JP4983078B2 - Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet - Google Patents
Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet Download PDFInfo
- Publication number
- JP4983078B2 JP4983078B2 JP2006110357A JP2006110357A JP4983078B2 JP 4983078 B2 JP4983078 B2 JP 4983078B2 JP 2006110357 A JP2006110357 A JP 2006110357A JP 2006110357 A JP2006110357 A JP 2006110357A JP 4983078 B2 JP4983078 B2 JP 4983078B2
- Authority
- JP
- Japan
- Prior art keywords
- surface treatment
- acid
- steel sheet
- metal
- treatment agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
- C23C22/17—Orthophosphates containing zinc cations containing also organic acids
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/20—Orthophosphates containing aluminium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/40—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
- C23C22/42—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
Description
この発明は、亜鉛系めっき鋼材に優れた耐食性を付与することができるクロムフリーの表面処理剤と、この表面処理剤により処理された表面処理亜鉛系めっき鋼板に関するものである。 The present invention relates to a chromium-free surface treatment agent capable of imparting excellent corrosion resistance to a zinc-based plated steel material, and a surface-treated zinc-based plated steel plate treated with this surface treatment agent.
亜鉛系めっき鋼板は、建材、自動車、家電製品、事務用機器など様々な用途に幅広く利用されている。特に、耐食性が必要な自動車、家電製品、事務用機器およびその内部に使用するモータ製品には、亜鉛系めっき鋼板にクロメート処理を施した表面処理鋼板が広く用いられてきた。クロメートには、自己修復作用により亜鉛系めっき鋼板の耐食性を向上させる効果がある。しかし、クロメート処理を行うには、水質汚染防止法に規定される特別な排水処理が必要であり、製造コストが上昇する要因となる。このためクロムやクロム化合物を用いることなく、亜鉛系めっき鋼板の耐食性を確保することができる表面処理技術が求められている。 Zinc-based plated steel sheets are widely used in various applications such as building materials, automobiles, home appliances, and office equipment. In particular, surface-treated steel sheets obtained by subjecting zinc-based plated steel sheets to chromate treatment have been widely used in automobiles, home appliances, office equipment and motor products used therein that require corrosion resistance. Chromate has the effect of improving the corrosion resistance of the galvanized steel sheet by its self-healing action. However, in order to perform the chromate treatment, a special waste water treatment specified in the Water Pollution Control Law is required, which causes an increase in manufacturing cost. For this reason, the surface treatment technique which can ensure the corrosion resistance of a zinc-plated steel plate without using chromium or a chromium compound is calculated | required.
また、近年、パソコンや複写機などの事務用機器、エアコンなどの家電製品およびこれらに使用されるモータなどの部品については、皮膜中にクロムを含有することなく良好な耐食性を有するとともに、表面電気抵抗の小さい表面処理鋼板が求められている。これは、表面電気抵抗が小さい鋼板、すなわち導電性が良好な鋼板は、電磁波によるノイズの漏洩を防止する効果があるためである。したがって、このような用途においては、表面処理鋼板の耐食性と導電性とを両立させることが重要である。 In recent years, office equipment such as personal computers and copiers, home appliances such as air conditioners, and parts such as motors used therein have good corrosion resistance without containing chromium in the coating, and surface electric There is a demand for a surface-treated steel sheet with low resistance. This is because a steel plate having a low surface electrical resistance, that is, a steel plate having good conductivity, has an effect of preventing noise leakage due to electromagnetic waves. Therefore, in such an application, it is important to make the corrosion resistance and conductivity of the surface-treated steel sheet compatible.
このような観点から、クロムやクロム化合物を用いない(クロムフリー)表面処理技術が数多く提案されている。
例えば、特許文献1には、(a)少なくとも4個のフッ素原子と、チタンやジルコニウムなどの元素とからなる陰イオン成分(例えば、TiF6 2−で示されるフルオロチタン酸)、(b)コバルト、マグネシウムなどの陽イオン成分、(c)pH調整のための遊離酸、および(d)有機樹脂を含有する組成物による表面処理技術が提案されている。
特許文献2には、(a)Alのリン酸化合物、(b)Mn、Mg、CaおよびSr化合物のうちの1種以上、(c)SiO2のゾル、および(d)水系有機樹脂エマルジョンを含有する表面処理組成物が提案されている。
From this point of view, many surface treatment techniques that do not use chromium or chromium compounds (chromium-free) have been proposed.
For example,
Patent Document 2 describes (a) Al phosphate compound, (b) one or more of Mn, Mg, Ca and Sr compounds, (c) SiO 2 sol, and (d) water-based organic resin emulsion. Containing surface treatment compositions have been proposed.
特許文献3には、(a)ポリヒドロキシエーテルセグメントと不飽和単量体の共重合体セグメントとを有する樹脂、(b)リン酸、および(c)カルシウム、コバルト、鉄、マンガン、亜鉛などの金属のリン酸塩を含有する表面処理組成物が提案されている。
特許文献4には、(a)Al(C5H7O2)3、V(C5H7O2)3、VO(C5H7O2)2、Zn(C5H7O2)2、Zr(C5H7O2)2のうちの1種以上の金属アセチルアセネート、(b)水溶性無機チタン化合物、水溶性無機ジルコニウム化合物のうちの1種以上の化合物を含有する表面処理液が提案されている。
Patent Document 3 includes (a) a resin having a polyhydroxy ether segment and a copolymer segment of an unsaturated monomer, (b) phosphoric acid, and (c) calcium, cobalt, iron, manganese, zinc, and the like. Surface treatment compositions containing metal phosphates have been proposed.
Patent Document 4 includes (a) Al (C 5 H 7 O 2 ) 3 , V (C 5 H 7 O 2 ) 3 , VO (C 5 H 7 O 2 ) 2 , Zn (C 5 H 7 O 2). ) 2 , Zr (C 5 H 7 O 2 ) 2 containing one or more metal acetylacetonates, (b) water-soluble inorganic titanium compounds, water-soluble inorganic zirconium compounds containing one or more compounds Surface treatment liquids have been proposed.
これらの提案によれば、いずれも金属板に十分な付着量の表面処理剤(被覆剤、コーティング剤)を被覆した場合、すなわち、十分な厚さの皮膜を形成した場合には、まずまずの耐食性が得られる。しかし、金属板の凸部などの一部が露出するような皮膜が形成されたり、膜厚が薄過ぎたりした場合には、耐食性は極めて不十分なものとなる。つまり、金属板に対する表面処理剤の被覆率が100%の場合にのみ耐食性が発揮されるが、被覆率が100%未満の場合には十分な耐食性は得られない。また、これら表面処理剤には導電性物質が含まれていないため、これを全面的に厚く被覆すると導電性が低下するという不利がある。一方、この導電性を高めようとして皮膜の膜厚を薄くすると、耐食性が劣化してしまう。 According to these proposals, when a sufficient amount of surface treatment agent (coating agent, coating agent) is coated on the metal plate, that is, when a sufficiently thick film is formed, the corrosion resistance is reasonable. Is obtained. However, when a film that exposes a part of the convex portion of the metal plate is formed or the film thickness is too thin, the corrosion resistance is extremely insufficient. That is, corrosion resistance is exhibited only when the coverage of the surface treatment agent on the metal plate is 100%, but sufficient corrosion resistance cannot be obtained when the coverage is less than 100%. In addition, since these surface treatment agents do not contain a conductive substance, there is a disadvantage in that the conductivity is reduced when the surface treatment agent is coated over the entire surface. On the other hand, if the film thickness is reduced in order to increase the conductivity, the corrosion resistance is deteriorated.
特許文献5には、特定の水性有機樹脂を含むコーティング剤であって、(a)チオカルボニル基含有化合物、(b)リン酸イオン、(c)水分散性シリカ、(d)シランカップリング剤またはその加水分解縮合物を含有する水性防錆コーティング剤を亜鉛被覆鋼にコーティングする方法が提案されている。この方法で用いられるチオカルボニル基含有化合物のような硫化物は、亜鉛などの金属表面に吸着しやすい性質があり、さらにその互変異性体であるチオール基イオンは、リン酸イオンとの相乗作用により、コーティング時に活性な亜鉛表面のサイトに吸着されて防錆効果を発揮する。この表面処理方法で得られた亜鉛系めっき鋼板は、表面を−NCS、−OCS基を有する層により被覆されると高耐食性を有するが、この層は導電性がないことが問題である。また、導電性を確保するために、皮膜の膜厚を薄くすると、チオカルボニル基含有化合物で被覆されていない部分が出現し、発錆の原因になる。すなわち、この方法でも耐食性と導電性を両立させることは難しい。 Patent Document 5 discloses a coating agent containing a specific aqueous organic resin, wherein (a) a thiocarbonyl group-containing compound, (b) phosphate ion, (c) water-dispersible silica, (d) a silane coupling agent. Alternatively, a method of coating a zinc-coated steel with an aqueous rust-proof coating agent containing the hydrolysis condensate has been proposed. Sulfides such as thiocarbonyl group-containing compounds used in this method have the property of easily adsorbing on the surface of metals such as zinc, and their tautomeric thiol group ions are synergistic with phosphate ions. Thus, it is adsorbed on the active zinc surface site during coating and exhibits a rust prevention effect. The zinc-based plated steel sheet obtained by this surface treatment method has high corrosion resistance when the surface is coated with a layer having -NCS and -OCS groups, but this layer has a problem that it is not conductive. In addition, when the film thickness is reduced in order to ensure conductivity, a portion not covered with the thiocarbonyl group-containing compound appears, which causes rusting. That is, it is difficult to achieve both corrosion resistance and conductivity even with this method.
また、上述した5つの従来技術は、いずれも金属表面と表面処理剤が形成する皮膜とをそれらの界面で強固に付着(密着)させるという発想に基づく技術である。しかし、微視的に捉えると金属表面と皮膜とは完全には密着し得ないため、付着性向上には限界がある。亜鉛系めっき鋼板のクロムフリーの表面処理技術では、耐食性の向上には、表面処理皮膜の付着性ではなく皮膜の緻密性の向上が重要であると考えられるが、上記した従来の表面処理技術では、その点は何ら考慮されていない。 In addition, the above-described five conventional techniques are all based on the idea that the metal surface and the film formed by the surface treatment agent are firmly attached (adhered) at the interface between them. However, when viewed microscopically, the metal surface and the film cannot be completely adhered, so there is a limit to improving the adhesion. In the chromium-free surface treatment technology for galvanized steel sheets, it is thought that the improvement in the denseness of the film, not the adhesion of the surface treatment film, is important for improving the corrosion resistance. The point is not considered at all.
