JP4980266B2 - High corrosion resistance plated steel material and method for producing the same - Google Patents
High corrosion resistance plated steel material and method for producing the same Download PDFInfo
- Publication number
- JP4980266B2 JP4980266B2 JP2008044932A JP2008044932A JP4980266B2 JP 4980266 B2 JP4980266 B2 JP 4980266B2 JP 2008044932 A JP2008044932 A JP 2008044932A JP 2008044932 A JP2008044932 A JP 2008044932A JP 4980266 B2 JP4980266 B2 JP 4980266B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- layer
- steel material
- diffusion layer
- plated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、高耐食性めっき鋼材に関し、詳しくは高耐食性ニッケルめっき鋼材に関するものであり、特に比較的低付着量のNiめっきで耐食性が極めて良好なめっき鋼材およびその製造方法に関する。 The present invention relates to a highly corrosion-resistant plated steel material, and more particularly to a highly corrosion-resistant nickel-plated steel material, and more particularly to a plated steel material having a relatively low adhesion amount and extremely good corrosion resistance and a method for producing the same.
電気電子器具、電池缶に代表される容器材料、バインダー等の日用家電部材等に用いられる鋼材には、耐食性、意匠性、低電気抵抗等の観点から多くの場合ニッケルめっきが施される。ニッケルは自然環境中で、また種々の薬品に対しても安定であり、また耐熱性にも優れ、その表面外観の変化も少ないことから、前記用途以外にも種々の展開が期待されている。しかしながら、ニッケルは電気的に鋼材よりも貴であるため、亜鉛系めっきのような犠牲防食作用は期待できず、通常用いられるめっき厚みでは不可避的に存在するめっきピンホール部からの鉄錆(赤錆)発生が問題となる場合がある。これを避けるためには、ニッケルの付着量を極端に大きくするといった経済的にきわめて不利な対策が必要となるため、その適用範囲は亜鉛系のめっき鋼材に比較すると極めて限定的であった。ニッケルの付着量を増やさずに、耐食性を確保する手段としてこれまでに、Fe−Ni拡散処理、下層めっき等を利用した技術が検討されているが、充分な効果を持つものは見出されていない。 In many cases, nickel plating is applied to steel materials used for electrical and electronic appliances, container materials represented by battery cans, daily household electrical appliance members such as binders, and the like from the viewpoints of corrosion resistance, design properties, low electrical resistance, and the like. Nickel is stable to various chemicals in the natural environment, has excellent heat resistance, and has little change in the appearance of its surface. Therefore, various developments other than the above applications are expected. However, since nickel is electrically nobler than steel, sacrificial anticorrosive action like zinc-based plating cannot be expected, and iron rust (red rust) from plating pinholes, which is unavoidably present at the plating thickness usually used ) Occurrence may be a problem. In order to avoid this, it is necessary to take a very economically disadvantageous measure such as extremely increasing the amount of nickel deposited, so the application range is extremely limited compared to zinc-based plated steel materials. As a means to ensure corrosion resistance without increasing the amount of nickel deposited, techniques using Fe-Ni diffusion treatment, lower layer plating, etc. have been studied so far, but those having sufficient effects have been found. Absent.
例えば、特許文献1では、Niめっき層の一部または全てをFe−Ni拡散層とし、かつ表層のFe露出率を30%以下とした高耐食性Niめっき鋼帯が示されている。Fe−Ni拡散層を設けることで、ピンホールは軽減され、また、貴なNiと卑なFeとの電位差腐食も緩和されることから、確実な耐食性向上効果が得られるものの、より厳しい腐食環境においては必ずしも十分とはいえない。特に、Ni付着量が40g/m2程度以下の少ない領域では全く不十分である。 For example, Patent Document 1 discloses a highly corrosion-resistant Ni-plated steel strip in which a part or all of the Ni plating layer is an Fe—Ni diffusion layer and the Fe exposure rate of the surface layer is 30% or less. By providing an Fe-Ni diffusion layer, pinholes are reduced and the potential difference corrosion between noble Ni and base Fe is alleviated, so a certain corrosion resistance improvement effect can be obtained, but a more severe corrosive environment Is not necessarily sufficient. In particular, the region where the amount of deposited Ni is as low as 40 g / m 2 or less is not sufficient.
また、下層めっきは、Niめっきの下層にZn系のめっき層を設け、犠牲防食能を複合することで、ピンホールの存在を前提にしても耐食性を改善する技術思想であり、例えば、特許文献2では、燃料タンク用途に限定されたものであるが、下層にZnめっき層、上層にNiめっき層を有する鋼板が開示されている。この場合、ZnとNiの電位差が大きいことから、腐食環境によっては、Znの腐食が顕著に促進され、Niの表層に白錆(Znの錆)が浮き出ることで外観の悪化が顕著となるといった問題がある。また、下層のZnの付着量をかなり大きくしないと、短時間で赤錆が発生するといった問題がある。またこの構成の場合には、Znの沸点が低くまたFeやNiとの脆い金属間化合物を作りやすい等の影響のため、特許文献1のような拡散層を利用できないといった問題もあった。 In addition, the lower layer plating is a technical idea that improves corrosion resistance even if pinholes exist, by providing a Zn-based plating layer below the Ni plating and combining sacrificial anticorrosive ability. No. 2 discloses a steel plate having a Zn plating layer as a lower layer and a Ni plating layer as an upper layer although it is limited to a fuel tank application. In this case, since the potential difference between Zn and Ni is large, the corrosion of Zn is remarkably accelerated depending on the corrosive environment, and white rust (Zn rust) appears on the surface layer of Ni, so that the appearance deteriorates significantly. There's a problem. In addition, there is a problem that red rust is generated in a short time unless the amount of deposited Zn in the lower layer is significantly increased. In addition, in this configuration, there is a problem that the diffusion layer as in Patent Document 1 cannot be used because of the influence of low boiling point of Zn and easy formation of brittle intermetallic compounds with Fe and Ni.
本発明は、耐食性、意匠性、低電気抵抗等のNiめっき鋼材の特徴を損なうことなく、めっきピンホールに起因した鉄錆の発生を効果的に抑制した高耐食性めっき鋼材およびその製造方法の提供を目的とする。 The present invention provides a highly corrosion-resistant plated steel material that effectively suppresses the occurrence of iron rust caused by plated pinholes without impairing the characteristics of Ni-plated steel materials such as corrosion resistance, design properties, and low electrical resistance, and a method for producing the same. With the goal.
本発明者らは、Niめっき鋼材の耐食性向上にあたり、拡散層の付与および犠牲防食能の複合をコンセプトに種々検討を進めて本発明に想到した。 In order to improve the corrosion resistance of Ni-plated steel materials, the present inventors have come up with the present invention through various studies based on the concept of providing a diffusion layer and sacrificial anticorrosive ability.
すなわち、本発明の高耐食性めっき鋼材の構成は、
(1)鋼母材上にFe−Mn拡散層とFe−Mn−Ni拡散層の少なくともいずれか一方の層を有し、さらに表層にNiめっき層を有する事を特徴とする、高耐食性めっき鋼材。
(2)表層の前記Niめっき層と、前記Fe−Mn拡散層または前記Fe−Mn−Ni拡散層との間に、Mn−Ni拡散層を有する事を特徴とする、(1)に記載の高耐食性めっき鋼材。
(3)鋼母材上にFe−Mn拡散層とFe−Mn−Ni拡散層の少なくともいずれか一方の層を有し、さらに表層にMn−Ni拡散層またはFe−Mn−Ni拡散層を有する事を特徴とする、高耐食性めっき鋼材。
(4)最表層の前記Mn−Ni拡散層または前記Fe−Mn−Ni拡散層におけるNi濃度が60質量%以上であることを特徴とする、(3)に記載の高耐食性めっき鋼材。
(5)前記めっき層及び前記拡散層に含まれるNiの総付着量が5〜40g/m2であることを特徴とする、(1)〜(4)のいずれかに記載の高耐食性めっき鋼材。
(6)前記めっき層及び前記拡散層に含まれるMnの総付着量が0.1〜20g/m2であることを特徴とする、(1)〜(5)のいずれかに記載の高耐食性めっき鋼材。
である。
That is, the configuration of the highly corrosion-resistant plated steel material of the present invention is
(1) A high corrosion-resistant plated steel material having at least one of a Fe—Mn diffusion layer and a Fe—Mn—Ni diffusion layer on a steel base material, and further having a Ni plating layer on the surface layer .
(2) The Mn-Ni diffusion layer is provided between the Ni plating layer on the surface layer and the Fe-Mn diffusion layer or the Fe-Mn-Ni diffusion layer. High corrosion resistance plated steel.
(3) The steel base material has at least one of an Fe—Mn diffusion layer and an Fe—Mn—Ni diffusion layer, and further has a Mn—Ni diffusion layer or an Fe—Mn—Ni diffusion layer on the surface layer. High corrosion-resistant plated steel, characterized by
(4) The high corrosion resistance plated steel material according to (3), wherein the Ni concentration in the Mn—Ni diffusion layer or the Fe—Mn—Ni diffusion layer as the outermost layer is 60% by mass or more.
(5) The high corrosion-resistant plated steel material according to any one of (1) to (4), wherein the total adhesion amount of Ni contained in the plating layer and the diffusion layer is 5 to 40 g / m 2. .
(6) The high corrosion resistance according to any one of (1) to (5), wherein a total adhesion amount of Mn contained in the plating layer and the diffusion layer is 0.1 to 20 g / m 2. Plated steel.
It is.
また本発明は、高耐食性めっき鋼材の製造方法であり、その構成は、
(7)鋼材に、Mnめっき、Niめっきをこの順で施し、次いで熱拡散処理を行い、前記鋼材上にFe−Mn拡散層とFe−Mn−Ni拡散層の少なくともいずれか一方の層を設けることを特徴とする、高耐食性めっき鋼材の製造方法。
(8)鋼材に、Mnめっきを施し、次いで熱拡散処理を行い、前記鋼材上にFe−Mn拡散層を設けた後に、Niめっきを行うことを特徴とする、高耐食性めっき鋼材の製造方法。
(9)Niめっき後に更に熱拡散処理を行い、Mn−Ni拡散層設けることを特徴とする、(8)に記載の高耐食性めっき鋼材の製造方法。
(10)鋼材に、Mnめっき、Niめっきをこの順で施し、次いで熱拡散処理を行い、前記鋼材上にFe−Mn拡散層とFe−Mn−Ni拡散層の少なくともいずれか一方の層を設けた後に、Niめっきを行うことを特徴とする、高耐食性めっき鋼材の製造方法。
(11)前記熱拡散処理後のNiめっきの後に、更に熱拡散処理を行い、Mn−Ni拡散層又はFe−Mn−Ni拡散層を設けることを特徴とする、(10)に記載の高耐食性めっき鋼材の製造方法。
である。
Further, the present invention is a method for producing a highly corrosion-resistant plated steel material,
(7) Mn plating and Ni plating are applied to the steel material in this order, followed by thermal diffusion treatment, and at least one of the Fe—Mn diffusion layer and the Fe—Mn—Ni diffusion layer is provided on the steel material. A method for producing a highly corrosion-resistant plated steel material.
(8) A method for producing a highly corrosion-resistant plated steel material, wherein the steel material is subjected to Mn plating, then subjected to thermal diffusion treatment, and after the Fe—Mn diffusion layer is provided on the steel material, Ni plating is performed.
(9) The method for producing a highly corrosion-resistant plated steel material according to (8), wherein a thermal diffusion treatment is further performed after Ni plating to provide a Mn—Ni diffusion layer.
(10) Mn plating and Ni plating are applied to the steel material in this order, followed by thermal diffusion treatment, and at least one of a Fe—Mn diffusion layer and a Fe—Mn—Ni diffusion layer is provided on the steel material. After that, a method for producing a highly corrosion-resistant plated steel material, wherein Ni plating is performed.
(11) The high corrosion resistance according to (10), wherein after the Ni plating after the thermal diffusion treatment, a thermal diffusion treatment is further performed to provide a Mn—Ni diffusion layer or a Fe—Mn—Ni diffusion layer. Manufacturing method of plated steel.
It is.
