative sheet using the resin composition
DE102008023499A1 (en) 2008-05-14 2009-11-19 Bayer Materialscience Ag Printing ink or printing varnish, coated laminate therewith and process for producing a laminate
JP2009274378A (en) * 2008-05-16 2009-11-26 Sanwa Screen Meiban:Kk Film for film insert molding and molded article
US8597793B2 (en) 2008-06-30 2013-12-03 Dai Nippon Printing Co., Ltd. Decorative sheet, process for producing decorative resin molded product, and decorative resin molded product
JP5585011B2 (en) * 2008-06-30 2014-09-10 大日本印刷株式会社 Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5487685B2 (en) * 2008-06-30 2014-05-07 大日本印刷株式会社 Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5267017B2 (en) * 2008-09-30 2013-08-21 大日本印刷株式会社 Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5267018B2 (en) * 2008-09-30 2013-08-21 大日本印刷株式会社 Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5589297B2 (en) * 2009-03-31 2014-09-17 大日本印刷株式会社 Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
CN101987523A (en) * 2009-07-31 2011-03-23 康准电子科技(昆山)有限公司 Composite material product and forming method thereof
JP5476903B2 (en) * 2009-09-30 2014-04-23 大日本印刷株式会社 Decorative sheet and decorative resin molded product using the same
JP5402607B2 (en) * 2009-12-18 2014-01-29 東洋紡株式会社 Hard coat film for molding and molded body
JP5831086B2 (en) * 2010-09-29 2015-12-09 大日本印刷株式会社 Decorative sheet and decorative molded product
JP5724525B2 (en) * 2010-09-30 2015-05-27 大日本印刷株式会社 Cosmetic sheet and cosmetic material
JP5818489B2 (en) * 2011-04-12 2015-11-18 積水化学工業株式会社 Combustion resistant sheet
WO2013183489A1 (en) * 2012-06-08 2013-12-12 東レ株式会社 Film for decorative molding and method for producing decorative molded body
WO2014104334A1 (en) * 2012-12-27 2014-07-03 三菱樹脂株式会社 Resin laminate for molding and molded article
WO2014109372A1 (en) * 2013-01-10 2014-07-17 三菱樹脂株式会社 Molded body and method for producing same
JP6269125B2 (en) * 2014-02-07 2018-01-31 日油株式会社 Anti-glare film for insert molding
JP6574088B2 (en) * 2014-12-24 2019-09-11 スリーエム イノベイティブ プロパティズ カンパニー Film and decorative film capable of coating article having three-dimensional shape by heat stretching

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4463919B2 (en) * 2000-01-18 2010-05-19 大日本印刷株式会社 Painting sheet and injection molding simultaneous painting method
KR101196530B1 (en) * 2004-03-30 2012-11-01 다이니폰 인사츠 가부시키가이샤 Sheet for Decoration Simultaneous with Injection Molding and Decorated Resin Molding

Also Published As

Publication number Publication date
JP2008105420A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4985288B2 (en) Decorative sheet for 3D processing
WO2009113168A1 (en) Decorative sheet for three-dimensional work
JP5201289B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP4899998B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
WO2010001867A1 (en) Decorative sheet, process for producing decorative resin molded product, and decorative resin molded product
JP5332258B2 (en) Resin composition and decorative sheet using the resin composition
JP5267018B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5439909B2 (en) Decorative sheet manufacturing method
JP5417726B2 (en) Decorative sheet for three-dimensional processing and decorative molded product using the same
JP2010030277A (en) Decorative sheet, manufacturing method of decorative resin molded product and decorative resin molded product
JP5267017B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5228448B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5012433B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5223222B2 (en) Resin composition and decorative sheet using the resin composition
JP5272322B2 (en) Resin composition and decorative sheet using the resin composition
JP5012434B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP2010234768A (en) Decorative sheet, manufacturing method of decorative resin molded article, and decorative resin molded article
JP2012116200A (en) Decorative sheet for three-dimensional processing
JP5440365B2 (en) Decorative sheet and manufacturing method thereof
JP2010234346A (en) Method of manufacturing decoration sheet
JP5581769B2 (en) Decorative sheet manufacturing method and decorative sheet
JP5310896B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5012435B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product
JP5152388B2 (en) Decorative sheet, decorative resin molded product manufacturing method, and decorative resin molded product

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4985288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3