また、クロメート処理液を含めて、表面処理用の処理液がリン酸などを含んでいて低pHの場合、ロールコート法や浸漬法による塗布処理を連続して行った場合、処理液中にスラッジが発生する。このスラッジは鋼板表面に付着して鋼板の外観不良を引き起こし、さらには微視的に不連続な皮膜になるため、一次防錆性も低下する。特にロールコート法の場合には、塗布ロールにスラッジが付着することで鋼板外観不良や性能不良が生じやすい。スラッジ発生の防止策としては、処理液に対するZnの溶解限を引上げるために液pHを低下させることも考えられるが、液pHを低下させると逆にZnのエッチング速度が増加し、却ってスラッジ発生量を増加させてしまう。加えて、皮膜形成時にZnが溶解する際に発生する水素気泡の存在によって皮膜の連続性が低下し、一次防錆性をはじめとする諸特性が低下することがある。 In addition, if the treatment liquid for surface treatment, including chromate treatment liquid, contains phosphoric acid or the like and has a low pH, and if coating treatment by roll coating or dipping is performed continuously, sludge is contained in the treatment liquid. Will occur. This sludge adheres to the surface of the steel sheet and causes a poor appearance of the steel sheet, and further becomes a microscopically discontinuous film, so that the primary rust resistance is also reduced. In particular, in the case of the roll coating method, the sludge adheres to the coating roll, so that the appearance of the steel sheet and the performance are liable to occur. As a measure to prevent sludge generation, it is conceivable to lower the pH of the solution in order to increase the solubility limit of Zn in the treatment solution. However, if the solution pH is lowered, the etching rate of Zn increases and sludge is generated instead. Will increase the amount. In addition, due to the presence of hydrogen bubbles generated when Zn dissolves during film formation, the continuity of the film may be reduced, and various characteristics such as primary rust resistance may be reduced.
したがって本発明の目的は、連続処理してもスラッジを発生させることなく、亜鉛系めっき鋼板の安定した表面処理が可能であるとともに、汎用用途のクロメート処理亜鉛系めっき鋼板に匹敵する、優れた耐食性(平板部耐食性、加工後耐食性)、導電性および加工性を有するクロムフリー表面処理亜鉛系めっき鋼板を得ることができる表面処理剤を提供することにある。
また、本発明の他の目的は、そのような表面処理剤で処理された耐食性(平板部耐食性、加工後耐食性)、導電性および加工性に優れたクロムフリー表面処理亜鉛系めっき鋼板を提供することにある。
Therefore, the object of the present invention is to enable stable surface treatment of galvanized steel sheets without generating sludge even when continuously treated, and excellent corrosion resistance comparable to that of general purpose chromate-treated galvanized steel sheets. An object of the present invention is to provide a surface treatment agent capable of obtaining a chromium-free surface-treated galvanized steel sheet having flat plate portion corrosion resistance and post-processing corrosion resistance, conductivity and workability.
Another object of the present invention is to provide a chromium-free surface-treated galvanized steel sheet that has been treated with such a surface treatment agent and has excellent corrosion resistance (corrosion resistance after plate processing, post-processing corrosion resistance), conductivity and workability. There is.
本発明者らは、上記課題を解決するために鋭意検討した結果、特定の金属イオン、リン酸イオン、有機樹脂および特定のキレート化剤を含有し、且つpHと遊離酸度が調整されたクロムフリーの表面処理剤で亜鉛系めっき鋼板を処理することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明の要旨は以下のとおりである。
[1]下記(a)〜(d)の成分を含有する水溶液であって、pHが1〜4、遊離酸度が0.1規定水酸化ナトリウム換算で3〜20であることを特徴とする亜鉛系めっき鋼材用の表面処理剤。
(a)Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属イオン
(b)リン酸:前記(a)の金属イオン100質量部(固形分)に対して300〜1500質量部(固形分)
(c)有機樹脂:前記(a)の金属イオン100質量部(固形分)に対して5〜100質量部(固形分)
(d)N−メチルイミノジ酢酸、イミノジ酢酸、1,2−ジアミノシクロヘキサン、アルギニン、プロリンの中から選ばれる1種以上:前記(a)の金属イオン100質量部(固形分)に対して10〜300質量部(固形分)
As a result of intensive studies to solve the above problems, the inventors of the present invention contain a specific metal ion, a phosphate ion, an organic resin and a specific chelating agent, and have a pH and free acidity adjusted. The present inventors have found that the above-mentioned problems can be solved by treating a zinc-based plated steel sheet with this surface treating agent, and have completed the present invention.
That is, the gist of the present invention is as follows.
[1] An aqueous solution containing the following components (a) to (d) having a pH of 1 to 4 and a free acidity of 3 to 20 in terms of 0.1 N sodium hydroxide: Surface treatment agent for galvanized steel.
(A) One or more metal ions selected from Al, Mn, Mg, V, and Zn (b) Phosphoric acid: 300 to 1500 masses per 100 mass parts (solid content) of the metal ions in (a) above Parts (solid content)
(C) Organic resin: 5 to 100 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ions of (a) above
(D) One or more selected from N-methyliminodiacetic acid, iminodiacetic acid, 1,2-diaminocyclohexane, arginine, and proline : 10 to 300 with respect to 100 parts by mass (solid content) of the metal ion of (a). Part by mass (solid content)
[2]上記[1]の表面処理剤において、有機樹脂の少なくとも一部が水分散性樹脂であることを特徴とする亜鉛系めっき鋼材用の表面処理剤。
[3]上記[1]または[2]の表面処理剤において、さらに、固形潤滑剤を含有することを特徴とする亜鉛系めっき鋼材用の表面処理剤。
[4]亜鉛系めっき鋼板の表面に、上記[1]〜[3]のいずれかの表面処理剤を塗布し、乾燥することにより形成された表面処理皮膜を有し、該表面処理皮膜は、めっき層に接して、リン酸イオンとめっき金属との反応物(i)と、Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属を含む金属塩(ii)とを主体とし、且つ有機樹脂(iii)を含有する厚さが0.02〜3μmの下層部を有することを特徴とする表面処理亜鉛系めっき鋼板。
[5]亜鉛系めっき鋼板の表面に、上記[1]〜[3]のいずれかの表面処理剤を固形分付着量が0.05〜3.0g/m2となるように塗布し、乾燥することにより表面処理皮膜を形成することを特徴とする表面処理亜鉛系めっき鋼板の製造方法。
[2] A surface treatment agent for galvanized steel materials, wherein at least a part of the organic resin is a water-dispersible resin in the surface treatment agent of [1].
[3] The surface treatment agent for galvanized steel material according to the above [1] or [2], further comprising a solid lubricant.
[4] A surface treatment film formed by applying the surface treatment agent according to any one of the above [1] to [3] on the surface of a zinc-based plated steel sheet and drying the surface treatment film, Mainly composed of a reaction product (i) of a phosphate ion and a plating metal and a metal salt (ii) containing one or more metals selected from Al, Mn, Mg, V, and Zn in contact with the plating layer And a surface-treated zinc-based plated steel sheet having a lower layer portion having a thickness of 0.02 to 3 μm containing the organic resin (iii).
[5] The surface treatment agent of any of the above [1] to [3] is applied to the surface of the zinc-based plated steel sheet so that the solid content adhesion amount is 0.05 to 3.0 g / m 2 and dried. A method for producing a surface-treated galvanized steel sheet, characterized in that a surface-treated film is formed.
本発明の表面処理剤は、連続処理してもスラッジを発生させることなく、亜鉛系めっき鋼板の安定した表面処理が可能であるとともに、クロムフリーでありながら、汎用用途のクロメート処理亜鉛系めっき鋼板に匹敵する優れた耐食性(平板部耐食性、加工後耐食性)を有し、また、導電性および加工性にも優れたクロムフリー表面処理亜鉛系めっき鋼板を得ることができる。
したがって、このような表面処理剤で処理された本発明の表面処理亜鉛系めっき鋼板は、クロムフリーでありながら、優れた耐食性(平板部耐食性、加工後耐食性)を有し、また、導電性および加工性にも優れている。
The surface treatment agent of the present invention enables stable surface treatment of a zinc-based plated steel sheet without generating sludge even when continuously treated, and is a chromate-treated zinc-based plated steel sheet for general use while being chromium-free. It is possible to obtain a chrome-free surface-treated zinc-based plated steel sheet having excellent corrosion resistance (corrosion resistance for flat plate portion, corrosion resistance after processing) comparable to that of the steel sheet, and having excellent conductivity and workability.
Therefore, the surface-treated zinc-based plated steel sheet of the present invention treated with such a surface treatment agent has excellent corrosion resistance (flat plate portion corrosion resistance, post-processing corrosion resistance) while being chromium-free, Excellent workability.
以下、本発明の亜鉛系めっき鋼材用表面処理剤について説明する。
本発明の表面処理剤は、下記(a)〜(d)の成分を含有する水溶液であって、pHが1〜4、遊離酸度が0.1規定水酸化ナトリウム換算で3〜20の表面処理剤である。この表面処理剤はクロムを含有しない。
(a)Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属イオン
(b)リン酸:前記(a)の金属イオン100質量部(固形分)に対して300〜1500質量部(固形分)
(c)有機樹脂:前記(a)の金属イオン100質量部(固形分)に対して5〜100質量部(固形分)
(d)アミンおよびその誘導体、アミノポリカルボン酸、アミノ酸の中から選ばれる1種以上:前記(a)の金属イオン100質量部(固形分)に対して10〜300質量部(固形分)
Hereinafter, the surface treating agent for galvanized steel material of the present invention will be described.
The surface treatment agent of the present invention is an aqueous solution containing the following components (a) to (d), having a pH of 1 to 4 and a free acidity of 3 to 20 in terms of 0.1 N sodium hydroxide. It is an agent. This surface treatment agent does not contain chromium.
(A) One or more metal ions selected from Al, Mn, Mg, V, and Zn (b) Phosphoric acid: 300 to 1500 masses per 100 mass parts (solid content) of the metal ions in (a) above Parts (solid content)
(C) Organic resin: 5 to 100 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ions of (a) above
(D) One or more selected from amines and derivatives thereof, aminopolycarboxylic acids and amino acids: 10 to 300 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ion of (a)
前記(a)の成分である、Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属イオンは、処理剤中に添加される金属塩または/および金属水酸化物を由来とする成分である。この金属塩、金属水酸化物としては、Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属を含むリン酸塩、硝酸塩、炭酸塩、硫酸塩、酢酸塩、水酸化物などが挙げられ、これらの中から選ばれる1種以上を用いることができる。また、これらの中でも、耐食性の確保という観点からは、Mn、Mg、Vの中から選ばれる1種以上の金属の無機酸塩とZnの無機酸塩とを併用すること、或いはMn、Mg、Vの中から選ばれる1種以上の金属の水酸化物とZnの水酸化物とを併用することが特に好ましい。 The one or more metal ions selected from Al, Mn, Mg, V, and Zn as the component (a) are derived from a metal salt or / and a metal hydroxide added to the treatment agent. It is an ingredient to do. Examples of the metal salt and metal hydroxide include phosphates, nitrates, carbonates, sulfates, acetates, hydroxides containing at least one metal selected from Al, Mn, Mg, V, and Zn. One or more selected from these can be used. Among these, from the viewpoint of ensuring corrosion resistance, a combination of one or more inorganic acid salts of metals selected from Mn, Mg, and V and an inorganic acid salt of Zn, or Mn, Mg, It is particularly preferable to use one or more metal hydroxides selected from V and Zn hydroxide in combination.