本発明によって、耐食性、意匠性、低電気抵抗等のNiめっき鋼材の特徴を損なうことなく、犠牲防食効果を複合することでめっきピンホールに起因した鉄錆の発生を効果的に抑制した高耐食性めっき鋼材が得られる。 High corrosion resistance that effectively suppresses the occurrence of iron rust caused by plated pinholes by combining the sacrificial anti-corrosion effect without compromising the characteristics of Ni-plated steel materials such as corrosion resistance, designability, and low electrical resistance. A plated steel material is obtained.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
本発明の高耐食性めっき鋼材の第一の構成は、鋼母材上にFe−Mn拡散層またはFe−Mn−Ni拡散層或いは両方の層を有し、表層にNi層を有する事を特徴とする。その代表的な構成の一例を模式図として図1〜図6に示す。拡散層は後述の熱処理による元素の拡散の結果形成された層である。これらの構成は、GDS(Glow Discharge Spectrometry)や、AES(Auger Electron Spectroscopy)等の手法で表層から深さ方向の元素分布を観察する方法や、あるいはSEM(Scanning Electron Microscope)、EDS(Energy Dispersive X−ray Spectrometer)、EPMA(Electron Probe Micro Analyzer)等の手法で断面の元素分布を観察する手法によって特定することが可能である。図1〜図6における表層Ni層は、拡散層形成の際に一部未拡散のまま残った層でも構わないし、また拡散層形成後に再度Niめっきされた層であっても構わない。Fe−Mn拡散層またはFe−Mn−Ni拡散層は、厳しい加工においてもめっき層の損傷を抑制することができるし、また鋼母材とめっき表層との電位ギャップを緩和し、電気化学的な腐食を抑制する作用がある。鋼母材との電位ギャップをより緩和するとの観点から、図1〜図3に示したように、表層Ni層の下層にMn−Ni拡散層が存在することが望ましく、この構成にすることで比較的低いめっき付着量でも良好な耐食性が得られる。最表層にNi層を有する本願の第一の構成は、光沢外観を重視する場合、あるいは強アルカリ等の薬品に対する耐性を重視する場合に好ましい構成である。 The first configuration of the highly corrosion-resistant plated steel material of the present invention is characterized in that it has a Fe-Mn diffusion layer or a Fe-Mn-Ni diffusion layer or both on the steel base material, and a Ni layer on the surface layer. To do. An example of the typical configuration is shown in FIGS. 1 to 6 as schematic diagrams. The diffusion layer is a layer formed as a result of element diffusion by heat treatment to be described later. These configurations include a method of observing the element distribution in the depth direction from the surface layer by a method such as GDS (Glow Discharge Spectrometry) and AES (Auger Electron Spectroscopy), or SEM (Scanning Electron Microspe Spec. X). It can be specified by a method of observing the elemental distribution of the cross section by a method such as -ray Spectrometer) or EPMA (Electron Probe Micro Analyzer). The surface Ni layer in FIGS. 1 to 6 may be a layer that remains partially undiffused when the diffusion layer is formed, or may be a layer that is Ni-plated again after the diffusion layer is formed. The Fe—Mn diffusion layer or the Fe—Mn—Ni diffusion layer can suppress damage to the plating layer even in severe processing, and also relaxes the potential gap between the steel base material and the plating surface layer, and is electrochemical. Has the effect of inhibiting corrosion. From the viewpoint of further relaxing the potential gap with the steel base material, as shown in FIGS. 1 to 3, it is desirable that a Mn—Ni diffusion layer exists in the lower layer of the surface Ni layer. Good corrosion resistance can be obtained even with a relatively low amount of plating. The first configuration of the present application having the Ni layer as the outermost layer is a preferable configuration when importance is attached to the gloss appearance or resistance to chemicals such as strong alkali.
本発明の高耐食性めっき鋼材の第二の構成は、鋼母材上にFe−Mn拡散層またはFe−Mn−Ni拡散層或いは両方の層を有し、表層にMn−Ni拡散層またはFe−Mn−Ni拡散層を有する事を特徴とする。その代表的な構成の一例を模式図として図7〜図11に示す。拡散層については前述のとおり、厳しい加工でのめっき層損傷の抑制、及び鋼母材とめっき表層との電位ギャップを緩和による電気化学的な腐食抑制作用がある。又、合金層である拡散層が最表層にあることで、有機物との密着性や、有機溶媒に対する耐食性に優れ、塗装される用途や有機溶媒に接触するような用途に好ましい。耐食性を考慮すると、前記最表層のMn−Ni拡散層またはFe−Mn−Ni拡散層におけるNi濃度は60質量%以上であることが望ましい。最表層におけるNi濃度とは、AES等の手法で表層から深さ方向の元素分布を行い、最表層部に不可避的に存在する酸化膜の酸素強度がベースレベルまで低下した深さ(通常、数nm〜数十nm)におけるNi濃度として定義されるものである。 The second configuration of the highly corrosion-resistant plated steel material of the present invention has a Fe—Mn diffusion layer or a Fe—Mn—Ni diffusion layer or both on the steel base material, and a Mn—Ni diffusion layer or Fe— on the surface layer. It is characterized by having a Mn-Ni diffusion layer. An example of the typical configuration is shown in FIGS. 7 to 11 as schematic diagrams. As described above, the diffusion layer has the action of suppressing damage to the plating layer in severe processing and suppressing electrochemical corrosion by relaxing the potential gap between the steel base material and the plating surface layer. In addition, since the diffusion layer which is an alloy layer is the outermost layer, it is excellent in adhesion to organic substances and corrosion resistance to organic solvents, and is preferable for applications to be coated and to contact with organic solvents. In consideration of corrosion resistance, the Ni concentration in the outermost Mn—Ni diffusion layer or Fe—Mn—Ni diffusion layer is preferably 60% by mass or more. The Ni concentration in the outermost layer is the depth at which the oxygen intensity of the oxide film unavoidably present in the outermost layer portion is reduced to the base level by performing element distribution in the depth direction from the surface layer by a method such as AES (usually several nm to several tens of nm).
本発明の高耐食性めっき鋼材は、前記の構成をとる範囲においては、その耐食性は、NiおよびMnの総付着量(拡散層、めっき層合計での付着量)に依存し、その範囲は、Niは5〜40g/m2、Mnは0.1〜20g/m2である。Niが5g/m2未満では、耐食性が不足し、40g/m2を超えても効果が飽和するので不経済である。より望ましいNi付着量範囲は、10g/m2以上であり、この範囲でより高度の耐食性が得られる。一方、Mnは0.1g/m2未満では、犠牲防食能が発揮されずNiのピンホールを通して赤錆が発生する。また、20g/m2を超えても効果が飽和し不経済であり、また腐食環境での変色が発生しやすい場合がある。より望ましいMn付着量範囲は、1g/m2以上であり、この範囲でより高度の耐食性が得られる。 In the range of the high corrosion resistance plated steel material of the present invention, the corrosion resistance depends on the total adhesion amount of Ni and Mn (the adhesion amount in the diffusion layer and the plating layer), and the range is Ni. Is 5 to 40 g / m 2 , and Mn is 0.1 to 20 g / m 2 . If Ni is less than 5 g / m 2 , the corrosion resistance is insufficient, and if it exceeds 40 g / m 2 , the effect is saturated, which is uneconomical. A more desirable Ni adhesion amount range is 10 g / m 2 or more, and higher corrosion resistance can be obtained in this range. On the other hand, if Mn is less than 0.1 g / m 2 , the sacrificial anticorrosive ability is not exhibited and red rust is generated through the Ni pinhole. Moreover, even if it exceeds 20 g / m < 2 >, an effect is saturated and it is uneconomical, and discoloration in a corrosive environment may occur easily. A more desirable Mn deposition amount range is 1 g / m 2 or more, and higher corrosion resistance can be obtained in this range.
つぎに本発明の高耐食性めっき鋼材の製造方法について説明する。その方法は下記の5つの方法である。第一の方法は、鋼材に、Mnめっき、Niめっきをこの順で施し、次いで熱拡散処理を行うことを特徴とする。第二の方法は、鋼材に、Mnめっきを施し、次いで熱拡散処理を行い、その後Niめっきを行うことを特徴とする。第三の方法は、鋼材に、Mnめっき、Niめっきをこの順で施し、次いで熱拡散処理を行い、その後Niめっきを行うことを特徴とする。第四の方法は、鋼材に、Mnめっきを施し、次いで熱拡散処理を行い、その後Niめっきを行い、再度熱拡散処理を行うことを特徴とする。第五の方法は、鋼材に、Mnめっき、Niめっきをこの順で施し、次いで熱拡散処理を行い、その後更にNiめっきを行い、再度熱拡散処理を行うことを特徴とする。いずれの方法も、MnめっきおよびNiめっきおよび熱拡散処理を必須要件としており、それぞれの必須要件と製造方法について以下に詳細な説明をする。 Next, a method for producing the highly corrosion-resistant plated steel material of the present invention will be described. The methods are the following five methods. The first method is characterized in that the steel material is subjected to Mn plating and Ni plating in this order, and then subjected to thermal diffusion treatment. The second method is characterized in that the steel material is subjected to Mn plating, followed by thermal diffusion treatment, and then Ni plating. The third method is characterized in that the steel material is subjected to Mn plating and Ni plating in this order, followed by heat diffusion treatment, and then Ni plating. The fourth method is characterized in that the steel material is subjected to Mn plating, then heat diffusion treatment is performed, Ni plating is performed thereafter, and heat diffusion treatment is performed again. The fifth method is characterized in that the steel material is subjected to Mn plating and Ni plating in this order, followed by thermal diffusion treatment, then further Ni plating, and then thermal diffusion treatment again. In any of the methods, Mn plating, Ni plating, and thermal diffusion treatment are essential requirements, and the respective essential requirements and manufacturing methods will be described in detail below.
Mnめっきは特に限定されるものではなく、純Mnに加えて、不可避的不純物レベルのC,N,S,O,P,B,Fe,Co,Sn,Cu,Zn,Ni等を含んだものであってもよい。ただし、C,N,S,Oについては、めっき層の均一性や平滑度の改善のために添加される、いわゆる光沢添加剤、半光沢添加剤、レべリング添加剤等の取り込まれたものであってもよく、その場合、めっき層中の濃度は痕跡量〜0.1質量%程度の範囲である。まためっきの手段は、電気めっき、無電解めっきを問わないが電気めっきが一般的である。めっき浴には硫酸浴、塩化浴等が用いられる。 Mn plating is not particularly limited, and includes inevitable impurity levels of C, N, S, O, P, B, Fe, Co, Sn, Cu, Zn, Ni, etc. in addition to pure Mn. It may be. However, for C, N, S, and O, incorporated are so-called gloss additives, semi-gloss additives, leveling additives, etc., which are added to improve the uniformity and smoothness of the plating layer. In this case, the concentration in the plating layer is in the range of the trace amount to about 0.1% by mass. The plating means may be electroplating or electroless plating, but electroplating is common. A sulfuric acid bath, a chloride bath, or the like is used for the plating bath.
Niめっきは特に限定されるものではなく、純Niに加えて、C,N,S,O,P,B,Fe,Co,Sn,Cu,Mn等を含んだものであってもよい。これら元素は不可避的不純物以外にも、積極的に添加された場合のものも含む。例えば、C,N,S,Oについては、Niめっき層の硬度や平滑度の改善のために添加される、いわゆる光沢添加剤、半光沢添加剤、レべリング添加剤等の取り込まれたものであって、そのめっき層中の濃度は痕跡量〜0.1質量%程度の範囲である。P,Bについては、後述する無電解めっきの還元剤として取り込まれたものの他に、めっき層の耐薬品性や硬度の改善のために添加されたものも含み、そのめっき層中の濃度は痕跡量〜15質量%程度の範囲である。Fe,Co,Sn,Cu,Mnについては、めっき層の耐薬品性や硬度の改善のために添加されたものを含み、そのめっき層中の濃度は痕跡量〜50質量%程度の範囲である。いずれの元素も前記した上限を超えるとめっき層を脆くしたりまた接触抵抗悪化させるなどの弊害が発生するので好ましくない。まためっきの手段は、電気めっき、無電解めっきを問わない。電気めっきの場合には、硫酸浴、塩化浴、ワット浴、スルファミン酸浴等が用いられる。無電解めっきの場合には、還元剤として次亜りん酸や、ほう素化合物などが用いられる。また、必要に応じてNiめっきの前処理として、アルカリ性水溶液や酸性水溶液によるスプレー処理や浸漬処理を行うことができる。 The Ni plating is not particularly limited, and may include C, N, S, O, P, B, Fe, Co, Sn, Cu, Mn and the like in addition to pure Ni. These elements include not only inevitable impurities but also those added positively. For example, for C, N, S, and O, incorporated so-called gloss additives, semi-gloss additives, leveling additives, etc., added to improve the hardness and smoothness of the Ni plating layer And the density | concentration in the plating layer is the range of trace amount-about 0.1 mass%. For P and B, in addition to those incorporated as a reducing agent for electroless plating described later, including those added for improving chemical resistance and hardness of the plating layer, the concentration in the plating layer is a trace. The amount is in the range of about 15% by mass. About Fe, Co, Sn, Cu, and Mn, those added for improving the chemical resistance and hardness of the plating layer are included, and the concentration in the plating layer is in the range of trace amount to about 50 mass%. . Any element exceeding the above-mentioned upper limit is not preferable because it causes problems such as brittleness of the plating layer and deterioration of contact resistance. The plating means may be electroplating or electroless plating. In the case of electroplating, a sulfuric acid bath, a chloride bath, a watt bath, a sulfamic acid bath, or the like is used. In the case of electroless plating, hypophosphorous acid, a boron compound, or the like is used as a reducing agent. In addition, spray treatment or immersion treatment with an alkaline aqueous solution or an acidic aqueous solution can be performed as a pretreatment for Ni plating as necessary.
熱拡散処理は、通常の加熱方式で行うことができ、バッチ加熱方式、連続加熱方式いずれも用いられる。また両方を併用することも可能である。尚、めっきを施す鋼材の材質特性を考慮すると、加熱拡散処理と焼鈍処理を同時に行う事が好ましく、この場合の加熱処理は通常の焼鈍用の炉で行うことができ、バッチ焼鈍、連続焼鈍のいずれを用いても良く、また両方を併用することも可能である。その条件を記述するなら、バッチ加熱或いはバッチ焼鈍においては、鋼材温度を450〜650℃、好ましくは500〜600℃の範囲で、数時間〜数十時間、好ましくは6〜24時間処理を行い、連続加熱或いは連続焼鈍においては、鋼材温度を700〜900℃、好ましくは700〜850℃の範囲で、均熱時間を数秒〜数十分間、通常は、10秒〜120秒で処理を行う。 The thermal diffusion treatment can be performed by a normal heating method, and both a batch heating method and a continuous heating method are used. It is also possible to use both together. In consideration of the material characteristics of the steel material to be plated, it is preferable to perform the heat diffusion treatment and the annealing treatment at the same time. In this case, the heat treatment can be performed in a normal annealing furnace, and batch annealing and continuous annealing can be performed. Either of them may be used, or both may be used in combination. If the conditions are described, in batch heating or batch annealing, the steel material temperature is 450 to 650 ° C, preferably 500 to 600 ° C, for several hours to several tens of hours, preferably 6 to 24 hours, In continuous heating or continuous annealing, the steel material temperature is 700 to 900 ° C, preferably 700 to 850 ° C, and the soaking time is several seconds to several tens of minutes, usually 10 seconds to 120 seconds.
本発明の第一の製造方法は、前述の条件にてMnめっき、Niめっき、熱拡散処理を行うものである。熱拡散処理の後に調質圧延を行うことも好適であり、その際のロール粗度を調整することでめっき鋼材の表面粗度を制御することも可能である。 In the first production method of the present invention, Mn plating, Ni plating, and thermal diffusion treatment are performed under the above-described conditions. It is also preferable to perform temper rolling after the thermal diffusion treatment, and the surface roughness of the plated steel material can be controlled by adjusting the roll roughness at that time.
本発明の第二の製造方法は、前述の条件にてMnめっき、熱拡散処理を行い、その後でNiめっきを行うものである。熱拡散処理後あるいはNiめっき後のいずれで調質圧延を行うことも好適であり、その際のロール粗度を調整することでめっき鋼材の表面粗度を制御することも可能である。なお、熱拡散処理の際にMn表層に安定な酸化膜が形成されやすいため、Niめっきの前処理は通常よりも強化する(例えば、浸漬の処理時間を長くしたり、スプレーの吹き付け量を増やしたりする)必要がある。 In the second production method of the present invention, Mn plating and thermal diffusion treatment are performed under the above-described conditions, and then Ni plating is performed. It is also preferable to perform temper rolling after heat diffusion treatment or after Ni plating, and it is also possible to control the surface roughness of the plated steel material by adjusting the roll roughness at that time. In addition, since a stable oxide film is likely to be formed on the Mn surface layer during the thermal diffusion treatment, the Ni plating pretreatment is strengthened more than usual (for example, the immersion treatment time is increased or the spraying amount is increased. Need to).
本発明の第三の製造方法は、前述の第二の製造方法にてMnめっき、熱拡散処理、Niめっきを行った後に、二度目の熱拡散処理を行うものである。この場合には、鋼材の材質を考慮すると、はじめの熱拡散処理は連続焼鈍による高温処理、後の熱拡散処理は、バッチ焼鈍による低温処理とすることが望ましい。このように二度の熱拡散処理を行うことで、めっき層の構造を任意に制御することが可能となる。すなわち、例えば、図9のようなめっき層の構造をMnめっき、Niめっきの後に一度の熱拡散処理で形成しようとすると、少しの温度のばらつきで、下層がFe−Mn−Ni拡散層になったり、表層までFe−Mn−Ni拡散層になったりと安定性に欠けるが、Mnめっき、熱拡散処理、Niめっき、熱拡散処理という工程であれば、容易に図9のようなめっき構造を形成することができる。この製造方法の場合にも熱拡散処理後、あるいはNiめっき後、あるいは再熱拡散処理後のいずれかで調質圧延を行うことも好適であり、その際のロール粗度を調整することでめっき鋼材の表面粗度を制御することが可能である。 In the third production method of the present invention, the second thermal diffusion treatment is performed after performing the Mn plating, the thermal diffusion treatment, and the Ni plating in the second production method described above. In this case, considering the material of the steel material, it is desirable that the first thermal diffusion treatment is a high temperature treatment by continuous annealing, and the subsequent thermal diffusion treatment is a low temperature treatment by batch annealing. By performing the thermal diffusion treatment twice as described above, the structure of the plating layer can be arbitrarily controlled. That is, for example, when the structure of the plating layer as shown in FIG. 9 is formed by one thermal diffusion treatment after Mn plating and Ni plating, the lower layer becomes a Fe—Mn—Ni diffusion layer with a slight temperature variation. Or the surface layer becomes a Fe—Mn—Ni diffusion layer and lacks stability, but if it is a process of Mn plating, thermal diffusion treatment, Ni plating, thermal diffusion treatment, the plating structure as shown in FIG. Can be formed. In the case of this manufacturing method, it is also preferable to perform temper rolling either after thermal diffusion treatment, after Ni plating, or after rethermal diffusion treatment, and plating by adjusting the roll roughness at that time It is possible to control the surface roughness of the steel material.
本発明の第四の製造方法は、前述の条件にてMnめっき、Niめっき、熱拡散処理を行い、その後再度Niめっきを行うものである。熱拡散処理後あるいはNiめっき後のいずれで調質圧延を行うことも好適であり、その際のロール粗度を調整することでめっき鋼材の表面粗度を制御することが可能である。 In the fourth manufacturing method of the present invention, Mn plating, Ni plating, and thermal diffusion treatment are performed under the above-described conditions, and then Ni plating is performed again. It is also suitable to perform temper rolling after heat diffusion treatment or after Ni plating, and the surface roughness of the plated steel material can be controlled by adjusting the roll roughness at that time.
本発明の第五の製造方法は、MnめっきとNiめっき、熱拡散処理、Niめっき、熱拡散処理の工程であり、二度の熱拡散処理を行うものである。このように二度の熱拡散処理を行うことで、めっき層の構造を任意に制御することが可能となる。この場合にも、鋼材の材質を考慮すると、はじめの熱拡散処理は連続焼鈍による高温処理、後の熱拡散処理は、バッチ焼鈍による低温処理とすることが望ましい。また、この製造方法の場合にも熱拡散処理後、あるいはNiめっき後、あるいは再熱拡散処理後のいずれで調質圧延を行うことも好適であり、その際のロール粗度を調整することでめっき鋼材の表面粗度を制御することが可能である。 The fifth production method of the present invention is a process of Mn plating and Ni plating, thermal diffusion treatment, Ni plating, thermal diffusion treatment, and performs two thermal diffusion treatments. By performing the thermal diffusion treatment twice as described above, the structure of the plating layer can be arbitrarily controlled. Also in this case, considering the material of the steel material, it is desirable that the first thermal diffusion treatment is a high temperature treatment by continuous annealing, and the subsequent thermal diffusion treatment is a low temperature treatment by batch annealing. In the case of this production method, it is also preferable to perform temper rolling after thermal diffusion treatment, after Ni plating, or after rethermal diffusion treatment, by adjusting the roll roughness at that time. It is possible to control the surface roughness of the plated steel material.
以下、実施例を用いて本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(実施例1〜3)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき1g/m2、表2に示す条件で電気Niめっき15g/m2をこの順で行い、その後熱拡散処理を行った。最後に調質圧延を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、700〜850℃の温度範囲(実施例1:700℃、実施例2:800℃、実施例3:850℃)にて30秒の均熱処理を行った。
(Examples 1-3)
Using an ultra-low carbon steel sheet (non-recrystallized steel sheet) added with Nb and Ti as a base plate, after degreasing and pickling treatment, the electric Mn plating is 1 g / m 2 under the conditions shown in Table 1, and the electric Ni is under the conditions shown in Table 2. Plating 15g / m 2 was performed in this order, and then thermal diffusion treatment was performed. Finally, temper rolling was performed. The thermal diffusion treatment is performed in a continuous annealing furnace in a 5% H 2 containing N 2 atmosphere (dew point −40 ° C.) in a temperature range of 700 to 850 ° C. (Example 1: 700 ° C., Example 2: 800 ° C., Example 3: Soaking was performed at 850 ° C. for 30 seconds.
(実施例4〜8)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき0.1〜25g/m2、表2に示す条件で電気Niめっき20g/m2をこの順で行い、その後熱拡散処理を行った。最後に調質圧延を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、780℃にて20秒の均熱処理を行った。
(Examples 4 to 8)
Using an ultra-low carbon steel plate (non-recrystallized steel plate) added with Nb and Ti as a base plate, after degreasing and pickling treatment, electric Mn plating 0.1 to 25 g / m 2 under the conditions shown in Table 1 and Table 2 Under the conditions, electric Ni plating 20 g / m 2 was performed in this order, and then thermal diffusion treatment was performed. Finally, temper rolling was performed. In the thermal diffusion treatment, soaking was performed for 20 seconds at 780 ° C. in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace.
(実施例9〜13)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき1g/m2、表2に示す条件で電気Niめっき3〜50g/m2をこの順で行い、その後熱拡散処理を行った。最後に調質圧延を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、800℃にて20秒の均熱処理を行った。
(Examples 9 to 13)
Using an ultra-low carbon steel sheet (non-recrystallized steel sheet) added with Nb and Ti as a base plate, after degreasing and pickling treatment, the electric Mn plating is 1 g / m 2 under the conditions shown in Table 1, and the electric Ni is under the conditions shown in Table 2. Plating 3 to 50 g / m 2 was performed in this order, and then thermal diffusion treatment was performed. Finally, temper rolling was performed. In the thermal diffusion treatment, a soaking process was performed at 800 ° C. for 20 seconds in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace.
(実施例14)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき5g/m2、を行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、810℃にて30秒の均熱処理を行った。酸洗処理後、表2に示す条件でめっき浴に市販の半光沢添加剤3g/lを添加した浴にて電気Niめっき20g/m2を行い、最後に調質圧延を行った。
(Example 14)
Using an ultra-low carbon steel plate (non-recrystallized steel plate) with Nb and Ti composite added as an original plate, after degreasing and pickling treatment, electric Mn plating is performed at 5 g / m 2 under the conditions shown in Table 1, followed by thermal diffusion treatment. went. In the thermal diffusion treatment, soaking was performed at 810 ° C. for 30 seconds in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. After the pickling treatment, electric Ni plating 20 g / m 2 was performed in a bath in which a commercially available semi-gloss additive 3 g / l was added to the plating bath under the conditions shown in Table 2, and finally temper rolling was performed.
(実施例15)
B添加の低炭素Alキルド鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき7g/m2、を行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、790℃にて20秒の均熱処理を行った。酸洗処理後、表2に示す条件で電気Niめっき20g/m2を行い、その後バッチ焼鈍炉にて、450℃8時間の後熱拡散処理を行った。最後に調質圧延を行った。
(Example 15)
Using B-added low-carbon Al-killed steel plate (non-recrystallized steel plate) as the original plate, after degreasing and pickling treatment, electrical Mn plating was performed at 7 g / m 2 under the conditions shown in Table 1, followed by thermal diffusion treatment. . In the thermal diffusion treatment, soaking was performed for 20 seconds at 790 ° C. in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. After the pickling treatment, electric Ni plating 20 g / m 2 was performed under the conditions shown in Table 2, followed by a post-heat diffusion treatment at 450 ° C. for 8 hours in a batch annealing furnace. Finally, temper rolling was performed.
(実施例16)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき1g/m2、表2に示す条件で電気Niめっき5g/m2をこの順で行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、800℃にて30秒の均熱処理を行った。その後、調質圧延を行った。更にその後、脱脂、酸洗処理の後、表2に示す条件でめっき浴に市販の光沢添加剤10g/lを添加した浴にて電気Niめっき20g/m2を行った。
(Example 16)
Using an ultra-low carbon steel sheet (non-recrystallized steel sheet) added with Nb and Ti as a base plate, after degreasing and pickling treatment, the electric Mn plating is 1 g / m 2 under the conditions shown in Table 1, and the electric Ni is under the conditions shown in Table 2. Plating 5 g / m 2 was performed in this order, and then thermal diffusion treatment was performed. The thermal diffusion treatment was soaked at 800 ° C. for 30 seconds in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. Thereafter, temper rolling was performed. Thereafter, after degreasing and pickling treatment, electro Ni plating 20 g / m 2 was performed in a bath in which a commercially available gloss additive 10 g / l was added to the plating bath under the conditions shown in Table 2.
(実施例17)
原板として、B添加の低炭素Alキルド鋼板(未再結晶鋼板)を用いる以外は実施例16と同一の条件で製造した。
(Example 17)
It was manufactured under the same conditions as in Example 16 except that a B-added low carbon Al-killed steel plate (non-recrystallized steel plate) was used as the original plate.
(実施例18)
B添加の低炭素Alキルド鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき20g/m2、を行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、790℃にて30秒の均熱処理を行った。酸洗処理後、表2に示す条件で電気Niめっき5g/m2を行い、その後バッチ焼鈍炉にて、550℃8時間の後熱拡散処理を行った。最後に調質圧延を行った。
(Example 18)
Low carbon Al-killed steel sheet of B added (non-recrystallization steel) as the original plate, degreasing, after pickling, subjected to electrical Mn plated 20 g / m 2 under the conditions shown in Table 1, were then thermal diffusion treatment . In the thermal diffusion treatment, soaking was performed at 790 ° C. for 30 seconds in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. After the pickling treatment, electric Ni plating 5 g / m 2 was performed under the conditions shown in Table 2, and then post-heat diffusion treatment was performed at 550 ° C. for 8 hours in a batch annealing furnace. Finally, temper rolling was performed.
(実施例19)
B添加の低炭素Alキルド鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっきを20g/m2、表2に示す条件で電気Niめっき10g/m2をこの順で行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、800℃にて30秒の均熱処理を行った。その後、調質圧延を行った。更にその後、脱脂、酸洗処理の後、表2に示す条件で電気Niめっき5g/m2を行った。その後バッチ焼鈍炉にて、450℃8時間の後熱拡散処理を行った。最後に調質圧延を行った。
(Example 19)
Using B-added low carbon Al-killed steel plate (non-recrystallized steel plate) as the original plate, after degreasing and pickling treatment, electric Mn plating is performed at 20 g / m 2 under the conditions shown in Table 1, and electric Ni plating is performed under the conditions shown in Table 2. 10 g / m 2 was performed in this order, and then thermal diffusion treatment was performed. The thermal diffusion treatment was soaked at 800 ° C. for 30 seconds in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. Thereafter, temper rolling was performed. Further, after the degreasing and pickling treatments, electric Ni plating 5 g / m 2 was performed under the conditions shown in Table 2. Thereafter, post-heat diffusion treatment was performed at 450 ° C. for 8 hours in a batch annealing furnace. Finally, temper rolling was performed.
(実施例20)
最初の電気Mnめっきの付着量が8g/m2であること以外は実施例19と同一の条件で製造した。
(Example 20)
Manufactured under the same conditions as in Example 19 except that the amount of the initial electric Mn plating was 8 g / m 2 .
(実施例21)
二度目の熱拡散処理条件が、バッチ焼鈍炉にて、550℃12時間の処理であること以外は実施例19と同一の条件で製造した。
(Example 21)
Manufactured under the same conditions as in Example 19 except that the second thermal diffusion treatment condition was a treatment at 550 ° C. for 12 hours in a batch annealing furnace.
(比較例1)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表2に示す条件で電気Niめっき45g/m2を行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、800℃にて30秒の均熱処理を行った。その後、調質圧延を行った。
(Comparative Example 1)
Using an ultra-low carbon steel sheet (non-recrystallized steel sheet) added with Nb and Ti as a base plate, after degreasing and pickling treatment, electro Ni plating 45 g / m 2 is performed under the conditions shown in Table 2, and then thermal diffusion treatment is performed. It was. The thermal diffusion treatment was soaked at 800 ° C. for 30 seconds in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. Thereafter, temper rolling was performed.
(比較例2)
Nb,Ti複合添加の極低炭素鋼板(再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件で電気Mnめっき5g/m2、表2に示す条件で電気Niめっき20g/m2をこの順で行った。その後、調質圧延を行った。
(Comparative Example 2)
Using an ultra-low carbon steel sheet (recrystallized steel sheet) added with Nb and Ti as a base plate, after degreasing and pickling treatment, electric Mn plating is performed at 5 g / m 2 under the conditions shown in Table 1, and electric Ni plating is performed under the conditions shown in Table 2. 20 g / m 2 was performed in this order. Thereafter, temper rolling was performed.
(比較例3)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表2に示す条件で電気Niめっき20g/m2、表1に示す条件で電気Mnめっき5g/m2をこの順で行い、その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて、780℃にて30秒の均熱処理を行った。その後、調質圧延を行った。
(Comparative Example 3)
Using an ultra-low carbon steel sheet (non-recrystallized steel sheet) added with Nb and Ti as a base, after degreasing and pickling treatment, electric Ni plating 20 g / m 2 under the conditions shown in Table 2 , and electric Mn under the conditions shown in Table 1 Plating 5 g / m 2 was performed in this order, and then thermal diffusion treatment was performed. The thermal diffusion treatment was soaked for 30 seconds at 780 ° C. in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. Thereafter, temper rolling was performed.
(評価方法)
(1)平板耐食性(赤錆)
平板サンプルで、JISZ2371の塩水噴霧試験を3日間行い、赤錆(鉄錆)発生状況を目し観察し、発生皆無を○、僅かでも発生を×と評価した。さらに塩水噴霧試験4日間でも赤錆発生皆無のものは◎と評価した。
(2)平板耐食性(変色)
平板サンプルで、10%伸び加工を施した後、JISZ2371の塩水噴霧試験を3日間行い、色彩色度計により、試験前後でのサンプル表面の色差を測定した。なお、サンプル表面の一部に赤錆が見られるものは、赤錆発生の無い部分で評価した。色差が繰り返し測定誤差範囲内(<1)のものを○、それ以上を×と評価した。さらに塩水噴霧試験4日間でも色差が繰り返し測定誤差範囲内(<1)のものは◎と評価した。
(3)加工耐食性(赤錆)
サンプルに10%伸び加工を施した後、JISZ2371の塩水噴霧試験を3日間行い、赤錆(鉄錆)発生状況を目し観察し、発生皆無を○、僅かでも発生を×と評価した。さらに塩水噴霧試験4日間でも赤錆発生皆無のものは◎と評価した。
(4)加工耐食性(変色)
サンプルに10%伸び加工を施した後、JISZ2371の塩水噴霧試験を3日間行い、色彩色度計により、試験前後でのサンプル表面の色差を測定した。なお、サンプル表面の一部に赤錆が見られるものは、赤錆発生の無い部分で評価した。色差が繰り返し測定誤差範囲内(<1)のものを○、それ以上を×と評価した。さらに塩水噴霧試験4日間でも色差が繰り返し測定誤差範囲内(<1)のものは◎と評価した。
(5)接触抵抗
60℃98%RH雰囲気に10日間保持した後、山崎精機研究所製電気接点シュミレータCRS−1を用い、荷重100gにて接触抵抗を測定した。10mΩ未満を○、10mΩ以上を×と評価した。
(Evaluation methods)
(1) Flat plate corrosion resistance (red rust)
A flat plate sample was subjected to a salt spray test of JISZ2371 for 3 days, and observed for occurrence of red rust (iron rust). Furthermore, even if the salt spray test was performed for 4 days, no red rust was evaluated as ◎.
(2) Flat plate corrosion resistance (discoloration)
After performing 10% elongation processing on the flat plate sample, a salt spray test of JISZ2371 was conducted for 3 days, and the color difference of the sample surface before and after the test was measured with a color colorimeter. In addition, the thing in which red rust was seen in a part of sample surface was evaluated in the part without red rust generation | occurrence | production. When the color difference was repeatedly within the measurement error range (<1), it was evaluated as “◯”, and the color difference was evaluated as “×”. Further, even when the salt spray test was conducted for 4 days, the color difference within the measurement error range (<1) was evaluated as ◎.
(3) Processing corrosion resistance (red rust)
After subjecting the sample to 10% elongation processing, a salt spray test of JISZ2371 was conducted for 3 days, and the occurrence of red rust (iron rust) was observed and evaluated. Furthermore, even if the salt spray test was performed for 4 days, no red rust was evaluated as ◎.
(4) Processing corrosion resistance (discoloration)
After subjecting the sample to 10% elongation processing, a salt spray test of JISZ2371 was conducted for 3 days, and the color difference of the sample surface before and after the test was measured with a color colorimeter. In addition, the thing in which red rust was seen in a part of sample surface was evaluated in the part without red rust generation | occurrence | production. When the color difference was repeatedly within the measurement error range (<1), it was evaluated as “◯”, and the color difference was evaluated as “×”. Further, even when the salt spray test was conducted for 4 days, the color difference within the measurement error range (<1) was evaluated as ◎.
(5) Contact resistance After maintaining at 60 ° C. and 98% RH atmosphere for 10 days, contact resistance was measured with a load of 100 g using an electrical contact simulator CRS-1 manufactured by Yamazaki Seiki Laboratory. Less than 10 mΩ was evaluated as ○, and 10 mΩ or more was evaluated as ×.
各サンプルのめっき層構造とNi,Mn付着量および性能評価結果を表3に示す。なお、めっき層構造は、GDSおよびAESによる表層からの深さ方向元素分析により決定したものであり、Ni,Mn付着量は、めっき層、拡散層を全て塩酸水溶液により溶解し、ICP分析により付着量を定量したものである。 Table 3 shows the plating layer structure, Ni, Mn adhesion amount, and performance evaluation results of each sample. The plating layer structure was determined by elemental analysis in the depth direction from the surface layer by GDS and AES. The amount of Ni and Mn deposited was dissolved by the hydrochloric acid aqueous solution, and the adhesion by ICP analysis. The amount is quantified.
この表から分かるように本発明の実施例では、Niの付着量が少ない範囲において良好な耐食性を示した。一方、Mnを含む拡散層を有しない比較例1においては、加工耐食性が本発明の実施例と比べ大きく劣り、Ni層のピンホール起因の赤錆の発生が目立った。また、拡散層を有しない比較例2においては、加工耐食性が本発明の実施例と比べ大きく劣り、赤錆の発生のみならず、Mn層の腐食を原因とする変色も目立った。また、NiめっきとMnめっきの順序を変えた比較例3においては、平板耐食性・加工耐食性の双方の評価で、変色が目立ち、接触抵抗も増加した。 As can be seen from this table, the examples of the present invention showed good corrosion resistance in a range where the amount of deposited Ni was small. On the other hand, in Comparative Example 1 having no diffusion layer containing Mn, the processing corrosion resistance was greatly inferior to that of the example of the present invention, and red rust caused by pinholes in the Ni layer was conspicuous. Further, in Comparative Example 2 having no diffusion layer, the processing corrosion resistance was greatly inferior to that of the Example of the present invention, and not only red rust was generated but also discoloration caused by corrosion of the Mn layer was conspicuous. Further, in Comparative Example 3 in which the order of Ni plating and Mn plating was changed, discoloration was conspicuous and contact resistance was increased in both evaluations of flat plate corrosion resistance and processing corrosion resistance.
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
本発明の鋼材は、電気電子器具、電池缶に代表される容器材料、バインダー等の日用家電部材等はもちろんのこと、従来Niめっきが適用されていなかった部材まで幅広く適用できる可能性があり、産業上極めて有用である。 The steel material of the present invention may be widely applicable not only to electric and electronic appliances, container materials typified by battery cans, daily household appliances such as binders, but also members that have not been conventionally applied with Ni plating. It is extremely useful in industry.
Claims (11)
The high corrosion-resistant plated steel material according to claim 10, wherein after the Ni plating after the thermal diffusion treatment, a thermal diffusion treatment is further performed to provide a Mn-Ni diffusion layer or a Fe-Mn-Ni diffusion layer. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008044932A JP4980266B2 (en) | 2008-02-26 | 2008-02-26 | High corrosion resistance plated steel material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008044932A JP4980266B2 (en) | 2008-02-26 | 2008-02-26 | High corrosion resistance plated steel material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009203497A JP2009203497A (en) | 2009-09-10 |
JP4980266B2 true JP4980266B2 (en) | 2012-07-18 |
Family
ID=41146058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008044932A Expired - Fee Related JP4980266B2 (en) | 2008-02-26 | 2008-02-26 | High corrosion resistance plated steel material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4980266B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5668490B2 (en) * | 2011-01-21 | 2015-02-12 | 新日鐵住金株式会社 | Plating steel material with excellent corrosion resistance and workability and manufacturing method |
JP6168826B2 (en) * | 2013-04-12 | 2017-07-26 | 東洋鋼鈑株式会社 | Steel with Mn layer |
EP4093896A1 (en) | 2020-01-24 | 2022-11-30 | ThyssenKrupp Steel Europe AG | Steel component comprising an anti-corrosion layer containing manganese |
CN115135811B (en) * | 2020-03-03 | 2024-08-23 | 日本制铁株式会社 | Ni-plated steel sheet and method for producing same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62174396A (en) * | 1986-01-25 | 1987-07-31 | Nisshin Steel Co Ltd | Preplated and zn-ni alloy plated steel sheet |
JPH02159394A (en) * | 1988-12-13 | 1990-06-19 | Kawasaki Steel Corp | Manganese-iron alloy electroplated steel sheet having high corrosion resistance in environment causing salt damage and also having superior spot weldability |
JPH051388A (en) * | 1991-11-25 | 1993-01-08 | Sumitomo Metal Ind Ltd | Surface treated steel excellent in corrosion resistance |
JPH0625893A (en) * | 1992-07-08 | 1994-02-01 | Nippon Steel Corp | Production of corrosionproof spring for suspension |
JP2827890B2 (en) * | 1994-03-24 | 1998-11-25 | 住友金属工業株式会社 | Manufacturing method of electrical steel sheet with excellent magnetic properties |
-
2008
- 2008-02-26 JP JP2008044932A patent/JP4980266B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009203497A (en) | 2009-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11248287B2 (en) | Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance | |
US11001918B2 (en) | High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same | |
US8182932B2 (en) | Sn-plated copper alloy strip having improved fatigue characteristics | |
JP6400140B2 (en) | Method for producing surface-treated steel sheet and method for producing battery can | |
JP4814552B2 (en) | Surface treatment method | |
JP4980266B2 (en) | High corrosion resistance plated steel material and method for producing the same | |
JP5418373B2 (en) | Nickel-plated steel sheet for battery can and manufacturing method thereof | |
US9534307B2 (en) | Silver-plated product and method for producing same | |
JP2009185346A (en) | Highly corrosion resistant plated steel | |
JP5436391B2 (en) | Film and electrical / electronic parts | |
JP5353253B2 (en) | High corrosion resistance plated steel | |
JP7247946B2 (en) | Hot-dip galvanized steel sheet and its manufacturing method | |
JP5582230B2 (en) | High corrosion resistance plated steel | |
JP2010168666A (en) | HEAT-RESISTANT TINNED STRIP OF Cu-Zn ALLOY IN WHICH WHISKER IS SUPPRESSED | |
JP2007321212A (en) | Ni-PLATED STEEL SHEET HAVING EXCELLENT SLIDABILITY AND CONTACT RESISTANCE AND ITS PRODUCTION METHOD | |
JP5754144B2 (en) | Plating steel material with excellent corrosion resistance and workability and manufacturing method | |
JP5668490B2 (en) | Plating steel material with excellent corrosion resistance and workability and manufacturing method | |
JP4720459B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
KR20150073033A (en) | Galvanized hot rolled steel sheet having excellent coatibility and method for manufacturing the same | |
JP5604784B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet with good plating properties | |
JP5338823B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
Veeraraghavan et al. | Deposition of Non-anomalous Ni-Zn-P Alloys for Replacement of Cadmium Coatings | |
JP2011132585A (en) | Method of manufacturing member with plating layer containing zinc and nickel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120418 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4980266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |