JP4973721B2 - Microparticle structure and method for producing microparticles using the same - Google Patents
Microparticle structure and method for producing microparticles using the same Download PDFInfo
- Publication number
- JP4973721B2 JP4973721B2 JP2009277899A JP2009277899A JP4973721B2 JP 4973721 B2 JP4973721 B2 JP 4973721B2 JP 2009277899 A JP2009277899 A JP 2009277899A JP 2009277899 A JP2009277899 A JP 2009277899A JP 4973721 B2 JP4973721 B2 JP 4973721B2
- Authority
- JP
- Japan
- Prior art keywords
- microchannel
- microparticles
- channel
- fine particles
- divided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Micromachines (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本発明は、微小な液滴などの微小粒子を生成するために好適な微小流路構造体及びこれを用いた微小粒子の製造方法に関し、さらに詳しくは、分取、分離用カラム充填剤用のゲル状の微小粒子や、マイクロカプセル等に用いられる微小粒子や微小な液滴などの製造用として好適に用いられる微小流路構造体及びこれを用いた微小粒子の製造方法に関する。 The present invention relates to a microchannel structure suitable for producing microparticles such as microdroplets and a method for producing microparticles using the microchannel structure, and more particularly, for a column filler for sorting and separation. The present invention relates to a microchannel structure suitably used for manufacturing gel-like microparticles, microparticles used for microcapsules and the like, and microdroplets, and a method for manufacturing microparticles using the microchannel structure.
近年、数cm角のガラス基板あるいは樹脂製基板上に長さが数cm程度で、幅及び深さがサブμmから数百μmの微小流路を有する微小流路構造体を用いて、液体の送液による微小粒子の生成を行う研究が注目されている。(例えば、非特許文献1、2参照)
上記微小粒子の生成に用いる微小流路構造体の微小流路は、図1(a)および(b)に示すように、微小流路基板(1)の上に、連続相導入口(2)、連続相導入流路(3)、分散相導入口(4)、分散相導入流路(5)、排出流路(16)及び排出口(18)を有したT字型あるいはY字型の形状が用いられており、導入された連続相と分散相とが合流する部分に合流部(6)が存在する。たとえば、図1(a)に示すT字型の微小流路流路の深さは100μmであり、分散相を導入する導入流路の幅が100μm、連続相を導入する導入流路の幅は300〜500μmである。このT字型微小流路を用いて送液を行うと、分散相と連続相が流路を通じて合流する地点、すなわち合流部において、連続相の流体が分散相の流体をせん断することで、極めて均一な微小粒子の生成が可能となり、その粒径は分散相と連続相の流れの速さを変化させることで制御することができる。また、図1(b)に示すY字型の微小流路の深さは50μmであり、分散相導入流路(5)の幅、連続相導入流路(3)の幅および排出流路(16)の幅は140μmである。また、分散相導入流路と連続相導入流路は44度の角度で合流している。このY字型微小流路を用いて送液を行うと、分散相と連続相が導入流路を通じて合流する地点、すなわち合流部において、連続相の流体が分散相の流体をせん断することで、極めて均一な微小粒子の生成が可能となり、その粒径は分散相と連続相の流れの速さを変化させること及び、分散相導入流路と連続相導入流路の合流角度を変化させることで制御することができる。
In recent years, by using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate or a resin substrate of several centimeters square and having a width and a depth of sub μm to several hundred μm, Research that produces fine particles by feeding liquids is attracting attention. (For example, see Non-Patent
As shown in FIGS. 1 (a) and 1 (b), the microchannel of the microchannel structure used for generating the microparticles is formed on the microchannel substrate (1) with the continuous phase inlet (2). T-shaped or Y-shaped having a continuous phase introduction channel (3), a dispersed phase introduction port (4), a dispersed phase introduction channel (5), a discharge channel (16) and a discharge port (18) The shape is used, and the joining portion (6) exists at the portion where the introduced continuous phase and the dispersed phase join together. For example, the depth of the T-shaped micro flow channel shown in FIG. 1A is 100 μm, the width of the introduction flow channel for introducing the dispersed phase is 100 μm, and the width of the introduction flow channel for introducing the continuous phase is 300-500 μm. When liquid is fed using this T-shaped microchannel, the continuous phase fluid shears the dispersed phase fluid at the point where the dispersed phase and the continuous phase merge through the channel, that is, at the junction, Uniform fine particles can be generated, and the particle size can be controlled by changing the flow speed of the dispersed phase and the continuous phase. Further, the depth of the Y-shaped microchannel shown in FIG. 1B is 50 μm, the width of the dispersed phase introduction channel (5), the width of the continuous phase introduction channel (3), and the discharge channel ( The width of 16) is 140 μm. Further, the dispersed phase introduction flow path and the continuous phase introduction flow path merge at an angle of 44 degrees. When liquid feeding is performed using this Y-shaped microchannel, the fluid of the continuous phase shears the fluid of the dispersed phase at the point where the dispersed phase and the continuous phase merge through the introduction channel, that is, at the merged portion. Extremely uniform fine particles can be generated, and the particle size can be changed by changing the flow speed of the dispersed phase and the continuous phase and by changing the merging angle between the dispersed phase introduction channel and the continuous phase introduction channel. Can be controlled.
しかしながら、これらの方法で制御できる微小粒子の粒径の最小値は、微小流路の幅あるいは深さのうち最小の大きさにほぼ等しくなる。従って、微小流路の幅、深さを小さくすれば理論上は微小粒子の粒径を小さくすることが可能であるが、実際には微小流路の幅、深さを小さくすると、通常1以下のレイノルズ数を有する上記微小流路のレイノルズ数がさらに小さくなり、より層流が安定して形成されるため、連続相の流体が分散相の流体をせん断することが非常に困難となり、一般的に20〜30μm程度より小さい粒径の微小粒子を生成することは、非常に難しいという課題があり、更なる改善が求められていた。 However, the minimum value of the particle size of the microparticles that can be controlled by these methods is almost equal to the minimum size of the width or depth of the microchannel. Accordingly, it is theoretically possible to reduce the particle size of the microparticles by reducing the width and depth of the microchannel, but in practice, if the width and depth of the microchannel are reduced, it is usually 1 or less. Since the Reynolds number of the above microchannel having a Reynolds number of smaller is further reduced and a laminar flow is formed more stably, it is very difficult for a continuous phase fluid to shear a dispersed phase fluid, In addition, there is a problem that it is very difficult to produce fine particles having a particle size smaller than about 20 to 30 μm, and further improvement has been demanded.
本発明は、上記課題に鑑みてなされたもので、微小流路を用いて非常に均一な粒径を有する、20〜30μm程度より小さい微小粒子を生成できる微小流路構造体及びこれを用いた微小粒子の製造方法を提供することにある。 The present invention has been made in view of the above problems, and uses a microchannel structure that can generate microparticles having a very uniform particle size using a microchannel and smaller than about 20 to 30 μm, and the same. The object is to provide a method for producing fine particles.
本発明は上記課題を解決するものとして、微小流路を有する微小流路構造体において、前記微小流路を流れる媒体中に含有する微小粒子を、前記微小流路の断面積より小さい断面積を有し、かつ複数に分岐した微小空間を通過させることにより、前記微小粒子より体積の小さな微小粒子に、前記複数に分岐した微小空間の数と同数に分割することを特徴とする微小粒子製造方法および微小流路構造体を提供することで、上記の従来技術による課題を解決することができ、遂に本発明を完成するに至った。
尚、本明細書において「微小粒子」とは、固体状に硬化した微小粒子だけでなく、液状の微小粒子すなわち微小液滴も意味する。
In order to solve the above-described problems, the present invention provides a microchannel structure having a microchannel with a microparticle contained in a medium flowing through the microchannel having a cross-sectional area smaller than that of the microchannel. And a method for producing a microparticle, wherein the microparticle is divided into a plurality of microparticles having a volume smaller than that of the microparticles by passing through the microspace branched into a plurality of the microspaces. By providing a microchannel structure, the above-mentioned problems with the conventional technology can be solved, and the present invention has finally been completed.