前記リン酸塩は、処理剤中においてリン酸イオンが遊離し得る塩であればいかなるものでもよい。そのリン酸成分としては、ポリリン酸、次亜リン酸、ピロリン酸、トリポリリン酸、へキサメタリン酸、第一リン酸、第二リン酸、第三リン酸などを挙げることができる。リン酸塩を用いた場合には、前記(b)の成分であるリン酸の供給源ともなる。
前記(a)の成分である金属イオンは、皮膜中でリン酸イオンと結合してリン酸塩化することにより耐食性の向上に寄与するとともに、皮膜に導電性を付与する。
The phosphate may be any salt as long as phosphate ions can be liberated in the treatment agent. Examples of the phosphoric acid component include polyphosphoric acid, hypophosphorous acid, pyrophosphoric acid, tripolyphosphoric acid, hexametaphosphoric acid, primary phosphoric acid, secondary phosphoric acid, and tertiary phosphoric acid. When a phosphate is used, it also serves as a supply source of phosphoric acid as the component (b).
The metal ion as the component (a) binds to phosphate ions in the film to form a phosphate, thereby contributing to improvement of corrosion resistance and imparting conductivity to the film.
前記(b)の成分であるリン酸は、オルトリン酸、ポリリン酸、次亜リン酸、ピロリン酸、トリポリリン酸、へキサメタリン酸、第一リン酸、第二リン酸、第三リン酸などのリン酸として添加してもよいし、上述したようなリン酸塩として添加してもよい。
表面処理剤中のリン酸は、表面処理剤をめっき面に接触させた際に処理剤中に溶解するめっき金属と反応し、この反応物は、前記(a)の成分である金属イオンによる金属塩とともに、めっき面との界面近傍においてめっき面に対して強固に結合した耐食性に富む薄層(後述する下層部x)を形成する。
前記(b)の成分であるリン酸の表面処理剤中での配合量は、前記(a)の成分である金属イオン100質量部(固形分)に対して300〜1500質量部(固形分)とする。金属イオン100質量部に対するリン酸の配合量が300質量部未満では、前記(a)の成分が液中に安定して存在できず、液保管中に沈殿が生じてしまう。一方、1500質量部を超えると皮膜中にフリーなリン酸が多く残存してしまうことになるので、耐食性が低下する。
The phosphoric acid as the component (b) is phosphoric acid such as orthophosphoric acid, polyphosphoric acid, hypophosphorous acid, pyrophosphoric acid, tripolyphosphoric acid, hexametaphosphoric acid, primary phosphoric acid, secondary phosphoric acid, and tertiary phosphoric acid. It may be added as an acid or as a phosphate as described above.
The phosphoric acid in the surface treatment agent reacts with the plating metal dissolved in the treatment agent when the surface treatment agent is brought into contact with the plating surface, and this reaction product is a metal due to the metal ion which is a component of (a). Together with the salt, a thin layer (lower layer portion x to be described later) rich in corrosion resistance that is firmly bonded to the plated surface in the vicinity of the interface with the plated surface is formed.
The blending amount of phosphoric acid as the component (b) in the surface treatment agent is 300 to 1500 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ion as the component (a). And When the blending amount of phosphoric acid with respect to 100 parts by mass of metal ions is less than 300 parts by mass, the component (a) cannot be stably present in the liquid, and precipitation occurs during storage of the liquid. On the other hand, when it exceeds 1500 parts by mass, a lot of free phosphoric acid remains in the film, so that the corrosion resistance decreases.
前記(c)の成分である有機樹脂としては水溶性樹脂または/および水分散性樹脂を用いる。また、耐食性だけでなく潤滑性を考慮した場合には、一部または全部が水分散性樹脂であることが好ましい。水溶性樹脂としては、特に、カルボキシル基含有単量体の重合体、水酸基含有単量体とカルボキシル基含有単量体との共重合体などが好ましく、これらの1種以上を用いることができる。また、これらの1種以上と水分散性樹脂を併用することがより好ましい。
前記カルボキシル基含有単量体としては、エチレン性不飽和カルボン酸とその誘導体を挙げることができる。エチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタアクリル酸、クロトン酸などのモノカルボン酸、イタコン酸、マレイン酸、フマル酸などのジカルボン酸が挙げられる。また、誘導体としては、アリカリ金属塩、アンモニウム塩、有機アミン塩などが代表例である。好ましいのはアクリル酸、メタアクリル酸である。これらのカルボキシル基含有単量体は、1種または2種以上を用いることができる。
As the organic resin as the component (c), a water-soluble resin and / or a water-dispersible resin is used. Further, when considering not only the corrosion resistance but also the lubricity, a part or all of the resin is preferably a water dispersible resin. As the water-soluble resin, a polymer of a carboxyl group-containing monomer, a copolymer of a hydroxyl group-containing monomer and a carboxyl group-containing monomer, and the like are particularly preferable, and one or more of these can be used. It is more preferable to use one or more of these in combination with a water-dispersible resin.
Examples of the carboxyl group-containing monomer include ethylenically unsaturated carboxylic acid and derivatives thereof. Examples of the ethylenically unsaturated carboxylic acid include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid. Representative examples of the derivatives include antkari metal salts, ammonium salts, and organic amine salts. Preference is given to acrylic acid and methacrylic acid. These carboxyl group-containing monomers can be used alone or in combination of two or more.
前記水酸基含有単量体としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸−3−ヒドロキシブチル、アクリル酸−2,2−ビス(ヒドロキシメチル)エチル、(メタ)アクリル酸−2,3−ジヒドロキシプロピル、(メタ)アクリル酸−3−クロル2−ヒドロキシプロピルなどの(メタ)アクリル酸ヒドロキシエステル類、アリルアルコール類、N−メチロールアクリルアミド、N−ブトキシメチロール(メタ)アクリルアミドなどの水酸基含有アクリルアミド類のような、還元性水酸基を有する単量体を挙げることができる。特に好ましいのは、アクリル酸ヒドロキシエチル、メタアクリル酸ヒドロキシエチルである。これらの水酸基含有単量体は、1種または2種以上を用いることができる。
なお、水酸基含有単量体とカルボキシル基含有単量体との共重合体は、この発明で期待する表面処理皮膜の特性を維持する範囲内であれば、他の重合性単量体をさらに共重合したものであってもよい。好適な単量体としては、例えばスチレン類あるいはメタアクリル酸メチルなどの(メタ)アクリル酸エステル類を挙げることができる。
Examples of the hydroxyl group-containing monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, -2,2-bis (hydroxymethyl) ethyl acrylate, (Meth) acrylic acid-2,3-dihydroxypropyl, (meth) acrylic acid-3-chloro-2-hydroxypropyl and other (meth) acrylic acid hydroxy esters, allyl alcohols, N-methylolacrylamide, N-butoxymethylol Mention may be made of monomers having a reducing hydroxyl group, such as hydroxyl group-containing acrylamides such as (meth) acrylamide. Particularly preferred are hydroxyethyl acrylate and hydroxyethyl methacrylate. These hydroxyl group-containing monomers can be used alone or in combination of two or more.
Note that the copolymer of the hydroxyl group-containing monomer and the carboxyl group-containing monomer may be further copolymerized with other polymerizable monomers as long as the properties of the surface treatment film expected in the present invention are maintained. It may be polymerized. Suitable monomers include (meth) acrylic acid esters such as styrenes and methyl methacrylate.
上述した有機樹脂は、さらに水分散性樹脂を含有することにより、加工性、加工後耐食性をより良好なものとすることができる。水分散性樹脂としては、特に、低pH酸性水溶液(pH:1〜4)中で安定であり、均一分散し得るものが好ましい。そのようなものとして、カルボキシル基または水酸基を含有する単量体以外の不飽和単量体を、カルボキシル基を含有する単量体と共重合してなるものが挙げられる。前者の好適な単量体としては、スチレン、メタアクリル酸ブチル、メタアクリル酸メチルなどのメタアクリル酸のアルキルエステルが挙げられる。pH1〜4の酸性水溶液中で安定であり、均一に分散することができる水分散性樹脂としては、例えば、従来金属材料の表面処理に使用されているポリエステル系、アクリル系、ウレタン系が挙げられる。これらは2種以上併用することもできる。 The organic resin described above can further improve processability and post-processing corrosion resistance by further containing a water-dispersible resin. As the water dispersible resin, a resin that is stable in a low pH acidic aqueous solution (pH: 1 to 4) and can be uniformly dispersed is particularly preferable. As such a thing, what copolymerizes unsaturated monomers other than the monomer containing a carboxyl group or a hydroxyl group with the monomer containing a carboxyl group is mentioned. Examples of the preferred monomer include alkyl esters of methacrylic acid such as styrene, butyl methacrylate, and methyl methacrylate. Examples of the water-dispersible resin that is stable in an acidic aqueous solution having a pH of 1 to 4 and can be uniformly dispersed include, for example, polyesters, acrylics, and urethanes that are conventionally used for surface treatment of metal materials. . Two or more of these can be used in combination.
水分散性樹脂は、そのガラス転移温度(Tg)が20〜120℃のものが特に好ましい。ガラス転移温度が20℃以上である方が乾燥後の皮膜が耐ブロッキング性にも優れたものとなる。一方、ガラス転移温度が120℃以下である方が、加工時の鋼板変形に皮膜が追従し易いために皮膜破壊が発生し難いので、加工後耐食性が向上する。
また、水分散性樹脂は粒子径が0.1〜2.0μmのものが好ましい。水分散性樹脂の粒子径が0.1μm以上である方がプレス成形性が向上する。一方、粒子径が2.0μm以下である方が、後述する下層部xの連続性が維持され易く、耐食性、プレス成形性、加工後耐食性のいずれも向上する。
The water dispersible resin is particularly preferably one having a glass transition temperature (Tg) of 20 to 120 ° C. When the glass transition temperature is 20 ° C. or higher, the dried film is excellent in blocking resistance. On the other hand, when the glass transition temperature is 120 ° C. or lower, since the coating easily follows the deformation of the steel sheet during processing, and the coating is less likely to break, the post-processing corrosion resistance is improved.
The water-dispersible resin preferably has a particle size of 0.1 to 2.0 μm. The press moldability is improved when the particle size of the water-dispersible resin is 0.1 μm or more. On the other hand, when the particle size is 2.0 μm or less, the continuity of the lower layer portion x described later is easily maintained, and all of the corrosion resistance, press formability, and post-processing corrosion resistance are improved.
前記(c)の成分である有機樹脂の表面処理剤中での配合量は、前記(a)である金属イオン100質量部(固形分)に対して5〜100質量部(固形分)とする。金属イオン100質量部(固形分)に対する有機樹脂の配合量が5質量部未満では耐食性が劣り、また、潤滑性も劣るためプレス成形時に黒色異物が発生したり、型かじりが生じ易くなる。一方、100質量部を超えると、耐食性は向上する方向にあるものの、プレス成形時に剥離が生じ、黒色異物が生成して加工後外観が劣化し易くなり、さらに、導電性も低下する。 The compounding amount of the organic resin as the component (c) in the surface treating agent is 5 to 100 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ion (a). . When the blending amount of the organic resin with respect to 100 parts by mass (solid content) of the metal ions is less than 5 parts by mass, the corrosion resistance is inferior, and the lubricity is also inferior, so that black foreign matter is easily generated during press molding or mold galling is likely to occur. On the other hand, if it exceeds 100 parts by mass, the corrosion resistance tends to be improved, but peeling occurs during press molding, black foreign matter is generated, the post-processing appearance tends to deteriorate, and the conductivity is also lowered.
前記(d)の成分である、アミンおよびその誘導体、アミノポリカルボン酸、アミノ酸の中から選ばれる1種以上は、めっき面から溶解した金属イオン(めっき金属)に対するキレート化剤として添加されるものである。
表面処理剤を亜鉛系めっき鋼板に塗布する方法としては、一般に浸漬法やロールコーティング法などが採られる。この場合、表面処理剤が低pHであると、塗布した表面処理剤にめっき金属(通常、Zn)が溶解してpHが上昇する。その結果、表面処理剤中の金属成分の溶解安定pH以上となることで析出物が生成し、この析出物が表面処理剤中のスラッジとなる。このような表面処理剤中のスラッジは、直接またはコーターロールを介して被処理鋼板に付着して外観不良や性能不良を生じさせ、さらにはコーターパン内に蓄積して連続生産が不能となる場合もある。
One or more selected from amines and derivatives thereof, aminopolycarboxylic acids, and amino acids as the component (d) are added as chelating agents for metal ions (plating metal) dissolved from the plating surface. It is.
As a method for applying the surface treatment agent to the zinc-based plated steel sheet, a dipping method or a roll coating method is generally employed. In this case, if the surface treatment agent has a low pH, the plating metal (usually Zn) dissolves in the applied surface treatment agent and the pH rises. As a result, a precipitate is generated when the pH becomes higher than the dissolution stable pH of the metal component in the surface treatment agent, and this precipitate becomes sludge in the surface treatment agent. When such sludge in the surface treatment agent adheres to the steel sheet to be treated directly or via a coater roll, it causes poor appearance and poor performance, and further accumulates in the coater pan, making continuous production impossible. There is also.
上記のような問題を防止するには、表面処理剤のpHを上げることでめっき金属の溶解を極力防ぎ、一方において、表面処理剤に対するめっき金属の溶解限(pH上限)を引上げるためpHを低下させる、という相反する事象を達成させる必要があり、従来の技術では達成不可能であった。そこで鋭意検討した結果、表面処理剤中にアミンおよびその誘導体、アミノポリカルボン酸、アミノ酸の中から選ばれる1種以上を適量添加した場合、この成分がめっき面に先行吸着することでめっき金属の過剰エッチングが防止され、さらに、同成分が表面処理剤中でキレート化剤として作用し、めっき面から溶解した金属イオン(めっき金属)をキレート化して表面処理剤の安定性を効果的に向上させることを見出した。 In order to prevent the above problems, the dissolution of the plating metal is prevented as much as possible by increasing the pH of the surface treatment agent. On the other hand, the pH is increased in order to increase the dissolution limit (pH upper limit) of the plating metal with respect to the surface treatment agent. It is necessary to achieve the contradictory phenomenon of lowering, and this cannot be achieved by the conventional technology. As a result of intensive studies, when an appropriate amount of one or more selected from amines and derivatives thereof, aminopolycarboxylic acids, and amino acids is added to the surface treatment agent, this component is pre-adsorbed on the plating surface, so that the plating metal Excessive etching is prevented, and the same component acts as a chelating agent in the surface treatment agent, and chelates metal ions (plating metal) dissolved from the plating surface to effectively improve the stability of the surface treatment agent. I found out.
このような効果を発現する前記(d)の成分としては、エチレンジアミン、N−メチルエチレンジアミン、N−エチルエチレンジアミン、N−n−プロピルエチレンジアミン、N−イソプロピルエチレンジアミン、N−(2−ヒドロキシエチル)エチレンジアミン、N,Nジメチルエチレンジアミン、N,N′ジメチルエチレンジアミン、N,N′−ジメチルエチレンジアミン、N,N′−ジ(2−ヒドロキシエチル)エチレンジアミン、N,N,N′,N′−テトラメチルエチレンジアミン、1,2−ジアミノプロパン、meso−2,3ジアミノブタン、rac−2,3−ジアミノブタン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、cis−1,2−ジアミノシクロヘキサン、trans−1,2−ジアミノシクロヘキサン、トリエチレンジアミン、1,2,3トリアミノプロパン、1,3−ジアミノ−2−アミノメチルプロパン、ジエチレントリアミン、3,3′−ジアミノジプロピルアミン、トリエチレンテトラアミン、2,2′,2″−トリアミノトリエチレンアミン、2−ヒドロキシエチルアミン、2−メトキシエチルアミン、2,2′−ジヒドロキシジエチルアミン、2,2′,2″−トリヒドロキシトリエチルアミン、ジ(2−アミノエチル)エーテル、ピリジン、2−アミノメチルピリジン、2,2′−アミノエチルピリジン、ピリジン−2−カルボン酸、ピリジン−2,3ジカルボン酸、ピリジン−2,4−ジカルボン酸、ピリジン−2,6−ジカルボン酸、ニコチン酸ヒドラジン、イソニコチン酸ヒドラジド、ピリドキサミン、ピペリジン、ピペリジン−2,6ジカルボン酸、イミダゾール、ヒスタミン、3−メチルヒスタミンなどのアミンおよびその誘導体、イミノジ酢酸、イミノジプロピオン酸、N−メチルイミノジ酢酸、N−(3,3′−ジメチルブチル)イミノジ酢酸、フェニルイミノジ酢酸、ヒドロキシエチルイミノジ酢酸、ヒドロキシエチルイミノジプロピオン酸、ヒドロキシプロピルイミノジ酢酸、2−ヒドロキシシクロヘキシルイミノジ酢酸、メトキシエチルイミノジ酢酸、2−ヒドロキシベンジルイミノジ酢酸、N−(o−カルボキシフェニル)イミノジ酢酸、N−(m−カルボキシフェニル)イミノジ酢酸、N−(p−カルボキシフェニル)イミノジ酢酸、N−(カルバモイルメチル)イミノジ酢酸、シアノメチルイミノジ酢酸、アミノエチルイミノジ酢酸、2−エトキシカルボニルアミノエチルイミノジ酢酸、ホスホノメチルイミノジ酢酸、ホスホエチルイミノジ酢酸、ニトリロトリ酢酸、カルボキシエチルイミノジ酢酸、カルボキシメチルイミノジプロピオン酸、ニトリロトリプロピオン酸、N,N′−エチレンジアミンジ酢酸、エチレンジアミン−N,N′ジプロピオン酸、N,N′−ジ(ヒドロキシエチル)エチレンジアミンジ酢酸、N−n−ブチルエチレンジアミントリ酢酸、N−シクロヘキシルエチレンジアミントリ酢酸、N−(o−ヒドロキシシクロヘキシル)エチレンジアミントリ酢酸、N′−ヒドロキシエチル−N,N,N′−トリ酢酸、ベンジルエチレンジアミントリ酢酸、エチレンジアミンテトラ酢酸、エチレンジアミン−N,N′−ジ酢酸N,N′−ジプロピオン酸、エチレンジアミン−N,N′−ジ酢酸N,N′−ジ(2−プロピオン酸)、エチレンジアミンテトラプロピオン酸、1,2−プロピオンジアミンテトラ酢酸、トリメチレンジアミンテトラ酢酸、テトラメチレンジアミンテトラ酢酸、ペンタメチレンジアミンテトラ酢酸、ヘキサメチレンジアミンテトラ酢酸、trans−シクロヘキサン−1,2−ジアミンテトラ酢酸、1,3,5−トリアミノシクロヘキサンヘキサ酢酸、エチルエーテルジアミンテトラ酢酸、ジエチルトリアミンペンタ酢酸、グリコールエーテルジアミンテトラ酢酸などのアミノポリカルボン酸、グリシン、ザルコシン、グリシンメチルエステル、アラニン、バリン、ノルロイシン、ロイシン、フェニルアラニン、チロシン、セリン、スレオニン、システィン、メチオニン、アスパラギン酸、アスパラギン、グルタミン酸、1,2−ジアミノプロピオン酸、オルニチン、リジン、アルギニン、プロリン、ヒスチジン、N−エチルグリシン、グリシルアラニン、還元型グルタチオンなどのアミノ酸とその誘導体があげられる。これらの成分は1種または2種以上を用いることができる。 Examples of the component (d) exhibiting such effects include ethylenediamine, N-methylethylenediamine, N-ethylethylenediamine, Nn-propylethylenediamine, N-isopropylethylenediamine, N- (2-hydroxyethyl) ethylenediamine, N, N dimethylethylenediamine, N, N′dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N′-di (2-hydroxyethyl) ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, 1 , 2-diaminopropane, meso-2,3diaminobutane, rac-2,3-diaminobutane, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, cis-1,2-diaminocyclohexane, trans-1,2- Diaminocyclohexane, Triethylenediamine, 1,2,3 triaminopropane, 1,3-diamino-2-aminomethylpropane, diethylenetriamine, 3,3'-diaminodipropylamine, triethylenetetraamine, 2,2 ', 2 "-tri Aminotriethyleneamine, 2-hydroxyethylamine, 2-methoxyethylamine, 2,2'-dihydroxydiethylamine, 2,2 ', 2 "-trihydroxytriethylamine, di (2-aminoethyl) ether, pyridine, 2-aminomethyl Pyridine, 2,2'-aminoethylpyridine, pyridine-2-carboxylic acid, pyridine-2,3-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, hydrazine nicotinate, isonicotitine Acid hydrazide, pyridoxamine, piperidine, pipette Amines such as gin-2,6 dicarboxylic acid, imidazole, histamine, 3-methylhistamine and derivatives thereof, iminodiacetic acid, iminodipropionic acid, N-methyliminodiacetic acid, N- (3,3'-dimethylbutyl) iminodiacetic acid, Phenyliminodiacetic acid, hydroxyethyliminodiacetic acid, hydroxyethyliminodipropionic acid, hydroxypropyliminodiacetic acid, 2-hydroxycyclohexyliminodiacetic acid, methoxyethyliminodiacetic acid, 2-hydroxybenzyliminodiacetic acid, N- (o -Carboxyphenyl) iminodiacetic acid, N- (m-carboxyphenyl) iminodiacetic acid, N- (p-carboxyphenyl) iminodiacetic acid, N- (carbamoylmethyl) iminodiacetic acid, cyanomethyliminodiacetic acid, aminoethyliminodiacetic acid, 2- Toxicarbonylaminoethyliminodiacetic acid, phosphonomethyliminodiacetic acid, phosphoethyliminodiacetic acid, nitrilotriacetic acid, carboxyethyliminodiacetic acid, carboxymethyliminodipropionic acid, nitrilotripropionic acid, N, N'-ethylenediaminediacetic acid, Ethylenediamine-N, N'dipropionic acid, N, N'-di (hydroxyethyl) ethylenediaminediacetic acid, Nn-butylethylenediaminetriacetic acid, N-cyclohexylethylenediaminetriacetic acid, N- (o-hydroxycyclohexyl) ethylenediaminetriacetic acid Acetic acid, N'-hydroxyethyl-N, N, N'-triacetic acid, benzylethylenediaminetriacetic acid, ethylenediaminetetraacetic acid, ethylenediamine-N, N'-diacetic acid N, N'-dipropionic acid, ethylenediamine -N, N'-diacetic acid N, N'-di (2-propionic acid), ethylenediaminetetrapropionic acid, 1,2-propiondiaminetetraacetic acid, trimethylenediaminetetraacetic acid, tetramethylenediaminetetraacetic acid, pentamethylene Diaminetetraacetic acid, hexamethylenediaminetetraacetic acid, trans-cyclohexane-1,2-diaminetetraacetic acid, 1,3,5-triaminocyclohexanehexaacetic acid, ethyletherdiaminetetraacetic acid, diethyltriaminepentaacetic acid, glycol etherdiaminetetraacetic acid Aminopolycarboxylic acids such as glycine, sarcosine, glycine methyl ester, alanine, valine, norleucine, leucine, phenylalanine, tyrosine, serine, threonine, cysteine, methionine, aspartic acid, aspart Ragin, glutamic acid, 1,2-diaminopropionic acid, ornithine, lysine, arginine, proline, histidine, N- ethyl glycine, glycyl alanine, amino acid and its derivatives, such as reduced glutathione and the like. These components can be used alone or in combination of two or more.
前記(d)の成分である、アミンおよびその誘導体、アミノポリカルボン酸、アミノ酸の中から選ばれる1種以上の表面処理剤中での配合量は、前記(a)の成分である金属イオン100質量部(固形分)に対して10〜300質量部(固形分)とする。金属イオン100質量部(固形分)に対する前記(d)の成分の配合量が10質量部未満ではめっき面への先行吸着や薬液安定性が十分に得られず、一方、300質量部を超えると(d)の成分が皮膜中に大量に残存し、耐食性を低下させることがある。
The compounding amount in one or more kinds of surface treating agents selected from amines and derivatives thereof, aminopolycarboxylic acids and amino acids as the component (d) is the
さらに、表面処理剤には、プレス成形性の向上を目的として固形潤滑剤を含有させてもよい。
固形潤滑剤としては、例えば、ポリオレフィンワックス(例えば、ポリエチレンワックス)、パラフィンワックス(例えば、合成パラフィン、天然パラフィンなど)、フッ素樹脂系ワックス(例えば、ポリテトラフルオロエチレンなど)、脂肪酸アミド系化合物(例えば、ステアリン酸アミド、パルミチン酸アミドなど)、金属石けん類(例えば、ステアリン酸カルシウム、ステアリン酸鉛など)、金属硫化物(例えば、二硫化モリブデン、二硫化タングステンなど)、グラファイト、フッ化黒鉛、窒化ホウ素、ポリアルキレングリコール、アルカリ金属硫酸塩などの1種または2種以上を用いることができるが、なかでも、ポリエチレンワックス、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂系ワックスが特に好ましい。また、固形潤滑剤としては、低pH安定性を有し且つ軟化温度が100℃以上のものが好ましく、この観点からはポリオレフィンワックスや金属石けん類が好ましい。
この固形潤滑剤の表面処理剤中での配合量は、前記(a)の成分である金属イオン100質量部(固形分)に対して5〜50質量部(固形分)とする。金属イオン100質量部(固形分)に対する前記固形潤滑剤の配合量が5質量部未満では潤滑性とプレス成形性の向上効果が十分に得られず、一方、50質量部を超えると皮膜が軟弱となり、加工後外観が悪化する。
Furthermore, the surface treatment agent may contain a solid lubricant for the purpose of improving press moldability.
Examples of the solid lubricant include polyolefin wax (for example, polyethylene wax), paraffin wax (for example, synthetic paraffin and natural paraffin), fluororesin wax (for example, polytetrafluoroethylene), fatty acid amide compound (for example, , Stearamide, palmitate, etc.), metal soaps (eg, calcium stearate, lead stearate, etc.), metal sulfides (eg, molybdenum disulfide, tungsten disulfide, etc.), graphite, graphite fluoride, boron nitride One or more of polyalkylene glycols and alkali metal sulfates can be used, and among them, fluororesin waxes such as polyethylene wax and PTFE (polytetrafluoroethylene) are particularly preferable. Further, as the solid lubricant, those having low pH stability and a softening temperature of 100 ° C. or higher are preferable. From this viewpoint, polyolefin waxes and metal soaps are preferable.
The blending amount of the solid lubricant in the surface treatment agent is 5 to 50 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ion that is the component (a). If the blending amount of the solid lubricant with respect to 100 parts by mass (solid content) of metal ions is less than 5 parts by mass, the effect of improving lubricity and press formability cannot be obtained sufficiently, whereas if it exceeds 50 parts by mass, the film is soft. Thus, the appearance after processing deteriorates.
表面処理剤(処理液)が水分散性樹脂や固形潤滑剤を含有する場合、これらは液中に分散しているため、処理剤とめっき面との接触により形成される表面処理皮膜の下層部x(めっき層に接する層部分であって、リン酸イオンとめっき金属との反応物(i)と、Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属を含む金属塩(ii)とを主体とし、且つ有機樹脂(iii)を含有する下層部)中にも同様に分散して含有される。このため水分散性樹脂の含有により、下層部xの深さ方向でいかなる部位においても均一の潤滑性が確保できる。また、固形潤滑剤の含有により潤滑性がさらに高められる。そして、これらの作用によって、プレス成形性および加工後耐食性が確保される。したがって、表面処理剤は、(1)含有する有機樹脂の少なくとも一部(好ましくは全部)が水分散性樹脂であること、または、(2)固形潤滑剤を含有すること、特に望ましくは、(3)有機樹脂の少なくとも一部(好ましくは全部)が水分散性樹脂であり且つ固形潤滑剤を含有すること、が好ましい。 When the surface treatment agent (treatment liquid) contains a water-dispersible resin or solid lubricant, since these are dispersed in the liquid, the lower layer portion of the surface treatment film formed by contact between the treatment agent and the plating surface x (a layer portion in contact with the plating layer, which is a metal salt containing a reaction product (i) of phosphate ions and plating metal and one or more metals selected from Al, Mn, Mg, V, and Zn It is also dispersed and contained in the lower layer portion (mainly comprising (ii) and containing the organic resin (iii)). For this reason, by containing the water dispersible resin, uniform lubricity can be ensured in any part in the depth direction of the lower layer part x. Moreover, lubricity is further improved by containing a solid lubricant. By these actions, press formability and post-processing corrosion resistance are ensured. Therefore, the surface treatment agent is particularly desirable that (1) at least a part (preferably all) of the organic resin contained is a water-dispersible resin, or (2) contains a solid lubricant. 3) It is preferable that at least a part (preferably all) of the organic resin is a water-dispersible resin and contains a solid lubricant.
表面処理剤には、被処理面(亜鉛系めっき鋼板表面)への適用時の発泡防止や処理液安定性の観点から、界面活性剤を含有させてもよい。界面活性剤としてはpH1〜4の環境下で安定なものであればよく、例えば、ノニオン型界面活性剤が挙げられる。
また、その他性能を付与するために、表面処理剤に通常の表面処理で使用される各種添加剤を含有させてもよい。
The surface treatment agent may contain a surfactant from the viewpoint of prevention of foaming when applied to the surface to be treated (zinc-based plated steel sheet surface) and stability of the treatment liquid. The surfactant is not particularly limited as long as it is stable under an environment of
Moreover, in order to provide other performance, you may make the surface treatment agent contain various additives used by normal surface treatment.
本発明の表面処理剤は、上述した各成分を溶媒である水に溶解または分散させることにより得られるものであり、通常、固形分濃度が5〜25mass%程度の水溶液である。固形分濃度が低すぎると亜鉛系めっき鋼板などに塗布する際に付着量を確保しにくくなり、一方、固形分濃度が高すぎると処理液安定性が劣る傾向がある。
本発明の表面処理剤は、そのpHを1〜4、遊離酸度を0.1規定水酸化ナトリウム換算で3〜20とする必要がある。表面処理剤のpHが1未満ではめっき金属が過剰に溶解してめっき層の薄膜化を生じたり、めっき金属とリン酸イオンとの反応物の再溶解が発生してしまい、耐食性向上が得られない場合がある。一方、pHが4を超えると、めっき金属とリン酸イオンとの反応物が形成されなくなり、耐食性が著しく低下する。よって、表面処理剤のpHは1〜4とする。表面処理剤のpHを1〜4に調整するには、NaOHやKOHのような水酸化物、アミンなどを中和剤として用いることができる。
The surface treating agent of the present invention is obtained by dissolving or dispersing the above-described components in water as a solvent, and is usually an aqueous solution having a solid content concentration of about 5 to 25 mass%. If the solid content concentration is too low, it becomes difficult to secure the amount of adhesion when applied to a zinc-based plated steel sheet or the like. On the other hand, if the solid content concentration is too high, the treatment liquid stability tends to be inferior.
The surface treating agent of the present invention needs to have a pH of 1 to 4 and a free acidity of 3 to 20 in terms of 0.1 N sodium hydroxide. When the pH of the surface treatment agent is less than 1, the plating metal dissolves excessively, resulting in thinning of the plating layer, or the reaction product of the plating metal and phosphate ions is re-dissolved, resulting in improved corrosion resistance. There may not be. On the other hand, when pH exceeds 4, the reaction product of a plating metal and a phosphate ion will not be formed, and corrosion resistance will fall remarkably. Therefore, the pH of the surface treatment agent is set to 1 to 4. In order to adjust the pH of the surface treatment agent to 1 to 4, a hydroxide such as NaOH or KOH, an amine, or the like can be used as a neutralizing agent.
本発明における「0.1規定水酸化ナトリウム換算の遊離酸度」とは、表面処理剤10mLにブロムフェノールブルー3滴を滴下し、呈色が黄色から青色へ変色するのに要する0.1規定水酸化ナトリウム水溶液の量(mL)のことであり、無名数として標記した。
上記のように、表面処理剤のpHを1〜4の範囲に調整しても、遊離酸度が0.1規定水酸化ナトリウム換算で3〜20の範囲を外れると耐食性が低下する。すなわち、遊離酸度が3未満では表面処理皮膜の下層部xの厚さが薄くなり過ぎる。一方、遊離酸度が20を超えると前記下層部xの連続性が阻害される。このような観点から、より好ましい0.1規定水酸化ナトリウム換算の遊離酸度は5〜15である。なお、同一pHの場合、遊離酸度を低下させるにはピロリン酸の使用が有効である。
In the present invention, “0.1N sodium hydroxide equivalent free acidity” refers to 0.1N water required for dripping 3 drops of bromophenol blue into 10 mL of the surface treatment agent to change the color from yellow to blue. It was the amount (mL) of the aqueous sodium oxide solution, and was labeled as an anonymous number.
As described above, even if the pH of the surface treatment agent is adjusted to the range of 1 to 4, the corrosion resistance is reduced if the free acidity is outside the range of 3 to 20 in terms of 0.1 N sodium hydroxide. That is, when the free acidity is less than 3, the thickness of the lower layer portion x of the surface treatment film becomes too thin. On the other hand, when the free acidity exceeds 20, the continuity of the lower layer part x is inhibited. From such a viewpoint, the more preferable free acidity in terms of 0.1 N sodium hydroxide is 5 to 15. In the case of the same pH, the use of pyrophosphoric acid is effective for reducing the free acidity.
以下、本発明の表面処理亜鉛系めっき鋼板について、詳細に説明する。
本発明の表面処理亜鉛系めっき鋼板は、亜鉛系めっき鋼板の表面に、上述した表面処理剤を塗布し、乾燥することにより形成された表面処理皮膜を有する。
本発明で用いる亜鉛系めっき鋼板の種類に特別な制限はないが、例えば、亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、Zn−Fe合金めっき鋼板(電気めっき鋼板、合金化溶融亜鉛めっき鋼板)、Zn−Cr合金めっき鋼板、Zn−Mn合金めっき鋼板、Zn−Co合金めっき鋼板、Zn−Co−Cr合金めっき鋼板、Zn−Cr−Ni合金めっき鋼板、Zn−Cr−Fe合金めっき鋼板、Zn−Al合金めっき鋼板(例えば、Zn−5%Al合金めっき鋼板、Zn−55%Al合金めっき鋼板)、Zn−Mg合金めっき鋼板、Zn−Al−Mg合金めっき鋼板(例えば、Zn−6%Al−3%Mg合金めっき鋼板、Zn−11%Al−3%Mg合金めっき鋼板)、さらには、これらのめっき鋼板のめっき皮膜中に金属酸化物、ポリマーなどを分散した亜鉛系複合めっき鋼板(例えば、Zn−SiO2分散めっき鋼板)などを用いることができる。
Hereinafter, the surface-treated zinc-based plated steel sheet of the present invention will be described in detail.
The surface-treated zinc-based plated steel sheet of the present invention has a surface-treated film formed by applying the above-described surface treatment agent to the surface of the zinc-based plated steel sheet and drying it.
Although there is no special restriction | limiting in the kind of galvanized steel plate used by this invention, For example, galvanized steel plate, Zn-Ni alloy plating steel plate, Zn-Fe alloy plating steel plate (electroplating steel plate, galvannealed steel plate), Zn-Cr alloy plated steel sheet, Zn-Mn alloy plated steel sheet, Zn-Co alloy plated steel sheet, Zn-Co-Cr alloy plated steel sheet, Zn-Cr-Ni alloy plated steel sheet, Zn-Cr-Fe alloy plated steel sheet, Zn- Al alloy-plated steel sheet (for example, Zn-5% Al alloy-plated steel sheet, Zn-55% Al alloy-plated steel sheet), Zn-Mg alloy-plated steel sheet, Zn-Al-Mg alloy-plated steel sheet (for example, Zn-6% Al- 3% Mg alloy-plated steel sheet, Zn-11% Al-3% Mg alloy-plated steel sheet), and metal oxides and polymers in the plating film of these plated steel sheets. Or the like can be used dispersed zinc composite-plated steel sheet (for example, Zn-SiO 2 dispersion plating steel plate).
また、上記のようなめっきのうち、同種または異種のものを2層以上めっきした複層めっき鋼板を用いることもできる。
また、めっき鋼板としては、鋼板面に予めNiなどの薄目付めっきを施し、その上に上記のような各種めっきを施したものであってもよい。
めっき方法としては、電解法(水溶液中での電解または非水溶媒中での電解)、溶融法、気相法のうち、実施可能ないずれの方法を採用することもできる。
さらに、めっきの黒変を防止する目的で、めっき皮膜中にNi,Co,Feの1種以上の微量元素を1〜2000ppm程度析出させたり、或いはめっき皮膜表面にNi,Co,Feの1種以上を含むアルカリ性水溶液または酸性水溶液による表面調整処理を施し、これらの元素を析出させるようにしてもよい。
In addition, among the above-described plating, a multi-layer plated steel sheet in which two or more layers of the same type or different types are plated can also be used.
Moreover, as a plated steel plate, the steel plate surface may be previously plated with lightness such as Ni, and various plating as described above may be performed thereon.
As a plating method, any feasible method among an electrolytic method (electrolysis in an aqueous solution or electrolysis in a non-aqueous solvent), a melting method, and a gas phase method can be adopted.
Furthermore, in order to prevent blackening of the plating, about 1 to 2000 ppm of one or more trace elements of Ni, Co, Fe are deposited in the plating film, or one of Ni, Co, Fe is deposited on the surface of the plating film. These elements may be deposited by performing a surface conditioning treatment with an alkaline aqueous solution or an acidic aqueous solution containing the above.
亜鉛系めっき鋼板の表面に形成された表面処理皮膜は、めっき層に接して、リン酸イオンとめっき金属との反応物(i)と、Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属を含む金属塩(ii)とを主体とし、且つ有機樹脂(iii)を含有する厚さが0.02〜3μmの下層部xを有する。 The surface treatment film formed on the surface of the galvanized steel sheet is selected from the reaction product (i) of phosphate ion and plating metal, and Al, Mn, Mg, V, and Zn in contact with the plating layer. It has a lower layer portion x mainly composed of a metal salt (ii) containing one or more metals and containing an organic resin (iii) and having a thickness of 0.02 to 3 μm.
この下層部xは、次のように定義される。
反応物(i)と金属塩(ii)を主体とする下層部xは、めっき面から溶解して表面処理剤中に拡散した金属イオン(めっき金属)と表面処理剤中のリン酸イオンとが反応し、且つ表面処理剤中に元々含まれる金属イオン(上述した(a)の成分)がリン酸イオンなどと反応することにより形成されるから、その厚さは、グロー放電分光法(以下、GDSという)による皮膜厚さ方向での金属成分の分析により測定することができる。
This lower layer part x is defined as follows.
In the lower layer part x mainly composed of the reactant (i) and the metal salt (ii), the metal ions (plating metal) dissolved from the plating surface and diffused into the surface treatment agent and the phosphate ions in the surface treatment agent are Since the metal ions (component (a) described above) that react and are originally contained in the surface treatment agent are formed by reacting with phosphate ions or the like, the thickness thereof is determined by glow discharge spectroscopy (hereinafter, It can be measured by analysis of the metal component in the film thickness direction by GDS).
図1は、金属イオンとしてMg,Mnを含有させた表面処理剤を塗布・乾燥することにより得られた本発明の表面処理亜鉛系めっき鋼板について、GDSによる表面処理皮膜厚さ方向の成分分析結果の一例を示すものである。このGDSでは、理学社製「RF−GDS3860」(商品名)を用い、アノード径4mm、20W、Arガス流量300cc/分の条件で測定を行った。図1において、鉄換算のスパッター速度を基に、スパッタリング時間と皮膜の深さ(厚さ)方向位置とを対応づけることができ、且つこの皮膜の深さ(厚さ)方向位置での各元素の信号強度によりその存在量を知ることができる。図1において、スパッタリング時間0秒が皮膜最表面であり、この皮膜最表面から下層部xにわたる深さ領域においては、表面処理剤由来の金属成分(Mg,Mn)がめっき金属(Zn)と共存していることが判る。また、この深さ領域において有機樹脂の炭素成分(C)ピークは金属成分(Mg,Mn)のピークよりも表層側に存在するものの、金属成分(Mg,Mn)とも共存している。 FIG. 1 shows the result of component analysis in the direction of the thickness of the surface-treated film by GDS on the surface-treated zinc-based plated steel sheet of the present invention obtained by applying and drying a surface treatment agent containing Mg and Mn as metal ions. An example is shown. In this GDS, “RF-GDS3860” (trade name) manufactured by Rigaku Corporation was used, and measurement was performed under conditions of an anode diameter of 4 mm, 20 W, and an Ar gas flow rate of 300 cc / min. In FIG. 1, the sputtering time can be associated with the depth (thickness) direction position of the film on the basis of the iron-equivalent sputtering speed, and each element at the position in the depth (thickness) direction of the film. The abundance can be known from the signal intensity of. In FIG. 1, the sputtering time of 0 seconds is the outermost surface of the film, and in the depth region extending from the outermost surface of the film to the lower layer part x, the metal components (Mg, Mn) derived from the surface treatment agent coexist with the plated metal (Zn). You can see that In this depth region, the carbon component (C) peak of the organic resin is present on the surface layer side of the peak of the metal component (Mg, Mn), but coexists with the metal component (Mg, Mn).
ここで、本発明における表面処理皮膜の「下層部x」とは、図1に示すようなGDSの測定結果において、表面処理剤由来の金属成分(上述した(a)の成分,図1ではMg,Mn)の信号強度がピークとなる深さ位置P1から、同信号強度が前記ピーク値の1/10となる深さ位置P2(概ね、この深さ位置P2がめっき面との界面であると考えられる)までとする。前記深さ位置P1以深の領域は、リン酸イオンとめっき金属との反応物(i)と金属塩(ii)を主体とし、且つ有機樹脂が共存している層であり、この層が耐食性や潤滑性に大きく寄与すると考えられるからである。 Here, the “lower layer portion x” of the surface treatment film in the present invention refers to the metal component derived from the surface treatment agent (component (a) described above, Mg in FIG. 1) in the GDS measurement results as shown in FIG. , Mn) from the depth position P1 at which the signal intensity reaches a peak, the depth position P2 at which the signal intensity becomes 1/10 of the peak value (in general, the depth position P2 is an interface with the plating surface). Can be considered). The region deeper than the depth position P1 is a layer mainly composed of a reaction product (i) of a phosphate ion and a plating metal and a metal salt (ii) and coexisting with an organic resin. This is because it is considered to contribute greatly to lubricity.
本発明における表面処理皮膜は、強力なイオン結合によって生じた反応物(i)と金属塩(ii)を主体とする下層部xが亜鉛系めっき層との間で強固な密着状態を形成する結果、優れた耐食性を発現すると考えられる。このような強固な密着状態を達成するために、前記下層部xは0.02〜3μmの厚さを有する必要がある。この下層部xの厚さが0.02μm未満であると、めっき層と表面処理皮膜との結合が不十分になって耐食性が劣化する。一方、3μmを超えると、曲げ加工などの加工を行った際に下層部xの剥離が生じ易くなり、表面処理皮膜の密着性が劣化してプレス成形性が悪化する。また、その結果、加工後の外観も低下する。以上の観点から、下層部xのより好ましい厚さは0.1〜1.5μmである。後述するように、この下層部xの厚さは表面処理剤の塗布量により調整することができる。 The surface treatment film in the present invention is a result that the lower layer portion x mainly composed of the reactant (i) and the metal salt (ii) generated by strong ionic bonding forms a strong adhesion state with the zinc-based plating layer. It is thought that excellent corrosion resistance is expressed. In order to achieve such a tight adhesion state, the lower layer portion x needs to have a thickness of 0.02 to 3 μm. When the thickness of the lower layer portion x is less than 0.02 μm, the bonding between the plating layer and the surface treatment film becomes insufficient, and the corrosion resistance is deteriorated. On the other hand, when the thickness exceeds 3 μm, peeling of the lower layer portion x is likely to occur when processing such as bending is performed, the adhesiveness of the surface treatment film is deteriorated, and press formability is deteriorated. As a result, the appearance after processing also deteriorates. From the above viewpoint, the more preferable thickness of the lower layer part x is 0.1 to 1.5 μm. As will be described later, the thickness of the lower layer portion x can be adjusted by the coating amount of the surface treatment agent.
次に、表面処理亜鉛系めっき鋼板の製造方法について説明する。
本発明の表面処理亜鉛系めっき鋼板は、亜鉛系めっき鋼板の表面に上述した表面処理剤を固形分付着量が0.05〜3.0g/m2となるように塗布し、乾燥し、表面処理皮膜を形成することにより製造することができる。
通常、表面処理剤はロールコート、スプレー塗装、刷毛塗り、カーテンフローなどの塗装方式で亜鉛系めっき鋼板の表面に塗布される。ここで、表面処理剤を固形分付着量が0.05〜3.0g/m2となるよう塗布することにより、下層部xの厚さを0.02〜3μmとすることができる。また、下層部xの厚さを0.1〜1.5μmとするには、表面処理剤を固形分付着量が0.3〜1.5g/m2となるよう塗布することが好ましい。
Next, the manufacturing method of a surface treatment zinc-plated steel plate is demonstrated.
The surface-treated zinc-based plated steel sheet of the present invention is coated with the surface treatment agent described above on the surface of the zinc-based plated steel sheet so that the solid content is 0.05 to 3.0 g / m 2 , dried, and the surface It can be manufactured by forming a treatment film.
Usually, the surface treatment agent is applied to the surface of the galvanized steel sheet by a coating method such as roll coating, spray coating, brush coating or curtain flow. Here, the thickness of the lower layer part x can be 0.02-3 micrometers by apply | coating a surface treating agent so that solid content adhesion amount may be 0.05-3.0 g / m < 2 >. Moreover, in order to make the thickness of the lower layer part x 0.1-1.5 micrometers, it is preferable to apply | coat a surface treating agent so that solid content adhesion amount may be 0.3-1.5 g / m < 2 >.
このような表面処理剤を塗布した後、これを乾燥させるが、この乾燥工程では鋼板を50〜100℃に加熱して表面処理剤を乾燥させるのが好ましい。加熱温度(鋼板温度)が50℃以上であれば皮膜中の水分が残存し難くなるので、耐食性が向上する。一方、加熱温度(鋼板温度)が100℃以下であれば、リン酸のオルソ化が抑制されるため、表面処理剤の遊離酸度が維持され易く、やはり耐食性が向上する。加熱手段としては、熱風炉、ドライヤー、高周波加熱炉、赤外線加熱炉などを用いることができる。 After applying such a surface treating agent, it is dried. In this drying step, it is preferable to heat the steel sheet to 50 to 100 ° C. to dry the surface treating agent. If the heating temperature (steel plate temperature) is 50 ° C. or higher, the moisture in the film hardly remains, and the corrosion resistance is improved. On the other hand, when the heating temperature (steel plate temperature) is 100 ° C. or lower, phosphoric acid is prevented from being orthorectified, so that the free acidity of the surface treatment agent is easily maintained, and the corrosion resistance is also improved. As the heating means, a hot stove, a dryer, a high-frequency heating furnace, an infrared heating furnace, or the like can be used.
表1および表3に示す金属種からなる金属塩または金属水酸化物、下記(1)に示す有機樹脂(いずれも水分散性樹脂)、同じく(2)に示すリン酸、同じく(3)に示すキレート化剤、同じく(4)に示す固形潤滑剤を適宜配合して水系表面処理剤を調整し、この表面処理剤を下記(5)に示す亜鉛系めっき鋼板表面にスプレー塗布・リンガーロール絞りにより塗布した。その後、5秒で到達板温が60℃となるように加熱して表面処理皮膜を形成した。
(1)有機樹脂(Tg=ガラス転移温度)
・樹脂A:ウレタン樹脂エマルジョン(Tg:80℃、分散粒子径:0.2〜0.4μm)
・樹脂B:アクリル樹脂エマルジョン(Tg:100℃、分散粒子径:0.3〜0.4μm)
・樹脂C:ポリエチレン樹脂エマルジョン(Tg:80℃、分散粒子径:0.1〜0.2μm)
・樹脂D:アクリル樹脂エマルジョン(Tg:30℃、分散粒子径:0.1〜0.2μm)
Metal salts or metal hydroxides composed of the metal species shown in Table 1 and Table 3, organic resins shown in (1) below (both water-dispersible resins), phosphoric acid shown in (2), and (3) The water-based surface treatment agent is prepared by appropriately blending the chelating agent shown in the same formula (4) and the aqueous surface treatment agent, and this surface treatment agent is sprayed on the surface of the zinc-based plated steel plate shown in (5) below. Was applied. Then, it heated so that ultimate plate temperature might be 60 degreeC in 5 second, and formed the surface treatment film.
(1) Organic resin (Tg = glass transition temperature)
Resin A: Urethane resin emulsion (Tg: 80 ° C., dispersed particle size: 0.2 to 0.4 μm)
Resin B: acrylic resin emulsion (Tg: 100 ° C., dispersed particle size: 0.3 to 0.4 μm)
Resin C: Polyethylene resin emulsion (Tg: 80 ° C., dispersed particle size: 0.1 to 0.2 μm)
Resin D: Acrylic resin emulsion (Tg: 30 ° C., dispersed particle size: 0.1 to 0.2 μm)
(2)リン酸
・リン酸I:ポリリン酸
・リン酸II:ピロリン酸
・リン酸III:トリポリリン酸
・リン酸IV:次亜リン酸
(3)キレート化剤
・キレート化剤I:N−メチルイミノジ酢酸
・キレート化剤II:イミノジ酢酸
・キレート化剤III:8−ヒドロキシキノリン
・キレート化剤IV:1,2−ジアミノシクロヘキサン
・キレート化剤V:L−アルギニン
・キレート化剤VI:L−プロリン
(4)固形潤滑剤
・固形潤滑剤E:ポリエチレンワックス(軟化温度:110℃)
・固形潤滑剤F:フッ素系ワックス(PTFE)(軟化温度:160℃)
(2) Phosphoric acid-Phosphoric acid I: Polyphosphoric acid-Phosphoric acid II: Pyrophosphoric acid-Phosphoric acid III: Tripolyphosphoric acid-Phosphoric acid IV: Hypophosphorous acid (3) Chelating agent-Chelating agent I: N-methyliminodi Acetic acid Chelating agent II: Iminodiacetic acid Chelating agent III: 8-hydroxyquinoline Chelating agent IV: 1,2-diaminocyclohexane Chelating agent V: L-arginine Chelating agent VI: L-proline ( 4) Solid lubricant-Solid lubricant E: Polyethylene wax (softening temperature: 110 ° C)
Solid lubricant F: Fluorine wax (PTFE) (softening temperature: 160 ° C.)
(5)亜鉛系めっき鋼板
・めっき鋼板a:電気亜鉛めっき鋼板(板厚:1mm、めっき付着量:20g/m2)
・めっき鋼板b:電気亜鉛−ニッケルめっき鋼板(板厚:1mm、めっき付着量:20g/m2、Ni:12mass%)
・めっき鋼板c:溶融亜鉛めっき鋼板(板厚:1mm、めっき付着量:60g/m2)
・めっき鋼板d:合金化溶融亜鉛めっき鋼板(板厚:1mm、めっき付着量:60g/m2、Fe:10mass%)
・めっき鋼板e:亜鉛−5%アルミニウムめっき鋼板(板厚:1mm、めっき付着量:60g/m2、Al:5mass%)
・めっき鋼板f:亜鉛−55%アルミニウムめっき鋼板(板厚:1mm、めっき付着量:60g/m2、Al:55mass%)
(5) Galvanized steel sheet ・ Plated steel sheet a: Electrogalvanized steel sheet (plate thickness: 1 mm, plating adhesion: 20 g / m 2 )
Plated steel plate b: Electro-zinc-nickel plated steel plate (plate thickness: 1 mm, plating adhesion amount: 20 g / m 2 , Ni: 12 mass%)
Plated steel sheet c: Hot dip galvanized steel sheet (plate thickness: 1 mm, plating adhesion: 60 g / m 2 )
Plated steel sheet d: Alloyed hot-dip galvanized steel sheet (plate thickness: 1 mm, plating adhesion: 60 g / m 2 , Fe: 10 mass%)
-Plated steel sheet e: Zinc-5% aluminized steel sheet (plate thickness: 1 mm, plating adhesion: 60 g / m 2 , Al: 5 mass%)
Plated steel sheet f: Zinc-55% aluminum plated steel sheet (plate thickness: 1 mm, plating adhesion: 60 g / m 2 , Al: 55 mass%)
得られた各実施例の表面処理鋼板について、表面処理皮膜の下層部xの厚さをGDSにより測定した。測定装置としては理学社製「RF−GDS3860」(商品名)を用い、アノード径4mm、20W、Arガス流量300cc/分の条件にて測定した。
各実施例について、表面処理剤の亜鉛溶解抑制特性と薬液安定性、表面処理鋼板の平板導電性、平面部耐食性、加工後耐食性、加工性を以下の試験方法で評価した。なお、表面処理剤の亜鉛溶解抑制特性の評価については、純亜鉛電気めっき鋼板を用いて行った。
About the surface treatment steel plate of each obtained Example, the thickness of the lower layer part x of a surface treatment film was measured by GDS. As a measuring device, “RF-GDS3860” (trade name) manufactured by Rigaku Corporation was used, and measurement was performed under the conditions of an anode diameter of 4 mm, 20 W, and an Ar gas flow rate of 300 cc / min.
About each Example, the zinc test | inhibition characteristic and chemical-solution stability of a surface treating agent, the flat plate electroconductivity of a surface-treated steel plate, a plane part corrosion resistance, post-processing corrosion resistance, and workability were evaluated with the following test methods. In addition, about evaluation of the zinc melt | dissolution suppression characteristic of a surface treating agent, it performed using the pure zinc electroplating steel plate.
(1)亜鉛溶解抑制特性
50mm×100mmの純亜鉛電気めっき鋼板を各実施例の表面処理剤(固形分15〜20mass%、温度20℃)中に5秒間浸漬し、めっき鋼板の浸漬前後の重量変化を測定した。重量変化をg/m2に換算し、以下の評価基準にしたがって評価した。
○:0.1g/m2未満
△:0.1g/m2以上、0.2g/m2未満
×:0.2g/m2以上
(2)高pH化時の薬液安定性
各実施例の表面処理剤(固形分15〜20mass%、温度20℃)をビーカーに25g秤量し、表面処理剤を攪拌しながら、1規定のNaOHを用いて滴定し、析出物が発生した段階でのpHを測定し、以下の評価基準にしたがって評価した。
○:pH4以上
△:pH3以上、pH4未満
×:pH3未満
(1) Zinc Dissolution Inhibiting Characteristics A 50 mm × 100 mm pure zinc electroplated steel sheet is immersed in the surface treatment agent (solid content 15 to 20 mass%,
○: Less than 0.1 g / m 2 Δ: 0.1 g / m 2 or more, less than 0.2 g / m 2 ×: 0.2 g / m 2 or more (2) Chemical stability at high pH A surface treatment agent (solid content: 15 to 20 mass%, temperature: 20 ° C.) was weighed in a beaker, and titrated with 1N NaOH while stirring the surface treatment agent, and the pH at the stage where precipitates were generated was measured. Measured and evaluated according to the following evaluation criteria.
○: pH 4 or more Δ: pH 3 or more and less than pH 4 ×: pH less than 3
(3)平板導電性
各実施例の表面処理鋼板から175mm×100mmの大きさの試験片を切り出し、この試験片について、4端子4深針式表面抵抗計(三菱化学株式会社製の商品名「ロレスタ」)を用いて10点測定した表面抵抗値の平均値を、以下の評価基準にしたがって評価した。
◎:0.1mΩ未満
○:0.1mΩ以上、0.5mΩ未満
△:0.5mΩ以上、1.0mΩ未満
×:0.1mΩ以上
(4)平面部耐食性
各実施例の表面処理鋼板から70mm×150mmの大きさの試験片を切り出し、この試験片の端面部をシールし、塩水噴霧試験(JIS−Z−2371)に供した。各試験片表面の面積の5%に白錆が発生するまでに要した時間を測定し、以下の評価基準にしたがって評価した。
◎:72時間以上
○:48時間以上、72時間未満
△:24時間以上、48時間未満
×:24時間以下
(3) Plate conductivity A test piece having a size of 175 mm × 100 mm was cut out from the surface-treated steel sheet of each example, and a 4-terminal 4-deep needle type surface resistance meter (trade name “Mitsubishi Chemical Corporation” The average value of the surface resistance values measured at 10 points using “Loresta”) was evaluated according to the following evaluation criteria.
◎: Less than 0.1 mΩ ○: 0.1 mΩ or more, less than 0.5 mΩ △: 0.5 mΩ or more, less than 1.0 mΩ ×: 0.1 mΩ or more (4) Plane portion corrosion resistance 70 mm × from the surface-treated steel sheet of each example A test piece having a size of 150 mm was cut out, the end face of the test piece was sealed, and subjected to a salt spray test (JIS-Z-2371). The time required until white rust was generated in 5% of the surface area of each specimen was measured and evaluated according to the following evaluation criteria.
◎: 72 hours or more ○: 48 hours or more, less than 72 hours △: 24 hours or more, less than 48 hours ×: 24 hours or less
(5)加工性
各実施例の表面処理鋼板について、エリクセンカップ試験機を用いて次の条件でプレス成形を行い、その際の成形可否(○:可、×:不可)と成形荷重を評価した。
<加工条件>
ポンチ径:33mm
ブランク径:66mm
絞りダイス肩曲率:3mmR
絞り速度:60mm/s
しわ押さえ荷重:1ton
速乾油塗油(1.5g/m2)
さらに、加工後の外観の評価として、加工後に表面処理皮膜の剥離し易さを評価した。すなわち、上記のエリクセンカップ試験機を用いたプレス成形を行った成形品の側壁部に「セロハンテープ」(登録商標)を密着させた後、これを剥がしてCu板に貼付し、これについて蛍光X線によりZnカウントを測定した。そして、そのカウント値により、以下の基準で判定を行った。
○:10kcps以下
△:10kcps超〜15kcps
×:15kcps超
(5) Workability About the surface-treated steel sheet of each example, press forming was performed using the Eriksen cup tester under the following conditions, and the forming possibility (○: yes, x: not possible) and the forming load at that time were evaluated. .
<Processing conditions>
Punch diameter: 33mm
Blank diameter: 66mm
Drawing die shoulder curvature: 3mmR
Aperture speed: 60 mm / s
Wrinkle holding load: 1 ton
Quick dry oil coating (1.5 g / m 2 )
Furthermore, as an evaluation of the appearance after processing, the ease of peeling of the surface treatment film after processing was evaluated. That is, after attaching “cellophane tape” (registered trademark) to the side wall portion of a molded product that has been press-molded using the Erichsen cup testing machine, it is peeled off and attached to a Cu plate. Zn count was measured by wire. Then, based on the count value, determination was performed based on the following criteria.
○: 10 kcps or less Δ: Over 10 kcps to 15 kcps
×: Over 15 kcps
(6)加工後耐食性
各実施例の表面処理鋼板について、上記条件で円筒成形を行った後、その成形体の端面部をシールし、塩水噴霧試験(JIS−Z−2371)に供した。各成形体表面の面積の5%に白錆が発生するまでに要する時間を、以下の評価基準にしたがって評価した。
◎:12時間以上
○:6時間以上、12時間未満
△:3時間以上、6時間未満
×:3時間以下
(6) Corrosion resistance after processing The surface-treated steel sheet of each example was subjected to cylindrical molding under the above conditions, and then the end surface of the molded body was sealed and subjected to a salt spray test (JIS-Z-2371). The time required for white rust to occur in 5% of the surface area of each molded body was evaluated according to the following evaluation criteria.
◎: 12 hours or more ○: 6 hours or more, less than 12 hours △: 3 hours or more, less than 6 hours ×: 3 hours or less
以上の試験結果を、表面処理剤の組成、表面処理皮膜の構成とともに表1〜表4に示す。
表1〜表4に示されるように、本発明例はいずれも表面処理剤の亜鉛溶解抑制特性と薬液安定性に優れ、また、この表面処理剤による表面処理皮膜が形成されためっき鋼板は、導電性、耐食性(平坦部耐食性及び加工後耐食性)、加工性のいずれにも優れている。
The above test results are shown in Tables 1 to 4 together with the composition of the surface treatment agent and the structure of the surface treatment film.
As shown in Tables 1 to 4, all of the examples of the present invention are excellent in the zinc dissolution inhibiting property and chemical stability of the surface treatment agent, and the plated steel sheet on which the surface treatment film is formed by this surface treatment agent, It has excellent conductivity, corrosion resistance (flat portion corrosion resistance and post-processing corrosion resistance), and workability.
Claims (5)
(a)Al、Mn、Mg、V、Znの中から選ばれる1種以上の金属イオン
(b)リン酸:前記(a)の金属イオン100質量部(固形分)に対して300〜1500質量部(固形分)
(c)有機樹脂:前記(a)の金属イオン100質量部(固形分)に対して5〜100質量部(固形分)
(d)N−メチルイミノジ酢酸、イミノジ酢酸、1,2−ジアミノシクロヘキサン、アルギニン、プロリンの中から選ばれる1種以上:前記(a)の金属イオン100質量部(固形分)に対して10〜300質量部(固形分) A zinc-based plated steel material comprising an aqueous solution containing the following components (a) to (d), having a pH of 1 to 4 and a free acidity of 3 to 20 in terms of 0.1 N sodium hydroxide: Surface treatment agent.
(A) One or more metal ions selected from Al, Mn, Mg, V, and Zn (b) Phosphoric acid: 300 to 1500 masses per 100 mass parts (solid content) of the metal ions in (a) above Parts (solid content)
(C) Organic resin: 5 to 100 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the metal ions of (a) above
(D) One or more selected from N-methyliminodiacetic acid, iminodiacetic acid, 1,2-diaminocyclohexane, arginine, and proline : 10 to 300 with respect to 100 parts by mass (solid content) of the metal ion of (a). Part by mass (solid content)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006110357A JP4983078B2 (en) | 2006-04-13 | 2006-04-13 | Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006110357A JP4983078B2 (en) | 2006-04-13 | 2006-04-13 | Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007284710A JP2007284710A (en) | 2007-11-01 |
JP4983078B2 true JP4983078B2 (en) | 2012-07-25 |
Family
ID=38756775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006110357A Expired - Fee Related JP4983078B2 (en) | 2006-04-13 | 2006-04-13 | Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4983078B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8216694B2 (en) * | 2007-08-24 | 2012-07-10 | Posco | Coating composition for steel sheets having zinc and zinc alloy coating layer, method for forming coating layer using the coating composition and steel sheet having the coating layer formed thereof |
US20110159315A1 (en) * | 2008-05-27 | 2011-06-30 | Yuken Industry Co., Ltd. | Finishing Agent and Member Having an Overcoat Formed from the Finishing Agent |
CN102644071A (en) * | 2012-05-25 | 2012-08-22 | 山东建筑大学 | Galvanized trivalent chromium black passivator |
WO2016120670A1 (en) | 2015-01-30 | 2016-08-04 | Arcelormittal | Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve compatibility with an adhesive |
WO2016120671A1 (en) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve tribological properties |
WO2016120669A1 (en) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve corrosion resistance |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4062744B2 (en) * | 1996-03-29 | 2008-03-19 | Jfeスチール株式会社 | Thin film treated highly lubricated hot rolled steel sheet with excellent primary rust prevention, workability and weldability |
JP3992173B2 (en) * | 1998-10-28 | 2007-10-17 | 日本パーカライジング株式会社 | Metal surface treatment composition, surface treatment liquid, and surface treatment method |
JP2003251743A (en) * | 2002-03-05 | 2003-09-09 | Sumitomo Metal Ind Ltd | Resin coated surface treated steel sheet |
JP3587197B2 (en) * | 2002-03-06 | 2004-11-10 | Jfeスチール株式会社 | Galvanized steel sheet and manufacturing method thereof |
JP4135576B2 (en) * | 2002-06-28 | 2008-08-20 | Jfeスチール株式会社 | Surface-treated galvanized steel sheet |
JP4502687B2 (en) * | 2003-04-10 | 2010-07-14 | 株式会社神戸製鋼所 | Surface-treated zinc-plated steel sheet excellent in tape peel resistance, its manufacturing method, and surface treatment agent |
JP4402991B2 (en) * | 2004-03-18 | 2010-01-20 | 日本パーカライジング株式会社 | Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material |
-
2006
- 2006-04-13 JP JP2006110357A patent/JP4983078B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007284710A (en) | 2007-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5230428B2 (en) | Water-based treatment liquid for Sn-based plated steel sheet having excellent corrosion resistance and paint adhesion and method for producing surface-treated steel sheet | |
KR101471949B1 (en) | Hot-dip galvanized steel sheet and method for producing the same | |
JP5663915B2 (en) | Galvanized steel sheet | |
KR101599167B1 (en) | Surface-treatment solution for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same | |
CN1304432A (en) | Water-based surface-treating agent for metallic material | |
JP4983078B2 (en) | Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet | |
JP2012092443A (en) | Production method for galvanized steel sheet and galvanized steel sheet | |
JP5259168B2 (en) | Surface treatment agent and steel plate | |
JP6056792B2 (en) | Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same | |
JP4135576B2 (en) | Surface-treated galvanized steel sheet | |
JP4213857B2 (en) | Surface coating metal material | |
JP5463609B2 (en) | Chrome-free surface-treated galvanized steel sheet, method for producing the same, and surface treatment liquid | |
WO2018178108A1 (en) | Aqueous acidic composition for treating metal surfaces, treating method using this composition and use of treated metal surface | |
JP2008057047A (en) | Method for producing surface-treated zinc series metal plated steel sheet | |
JP3069027B2 (en) | White chromate treatment with excellent chromium elution resistance, corrosion resistance and coating performance | |
JP2004169121A (en) | Surface treated steel sheet having excellent film adhesiveness under wet environment | |
CN117165888A (en) | Zinc-based coated steel plate with excellent degreasing and phosphating performances and manufacturing method thereof | |
JP2005146294A (en) | Inorganic-organic composite-treated galvanized steel sheet | |
JP2001049454A (en) | Phosphate treated galvanized steel sheet excellent in workability and its production | |
JP2001303264A (en) | Surface-treated steel sheet and method for manufacturing the same | |
JP2001303265A (en) | Surface-treated steel sheet and method for manufacturing the same | |
JP2003201575A (en) | Method of producing phosphate-treated galvanized steel sheet having excellent workability | |
CN105522779A (en) | Zinc-coated steel for vehicle | |
JP2006144131A (en) | Composition for chromium-free metal surface treatment | |
JP2010116599A (en) | Surface-treated galvanized steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |