[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4983231B2 - Cement clinker manufacturing method and manufacturing apparatus thereof - Google Patents

Cement clinker manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP4983231B2
JP4983231B2 JP2006322797A JP2006322797A JP4983231B2 JP 4983231 B2 JP4983231 B2 JP 4983231B2 JP 2006322797 A JP2006322797 A JP 2006322797A JP 2006322797 A JP2006322797 A JP 2006322797A JP 4983231 B2 JP4983231 B2 JP 4983231B2
Authority
JP
Japan
Prior art keywords
exhaust gas
air
cooling
cement clinker
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006322797A
Other languages
Japanese (ja)
Other versions
JP2008137818A (en
Inventor
守 松岡
卓也 高山
浩二 椋木
貴宏 亀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006322797A priority Critical patent/JP4983231B2/en
Publication of JP2008137818A publication Critical patent/JP2008137818A/en
Application granted granted Critical
Publication of JP4983231B2 publication Critical patent/JP4983231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、セメントキルン排ガスの一部を抽気し、セメント原料焼成系内の塩化アルカリ等の揮発性成分量を低減させるセメントクリンカの製造方法及びその製造装置に関する。 The present invention relates to a method and apparatus for manufacturing a cement clinker that bleeds part of exhaust gas from a cement kiln and reduces the amount of volatile components such as alkali chloride in a cement raw material firing system.

セメント原燃料からSP(サスペンションプレヒータ方式)キルン、NSP(仮焼炉付サスペンションプレヒータ方式)キルン等のセメントキルン焼成系内に持ち込まれた揮発性の不純物は、高温であるキルン内では気化し、気流に乗ってセメント原料予熱装置(以下プレヒータと称す)へ戻される。揮発した不純物は、キルン内より低温であるプレヒータ内では液化または固化し、再度キルン内に持ち込まれることで系内を循環し次第に濃度が濃くなり、ついにはプレヒータ等セメント原料焼成系内壁に付着するコーチングの発生、成長により経路の閉塞を起こし、運転停止を余儀なくされる原因となっている。この問題を解決する方法として、セメント原料焼成系内からセメントキルン排ガスの一部を抽気、処理して塩化アルカリを主成分とする揮発性成分の一部を除去し、焼成系内におけるコーチングトラブルを抑制する塩素バイパスと呼ばれる方法が知られている。 Volatile impurities brought from cement raw fuel into cement kiln firing systems such as SP (suspension preheater method) kiln and NSP (suspension preheater method with kiln) kiln are vaporized in the high temperature kiln and air flow To return to the cement raw material preheating device (hereinafter referred to as preheater). Volatilized impurities are liquefied or solidified in the preheater, which is at a lower temperature than in the kiln, and circulated in the system by being brought back into the kiln. The concentration gradually increases, and finally adheres to the inner wall of the cement raw material firing system such as the preheater. Occurrence and growth of coaching causes the path to be blocked, causing a forced stop. As a method of solving this problem, a part of the cement kiln exhaust gas is extracted and treated from the cement raw material firing system to remove a part of the volatile components mainly composed of alkali chloride, thereby eliminating the coating trouble in the firing system. A method called chlorine bypass to suppress is known.

この塩素バイパスの原理は、プレヒータ内からガスを抽気し、そのガスを塩素バイパス設備の抽気排ガス処理装置内で冷却し、ガスに含まれている揮発性アルカリを固化して捕集し・高温のキルン部分をバイパスすることで、セメント原料焼成系内を循環する揮発性成分の量を低減するものである。 The principle of this chlorine bypass is that gas is extracted from inside the preheater, the gas is cooled in the exhaust gas treatment device of the chlorine bypass facility, and the volatile alkali contained in the gas is solidified and collected. By bypassing the kiln part, the amount of volatile components circulating in the cement raw material firing system is reduced.

一方、近年循環型社会への貢献として、焼却灰等の廃棄物をセメント原料化、有効利用を押し進めているが、これに伴いセメント原料製造装置内に持ち込まれる塩化アルカリの量が増加してきている。このため、廃棄物から持ち込まれる塩化アルカリの増加に合わせ、塩素バイパスの抽気量の増加が必要になっている。 On the other hand, in recent years, as a contribution to a recycling-oriented society, waste such as incineration ash has been used as a raw material for cement and its effective use has been promoted. With this, the amount of alkali chloride brought into cement raw material manufacturing equipment has increased. . For this reason, it is necessary to increase the extraction amount of chlorine bypass in accordance with the increase in alkali chloride brought in from waste.

抽気したガスを冷却、固化しセメントクリンカ製造装置系外へ除去する揮発性アルカリの固化物は、数ミクロン程度の微粒子であるため、一般的にバッグフィルタ式集塵機で捕集される。しかし、バッグフィルタのろ布の常用耐熱温度は高温用でも200℃強程度であり、このろ布を保護するためバッグフィルタ集塵機に入る抽気排ガスの温度をろ布の耐熱温度以下まで下げる必要がある。 The solidified volatile alkali that cools and solidifies the extracted gas and removes it outside the cement clinker production system is fine particles of about several microns, and is generally collected by a bag filter type dust collector. However, the normal heat resistant temperature of the filter cloth of the bag filter is about 200 ° C. even for high temperatures, and it is necessary to lower the temperature of the extracted exhaust gas entering the bag filter dust collector to be below the heat resistant temperature of the filter cloth in order to protect this filter cloth. .

例えば、特許文献1では、水の噴霧による冷却方法が示されている。しかし、抽気排ガス中の湿分が高くなる。この結果、ガス中の湿分により塩素化合物がバッグフィルタ部で潮解し、バッグフィルタの目詰まりの原因となる。また抽気ガス中には硫黄ガスも含まれておりこれが水分と反応し硫酸塩等が生成され設備の腐蝕等が懸念され、運転上、設備上の長期安定運転を行う上で障害となるおそれがある。
一方、廃棄物の使用量を増加することに伴い、抽気排ガスの抽気率を高くすることが想定される。このような観点から、抽気排ガスの抽気率を高くした場合においても、セメントクリンカの製造装置を長期安定的に運転を行うことができる装置システムの開発が待望されている。
For example, Patent Document 1 discloses a cooling method by spraying water. However, the moisture in the extracted exhaust gas becomes high. As a result, the chlorine compound is deliquescent in the bag filter portion due to moisture in the gas, which causes clogging of the bag filter. The extracted gas also contains sulfur gas, which reacts with moisture to produce sulfates, etc., which may cause corrosion of the equipment, etc., which may hinder the operation and long-term stable operation of the equipment. is there.
On the other hand, with an increase in the amount of waste used, it is assumed that the extraction rate of the extracted exhaust gas is increased. From such a viewpoint, even when the extraction rate of the extracted exhaust gas is increased, development of an apparatus system capable of stably operating the cement clinker manufacturing apparatus for a long period is awaited.

特開昭62−252349号公報JP 62-252349 A

本発明は、抽気排ガスを簡便な方法により効果的に処理することに加えて、抽気排ガスの抽気率を大幅に向上させつつ、セメントクリンカの製造装置を長期安定的に運転を行うことができるセメントクリンカの製造方法及び製造装置を提供することを課題とする。 The present invention provides a cement clinker manufacturing apparatus capable of stably operating a cement clinker manufacturing apparatus for a long period of time while greatly improving the extraction rate of the extracted exhaust gas in addition to effectively treating the extracted exhaust gas by a simple method. It is an object of the present invention to provide a clinker manufacturing method and a manufacturing apparatus.

本発明者らは、高抽気塩素バイパスを備えたセメントクリンカ製造装置がシンプルな構成で安定運転することを鋭意研究した結果、本発明を開発するに至った。
すなわち、本発明は、セメントクリンカ製造装置の排ガスの一部を抽気し、抽気した排ガスに含まれる揮発性成分を排ガスから分離してセメントクリンカ製造装置内の揮発性成分を低減させてセメントクリンカを製造する方法において、前記抽気した排ガスを空気で直接急冷し、急冷した排ガスを間接冷却装置で冷却することを特徴とするセメントクリンカの製造方法である。
また、別の発明としては、セメントクリンカ製造装置の排ガスを抽気するための抽気管と、抽気管に接続され抽気した排ガスを空気で直接急冷するための冷却部と、前記急冷した排ガスを冷却するための間接冷却装置と、間接冷却された排ガスに含まれる固形物を排ガスから分離するための分離手段とを備えるセメントクリンカの製造装置である。
なお、ここで言う固形物とは、低融点の揮発性成分が冷却により固化したものと抽気した排ガスに同伴して吸い込まれたセメントクリンカ原料の混合物をいう。
The inventors of the present invention have developed the present invention as a result of earnestly studying that a cement clinker production apparatus equipped with a high extraction chlorine bypass stably operates with a simple configuration.
That is, the present invention extracts a part of the exhaust gas from the cement clinker production apparatus, separates the volatile component contained in the extracted exhaust gas from the exhaust gas, reduces the volatile component in the cement clinker production apparatus, and removes the cement clinker. In the manufacturing method, the extracted exhaust gas is rapidly cooled with air, and the rapidly cooled exhaust gas is cooled with an indirect cooling device.
Further, as another invention, an extraction pipe for extracting the exhaust gas of the cement clinker production apparatus, a cooling unit connected to the extraction pipe for directly quenching the extracted exhaust gas with air, and cooling the quenched exhaust gas The cement clinker manufacturing apparatus includes an indirect cooling device for separating the solid matter contained in the indirectly cooled exhaust gas from the exhaust gas.
The solid matter referred to here is a mixture of a cement clinker raw material sucked together with a volatile component having a low melting point solidified by cooling and an exhaust gas extracted.

本発明によれば、抽気した排ガスの処理風量を減量することができる。また、排ガスに含まれる固形物も容易に排ガスから分離することが可能である。この結果、抽気排ガスの抽気率を大幅に向上することができ、廃棄物をセメント製造の原燃料としての利用を拡大することができる。これらにより、塩化アルカリ等の揮発性成分を低減することでセメント原料の焼成装置のトラブルをなくし安定的にセメントクリンカの製造が出来る。 According to the present invention, the processing air volume of the extracted exhaust gas can be reduced. In addition, the solid matter contained in the exhaust gas can be easily separated from the exhaust gas. As a result, the extraction rate of the extracted exhaust gas can be greatly improved, and the use of waste as a raw fuel for cement production can be expanded. By reducing volatile components, such as alkali chloride, the trouble of the baking apparatus of a cement raw material can be eliminated by these, and a cement clinker can be manufactured stably.

図1は、本発明を利用したセメントクリンカ製造装置の第1の実施形態の概略図である。セメントクリンカ製造装置はセメントクリンカ原料を予熱、仮焼するプレヒータ1Bとクリンカ焼成するキルン1Aとキルン1Aで焼成されたクリンカを急冷するクリンカクーラ11で構成されている。ライジングダクト1Cの壁面に抽気管2が接続されている。ライジングダクト1Cからキルン排ガスを急冷するために、抽気管2を経由して冷却部である冷却室3に導く。冷却室3には、冷却空気ファン4によって空気が吹き込まれる。これにより、排ガスが急冷され、排ガスに含まれる揮発性アルカリ塩の融点以下に急冷される。急冷された排ガス中の揮発性成分は、冷却室3で十分に冷却されて固化し、排気ファンで吸引されて分離手段としての集塵機7で捕集、分離される。これにより、セメントクリンカ製造装置内の揮発性成分を低減することができる。 FIG. 1 is a schematic view of a first embodiment of a cement clinker manufacturing apparatus using the present invention. The cement clinker manufacturing apparatus includes a pre-heater 1B for preheating and pre-calcining cement clinker raw material, a kiln 1A for clinker firing, and a clinker cooler 11 for rapidly cooling the clinker fired in the kiln 1A. The extraction pipe 2 is connected to the wall surface of the rising duct 1C. In order to rapidly cool the kiln exhaust gas from the rising duct 1C, the kiln exhaust gas is led to the cooling chamber 3 which is a cooling unit via the extraction pipe 2. Air is blown into the cooling chamber 3 by a cooling air fan 4. Thereby, exhaust gas is rapidly cooled and rapidly cooled below the melting point of the volatile alkali salt contained in the exhaust gas. Volatile components in the rapidly cooled exhaust gas are sufficiently cooled and solidified in the cooling chamber 3, sucked by an exhaust fan, and collected and separated by a dust collector 7 as a separating means. Thereby, the volatile component in a cement clinker manufacturing apparatus can be reduced.

前記抽気した排ガスを空気で直接急冷する方法について、より詳細に説明する。抽気した排ガスの温度は、1000〜1200℃である。空気は大気温度である。直接急冷するとは、抽気排ガスと冷却用空気を直接接触させることにより熱交換させることをいう。急冷とは、冷却速度が600〜800℃/秒をいう。急冷後の排ガスの温度は、300から600℃である。冷却後の温度は、抽気排ガスの温度と風量、冷却用空気の温度と風量により適宜制御される。   A method for directly quenching the extracted exhaust gas with air will be described in more detail. The temperature of the extracted exhaust gas is 1000 to 1200 ° C. Air is at ambient temperature. Direct quenching refers to heat exchange by bringing the extracted exhaust gas and cooling air into direct contact. Rapid cooling refers to a cooling rate of 600 to 800 ° C./second. The temperature of the exhaust gas after quenching is 300 to 600 ° C. The temperature after cooling is appropriately controlled by the temperature and air volume of the extracted exhaust gas and the temperature and air volume of the cooling air.

急冷された固形物を含む排ガスは、集塵機7に導入される前に、間接冷却装置で冷却される。間接冷却装置6は、集塵機7を連結するダクトのほぼ全部が二重管構造となっている。この二重管の内側の管内に抽気排ガスを、内外管の間に冷却用空気を通す。これにより、抽気ガスを間接冷却し、集塵機の耐熱温度以下まで低下させる。二重管式冷却器は冷却効率を高めるため複数に分割しても良い。分割数は、冷却空気の熱交換後の温度が60〜100℃程度になる様に冷却空気風量、二重管式冷却器の長さ等のコスト勘案して2〜5個の範囲で適宜決定される。また、冷却用の空気の冷却ダクト内を通風させる方法は、ファンによる強制通風とし、吸引、押し込みのどちらの方法でも良い。この結果、抽気排ガスを効果的に冷却し、固形物を除去することができる。また、排ガスの抽気率を高めた場合においても、冷却用空気の増加に伴う処理すべきガス量の増加を引き起こすことがないため、集塵機やファン等のガス抽気設備の大型化を防止することができる。ここでいう抽気率は、セメントクリンカ製造装置内を単位時間に流れるキルン排ガス容量(標準状態換算)に対する、単位時間に抽気される抽気ガス容量(標準状態換算)の割合とする。本発明により、例えば抽気率を5から15容量%の高抽気を達成することができる。   The exhaust gas containing the rapidly cooled solid matter is cooled by an indirect cooling device before being introduced into the dust collector 7. In the indirect cooling device 6, almost all of the ducts connecting the dust collector 7 have a double pipe structure. Extracted exhaust gas is passed through a pipe inside the double pipe, and cooling air is passed between the inner and outer pipes. As a result, the extracted gas is indirectly cooled and lowered to a temperature lower than the heat resistance temperature of the dust collector. The double pipe type cooler may be divided into a plurality of parts in order to increase the cooling efficiency. The number of divisions is appropriately determined in the range of 2 to 5 in consideration of costs such as the amount of cooling air flow and the length of the double tube cooler so that the temperature after heat exchange of the cooling air is about 60 to 100 ° C. Is done. Further, the method of passing the cooling air through the cooling duct is forced ventilation by a fan and may be either suction or pushing. As a result, the extracted exhaust gas can be effectively cooled and solid matter can be removed. In addition, even when the exhaust gas extraction rate is increased, it does not cause an increase in the amount of gas to be processed due to an increase in cooling air, so that it is possible to prevent an increase in the size of gas extraction equipment such as a dust collector and a fan. it can. Here, the bleed rate is defined as the ratio of the bleed gas capacity (converted to the standard state) extracted per unit time to the kiln exhaust gas capacity (converted to the standard state) flowing in the cement clinker production apparatus per unit time. According to the present invention, for example, a high bleed rate of 5 to 15% by volume can be achieved.

抽気排ガスを冷却するための冷却用空気は、冷却用空気ファン4によって冷却室3の接線方向に向かって吹き込まれ旋回流を形成し冷却室3に導入されることが好ましい。抽気排ガスは冷却室3の内壁に沿った旋回流を形成した空気と冷却室3で混合され急冷される。これにより、揮発性化合物が固化物となる。この結果、抽気管2内壁に沿ってエアカーテンを形成することにより、抽気管2の内壁においてコーチングが発生することを抑制することができる。   It is preferable that the cooling air for cooling the extracted exhaust gas is blown in the tangential direction of the cooling chamber 3 by the cooling air fan 4 to form a swirling flow and introduced into the cooling chamber 3. The extracted exhaust gas is mixed and rapidly cooled in the cooling chamber 3 with air that forms a swirling flow along the inner wall of the cooling chamber 3. Thereby, a volatile compound turns into a solidified material. As a result, by forming the air curtain along the inner wall of the extraction pipe 2, it is possible to suppress the occurrence of coaching on the inner wall of the extraction pipe 2.

また、冷却室3と間接冷却装置6の間には、チャンバ5を設けることも可能である。チャンバ5は、冷却室3と間接冷却装置6の間を連接するダクトの4〜6倍に流路面積を急拡大した形状とし、冷却用空気と抽気排ガスの混合を急激に促進するの役割を担う。チャンバ5の位置としては、冷却室3の後流側で冷却用空気の旋回流が残存している範囲が好ましい。   A chamber 5 can be provided between the cooling chamber 3 and the indirect cooling device 6. The chamber 5 has a shape in which the flow passage area is rapidly expanded to 4 to 6 times the duct connecting the cooling chamber 3 and the indirect cooling device 6 and plays a role of rapidly promoting the mixing of the cooling air and the extracted exhaust gas. Bear. The position of the chamber 5 is preferably in a range where the swirling flow of cooling air remains on the downstream side of the cooling chamber 3.

分離手段である集塵機7の排ガスの出口は、クリンカクーラ11の冷却媒体の入口を接続される。これにより、集塵機7において固形物が除去された排ガスは、排ガスダクト9を経てクリンカクーラ吹込みファン15を介してクリンカクーラ11の下部に設けられた冷却媒体としての空気室内に導入され、クリンカ冷却用の混合空気として利用される。集塵機後抽気排ガスとクーラ排気高温空気の混合空気は、クリンカクーラの下部空気室内から、クリンカ層と下部空気室との仕切りとなる多孔板形状のグレートと呼ばれる板の孔からグレート上面へ噴出し、前記グレート上面を移動している高温のクリンカの層内を上方向へ通り抜ける間に熱交換し、昇温される。その後、抽気ガス量が抑えられているため、セメント原料焼成装置へ戻り、キルン又は仮焼炉で使用する燃料の燃焼用空気として抽気ガスが全量使われる。この方法は通常使用する大気と集塵機後抽気排ガスとの置換であり熱損失はほとんどない。 The exhaust gas outlet of the dust collector 7 which is a separation means is connected to the cooling medium inlet of the clinker cooler 11. As a result, the exhaust gas from which the solid matter has been removed in the dust collector 7 is introduced into the air chamber as a cooling medium provided in the lower part of the clinker cooler 11 via the clinker cooler blowing fan 15 through the exhaust gas duct 9 and clinker cooling. It is used as mixed air. The mixed air of the bleed exhaust gas after the dust collector and the cooler exhaust high-temperature air is ejected from the lower air chamber of the clinker cooler to the upper surface of the grate from a hole of a plate called a perforated plate-shaped grate that serves as a partition between the clinker layer and the lower air chamber, The temperature is raised by exchanging heat while passing through the inside of the high-temperature clinker layer moving on the upper surface of the Great. Thereafter, since the amount of the extracted gas is suppressed, the flow returns to the cement raw material firing apparatus, and the entire amount of the extracted gas is used as the combustion air for the fuel used in the kiln or calciner. This method replaces the normally used atmosphere with the exhaust gas extracted after the dust collector, and there is almost no heat loss.

集塵機7において固形物が除去された排ガスを、加熱することにより温度を上昇させてクリンカクーラ11に導入することもできる。これにより、混合空気温度が上昇し、クリンカクーラの下部の空気室内でもSOxを起因とする硫酸等の露点以上の温度が維持でき、硫酸等による装置内の腐蝕が防止できる。温度を上昇させる手段としては、高温空気の直接混合が挙げられる。
直接混合としては、図2に示すようにクーラ排気高温空気戻り用ダクト16で運ばれたクリンカ冷却用クーラ排ガスの高温空気と混合して、クリンカクーラ吹込みファン15を介してクリンカクーラ11の下部の空気室内に導入することによって達成が可能である。クリンカクーラ後方から排出される廃熱をクリンカ冷却用混合空気として利用、回収することにより回収することで熱効率の向上が図れる。排ガスダクト9とクーラ排気高温空気戻り用ダクト16の接続位置は、クリンカクーラ吹込みファン15の吸入側であれば特に制限はない。
The exhaust gas from which the solid matter has been removed in the dust collector 7 can also be heated and introduced into the clinker cooler 11 by heating. As a result, the temperature of the mixed air rises, the temperature above the dew point of sulfuric acid or the like caused by SOx can be maintained in the air chamber below the clinker cooler, and corrosion in the apparatus due to sulfuric acid or the like can be prevented. As a means for raising the temperature, direct mixing of hot air can be mentioned.
As the direct mixing, as shown in FIG. 2, it is mixed with the high temperature air of the clinker cooling cooler exhaust gas carried by the cooler exhaust high temperature air return duct 16, and the lower part of the clinker cooler 11 is connected via the clinker cooler blowing fan 15. This can be achieved by introducing it into the air chamber. Thermal efficiency can be improved by recovering waste heat discharged from the rear of the clinker cooler by using and recovering it as mixed air for clinker cooling. The connection position of the exhaust gas duct 9 and the cooler exhaust hot air return duct 16 is not particularly limited as long as it is on the suction side of the clinker cooler blowing fan 15.

本発明の実施例を図2を用いてながら説明する。ライジングダクト1Cのキルン側の壁面に設置した、1100℃の温度のキルン排ガスを抽気するための抽気管2から10%抽気量に相当する14000m3N/hのキルン排ガスを抽気した。抽気した排ガスは、抽気管2を経由して冷却室3に導入した。冷却室3に導入された排ガスは、冷却空気ファン4によって冷却室3内に旋回流として吹き込まれた空気によって380℃に冷却された。冷却用の空気は、温度が25℃程度で、抽気ガスの4倍程度の量を吹き込みで混合冷却した。 An embodiment of the present invention will be described with reference to FIG. A 14,000 m 3 N / h kiln exhaust gas corresponding to a 10% extraction amount was extracted from an extraction pipe 2 for extracting the kiln exhaust gas at a temperature of 1100 ° C. installed on the wall surface on the kiln side of the rising duct 1C. The extracted exhaust gas was introduced into the cooling chamber 3 via the extraction pipe 2. The exhaust gas introduced into the cooling chamber 3 was cooled to 380 ° C. by the air blown into the cooling chamber 3 as a swirling flow by the cooling air fan 4. The cooling air had a temperature of about 25 ° C. and was mixed and cooled by blowing about 4 times the amount of the extracted gas.

排ガス中の揮発性成分は、冷却室3からチャンバ5の間でさらに混合され十分に冷却されてヒュームとなり、排気ファン13に吸引されて集塵機7で捕集、除去された。チャンバ5は、冷却室3からダクト径の10倍の距離をおいた位置に設置した。集塵機7はバッグフィルタ式であり、その集塵機の濾布の耐熱温度は200℃である。 Volatile components in the exhaust gas were further mixed between the cooling chamber 3 and the chamber 5 and sufficiently cooled to become fumes, which were sucked into the exhaust fan 13 and collected and removed by the dust collector 7. The chamber 5 was installed at a position 10 times the duct diameter from the cooling chamber 3. The dust collector 7 is a bag filter type, and the heat resistance temperature of the filter cloth of the dust collector is 200 ° C.

チャンバ5から集塵機7を連結する抽気排ガスダクト20の80%を二重管構造とした二重管式冷却器とした。二重管の内管は、抽気設備の抽気排ガスダクト20と同じ径で、内管の外径は1150mmとし、外管の外径は1500mmとした。抽気ガスはその二重管の内側の管内を流れ、冷却用の空気が内管と外管の間を流れる構造の間接式冷却器である。内管の外部には高さ160mmのフィンを円周を36分割の間隔で、管長手方向に外管と概略同じ長さに設置した。二重管式冷却器は3分割とし、各分割区間の長さは20〜40mとした。冷却用の空気の冷却ダクト内を通風させる方法は、ファンによる強制吸引通風とした。 80% of the bleed exhaust gas duct 20 connecting the dust collector 7 from the chamber 5 was a double pipe type cooler having a double pipe structure. The inner pipe of the double pipe has the same diameter as the extraction exhaust gas duct 20 of the extraction equipment, the outer diameter of the inner pipe is 1150 mm, and the outer diameter of the outer pipe is 1500 mm. The extraction gas is an indirect cooler having a structure in which the inside of the double pipe flows in the pipe and the cooling air flows between the inner pipe and the outer pipe. Outside the inner tube, fins having a height of 160 mm were installed at intervals of 36 divisions in the circumference, approximately the same length as the outer tube in the longitudinal direction of the tube. The double pipe type cooler was divided into three parts, and the length of each divided section was 20 to 40 m. The method of passing the cooling air through the cooling duct was forced suction ventilation with a fan.

分割設置した二重管式冷却器の冷却用の空気は約25℃の外気を使用し、風量は1、2段目はそれぞれ約1100m3/minの一定風量を、3段目は集塵機7の入口温度が200℃になる用に800〜1200m3/minで制御した。また、冷却用空気は抽気ガスの流れと向流になるように流した。この間、二重管式冷却器の各区間で、抽気排ガスから冷却用空気へ2〜3GJ/hの熱交換が行われ、集塵機7入口温度はおおよそ200℃で管理できた。 The cooling air of the double-tube cooler installed separately uses outside air of about 25 ° C. The air volume is about 1100m3 / min for the 1st and 2nd stage, and the inlet of the dust collector 7 is for the 3rd stage. The temperature was controlled at 800 to 1200 m <3> / min to reach 200 [deg.] C. The cooling air was made to flow countercurrently to the extraction gas flow. During this time, heat exchange of 2 to 3 GJ / h was performed from the extracted exhaust gas to the cooling air in each section of the double-tube cooler, and the inlet temperature of the dust collector 7 could be managed at approximately 200 ° C.

集塵機7からの排ガスは、排ガスダクト9を経てクリンカクーラ用空気吹込みファン15の吸入位置へ導かれた。この間、放熱損失等により排ガス温度は160℃前後まで低下した。一方、クリンカクーラから電気集塵機12で除塵後排気されるクーラ排気高温空気は、クーラ排気高温空気戻り用ダクト16にてクリンカクーラ用冷空気吹込みファン15の上流位置へ導かれた。その際、クーラ排気高温空気戻り用ダクト16に設置してある図示していない大気温度の冷却空気取り入れ口のダンパの開度によって冷却空気の混合量を調整し、前記クーラ排気高温空気の温度260℃がクリンカクーラ用空気吹込みファン15の耐熱温度以下の180℃になるように制御した。集塵機7からの集塵機後抽気排ガスとクリンカクーラ排気は、クリンカクーラ用冷空気吹込みファン15の上流で混合されクリンカ冷却用空気となり、クリンカクーラ用冷空気吹込みファン15を介してクリンカクーラ11の下部空気室に導入した。クリンカクーラ11の下部空気室の温度は、本実施例のガス状態での硫酸等の露点である130℃を上回り、硫酸等による装置内の腐蝕は見られなかった。下部空気室に導入された前記混合ガスは高温のクリンカと熱交換したあと、セメント用クリンカ製造の燃料燃焼用空気として仮焼炉に供給しセメント用クリンカ製造装置内に戻した。 The exhaust gas from the dust collector 7 was led to the suction position of the clinker cooler air blowing fan 15 through the exhaust gas duct 9. During this time, the exhaust gas temperature decreased to around 160 ° C. due to heat dissipation loss and the like. On the other hand, the cooler exhaust hot air exhausted from the clinker cooler after dust removal by the electric dust collector 12 was led to the upstream position of the clinker cooler cold air blowing fan 15 through the cooler exhaust hot air return duct 16. At that time, the mixing amount of the cooling air is adjusted by the opening degree of the damper of the cooling air intake port (not shown) installed in the cooler exhaust hot air return duct 16 and the temperature of the cooler exhaust hot air 260 is adjusted. The temperature was controlled to be 180 ° C. which is lower than the heat resistance temperature of the clinker cooler air blowing fan 15. The exhaust gas exhausted after the dust collector and the clinker cooler exhaust gas from the dust collector 7 are mixed upstream of the clinker cooler cool air blowing fan 15 to become clinker cooling air, and the clinker cooler 11 is connected via the clinker cooler cool air blowing fan 15. It was introduced into the lower air chamber. The temperature of the lower air chamber of the clinker cooler 11 exceeded 130 ° C., which is the dew point of sulfuric acid or the like in the gas state of this example, and corrosion inside the apparatus due to sulfuric acid or the like was not observed. The mixed gas introduced into the lower air chamber was heat-exchanged with a high-temperature clinker, then supplied to a calcining furnace as fuel combustion air for manufacturing a cement clinker, and returned to the cement clinker manufacturing apparatus.

抽気排ガスを二重管で間接冷却することにより、ガス量が低減され、セメント用クリンカ製造の燃料燃焼用に必要な空気量以下に抑えられているため、全量セメント用クリンカ製造装置内に戻すことができた。これにより、集塵機後抽気排ガスに含まれているSOxは、燃焼熱またはセメント原料との接触によって、分解、吸着または固体の形に化合され、ガス状でセメント用クリンカ製造装置系外へ排出されず環境面の問題がなく稼動できた。また、セメント用クリンカ製造設備の運転に関してはガスを抽気することによる熱損失はあるが、原料中の塩素が増加しても装置内の塩素の循環量が大幅に低減でき安定運転ができるようになった。 Indirect cooling of the extracted exhaust gas with a double pipe reduces the amount of gas and keeps it below the amount of air required for fuel combustion for cement clinker production. I was able to. As a result, the SOx contained in the exhaust gas extracted after the dust collector is decomposed, adsorbed, or combined into a solid form by combustion heat or contact with the cement raw material, and is not discharged in a gaseous form outside the cement clinker production system. It was able to operate without environmental problems. In addition, although there is heat loss due to extraction of gas for the operation of the cement clinker production facility, even if chlorine in the raw material increases, the amount of chlorine circulation in the equipment can be greatly reduced and stable operation can be achieved. became.

比較例として、二重管式の冷却がない、図3に示すような抽気装置ガス抽気用ファンなど同等の設備で抽気を実施した。集塵機入口の温度は380℃となり、集塵機の耐熱温度以上に上昇する為、保護用に冷却空気取入口から冷却用空気を取込み、集塵機の耐熱温度200℃以下になるよう冷却空気を混合して冷却した。この場合、380℃の排ガスを200℃まで低下させるには抽気ガスの約3倍程度の空気混合が必要であった。抽気装置ガス抽気用ファンの吸引能力の上限から、混合冷却に必要となった冷却空気量相当のキルン排ガスの抽気量が低下し、10%まで抽気する為にはファン及び集塵機の能力を現状の約1.5倍にする必要があった。 As a comparative example, bleeding was performed with an equivalent facility such as a bleeder gas bleeder fan as shown in FIG. The temperature of the dust collector inlet is 380 ° C, and it rises above the heat resistance temperature of the dust collector. Therefore, cooling air is taken in from the cooling air intake port for protection, and cooling air is mixed and cooled so that the heat resistance temperature of the dust collector is 200 ° C or lower. did. In this case, in order to lower the exhaust gas at 380 ° C. to 200 ° C., about 3 times as much air mixing as the extraction gas was required. The extraction capacity of the kiln exhaust gas corresponding to the amount of cooling air required for mixing cooling is reduced from the upper limit of the suction capacity of the gas extraction fan, and the capacity of the fan and dust collector is required to extract up to 10%. It had to be about 1.5 times.

また、混合空気によりガス量が増加することで、セメント用クリンカ製造の燃料燃焼用に必要な空気量以上となるため、全量セメント用クリンカ製造装置内に戻すことができず、SOxの処理の対応が困難な為抽気量を制限せざるを得なかった。さらに、外気を多量に導入すると、天候等により大気中の水分の増加した場合、抽気排ガスに含まれるSOxとその水分とで硫酸等の発生量が増加することによる装置内の腐蝕が懸念された。 Also, since the amount of gas increases due to the mixed air, it becomes more than the amount of air necessary for fuel combustion for cement clinker production, so the entire amount cannot be returned to the cement clinker production equipment, and SOx treatment is supported. However, it was difficult to limit the amount of extraction. Furthermore, when a large amount of outside air was introduced, when the moisture in the atmosphere increased due to the weather, etc., there was a concern about the corrosion in the device due to the increase in the amount of sulfuric acid etc. generated by SOx and its moisture contained in the extracted exhaust gas. .

本発明は、廃棄物をセメント原燃料として大量に使用するセメントクリンカ焼成装置に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a cement clinker firing apparatus that uses a large amount of waste as a cement raw fuel.

本発明にかかるセメントクリンカ製造装置の第1の実施形態を示す概略図である。It is the schematic which shows 1st Embodiment of the cement clinker manufacturing apparatus concerning this invention. 本発明にかかるセメントクリンカ製造装置の第2の実施形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the cement clinker manufacturing apparatus concerning this invention. 従来のセメントクリンカ製造装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional cement clinker manufacturing apparatus. 二重管冷却装置の一例概略図である。It is an example schematic diagram of a double tube cooling device.

符号の説明Explanation of symbols

1 セメント焼成装置
1A キルン
1B プレヒータ
1C ライジングダクト
2 抽気管
3 冷却室
4 冷却用空気ファン
5 チャンバ
6 2重管式冷却器
7 集塵機
8 抽気装置ガス抽気用ファン
9 集塵機後抽気排ガスダクト
10 塩化アルカリ捕集タンク
11 クリンカ冷却用クーラ
12 クーラ排ガス除塵装置
13 クーラ内空気流動用ファン
14 クーラ排ガス用煙突
15 クリンカクーラ用空気吹込みファン
16 クーラ排気高温空気戻り用ダクト
17 集塵機後抽気排ガスダクト
18 二重管冷却器冷却用空気流れ
19 二重管冷却器抽気排ガス流れ
20 抽気排ガスダクト
DESCRIPTION OF SYMBOLS 1 Cement baking apparatus 1A Kiln 1B Preheater 1C Rising duct 2 Extraction pipe 3 Cooling chamber 4 Cooling chamber 4 Cooling air fan 5 Chamber 6 Double pipe type cooler 7 Dust collector 8 Extraction device gas extraction fan 9 Dust collector after extraction exhaust gas duct 10 Alkali chloride capture Collection tank 11 Clinker cooling cooler 12 Cooler exhaust dust removal device 13 Cooler exhaust air flow fan 14 Cooler exhaust air chimney 15 Clinker cooler air blowing fan 16 Cooler exhaust high-temperature air return duct 17 Dust collector post-extraction exhaust gas duct 18 Double pipe Cooler cooling air flow 19 Double-pipe cooler extraction exhaust gas flow 20 Extraction exhaust duct

Claims (3)

セメントクリンカ製造装置の排ガスの一部を抽気し、抽気した排ガスに含まれる揮発性成分を排ガスから分離してセメントクリンカ製造装置内の揮発性成分を低減させてセメントクリンカを製造する方法において、前記排ガスの抽気率は5から15容量%で、前記抽気した排ガスを空気で直接急冷し、急冷した排ガスを間接冷却装置で冷却し、前記揮発性成分を分離した後の排ガスを、クリンカクーラの排気を混合して前記排ガスの温度を上昇させた後、クリンカクーラに供給することを特徴とするセメントクリンカの製造方法。 Bled part of exhaust gases of the cement clinker manufacturing apparatus, the method of the volatile component contained in the bled exhaust gas in separated from the exhaust gas to reduce the volatile components in the cement clinker manufacturing apparatus for manufacturing cement clinker, wherein The extraction rate of the exhaust gas is 5 to 15% by volume. The extracted exhaust gas is directly quenched with air, the quenched exhaust gas is cooled with an indirect cooling device, and the exhaust gas after separating the volatile components is exhausted from the clinker cooler. And the temperature of the exhaust gas is increased to supply the clinker cooler and then the cement clinker manufacturing method. 前記空気は、旋回流を形成する請求項1記載のセメントクリンカの製造方法。 The method for producing a cement clinker according to claim 1 , wherein the air forms a swirling flow . セメントクリンカ製造装置の排ガスを抽気率が5から15容量%抽気するための抽気管と、抽気管に接続され抽気した排ガスを空気で直接急冷するための冷却部と、前記急冷した排ガスを冷却するための間接冷却装置と、間接冷却された排ガスに含まれる固形物を排ガスから分離するための分離手段を備え、前記分離手段の排ガスの出口とクリンカクーラの冷却媒体の入口を接続し、前記接続部にクリンカクーラの排気の排出ラインを接続してなるセメントクリンカの製造装置。A bleed pipe for extracting 5 to 15% by volume of the exhaust gas from the cement clinker manufacturing apparatus, a cooling unit connected to the bleed pipe for directly quenching the extracted exhaust gas with air, and cooling the quenched exhaust gas An indirect cooling device for separating the solid matter contained in the indirectly cooled exhaust gas from the exhaust gas, and connecting the outlet of the exhaust gas of the separating means and the inlet of the cooling medium of the clinker cooler, the connection Cement clinker manufacturing equipment with a clinker cooler exhaust discharge line connected to the section.
JP2006322797A 2006-11-30 2006-11-30 Cement clinker manufacturing method and manufacturing apparatus thereof Active JP4983231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322797A JP4983231B2 (en) 2006-11-30 2006-11-30 Cement clinker manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322797A JP4983231B2 (en) 2006-11-30 2006-11-30 Cement clinker manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2008137818A JP2008137818A (en) 2008-06-19
JP4983231B2 true JP4983231B2 (en) 2012-07-25

Family

ID=39599692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322797A Active JP4983231B2 (en) 2006-11-30 2006-11-30 Cement clinker manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4983231B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213126B2 (en) * 2009-02-27 2013-06-19 太平洋セメント株式会社 Chlorine bypass system
JP5864229B2 (en) * 2011-11-22 2016-02-17 太平洋セメント株式会社 Cement baking equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438489B2 (en) * 1995-10-24 2003-08-18 宇部興産株式会社 Method and apparatus for treating exhaust gas from a bleed cement kiln
JP3552463B2 (en) * 1997-05-30 2004-08-11 宇部興産株式会社 Method and apparatus for firing cement raw material
DK1048629T3 (en) * 1998-08-28 2010-05-03 Taiheiyo Cement Corp Device and method for diverting an oven combustion gas
JP4388615B2 (en) * 1999-02-09 2009-12-24 太平洋セメント株式会社 SOx reduction method for chlorine bypass exhaust
JP2006103980A (en) * 2004-09-30 2006-04-20 Sumitomo Osaka Cement Co Ltd Method and apparatus for treating exhaust gas in cement firing equipment

Also Published As

Publication number Publication date
JP2008137818A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US6855302B2 (en) Method for emission control of dioxin and/or furan waste gas pollutants in a cement clinker production line
JP2007518661A (en) Cement clinker manufacturing method for extracting a part of rotary furnace exhaust gas stream containing harmful substances
JP6344867B2 (en) Cement baking equipment
CN102149447B (en) For reducing the apparatus and method of emissions resulting from raw meal grinding
JP3552463B2 (en) Method and apparatus for firing cement raw material
JP2008239413A (en) Cement kiln exhaust gas extraction device
CN103424004B (en) integrated gas cooling system for electric arc furnace
US10457599B2 (en) Method and apparatus for producing cement clinker
JP2012242029A (en) Heat recovery system from exhaust gas of incinerator
CN110354670A (en) A kind of boiler with tailed flue gas takes off white system and method
JP6631293B2 (en) Bleeding device and bleeding method
JP5068698B2 (en) Cement kiln extraction gas processing system and processing method
JP4983231B2 (en) Cement clinker manufacturing method and manufacturing apparatus thereof
JP6282054B2 (en) Cement kiln exhaust gas treatment apparatus and treatment method
JP5652950B2 (en) Chlorine bypass system and chlorine bypass extraction gas processing method
CN117213227B (en) Method and system for obtaining high-concentration carbon dioxide flue gas based on calcined cement clinker
JP3503402B2 (en) Cement raw material firing equipment
JP7519289B2 (en) Chlorine bypass facility and its operating method, cement clinker manufacturing apparatus, and cement clinker manufacturing method
CN215002967U (en) A sintering-pelletizing process waste gas recycling system and sintering-pelletizing system
CN205700018U (en) Condensation flue gas desulfurization device
CN106439876A (en) Flue gas treatment device of boiler system and boiler system
JP5050330B2 (en) Cement kiln extraction exhaust gas treatment method and apparatus
CN110960950A (en) Spray tower flue gas processing system
CN211823775U (en) Chain grate-rotary kiln-circular cooler with ultralow emission
JP4093168B2 (en) Cement raw material firing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250