In the present specification, “microparticles” mean not only microparticles solidified but also liquid microparticles, that is, microdroplets.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明における微小粒子の製造方法は、微小粒子を含有する流体を流すための微小流路及びこれに連通する排出流路を備え、かつ前記微小流路に連通する1以上の流体の導入口と前記排出流路に連通する1以上の流体の排出口とを有した構造体を用いて微小粒子を製造する方法であって、前記微小流路を移動する流体中の微小粒子を、前記微小流路の断面積より小さい断面積を有しかつ複数に分岐した微小空間を通過させることにより、前記微小粒子を前記複数に分岐した微小空間の数と同数に分割することを特徴とする微小粒子の製造方法である。このようにすることで、せん断等により生成した、例えば粒径50μm程度以上の微小粒子を、その粒径より小さい断面積を有する複数の微小空間に通過させることで、1つの微小粒子をいくつかの微小粒子に分割することができる。ここで、分割された微小粒子は、分割前の微小粒子の体積より小さくなり、より小さな微小粒子を生成することができるようになる。 The method for producing microparticles in the present invention includes a microchannel for flowing a fluid containing microparticles and a discharge channel communicating with the microchannel, and one or more fluid inlets communicating with the microchannel; A method of producing microparticles using a structure having one or more fluid outlets communicating with the discharge channel, wherein the microparticles in the fluid moving through the microchannels are A microparticle having a cross-sectional area smaller than a cross-sectional area of a road and passing through a plurality of microspaces branched into a plurality of microspaces, the microparticles being divided into the same number as the plurality of microspaces branched into the plurality of microparticles. It is a manufacturing method. In this way, several microparticles having a particle diameter of, for example, about 50 μm or more generated by shearing or the like are passed through a plurality of microspaces having a cross-sectional area smaller than the particle diameter. Can be divided into fine particles. Here, the divided microparticles are smaller than the volume of the microparticles before the division, and smaller microparticles can be generated.
また本発明における微小粒子の製造方法は、上述した微小粒子の分割を2回以上繰り返すことを特徴とする微小粒子製造方法である。このようにすることで、段階的にさらに小さな微小粒子を生成することができる。 The method for producing microparticles in the present invention is a method for producing microparticles characterized by repeating the above-described division of microparticles twice or more. By doing so, it is possible to generate smaller particles in a stepwise manner.
さらに、本発明の微小粒子の製造方法は、前記分割されたすべての微小粒子の体積あるいは微小粒子の粒子径、さらにはその両者が実質的にほぼ等しくなるように微小粒子を形成する要件を備えた微小粒子の製造方法である。 Furthermore, the method for producing microparticles of the present invention has a requirement to form microparticles so that the volume of all the divided microparticles or the particle diameter of the microparticles, or both of them are substantially equal. This is a method for producing fine particles.
一般に、上述した分割を一度に多数行うことで、小さな微小粒子を一度に分割した数だけ生成することができるが、一度に微小粒子を多数に分割する方法では、分割した微小粒子の体積や粒径を正確に制御するための設計や微小流路の製作、およびそれを用いて均一な粒径の微小粒子を生成することが比較的に難しい。分割された微小粒子の体積や粒径をより正確により容易に制御するためには、一度の分割数は2分割であることが最も好ましい。この場合にも2分割を1回以上繰り返すことにより、段階的にさらに小さな粒径とすることができ、かつ粒径の均一な微小粒子を生成することができる。 In general, a large number of the above-mentioned divisions can be performed at a time to generate the number of small microparticles divided into one at a time. It is relatively difficult to design the diameter accurately and to manufacture a microchannel, and to generate microparticles with a uniform particle diameter using the design. In order to more accurately and easily control the volume and particle size of the divided microparticles, the number of divisions at one time is most preferably two. Also in this case, by repeating the division into two or more times, it is possible to make the particle size further smaller step by step and to generate fine particles having a uniform particle size.
ここで、微小粒子の体積あるいは微小粒子の粒子径、さらにはその両者が実質的にほぼ等しいとは微小粒子の分散度が20%未満、好ましくは10%未満であることを意味する。なお、微小粒子の分散度は、例えば得られた微小粒子の適当量の粒子径分布を測定し、統計的手法により標準偏差として求める方法が挙げられる。 Here, the volume of the microparticles or the particle diameter of the microparticles, and both of them being substantially equal means that the degree of dispersion of the microparticles is less than 20%, preferably less than 10%. In addition, the dispersion degree of a microparticle can measure the particle size distribution of the appropriate amount of the obtained microparticle, for example, and can obtain | require as a standard deviation with a statistical method.
さらに、より微小粒子を正確に分割するには、分割される微小粒子の最も小さい方向の径の大きさが、微小流路の幅あるいは深さのうちいずれか小さい方の大きさに実質的に等しいことがより好ましい。これは、分割する前の微小粒子が微小流路の幅あるいは深さのうちいずれか小さい方の大きさより小さい場合は、微小流路の中で微小粒子が上下左右に動いてしまい、微小粒子を分割する分岐部において微小粒子を正確に分割することが難しくなる。すなわち、本発明の微小粒子製造方法は、微小粒子の最も小さい方向の径の大きさが、微小流路の幅あるいは深さのうちいずれか小さい方の大きさに実質的に等しいことを特徴とする微小粒子製造方法である。ここで、微小粒子の最も小さい方向の径の大きさが、微小流路の幅あるいは深さのうちいずれか小さい方の大きさに実質的に等しいとは、微小粒子の最も小さい方向の径の大きさが、微小流路の幅あるいは深さのうちいずれか小さい方の大きさに対し等しいか5%以内の範囲で小さいことを意味する。 Furthermore, in order to divide the microparticles more accurately, the size of the diameter in the smallest direction of the microparticles to be divided is substantially equal to the smaller one of the width and the depth of the microchannel. More preferably they are equal. This is because if the microparticles before division are smaller than the smaller one of the width and depth of the microchannel, the microparticles move vertically and horizontally in the microchannel, It becomes difficult to accurately divide the microparticles at the branching portion to be divided. That is, the method for producing microparticles of the present invention is characterized in that the size of the diameter of the microparticles in the smallest direction is substantially equal to the smaller one of the width and the depth of the microchannel. This is a method for producing fine particles. Here, the size of the diameter in the smallest direction of the microparticles is substantially equal to the smaller one of the width and the depth of the microchannel. This means that the size is equal to or smaller than the smaller one of the width or depth of the microchannel within a range of 5% or less.
上述したように微小粒子を分割するために微小流路の空間を小さくする構造としては、微小流路の特定の箇所に多孔質膜を設置する方法などが考えられるが、分割した微小粒子の粒径をより正確に均一に制御するには、多孔質膜の孔の大きさをより正確に等しくする必要がある。しかしながら、現時点で多孔質膜の孔の大きさをすべて等しくすることは非常に困難であり、さらに、たとえ多孔質膜の孔の大きさをすべて等しくできたとしても、微小粒子が球形をしている以上、1つの微小粒子の分割部位によっては、異なる大きさに分割されてしまう。すなわち、多孔質膜の孔の大きさがすべて等しいとした場合、微小粒子の周辺部で分割された微小粒子の粒径は、微小粒子の中央部で分割された微小粒子の粒径よりも小さくなってしまい、上記のような多孔質膜を備えた微小流路構造体は、より均一な粒径の微小粒子に分割する方法には適していない。 As described above, as a structure for reducing the space of the microchannel in order to divide the microparticles, a method of installing a porous film in a specific portion of the microchannel can be considered. In order to control the diameter more accurately and uniformly, it is necessary to make the pore size of the porous membrane equal more accurately. However, at the present time, it is very difficult to make all the pore sizes of the porous membrane equal, and even if all the pore sizes of the porous membrane can be made equal, the microparticles have a spherical shape. As described above, depending on the division part of one minute particle, it is divided into different sizes. That is, assuming that the pore sizes of the porous membrane are all equal, the particle size of the microparticle divided at the periphery of the microparticle is smaller than the particle size of the microparticle divided at the center of the microparticle. Therefore, the microchannel structure provided with the porous membrane as described above is not suitable for a method of dividing into fine particles having a more uniform particle diameter.
そこで、本発明の微小流路構造体は、微小粒子を含有する流体を流すための微小流路及びこれに連通する排出流路を備え、かつ前記微小流路に連通する1以上の流体の導入口と前記排出流路に連通する1以上の流体の排出口とを有した構造体であって、微小流路から排出流路への分岐部において、流体が流れる方向に沿って、微小流路の深さと実質的に等しい高さの複数の仕切り壁により複数の微小空間に分割されていることを特徴とする、微小流路構造体である。このようにすることで、流体を分割する大きさを、設計・加工した流路構造により正確に制御することができるようになる。 Therefore, the microchannel structure according to the present invention includes a microchannel for flowing a fluid containing microparticles and a discharge channel communicating with the microchannel, and introduces one or more fluids communicating with the microchannel. A structure having an outlet and one or more fluid outlets communicating with the outlet passage, wherein the minute passage along the direction in which the fluid flows at a branch portion from the minute passage to the outlet passage The microchannel structure is divided into a plurality of microspaces by a plurality of partition walls having a height substantially equal to the depth. By doing so, the size of dividing the fluid can be accurately controlled by the designed and processed channel structure.
また、本発明の微小流路構造体は、複数の仕切り壁の微小流路の幅方向の間隔が、各仕切り壁で分割される複数の微小粒子をすべて等しい体積で分割する間隔で配置させて設計・加工することを特徴とする微小流路構造体である。すなわち、微小粒子の中央部の仕切り壁の間隔よりも微小粒子の周辺部の仕切り壁の間隔を広くすることで分割後の微小粒子の体積あるいは微小粒子の粒子径、さらにはその両者を均一に分割することが可能となる。ここで仕切り壁の間隔の設計は、球体の体積を仕切り壁の数だけ等しい体積で分割するように簡単な積分方程式を解けば設計可能である。 Further, in the microchannel structure of the present invention, the intervals in the width direction of the microchannels of the plurality of partition walls are arranged such that the plurality of microparticles divided by each partition wall are all divided by an equal volume. A microchannel structure characterized by being designed and processed. That is, by increasing the spacing between the partition walls at the periphery of the microparticles more than the spacing between the partition walls at the center of the microparticles, the volume of the microparticles after splitting, the particle diameter of the microparticles, or both can be made uniform. It becomes possible to divide. Here, the partition wall spacing can be designed by solving a simple integral equation so that the volume of the sphere is divided by the same volume as the number of partition walls.
図9と式(1)に後述する微小粒子を均等に4分割する場合の積分方程式を例を示した。球の体積を4分割する位置Aについて式(1)を解けば、微小流路内に形成する仕切り壁のおおよその位置を計算して設計することができる。 FIG. 9 and equation (1) show an example of an integral equation in the case where a microparticle described later is equally divided into four. By solving the equation (1) for the position A that divides the volume of the sphere into four, it is possible to calculate and design the approximate position of the partition wall formed in the microchannel.
すなわち、図9から、球の中心をとおるx軸を設定し、球のx軸に直角に横切る円の面積を積分することで、球の体積は求まる。円の半径は、x軸の変数xと球の半径rから三平方の定理で求まる。いま、図9の半径rの球が、幅2r、深さ2rの微小流路の中を通過すると仮定する。半球の部分の体積を2等分するxの座標をAとすると、座標Aは式(1)で求めることができる。すなわち、式(1)は球の中心からAまでの座標の球の体積と、座標Aから球の端rまでの球の体積が等しいこと示す式である。球の半径を1で正規化して解くと、Aは約0.34(34%)となる。例えば、流路幅が100μmの場合、球の半径は50μmに相当するので、50μmの34%の位置、すなわち微小流路の中心から17μmの位置で流路を仕切れば、球の片側半分の体積は、仕切り壁により半分に分割することができる、ということになる。 That is, from FIG. 9, the volume of a sphere can be obtained by setting the x-axis passing through the center of the sphere and integrating the area of a circle that intersects the sphere x-axis at right angles. The radius of the circle can be determined by the three square theorem from the x-axis variable x and the sphere radius r. Now, it is assumed that a sphere having a radius r in FIG. 9 passes through a microchannel having a width 2r and a depth 2r. If the coordinate of x that bisects the volume of the hemispherical part is A, the coordinate A can be obtained by equation (1). That is, Expression (1) is an expression indicating that the volume of the sphere having coordinates from the center of the sphere to A is equal to the volume of the sphere from coordinates A to the end r of the sphere. When the sphere radius is normalized by 1 and solved, A is about 0.34 (34%). For example, when the flow path width is 100 μm, the radius of the sphere corresponds to 50 μm. Therefore, if the flow path is partitioned at 34% of 50 μm, that is, 17 μm from the center of the micro flow path, the volume of one half of the sphere Can be divided in half by a partition wall.
また、前述したように微小粒子を2分割して粒径を小さくする方がより正確に容易に均一な粒径の微小粒子に分割することができることから、上記流体が流れる方向に沿って微小流路の深さと実質的に等しい高さの複数の仕切り壁は、微小流路の中央に1つ存在することがより好ましい。この構造を2回以上繰り返す構造にすれば、さらに小さな均一な粒径の微小粒子を生成することが可能となる。 In addition, as described above, it is possible to more accurately and easily divide the microparticles into two by dividing the microparticles into two to reduce the particle size, so that the microfluids flow in the direction in which the fluid flows. More preferably, a plurality of partition walls having a height substantially equal to the depth of the path are present at the center of the microchannel. If this structure is repeated two or more times, it is possible to produce finer particles having a smaller uniform particle size.
また、上述した仕切り壁の厚さは流体進行方向と逆方向に鋭い鋭角状になっていることがより好ましい。このような構造にすることで、微小粒子をナイフで切断するような効果を得ることができ、より均一な粒径の微小粒子に分割することが可能となる。 In addition, the thickness of the partition wall described above is more preferably an acute angle in the direction opposite to the fluid traveling direction. By adopting such a structure, it is possible to obtain an effect of cutting fine particles with a knife, and it is possible to divide into fine particles having a more uniform particle diameter.
仕切り壁(9)の形態としては、図2(a)に示すように、微小流路の中に形成した壁状のようなものであってもよいし、図2(b)に示すように、微小流路を枝状に分岐したような形状であってもよく、とくに制限はない。 As a form of the partition wall (9), as shown in FIG. 2 (a), it may be a wall-like shape formed in a minute flow path, or as shown in FIG. 2 (b). The shape may be such that the microchannel is branched into branches, and there is no particular limitation.
また本発明の微小流路構造体は、前述した複数に分割された微小粒子が合一することなく、分岐した微小空間が再び合流するような構造にしてもよい。このようにすることで、分割した微小粒子を1本の流路で回収することが容易となる。ただし、図3(a)に示すような構造で微小流路(11)が分岐部(10)で枝分かれした微小流路を再び合流部(6)で合流させると、分割した微小粒子が合流部で衝突し微小粒子が合一してしまう可能性が高くなる。そこで、図3(b)に示すように微小流路(11)が分岐部(10)で枝分かれした微小流路の流路長をそれぞれ変えることで微小流路を再び合流部(6)で合流させても微小粒子の合流地点での衝突を避けることが可能となる。 Further, the microchannel structure of the present invention may have a structure in which the branched microspaces join again without the above-described microparticles divided into a plurality. By doing in this way, it becomes easy to collect | recover the divided | segmented microparticles by one flow path. However, when the microchannel (11) having the structure shown in FIG. 3 (a) is branched at the branching portion (10), the divided microparticles are merged at the joining portion (6). There is a high possibility that the microparticles will collide with each other and coalesce. Therefore, as shown in FIG. 3 (b), the microchannels are joined again at the merging portion (6) by changing the length of the microchannel where the microchannel (11) is branched at the branching portion (10). Even if it makes it, it becomes possible to avoid the collision at the confluence of the fine particles.
また、本発明の微小流路構造体は、前記複数の仕切り壁が形成される直前近傍の前記微小流路の幅あるいは深さが、前記微小流路の他の部分より狭いことを特徴とする微小流路構造体である。この様態の一例を図4に示す。このようにすることで、分割直前の微小粒子の上下左右の振動を可能な限り抑えることができるため、仕切り壁の部分でより正確に微小粒子を均等に分割することが可能となる。 In the microchannel structure of the present invention, the width or depth of the microchannel in the vicinity immediately before the plurality of partition walls are formed is narrower than other portions of the microchannel. This is a microchannel structure. An example of this mode is shown in FIG. By doing in this way, since the vertical and horizontal vibrations of the microparticles immediately before the division can be suppressed as much as possible, it becomes possible to divide the microparticles more accurately and evenly at the partition wall portion.
なお、本発明における分割前の微小粒子の製造方法は特に制限はない。例えば、非特許文献1や非特許文献2にあるような、2相の流体が合流する部分で連続相の流体で分散相の流体をせん断することで微小粒子を形成してもよいし、あらかじめ2相を懸濁させて微小粒子を形成してから本発明の微小流路構造体に導入してもよい。また、1本の導入流路に有機相と水相を時分割で交互に送液することで、有機相あるいは水相をセグメント状にして送液してもよい。しかしながら、分割する前の微小粒子の粒径が均一であったほうがより均一な微小粒子に分割することができること、微小流路で粒子を形成すれば、その微小流路の下流で本発明の微小流路構造体の構造を付与することにより容易に微小粒子のさらなる小径化が実現可能であることを考慮すると、分割前の微小粒子の生成方法は図1(a)及び(b)に示したような非特許文献1や非特許文献2にあるような方法であることがより好ましい。この場合、一例として図5のような微小流路構造体の様態が考えられるが、当然のことながら本発明の要旨を逸脱しない範囲であればこの様態に限定されるものではない。
In addition, the manufacturing method of the microparticle before the division | segmentation in this invention does not have a restriction | limiting in particular. For example, as described in
本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、図6に示すように、仕切り壁で仕切られた微小流路を微小流路基板上に形成した基板と、前記微小流路が形成された基板面を覆うように、微小流路の所定の位置に、微小流路と微小流路構造体外部とを連通するための少なくとも2以上の小穴が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から微小流路へ粒子を含む流体を導入し、微小流路構造体を通過後分割された粒子を含む液体を再び微小流路構造体外部へ排出することができ、粒子を含む液体を安定して微小流路内を通過させることが可能となる。粒子を含む液体の送液は、プランジャーポンプや圧送ポンプなどの機械的手段等を用いればよく、その手段は特に限定されない。 The microchannel structure of the present invention has the structure and performance described above, but as shown in FIG. 6, a substrate in which microchannels partitioned by a partition wall are formed on a microchannel substrate. And at least two or more small holes for communicating the microchannel and the outside of the microchannel structure are disposed at predetermined positions of the microchannel so as to cover the substrate surface on which the microchannel is formed. The cover body may be laminated and integrated. Thereby, the fluid containing particles is introduced from the outside of the microchannel structure into the microchannel, and the liquid containing the particles divided after passing through the microchannel structure can be discharged again to the outside of the microchannel structure. It is possible to allow the liquid containing the particles to pass through the microchannel stably. The liquid containing the particles may be fed using mechanical means such as a plunger pump or a pressure feed pump, and the means is not particularly limited.
微小流路が形成された基板及びカバー体の材質としては、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、微小流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数mm以下である事が望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。 As the material of the substrate and the cover body on which the microchannel is formed, it is desirable that the microchannel can be formed, has excellent chemical resistance, and has an appropriate rigidity. For example, glass, quartz, ceramic, silicon, or metal or resin may be used. The size and shape of the substrate and cover body are not particularly limited, but the thickness is preferably about several mm or less. The small holes arranged in the cover body communicate with the microchannel and the outside of the microchannel structure, and when used as a fluid inlet or outlet, the diameter is preferably, for example, several mm or less. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.
また本発明の微小流路構造体は、微小流路が形成された基板とカバー体は、熱処理接合あるいは光硬化樹脂や熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。 Further, in the microchannel structure of the present invention, the substrate on which the microchannel is formed and the cover body are laminated and integrated by means such as heat treatment bonding or adhesion using an adhesive such as photo-curing resin or thermosetting resin. be able to.
本発明は以下の効果を奏する。
本発明における微小粒子製造方法により、微小流路を有する微小流路構造体において、前記微小流路を流れる媒体中に含有する微小粒子を、前記微小流路の断面積より小さい断面積を有し、かつ複数に分岐した微小空間を通過させることにより、前記微小粒子より体積の小さな微小粒子に、前記複数に分岐した微小空間の数と同数に分割することが可能となり、このようにすることで、せん断等により生成した、例えば粒径50μm程度以上の微小粒子を、その粒径より小さい断面積を有する複数の微小空間に通過させることで、1つの微小粒子をいくつかの微小粒子に分割し、分割された微小粒子は、分割前の微小粒子の体積より小さくなり、より小さな微小粒子を生成することができるようになる。
The present invention has the following effects.
According to the method for producing microparticles in the present invention, in a microchannel structure having microchannels, the microparticles contained in the medium flowing through the microchannels have a cross-sectional area smaller than the cross-sectional area of the microchannels. In addition, by passing through a plurality of minute spaces branched, it becomes possible to divide into minute particles having a volume smaller than that of the minute particles by the same number as the number of minute spaces branched into the plurality. By passing fine particles generated by shearing, for example, having a particle size of about 50 μm or more into a plurality of fine spaces having a cross-sectional area smaller than the particle size, one fine particle is divided into several fine particles. The divided microparticles are smaller than the volume of the microparticles before the division, so that smaller microparticles can be generated.
また本発明における微小粒子製造方法により、上述した微小粒子の分割を2回以上繰り返すことで、段階的にさらに小さな微小粒子を生成することができる。 Further, by the method for producing fine particles according to the present invention, the above-mentioned fine particle division is repeated twice or more, whereby even smaller fine particles can be generated stepwise.
さらに、本発明の微小粒子製造方法により、一度の分割数を2分割とし、この2分割を2回以上繰り返すことにより、段階的にさらに小さな粒径とすることで、分割されたすべての微小粒子の体積、かつ/または微小粒子の粒子径が実質的にほぼ等しくなるように微小粒子を形成することが可能となる。 Further, according to the method for producing fine particles of the present invention, the number of divisions at one time is divided into two, and the two divisions are repeated two or more times, so that the particle size is further reduced stepwise so that all the divided fine particles are obtained. The microparticles can be formed so that the volume and / or the particle diameter of the microparticles are substantially equal.
さらに、本発明の微小粒子製造方法により、分割される微小粒子の最も小さい方向の径の大きさが、微小流路の幅あるいは深さのうちいずれか小さい方の大きさに実質的に等しくすることで、分割前の微小粒子の上下左右の動きを抑えることで、より微小粒子を正確に均等に分割することが可能となる。 Furthermore, by the method for producing microparticles of the present invention, the size of the smallest direction of the microparticles to be divided is made substantially equal to the smaller one of the width and the depth of the microchannel. Thus, it is possible to divide the fine particles more accurately and evenly by suppressing the vertical and horizontal movements of the fine particles before the division.
また流体が流れる方向に沿って、微小流路の深さと実質的に等しい高さの複数の仕切り壁を微細加工により形成し、微小流路の内部を複数の微小空間に分割した微小流路構造体を用いることで、流体を分割する大きさを、設計・加工した流路構造により正確に制御することができるようになる。 A microchannel structure in which a plurality of partition walls having a height substantially equal to the depth of the microchannel are formed by micromachining along the direction of fluid flow, and the interior of the microchannel is divided into a plurality of microspaces By using the body, the size of dividing the fluid can be accurately controlled by the designed and processed channel structure.
また、各仕切り壁で分割される複数の微小粒子を、実質的にすべて等しい体積かつ/または粒径に分割することができるように、微小粒子の中央部の仕切り壁の間隔よりも微小粒子の周辺部の仕切り壁の間隔を広くするように配置させて設計・加工した微小流路構造体を用いることで、微小粒子の体積かつ/または粒径を実質的に等しく均一に分割することが可能となる。 In addition, a plurality of microparticles divided by each partition wall can be divided into substantially equal volumes and / or particle diameters so that the microparticles can be separated from the partition wall spacing at the center of the microparticles. By using a microchannel structure that is designed and processed so that the interval between the partition walls in the periphery is widened, it is possible to divide the volume and / or particle size of the microparticles substantially evenly and uniformly. It becomes.
また、複数の仕切り壁が形成される直前近傍の前記微小流路の幅あるいは深さが、前記微小流路の他の部分より狭い微小流路構造体を用いることで、分割直前の微小粒子の上下左右の振動を可能な限り抑えることができるため、仕切り壁の部分でより正確に微小粒子を均等に分割することが可能となる。 In addition, by using a microchannel structure in which the width or depth of the microchannel in the vicinity immediately before a plurality of partition walls is formed is narrower than other parts of the microchannel, Since vibrations in the vertical and horizontal directions can be suppressed as much as possible, it becomes possible to divide the microparticles more accurately and evenly in the partition wall portion.
また、本発明の微小粒子生成方法及びそのための微小流路構造体を用いることで、微小流路内で微小流路の流路幅より小さい粒径の微小粒子を生成させることができることから、本発明の波及効果として、その微小粒子が液滴である場合などは、その液滴の周囲の媒体との比表面積が、微小流路内で2液の層流が形成されるときの比表面積よりも大きくなるため、この微小液滴を利用して液滴内に含有される反応基質とその周囲の媒質に含有される反応基質との反応速度の向上や、液滴とその周囲の媒質との溶媒抽出における抽出速度の向上の効果を期待することができる。 In addition, by using the microparticle generation method of the present invention and the microchannel structure therefor, it is possible to generate microparticles having a particle diameter smaller than the channel width of the microchannel in the microchannel. As a ripple effect of the invention, when the microparticle is a droplet, the specific surface area with the medium around the droplet is more than the specific surface area when a two-liquid laminar flow is formed in the microchannel. Therefore, using this micro droplet, the reaction rate between the reaction substrate contained in the droplet and the reaction substrate contained in the surrounding medium can be improved, and the droplet and the surrounding medium can be improved. The effect of improving the extraction speed in solvent extraction can be expected.
以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。 Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.
本発明の第1の実施例に使用した微小流路構造体を図4(a)に示した。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)製の微小流路基板(1)に一般的なフォトリソグラフィーとウエットエッチングにより形成し、1つの導入口(17)と2つの排出口(18)に相当する位置に、直径0.6mmの貫通した小穴(12)を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体(17)として熱融着により接合することで微小流路を密閉した。形成した微小流路は、深さが20μm、導入口から連通する導入流路(14)の幅が100μm、導入流路から分岐部(10)において2本に分岐した排出流路(16)の幅がそれぞれ50μmである。また図6(b)に示すように分岐部直前の50μmの部分の流路幅を90μmに両側から絞った形状とした。分岐部における排出流路の分岐の形態は、図4(b)に示すように曲率半径20mmの曲線状とし、分岐部から緩やかに徐々に分岐していくように加工した。また、このように分岐させることで、分岐部の先端は、流体の進行方向と逆向きにナイフ状に鋭角に形成することができた。 The microchannel structure used in the first embodiment of the present invention is shown in FIG. The microchannel is formed on a microchannel substrate (1) made of Pyrex (registered trademark) of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching. A Pyrex (registered trademark) board of the same size provided with a small hole (12) having a diameter of 0.6 mm by a mechanical processing means at a position corresponding to two discharge ports (18) is used as a cover body (17) for heat fusion. The microchannels were sealed by bonding by wearing. The formed microchannel has a depth of 20 μm, the width of the introduction channel (14) communicating from the introduction port is 100 μm, and the discharge channel (16) branched into two at the branching portion (10) from the introduction channel. Each width is 50 μm. Further, as shown in FIG. 6B, the flow path width of the 50 μm portion immediately before the branching portion was narrowed to 90 μm from both sides. As shown in FIG. 4 (b), the discharge channel branching form at the branching portion is a curved shape with a radius of curvature of 20 mm, and is processed so as to gradually and gradually branch from the branching portion. Further, by branching in this way, the tip of the branching portion could be formed in an acute angle like a knife in the direction opposite to the fluid traveling direction.
この微小流路の導入口(17)から平均粒径が約100μm、分散度9.6%の微小粒子を含有する流体を導入した。微小粒子を含有する流体の導入方法として、図4(a)に示すように微小流路構造体(24)を流体が送液可能なようにホルダー(20)などで保持すると共に、テフロン(登録商標)チューブ(22)及びフィレットジョイント(21)をホルダーに固定した。導入口に接続したテフロン(登録商標)チューブのもう一方はマイクロシリンジポンプ(23)に接続し、このマイクロシリンジポンプにより微小粒子を含有する流体を微小流路に導入した。実際に使用した微小粒子を含有する流体は、ジビニルベンゼンと酢酸ブチルからなる100μmの微小粒子を含有するポリビニルアルコール3%水溶液の流体である。送液速度は10μl/分とした。安定した送液流速状態で導入流路(14)を経て微小粒子は分岐部(10)で2つに分割され、排出流路(16)を経由して2つの排出口(18)に固定されたフィレットジョイントとテフロン(登録商標)チューブを通してビーカ(27)に回収された。 A fluid containing microparticles having an average particle diameter of about 100 μm and a dispersion degree of 9.6% was introduced from the introduction port (17) of the microchannel. As a method for introducing a fluid containing microparticles, a microchannel structure (24) is held by a holder (20) or the like so that fluid can be fed as shown in FIG. (Trademark) Tube (22) and fillet joint (21) were fixed to the holder. The other end of the Teflon (registered trademark) tube connected to the introduction port was connected to a microsyringe pump (23), and a fluid containing microparticles was introduced into the microchannel by this microsyringe pump. The fluid containing the fine particles actually used is a fluid of 3% aqueous solution of polyvinyl alcohol containing 100 μm fine particles made of divinylbenzene and butyl acetate. The liquid feeding speed was 10 μl / min. The fine particles are divided into two at the branching portion (10) through the introduction flow path (14) in a stable liquid flow rate state, and are fixed to the two discharge ports (18) via the discharge flow path (16). The beaker (27) was recovered through a fillet joint and a Teflon tube.
分割された微小粒子を観察するとほぼ球形の粒子であった。また、この微小粒子を100個とり、その粒径を測定したところ、平均粒子径52μm、分散度9.8%であり、非常に均一な粒径分布の微小粒子であった。 When the divided fine particles were observed, they were almost spherical particles. Further, when 100 fine particles were taken and the particle size was measured, the average particle size was 52 μm and the degree of dispersion was 9.8%, and the particles were very uniform in particle size distribution.
(比較例1)
本発明の第1の実施例に対する第1の比較例に使用した微小流路構造体を図8(a)に示した。微小流路構造体は実施例1と同様な手法で製作した。形成した微小流路は、深さが20μm、導入口から連通する導入流路(14)の幅が120μm、導入流路から分岐部(10)において2本に分岐した排出流路(16)の幅がそれぞれ50μmである。分岐部における排出流路の分岐の形態は、図8(b)に示すように曲率半径20mmの曲線状とし、分岐部から緩やかに徐々に分岐していくように加工した。また、このように分岐させることで、分岐部の先端は、流体の進行方向と逆向きにナイフ状に鋭角に形成することができた。
(Comparative Example 1)
The microchannel structure used in the first comparative example for the first embodiment of the present invention is shown in FIG. The microchannel structure was manufactured in the same manner as in Example 1. The formed microchannel has a depth of 20 μm, the width of the introduction channel (14) communicating from the introduction port is 120 μm, and the discharge channel (16) branched into two at the branching portion (10) from the introduction channel. Each width is 50 μm. As shown in FIG. 8B, the form of branching of the discharge flow path in the branching portion was a curved shape having a curvature radius of 20 mm, and was processed so as to gradually and gradually branch from the branching portion. Further, by branching in this way, the tip of the branching portion could be formed in an acute angle like a knife in the direction opposite to the fluid traveling direction.
この微小流路の導入口(17)から平均粒径が約100μm、分散度9.6%の微小粒子を含有する流体を導入した。微小粒子を含有する流体の成分とその導入方法は実施例1と同様に行った。安定した送液流速状態で導入流路(14)を経て粒子は分岐部(10)で2つに分割され、排出流路(16)を経由して2つの排出口(18)に固定されたフィレットジョイントとテフロン(登録商標)チューブを通してビーカ(27)に回収された。 A fluid containing microparticles having an average particle diameter of about 100 μm and a dispersion degree of 9.6% was introduced from the introduction port (17) of the microchannel. The components of the fluid containing fine particles and the method for introducing them were the same as in Example 1. The particles were divided into two at the branching portion (10) through the introduction flow path (14) in a stable liquid flow rate state, and fixed to the two discharge ports (18) via the discharge flow path (16). It was collected in a beaker (27) through a fillet joint and a Teflon tube.
分割された微小粒子を100個とり、その粒径を測定したところ、平均粒子径51μm、分散度30%となり、分散度20%以下の均一な粒径の微小粒子を得ることができなかった。 When 100 divided fine particles were taken and the particle size was measured, the average particle size was 51 μm and the degree of dispersion was 30%, and it was not possible to obtain fine particles with a uniform particle size of 20% or less.
本発明の第2の実施例に使用した微小流路構造体を図6(a)に示した。微小流路構造体は実施例1と同様な手法で製作した。微小流路の深さは5μmとし、導入口(17)から連通する導入流路(14)の流路幅は約150μm、導入流路から第1の分岐部(13)で2つに分岐した第1の分岐流路(15)の流路幅が約75μm、第1の分岐流路から第2の分岐部(26)でさらに各々が2つに分岐した第2の分岐流路(28)の流路幅が約35μm、第2の分岐流路から第3の分岐部(29)でさらに各々が2つに分岐した第3の分岐流路A(30)、B(31)、C(32)、D(33)、E(34)、F(35)、G(36)、H(37)の流路幅を約18μmに設計した。なお、各分岐部における排出流路の分岐の形態は、図6(b)に示すように曲率半径20mmの曲線状とし、分岐部から緩やかに徐々に分岐していくように加工し、分岐部の先端は、流体の進行方向と逆向きにナイフ状に鋭角に形成した。また、実施例1と同様に分岐部直前の流路幅を両側から流路は幅の約5%程度づつ絞った形状とした。 The microchannel structure used in the second embodiment of the present invention is shown in FIG. The microchannel structure was manufactured in the same manner as in Example 1. The depth of the micro channel is 5 μm, the channel width of the introduction channel (14) communicating from the introduction port (17) is about 150 μm, and the first branch part (13) branches from the introduction channel into two. The first branch channel (15) has a channel width of about 75 μm, and the second branch channel (28) is further branched into two at the second branch part (26) from the first branch channel. The third branch flow path A (30), B (31), C (each of which has a flow path width of about 35 μm and is further branched into two at the third branch portion (29) from the second branch flow path. 32), D (33), E (34), F (35), G (36), and H (37) were designed to have a channel width of about 18 μm. As shown in FIG. 6B, the branch form of the discharge flow path in each branch portion is a curved shape having a curvature radius of 20 mm and is processed so as to gradually and gradually branch from the branch portion. The tip of this was formed into a knife-like acute angle in the direction opposite to the fluid traveling direction. Moreover, the flow path width just before a branch part was made into the shape which squeezed about 5% of width | variety from both sides like Example 1. FIG.
最終的に8本に分割した第3の分岐流路は、排出口(18)で1箇所に合流させた。合流させる際、合流部での微小粒子の衝突を避けるために、第3の分岐部(29)から排出口(18)にいたるまでの流路長を1000μmずつ変えて排出口に合流させた。すなわち第3の分岐流路の長さは、図6(a)の手前の第3の分岐流路A(30)の長さが250mm、その隣の第3の分岐流路B(31)の長さが249mm、その隣の第3の分岐流路C(32)の長さが248mm、その隣の第3の分岐流路D(33)の長さが247mm、その隣の第3の分岐流路E(34)の長さが246mm、その隣の第3の分岐流路F(35)の長さが245mm、その隣の第3の分岐流路G(36)の長さが244mm、その隣の第3の分岐流路H(37)の長さが243mmとした。、微小粒子を含有した流体は実施例1と同様にジビニルベンゼンと酢酸ブチルからなる150μmの微小粒子を含有するポリビニルアルコール3%水溶液の流体を用い、実施例1と同様な方法により微小流路構造体の微小流路に導入した。送液速度は5μl/分で送液した。安定した送液流速状態で導入流路(38)を経て第1の分岐部で2分割された微小粒子は、第2の分岐部で再度2分割され、第3の分岐部でさらに2分割された。 The third branch channel finally divided into eight was joined at one place at the discharge port (18). When merging, in order to avoid collision of fine particles at the merging portion, the flow path length from the third branching portion (29) to the discharge port (18) was changed by 1000 μm and merged with the discharge port. That is, the length of the third branch channel A is the same as that of the third branch channel A (30) in front of FIG. The length of the third branch flow path C (32) adjacent to the length is 249 mm, the length of the third branch flow path D (33) adjacent to the length is 247 mm, and the third branch next to the length is 247 mm. The length of the flow path E (34) is 246 mm, the length of the adjacent third branch flow path F (35) is 245 mm, the length of the adjacent third branch flow path G (36) is 244 mm, The length of the adjacent third branch flow path H (37) was 243 mm. In the same manner as in Example 1, the fluid containing microparticles was a fluid of 3% aqueous solution of polyvinyl alcohol containing 150 μm microparticles composed of divinylbenzene and butyl acetate. It was introduced into the body's microchannel. The liquid feeding speed was 5 μl / min. The microparticles divided into two at the first branch part through the introduction flow path (38) in a stable liquid flow rate state are again divided into two at the second branch part and further divided into two at the third branch part. It was.
以上の通り、8本に分岐した第3の分岐部(10)から排出流路(16)を経由して排出口(18)を経由して得られた微小粒子を観察したところ球形の粒子であった。この微小粒子を100個とり、その粒径を測定したところ、平均粒子径は約17μmであり、分散度は9.6%であり、極めて均一な粒径分布の微小粒子であった。 As described above, when the microparticles obtained from the third branch portion (10) branched into eight via the discharge channel (16) and the discharge port (18) were observed, there were. When 100 fine particles were taken and the particle size was measured, the average particle size was about 17 μm, the degree of dispersion was 9.6%, and the particles were extremely uniform in particle size distribution.
本発明の第3の実施例使用した微小流路構造体を図5(a)に示した。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)製の微小流路基板(1)に一般的なフォトリソグラフィーとウエットエッチングにより、2つの導入口と2つの排出口を有するダブルY字型の微小流路を形成した。2つの導入口(17)と2つの排出口(18)に相当する位置に、直径0.6mmの貫通した小穴(12)を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体(19)として熱融着により接合することで微小流路を密閉した。形成した微小流路は、深さが20μm、2つの導入口から連通する導入流路(14)の幅が120μm、導入流路は合流部(6)において流路幅100μmの微小流路(11)と各々の導入流路が微小流路に対して22度の角度で合流する。また、微小流路から分岐部(10)において2本に分岐した排出流路(16)の幅はそれぞれ50μmである。分岐部における排出流路の分岐の形態は、実施例1と同様に図5(b)に示すように曲率半径20mmの曲線状とし、分岐部から緩やかに徐々に分岐していくように加工し、分岐部の先端は流体の進行方向と逆向きにナイフ状に鋭角に形成した。また図5(b)に示すように、実施例1と同様に分岐部直前の50μmの部分の流路幅を90μmに両側から絞った形状とした。 The microchannel structure used in the third embodiment of the present invention is shown in FIG. The micro-channel has two inlets and two outlets formed by general photolithography and wet etching on a Pyrex (registered trademark) micro-channel substrate (1) of 70 mm × 38 mm × 1 mm (thickness). A double Y-shaped microchannel was formed. A Pyrex (registered trademark) board of the same size, in which small holes (12) having a diameter of 0.6 mm are provided by mechanical processing means at positions corresponding to the two inlets (17) and the two outlets (18). The microchannel was sealed by joining as a cover body (19) by heat sealing. The formed microchannel has a depth of 20 μm, a width of the introduction channel (14) communicating from the two introduction ports is 120 μm, and the introduction channel is a microchannel (11 having a channel width of 100 μm at the junction (6). ) And the respective introduction flow paths merge at an angle of 22 degrees with respect to the fine flow paths. Moreover, the width of the discharge flow path (16) branched into two in the branch part (10) from the micro flow path is 50 μm. The form of branching of the discharge channel at the branching portion is a curved shape with a curvature radius of 20 mm as shown in FIG. 5B as in the first embodiment, and is processed so as to gradually and gradually branch from the branching portion. The tip of the branching portion was formed in a knife-like acute angle in the direction opposite to the fluid traveling direction. Further, as shown in FIG. 5B, the channel width of the 50 μm portion immediately before the branching portion was narrowed to 90 μm from both sides in the same manner as in Example 1.
この微小流路の2つの導入口(17)のうち一方の導入口から、連続相である水相としてポリビニルアルコール3%水溶液を微小流路に導入し、もう一方の導入口から分散相である有機相としてジビニルベンゼンと酢酸ブチルの混合溶液を導入した。流体の導入方法としては、実施例1および実施例2と同様に、図5(a)に示すように微小流路構造体(24)を流体が送液可能なようにホルダー(20)などで保持すると共に、テフロン(登録商標)チューブ(22)及びフィレットジョイント(21)をホルダーに固定し、導入口に接続したテフロン(登録商標)チューブのもう一方はマイクロシリンジポンプ(23)に接続し、このマイクロシリンジポンプにより流体を微小流路構造体中の微小流路に導入した。送液速度は分散相及び連続相は共に20μl/分で送液した。送液速度が安定した状態で、分散相を導入した導入流路と連続相を導入した導入流路が微小流路の合流部にて合流し、連続相である水相が分散相である有機相をせん断することで液状の微小粒子(以下、液滴と称する。)の生成が観察された。この液滴はそのまま微小流路を流れ、分岐部に達すると2つに分割され、排出流路(16)を経由して2つの排出口(18)に固定されたフィレットジョイントとテフロン(登録商標)チューブを通してビーカ(27)に回収された。 From one of the two inlets (17) of the microchannel, a 3% aqueous solution of polyvinyl alcohol is introduced into the microchannel as a continuous aqueous phase, and a dispersed phase is introduced from the other inlet. A mixed solution of divinylbenzene and butyl acetate was introduced as the organic phase. As in the first and second embodiments, the fluid is introduced by using a holder (20) or the like so that the fluid can be fed through the microchannel structure (24) as shown in FIG. 5 (a). While holding, the Teflon (R) tube (22) and the fillet joint (21) are fixed to the holder, and the other Teflon (R) tube connected to the inlet is connected to the microsyringe pump (23). The fluid was introduced into the microchannel in the microchannel structure by this microsyringe pump. The liquid feeding speed was 20 μl / min for both the dispersed phase and the continuous phase. In a state where the liquid feeding speed is stable, the introduction flow channel introducing the dispersed phase and the introduction flow channel introducing the continuous phase merge at the joining portion of the micro flow channel, and the organic phase in which the continuous aqueous phase is the dispersed phase Formation of liquid fine particles (hereinafter referred to as droplets) was observed by shearing the phases. This droplet flows through the microchannel as it is, and when it reaches the bifurcation, it is divided into two, and is connected to the two discharge ports (18) via the discharge channel (16) and Teflon (registered trademark). ) It was collected into a beaker (27) through a tube.
分割された微小粒子を観察したところ球形の粒子であった。この微小粒子を100個とり、その粒径を測定したところ、平均粒子径55μm、分散度9.0%であり、極非常に均一な粒径分布の微小粒子であった。 Observation of the divided fine particles revealed that the particles were spherical. When 100 fine particles were taken and the particle size thereof was measured, the average particle size was 55 μm, the degree of dispersion was 9.0%, and the particles were extremely uniform in particle size distribution.
本発明の第4の実施例に用いた微小流路構造体を図7(a)に示した。微小流路構造体は実施例1と同様な手法で製作した。微小流路の深さは20μmとし、導入口(17)から連通する導入流路(14)の流路幅は約100μm、分岐部(10)において、導入流路から4つに排出流路(16)を分岐した。排出流路の幅は、それぞれ外側に2本の排出流路の幅を約32μm、内側2本の排出流路の幅を約18μmとし図7(b)に示すように内側2本の排出流路は曲率半径20mm、外側2本の排出流路は曲率半径15mmの曲線状とし、分岐部から緩やかに徐々に分岐していくように加工し、分岐部の先端は、流体の進行方向と逆向きにナイフ状に鋭角に形成した。また図7(b)に示すように、実施例1と同様に分岐部直前の50μmの部分の流路幅を90μmに両側から絞った形状とした。排出流路のそれぞれの幅は、液滴を完全球体とした場合の球体の体積を4等分に分割するように図9に示した図と下に示す式(1)から、式(1)のAの値について解いて計算した。 FIG. 7A shows the microchannel structure used in the fourth example of the present invention. The microchannel structure was manufactured in the same manner as in Example 1. The depth of the micro channel is 20 μm, the channel width of the introduction channel (14) communicating from the introduction port (17) is about 100 μm, and the branch channel (10) has four discharge channels ( Branched 16). As shown in FIG. 7 (b), the width of the discharge channel is set such that the width of the two discharge channels on the outside is about 32 μm and the width of the two inner discharge channels is about 18 μm. The path is curved with a radius of curvature of 20 mm and the two outer discharge channels are curved with a radius of curvature of 15 mm, and are processed so as to gradually and gradually branch off from the branch part, and the tip of the branch part is opposite to the fluid traveling direction. A sharp angle was formed in the direction of a knife. Further, as shown in FIG. 7B, the flow path width of the 50 μm portion immediately before the branching portion was narrowed to 90 μm from both sides as in Example 1. Each width of the discharge channel is calculated from the figure shown in FIG. 9 and the formula (1) shown below so that the volume of the sphere when the droplet is a perfect sphere is divided into four equal parts. The value of A was solved and calculated.
すなわち、図9から、球の中心をとおるx軸を設定し、球のx軸に直角に横切る円の面積を積分することで、球の体積は求まる。円の半径は、x軸の変数xと球の半径rから三平方の定理で求まる。いま、図9の半径rの球が、幅2r、深さ2rの微小流路の中を通過すると仮定する。半球の部分の体積を2等分するxの座標をAとすると、座標Aは式(1)で求めることができる。すなわち、式(1)は球の中心からAまでの座標の球の体積と、座標Aから球の端rまでの球の体積が等しいこと示す式である。球の半径を1で正規化して解くと、Aは約0.34(34%)となる。例えば、流路幅が100μmの場合、球の半径は50μmに相当するので、50μmの34%の位置、すなわち微小流路の中心から17μmの位置で流路を仕切れば、球の片側半分の体積は、仕切り壁により半分に分割することができる、ということになる。 That is, from FIG. 9, the volume of a sphere can be obtained by setting the x-axis passing through the center of the sphere and integrating the area of a circle that intersects the sphere x-axis at right angles. The radius of the circle can be determined by the three square theorem from the x-axis variable x and the sphere radius r. Now, it is assumed that a sphere having a radius r in FIG. 9 passes through a microchannel having a width 2r and a depth 2r. If the coordinate of x that bisects the volume of the hemispherical part is A, the coordinate A can be obtained by equation (1). That is, Expression (1) is an expression indicating that the volume of the sphere having coordinates from the center of the sphere to A is equal to the volume of the sphere from coordinates A to the end r of the sphere. When the sphere radius is normalized by 1 and solved, A is about 0.34 (34%). For example, when the flow path width is 100 μm, the radius of the sphere corresponds to 50 μm. Therefore, if the flow path is partitioned at 34% of 50 μm, that is, 17 μm from the center of the micro flow path, the volume of one half of the sphere Can be divided in half by a partition wall.
微小粒子を含有した流体は実施例1と同様にジビニルベンゼンと酢酸ブチルからなる100μmの微小粒子を含有するポリビニルアルコール3%水溶液の流体を用い、実施例1と同様な方法により微小流路構造体の微小流路に導入した。送液速度は10μl/分で送液した。微小粒子は、安定した送液速度で導入流路(14)を経て分岐部で4分割された。 The fluid containing microparticles was a fluid of 3% polyvinyl alcohol solution containing 100 μm microparticles composed of divinylbenzene and butyl acetate as in Example 1, and a microchannel structure by the same method as in Example 1. Introduced into the microchannel. The liquid feeding speed was 10 μl / min. The fine particles were divided into four at the branching portion through the introduction flow path (14) at a stable liquid feeding speed.
得られた微小粒子を観察したところ球形の粒子であった。この微小粒子を100個とり、その粒径を測定したところ、平均粒子径約26μm、分散度は約9.2%であり、非常に均一な粒径分布の微小粒子であった。 Observation of the obtained fine particles revealed that the particles were spherical. When 100 fine particles were taken and the particle size was measured, the average particle size was about 26 μm, the degree of dispersion was about 9.2%, and the particles were very uniform in particle size distribution.
(比較例2)
本発明の第4の実施例に対する第2の比較例に用いた微小流路構造体を図10(a)に示した。流路構造体は実施例1と同様な手法で製作した。微小流路の深さは20μmとし、導入口(17)から連通する導入流路(14)の流路幅は約100μm、分岐部(10)において、導入流路から4つに排出流路(16)を分岐した。基本的には実施例4と同様な微小流路構造体であるが、排出流路の幅はすべて25μmとした。また、図10(b)に示すように内側2本の排出流路は曲率半径20mm、外側2本の排出流路は曲率半径15mmの曲線状とし、分岐部から緩やかに徐々に分岐していくように加工し、分岐部の先端は、流体の進行方向と逆向きにナイフ状に鋭角に形成した。また図10(b)に示すように、実施例1と同様に分岐部直前の50μmの部分の流路幅を90μmに両側から絞った形状とした。
(Comparative Example 2)
The microchannel structure used in the second comparative example with respect to the fourth embodiment of the present invention is shown in FIG. The flow channel structure was manufactured in the same manner as in Example 1. The depth of the micro channel is 20 μm, the channel width of the introduction channel (14) communicating from the introduction port (17) is about 100 μm, and the branch channel (10) has four discharge channels ( Branched 16). Basically, the microchannel structure is the same as in Example 4, but the widths of the discharge channels are all 25 μm. Further, as shown in FIG. 10B, the inner two discharge channels have a curved shape with a radius of curvature of 20 mm and the outer two discharge channels have a curved shape with a radius of curvature of 15 mm, and gradually and gradually branch from the branching portion. The tip of the branching portion was formed into a knife-like acute angle in the direction opposite to the fluid traveling direction. Further, as shown in FIG. 10B, the flow path width of the 50 μm portion immediately before the branching portion was narrowed to 90 μm from both sides as in Example 1.
微小粒子を含有した流体は実施例1と同様にジビニルベンゼンと酢酸ブチルからなる100μmの微小粒子を含有するポリビニルアルコール3%水溶液の流体を用い、実施例1と同様な方法により微小流路構造体の微小流路に導入した。送液速度は10μl/分で送液した。安定した送液流速状態で導入流路(14)を経て分岐部で4分割された微小粒子を100個とり、その粒径を測定したところ、微小粒子の平均粒径は約26μmであったが、粒径分布を示すピークが約35μm近傍と約15μm近傍に存在し、分散度は約38%となり、分散度20%以下の非常に均一な粒径分布の微小粒子を得ることはできなかった。 The fluid containing microparticles was a fluid of 3% polyvinyl alcohol solution containing 100 μm microparticles composed of divinylbenzene and butyl acetate as in Example 1, and a microchannel structure by the same method as in Example 1. Introduced into the microchannel. The liquid feeding speed was 10 μl / min. When 100 fine particles divided into four at the branching portion through the introduction channel (14) in a stable liquid flow rate state were taken and measured for the particle size, the average particle size of the fine particles was about 26 μm. The peaks indicating the particle size distribution are present in the vicinity of about 35 μm and about 15 μm, the degree of dispersion is about 38%, and it was impossible to obtain fine particles with a very uniform particle size distribution with a degree of dispersion of 20% or less. .
1:微小流路基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:合流部
7:分割前の微小粒子を示す理想球体
8:理想球体をY軸方向に均等の体積に4分割するための仕切り壁の位置
9:仕切り壁
10:分岐部
11:微小流路
12:小穴
13:第1の分岐部
14:導入流路
15:第1の分岐流路
16:排出流路
17:導入口
18:排出口
19:カバー体
20:ホルダー
21:フィレットジョイント
22:テフロン(登録商標)チューブ
23:マイクロシリンジポンプ
24:微小流路構造体
25:マイクロシリンジポンプドライバ
26:第2の分岐部
27:ビーカー
28:第2の分岐流路
29:第3の分岐部
30:第3の分岐流路A
31:第3の分岐流路B
32:第3の分岐流路C
33:第3の分岐流路D
34:第3の分岐流路E
35:第3の分岐流路F
36:第3の分岐流路G
37:第3の分岐流路H
1: Microchannel substrate 2: Continuous phase inlet port 3: Continuous phase inlet channel 4: Dispersed phase inlet port 5: Dispersed phase inlet channel 6: Junction portion 7:
31: Third branch flow path B
32: Third branch flow path C
33: Third branch flow path D
34: Third branch flow path E
35: Third branch flow path F
36: Third branch channel G
37: Third branch flow path H
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009277899A JP4973721B2 (en) | 2009-12-07 | 2009-12-07 | Microparticle structure and method for producing microparticles using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009277899A JP4973721B2 (en) | 2009-12-07 | 2009-12-07 | Microparticle structure and method for producing microparticles using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003160744A Division JP4453274B2 (en) | 2003-06-05 | 2003-06-05 | Microchannel structure and method for producing microparticles using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010058119A JP2010058119A (en) | 2010-03-18 |
JP4973721B2 true JP4973721B2 (en) | 2012-07-11 |
Family
ID=42185525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009277899A Expired - Fee Related JP4973721B2 (en) | 2009-12-07 | 2009-12-07 | Microparticle structure and method for producing microparticles using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4973721B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012109138A1 (en) * | 2011-02-07 | 2012-08-16 | President And Fellows Of Harvard College | Systems and methods for splitting droplets |
US9475013B2 (en) | 2012-02-08 | 2016-10-25 | President And Fellows Of Harvard College | Droplet formation using fluid breakup |
JP2018162990A (en) * | 2017-03-24 | 2018-10-18 | 株式会社エンプラス | Liquid handling device, liquid handling method, and liquid handling system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01234401A (en) * | 1988-03-15 | 1989-09-19 | Japan Synthetic Rubber Co Ltd | Production of polymer fine granule |
DE3916465A1 (en) * | 1989-05-20 | 1990-11-22 | Bayer Ag | PRODUCTION OF SPHERICAL DISPERSIONS BY CRYSTALLIZATION OF EMULSIONS |
JP2001109099A (en) * | 1999-10-06 | 2001-04-20 | Konica Corp | Heat developable photosensitive material |
DE10141526A1 (en) * | 2001-08-24 | 2003-04-17 | Zae Bayern Bayerisches Zentrum Fuer Angewandte Energieforschung Ev | Smallest amount of liquid distributor |
EP2283917B1 (en) * | 2002-05-09 | 2021-12-15 | The University of Chicago | Device for pressure-driven plug transport and reaction |
-
2009
- 2009-12-07 JP JP2009277899A patent/JP4973721B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010058119A (en) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vladisavljević et al. | Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery | |
CN104525286B (en) | The micro-fluidic chip of drop synchronous fusion is realized based on T-shaped passage | |
CN106140340B (en) | Micro-fluidic chip based on flow focusing type microchannel synthesis micro emulsion drop | |
Vladisavljević et al. | Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices | |
US8563325B1 (en) | Coaxial microreactor for particle synthesis | |
CN104084247B (en) | Elastic wall surface micro-fluidic chip based on T-shaped micro-channel | |
CN108525715B (en) | Micro-channel structure, micro-fluidic chip and method for quantitatively wrapping microspheres by liquid drops | |
CN104826674B (en) | Reverse-Y shaped channel microfluid chip for generating droplets | |
JP2005144356A (en) | Micro flow path structure and method for producing fine particle using the same | |
CN107970847B (en) | Plane bending passive micro mixer with double T-shaped inlet structure | |
CN108993622B (en) | Micro-fluidic chip for realizing collision of different combined liquid drops | |
JP4973721B2 (en) | Microparticle structure and method for producing microparticles using the same | |
JP2012223683A (en) | Fine particle separation apparatus and fine particle separation method | |
Vesperini et al. | Deformability-and size-based microcapsule sorting | |
JP5076742B2 (en) | Microchannel structure and microparticle manufacturing method using the same | |
US20200023324A1 (en) | Device and method for generating droplets | |
JP4453274B2 (en) | Microchannel structure and method for producing microparticles using the same | |
JP4639624B2 (en) | Micro channel structure | |
Afzal et al. | A review on microchannel fabrication methods and applications in large-scale and prospective industries | |
Zhou et al. | Controllable microdroplet splitting via additional lateral flow and its application in rapid synthesis of multi-scale microspheres | |
CN108212236A (en) | It is a kind of realize drop it is right/bubble is to the micro-fluidic chip that is synchronized with the movement and merges | |
JP4356312B2 (en) | Microchannel structure | |
EP2957338A1 (en) | Mixing of fluids | |
JP2011173119A (en) | Microchannel structure and solvent extraction method by micro channel structure | |
JP4470640B2 (en) | Fine particle manufacturing method and microchannel structure therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120313 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120326 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |