JP4968869B2 - Method for producing γ-aminobutyric acid - Google Patents
Method for producing γ-aminobutyric acidInfo
- Publication number
- JP4968869B2 JP4968869B2 JP2001178177A JP2001178177A JP4968869B2 JP 4968869 B2 JP4968869 B2 JP 4968869B2 JP 2001178177 A JP2001178177 A JP 2001178177A JP 2001178177 A JP2001178177 A JP 2001178177A JP 4968869 B2 JP4968869 B2 JP 4968869B2
- Authority
- JP
- Japan
- Prior art keywords
- aminobutyric acid
- product
- alcohol
- lactic acid
- produced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
Landscapes
- Fodder In General (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、γ−アミノ酪酸の製造方法、γ−アミノ酪酸を含有する食品又は飼料の製造方法、及びこの方法により得られる食品又は飼料に関する。
【0002】
【従来の技術】
蒸留酒及びアルコール製造過程の発酵醪を蒸留することにより副生するアルコール製造廃液は現在、家畜の飼料及び農地還元にその一部が使用されているが、その使用量も年々減少し、大部分は海洋に投棄されている。しかし、海洋投棄はロンドン条約の批准及び地球環境の保護の点から次第に困難になりつつある。アルコール製造廃液は排水処理に関する法律に基づいて処理しなければならないが、生物学的酸素要求量(BOD)が、米焼酎廃液で55,000〜68,000ppmと非常に高濃度である。アルコール製造廃液の処理方法としては、固液分離後、固形部分は濃縮及び/又は乾燥して焼却する方法、並びに液体部分は活性汚泥法、メタン発酵法、酵母処理法、又はこれらを組合せた方法を用いて微生物処理を行う方法等を挙げることができる。しかし、これらの方法を実施するにはいずれにおいても非常に大きな設備を必要とする欠点を有する。更に、糖蜜系の廃液においては、廃液中のメラノイジンを微生物処理により分解することが非常に困難であるという欠点も有する。
【0003】
アルコール製造廃液は穀類の分解物等からなる安全な素材なので、資源の再利用化による地球環境の保持の観点から有効利用することが多数試みられており、飼料、肥料、及び食品等への利用法が提案されている。例えば、肥料及び防虫剤への利用法、並びに食品への利用法が、それぞれ特開平5−168455号公報、及び特開昭63−258555号公報に開示されている。また、近年の健康食品ブームにより、アルコール製造廃液から機能性因子及び/又は機能性物質を単離する試みも行われている。これは乙類焼酎製造により副生するアルコール製造廃液について特によく行われており、豊富に含まれるクエン酸等の有機酸の健康食品への利用、抗酸化性、成長促進因子、α−トコフェロール、腸内細菌成長因子、抗脂肪肝作用、及び初代培養筋肉細胞成長促進等の生理活性物質の存在が報告されている〔化学と生物、第36巻、第2号、81〜82頁(1998年)〕。
【0004】
機能性物質の一つにγ−アミノ酪酸があり、これはグルタミン酸脱炭酸酵素の作用によりグルタミン酸から生成される。グルタミン酸脱炭酸酵素は微生物、植物、及び動物等に広く分布しており、哺乳動物では抑制性神経伝達との関連が示唆されている。γ−アミノ酪酸の機能としては、血圧降下作用、アルコール代謝促進作用、脳代謝促進作用、及び肥満防止作用が知られており、植物及び微生物由来のグルタミン酸脱炭酸酵素を作用させることにより得られるγ一アミノ酪酸高含有の様々な食品及びその製造方法が提案されている。
【0005】
植物由来のグルタミン酸脱炭酸酵素を作用させる方法として、未熟トマト、カボチャ、ニンジンの皮及びダイコンの磨砕物等を用いる方法が特開平3−224467号公報及び特開平3−244366号公報に開示されている。麹菌由来のものについては特開平11−103825号公報に、乳酸菌由来のものについては特開2000−14356号公報及び特開2000−210075号公報に開示されている。
【0006】
γ−アミノ酪酸を高生産する微生物の探索も行われており、最近ではグルタミン酸ナトリウムを添加した合成培地に乳酸菌を培養して3%以上生成させることができることが報告されている(日本農芸化学会誌、第75巻、臨時増刊号、第271頁・平成13年3月5日発行)。また、蒸煮大豆にリゾプス(Rhizopus)属に属するかびを用いて発酵後に嫌気処理することにより乾物100g当り1,000mg以上のγ−アミノ酪酸を含む大豆発酵物が得られたことが報告されている(日本農芸化学会誌、第75巻、臨時増刊号、第269頁、平成13年3月5日発行)。
【0007】
しかしながら、アルコール製造廃液からγ−アミノ酪酸を生成させる従来技術は現在まで見られない。また、天然物原料のみから得られるγ−アミノ酪酸を高含有する食品及び飼料の開発が求められていた。
【0008】
【発明が解決しようとする課題】
本発明の目的は、アルコール発酵により得られる物、又はその後処理物から選択した原料に乳酸菌を作用させることにより機能性物質であるγ−アミノ酪酸を製造する方法、該方法を製造工程に包含する食品又は飼料の製造方法、及びγ−アミノ酪酸を含有する食品又は飼料を提供することにある。
【0009】
【課題を解決するための手段】
本発明を概説すると、第1の発明は発酵法によるアルコール製造廃物である蒸留酒の製造により副生する残渣を原料に、γ−アミノ酪酸生成能を有するラクトバチルス ブレビス(Lactobacillus brevis)に属する乳酸菌を該原料1m1当り1×105〜2×109個作用させ、pHを4〜6に調整して、30〜37℃で1時間〜10日間培養することを特徴とするγ−アミノ酪酸の製造方法に関し、第2の発明は第1の発明を製造工程に包含する食品又は飼料の製造方法に関する。
【0010】
本発明者らは、天然物原料を用いてアルコール発酵により得られる物、又は
その後処理物より選択した原料(これらを総称する場合には、以下、アルコール発酵物等と略記する)に、微生物を作用させて有効利用する方法において鋭意検討を行った。その結果、アルコール発酵物等にγ−アミノ酪酸生成能を有する乳酸菌を作用させることにより、機能性物質であるγ−アミノ酪酸を多量に生産できること、更にアルコール発酵物等に30w/v%以下の範囲でL−グルタミン酸及び/又はその塩を添加することにより乳酸菌の生育阻害を起こさず、より高濃度のγ−アミノ酪酸を生産することができることを見出し、本発明の完成に至った。
【0011】
【発明の実施の形態】
以下に本発明について具体的に説明する。
本発明で用いるアルコール発酵により得られる物とは、穀類及び/又は糖類等を少なくとも原料の一部としてアルコール発酵させて得られる物であれば特に限定はなく、液状の物、固形状の物であってもよい。例えば、液状の物として、醪を挙げることができる。また、その後処理物とは、アルコール発酵以降の工程により得られる物であれば特に限定はない。その例としては、醪を固液分離することにより得られる液部、このときに副生する残渣、並びに醪を蒸留することにより副生する残渣を挙げることができる。これらの中で醪を固液分離することにより、又は醪を蒸留することにより副生する残渣(これらを総称する場合には、以下、アルコール製造廃物と略記する)を用いるのが好ましい。アルコール製造廃物には、乙類焼酎、甲類焼酎、泡盛、白酒、ウォッカ、ブランデー、ウィスキー、ラム酒、及びジン等の蒸留酒の製造により副生する残渣、廃糖蜜、トウモロコシ等の原料から発酵法によって工業用アルコール製造を行う際に生じる蒸留後の残渣、並びに清酒、ビール、ワイン等の醸造酒及びみりんの製造により副生する残渣等を示す。これらの中で蒸留酒の製造により副生する残渣を用いるのがより好ましく、米焼酎、麦焼酎、芋焼酎、蕎麦焼酎、黒糖焼酎、及び泡盛等の焼酎の製造により副生する残渣が特に好適である。
【0012】
アルコール製造廃物は、固液分離を行わなくても用いることができるが、固形分を除去した上清、及び固液分離後の固形分を水に懸濁したものも用いることができ、更にこれらの濃縮液を用いることもできる。醸造酒及びみりんの製造により生じる残渣はそのままでも用いることができるが、アルコール分を含み、且つ固形分の割合の高いものが多いので、水に懸濁したもの、これを固液分離することにより得られる上清、又はこれらに含有するアルコールを除去したものを用いることが好ましい。懸濁、固液分離、及びアルコール除去は常法に従って行えばよい。これらが、本発明における後処理物の例である。
【0013】
前述のアルコール発酵物等にγ−アミノ酪酸生成能を有する乳酸菌を作用させてγ−アミノ酪酸を製造することができる。本発明で用いる乳酸菌はγ−アミノ酪酸生成能を有するものであれば特に限定はないが、例としてラクトバチルス(Lactobacillus、以下、L.と略記する)属、ロイコノストック(Leuconostoc)属、ストレプトコッカス(Streptococcus)属、ペディオコッカス(Pediococcus)属、及びビフィドバクテリウム(Bifidobacterium)属等に属するものを挙げることができる。これらの中でもラクトバチルス属に属するものが好ましく、この例として、ラクトバチルス ブレビス(L.brevis)、ラクトバチルス ブルガリカス(L.bulgaricus)、ラクトバチルス デルブリッキ(L.delbrueckii)、ラクトバチルス レイヒマニー(L.leichmannii)、ラクトバチルス プランタラム(L.plantarum)、ラクトバチルス ラクティス(L.lactis)、ラクトバチルス ヘルベティカス(L.helveticus)、ラクトバチルス アシドフィラス(L.acidophilus)、ラクトバチルス カゼイ(L.casei)、及びラクトバチルス ファーメンタム(L.fermentum)等を挙げることができる。これらの中で特にラクトバチルス ブレビスに属するものが好ましく、この例として、ラクトバチルス ブレビスIFO−12005、ラクトバチルス ブレビスIFO−3345、ラクトバチルス ブレビスIFO−3960、及びラクトバチルス ブレビスIFO−12520等を挙げることができる。
【0014】
乳酸菌はあらかじめ前培養したものを用いるのが好ましい。前培養は乳酸菌が増殖できる培地であれば特に限定はないが、その例として、グルコース、ペプトン、及び酵母エキスをそれぞれ1w/v%含有し、pHを5.0に調整した培地を挙げることができる。また、アルコール発酵物等を培地として用いてもよい。
これらの培地にはグルタミン酸及び/又はその塩を添加して前培養を行うことが好ましい。前培養した乳酸菌懸濁液はそのまま作用させることができるが、作用させる前に前処理を行ってもよい。該前処理方法としては、集菌、洗浄、水等に懸濁、担体結合法若しくは架橋法等による固定化、又はこれらを組合せた方法がある。これらの方法は常法に従って行えばよい。
【0015】
アルコール発酵物等にグルタミン酸及び/又はその塩を添加して乳酸菌を作用させてもよい。基質の含量を増加させることによりより多くのγ−アミノ酪酸を生成させることができる。添加量は特に制限はないが、30w/v%以下が好ましく、0.0超〜10w/v%がより好ましい。30w/v%より高いと乳酸菌の生育が阻害される。添加する方法は一度に全量添加する方法、又は複数回に分けて添加する方法のどちらでもよい。前者では溶解度以上に添加しても乳酸菌の作用を阻害せず、後者における1回当りの添加量は適宜選択すればよい。添加する時期は乳酸菌を作用させる前、又は作用させている間のどちらでもよい。更に、アルコール発酵物等に窒素源、無機塩、及び/又はビタミン類等を添加してもよい。これらの添加により乳酸菌の作用を更に高めることができる。アルコール発酵物等を液状とする場合には、pHは3〜7、好ましくは4〜6に調整する。pHが3未満又は7より大きいと乳酸菌中のグルタミン酸脱炭酸酵素活性が阻害され、所望のγ−アミノ酪酸生成量に到達することができない。前述のように調製したアルコール発酵物等は滅菌処理を行うのが好ましい。滅菌処理方法については特に限定はないが、その例として、低温保持殺菌法、高温保持殺菌法、及び高温高圧滅菌法等を挙げることができる。
【0016】
アルコール発酵物等に乳酸菌を作用させる菌数は特に制限はないが、作用させる菌数が少ないと乳酸菌の増殖に時間を要するために雑菌汚染が起こりやすくなり、菌数が多いと前培養に手間がかかり、要する費用も高くなる。このため、アルコール発酵物等の1m1当り乳酸菌を1×105〜2×109個作用させることが好ましい。作用させる方法としては、通気、かくはん、静置、若しくはこれらの組合せ等により作用させるバッチ法、又は前述のような固定化処理を行った乳酸菌をカラム等に充填して作用させる連続法等により実施すればよく、作用させる温度は20〜45℃、好ましくは30〜37℃で、時間は1時間〜10日間で適宜選択すればよい。乳酸菌を作用させているときに起こるpHの変化に対しては酸又はアルカリでpH調整を行ってもよく、pHの測定及び調整は常法に従って行えばよい。
【0017】
アルコール発酵物等中のグルタミン酸及びγ−アミノ酪酸の測定は、以下のようにして行うことができる。
まず、測定試料に等量の3%スルホサリチル酸を加えて生じた沈殿を除去後、pH2.2のクエン酸緩衝液で希釈してアミノ酸自動分析装置L−8500A〔(株)日立製作所製〕で測定する。
【0018】
乳酸菌を作用させた後、γ−アミノ酪酸の単離、そのまま又は後処理を行ってもよい。単離方法は遠心分離法及びカラムクロマトグラフィー法等の常法により行うことができる。後処理法としては、沈降分離法、遠心分離法、若しくはろ過法等を用いた固液分離による未分解顯粒及び乳酸菌菌体等の除去、常圧若しくは減圧下での濃縮、膜分離法、活性炭処理法、若しくは合成吸着剤処理法等による脱色及び/又は脱臭、アルコール、食塩若しくは糖類等の添加、凍結乾燥法、真空乾燥法、泡沫層乾燥法、若しくは噴霧乾燥法等による乾燥、圧縮破砕法、剪断破砕法、衝撃破砕法、衝撃式粉砕法、爆砕処理法、若しくは超音波粉砕法等による粉末化、又はこれらの組合せ等を挙げることができ、これらの方法は常法に従って実施すればよい。
【0019】
このようにしてアルコール発酵物等から、γ−アミノ酪酸を含有する生成物を得ることができる(以下、生成物という)。本発明で用いるアルコール発酵物等は前述のように穀類等の天然の食品素材を原料として発酵を行った結果生じる物である。したがって、得られる生成物はそのまま摂取することができるだけでなく、天然物由来の食品又は飼料の素材となる。アルコール発酵物等にグルタミン酸及び/又はその塩を加えることによりアルコール発酵物等に極めて高い濃度のγ−アミノ酪酸を生成させることができ、この生成物も同様に食品又は飼料を製造することができる。更に、γ−アミノ酪酸は高血圧及び各種脳傷害治療薬として用いられているので、前述の生成物はこれらの治療薬としての利用が可能になる。
【0020】
本発明でいう食品には特に限定はないが、例として、栄養補助食品、調味液、飲料、漬物、ジャム、及び酒類等を挙げることができる。栄養補助食品は生成物をそのまま摂取することができるだけでなく、転動造粒法、かくはん造粒法、流動層造粒法、気流造粒法、押出し造粒法、圧縮成型造粒法、解砕造粒法、噴射造粒法、又は噴霧造粒法等により造粒して粒状の固形物とし、更に必要に応じて糖衣等でコーティングを行って摂取することもできる。また、カプセル剤、顆粒剤、ゼリー剤、及びドリンク剤等の形態で供給することができ、これらは常法に従って製造することができる。調味液は、調味料原料に生成物、麹及び/又はプロテアーゼ製剤、食塩、並びに水を加えてかくはんし、このまま又は醤油酵母及び醤油乳酸菌を添加して熟成後、ろ過、滓引き、活性炭処理、殺菌、及び充填することにより得ることができる。飲料の例として、炭酸飲料は、生成物、香味料及び酸味料と糖類を調合した調合液と、除鉄、脱塩、精密ろ過、及び脱気工程を経た水とを混合し、冷却、カーボネーション、及び充填する方法により得ることができる。マーマレードは以下のような方法で得ることができる。柑橘類を洗浄して剥皮し、果肉部と外皮に分離する。整形、細切、加熱、水晒工程を経た外皮と、果肉部を破砕、次いで裏漉工程を経て得た果汁を混合し、生成物及び砂糖を加えて加熱する。この後、充填、密封、殺菌、及び冷却を順次行うことにより得ることができる。漬物の製造においては、様々な添加物若しくは調味液を添加する工程に生成物を添加する、調味液の調合成分の少なくとも一部に生成物を用いる、又はこれらの組合せにより用いることができる。添加物には、食塩、米糠、唐辛子、昆布、赤しそ、酢酸、砂糖、みりん、酒粕、及びみりん粕等があり、調味液には赤辛味噌、みりん、砂糖及び旨味調味料等からなる調味味噌、醤油、醤油諸味、みりん等からなる調合醤油、酢酸、砂糖、水、食塩等からなる調合酢、並びに米麹、砂糖、みりん、食塩等からなる調味麹等がある。このようにして得られた食品は、機能性物質であるγ−アミノ酪酸を含み且つ香味の優れたものであり、高血圧予防効果、アルコール代謝促進効果、脳代謝促進効果、及び肥満防止効果等を有する機能性食品である。
【0021】
また、生成物を用いてγ−アミノ酪酸を含有する酒類を得ることができる。その種類には特に限定はないが、清酒、ワイン、及びビール等の醸造酒、焼酎、ウィスキー、ブランデー、ラム、ジン、及びウォッカ等の蒸留酒、みりん、本直し、リキュール、並びに雑酒等を挙げることができる。これらの酒類の製造中に生成物を少なくとも一回添加すればよく、添加量は適宜選択すればよい。添加する時期は醸造酒の場合では任意の時期でよいが、発酵後期以降が好ましく、発酵終了後がより好ましい。蒸留酒では蒸留後の任意の時期に添加すればよい。みりん及び本直しでは製品充填までの任意の時期に添加すればよい。リキュールではアルコール、酸味料、及び香料等と生成物を混合し、殺菌工程及び製品充填工程等を経て得ることができる。このようにして得られる酒類はγ−アミノ酪酸による機能性が付与され、香味に優れたものである。
【0022】
本発明でいう飼料とは家畜飼料、養殖飼料、及びペット飼料を示す。生成物はこのまま前述の飼料として用いることができる他、通常用いられる少なくとも1種類以上の他の飼料原料と配合及び/又は成型することにより得ることができる。家畜飼料の配合に用いる原料は、穀物、精穀副産物、豆類、種実類、油粕、農産副産物、魚粕、乳、ホエー、乾草、サイレージ、根菜、わら、カルシウム剤、リン剤、食塩等を挙げることができる。養殖飼料の原料としては、魚粉、油粕、コーングルテンミール、デンプン質、米糠、ビタミン、及びミネラル等を挙げることができる。配合量は家畜、養殖魚、及びペットの種類に応じて適宜配合すればよく、成型方法は常法に従って実施すればよい。このようにして得られる飼料はアルコール発酵物等由来であるためバランスの取れた栄養価の高いものであり、更にγ−アミノ酪酸及び乳酸菌菌体による機能性が付与される。
【0023】
かくして本発明により、アルコール発酵物等よりのγ−アミノ酪酸の製造方法、並びにγ−アミノ酪酸を含有する食品又は飼料を提供することができる。
【0024】
【実施例】
以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0025】
実施例1
米及び米麹を原料に用い、通常の二段仕込みによって発酵させた醪を減圧蒸留した後、pH5.0に調整した米焼酎廃液を得た。この米焼酎廃液1,000mlを2リットル容三角フラスコに入れて120℃で15分間高温高圧滅菌後、乳酸菌としてラクトバチルス ブレビス IFO−12005の前培養液10mlを接種して30℃で2日間静置培養した。前培養液は、培地(グルコース、ペプトン、酵母エキス、及びL−グルタミン酸それぞれ1w/v%、pH5.0)60mlを入れた100ml容三角フラスコに、前述の乳酸菌1白金棒接種し、30℃で2日間前培養することにより得た。静置培養後、10,000×gで30分間遠分離を行うことにより固液分離を行い、得られた上清をロータリーエバポレーターで減圧濃縮、凍結乾燥、及び粉砕を順次行って生成物を得た。乾燥物中のγ−アミノ酪酸含量は、2.1g/100g−乾物であった(以下、本発明1という)
【0026】
実施例2
麦及び麦麹を原料とし、実施例1と同様の方法で得られた麦焼酎廃液を1,000mlずつ2リットル容三角フラスコに分注し、これに表1に示す量のL−グルタミン酸モノナトリウム(Monosodium L−glutamate、以下、MSGという)をそれぞれ添加してpH5に調整後、120℃で15分間高温高圧滅菌した。これに実施例1と同様に前培養したラクトバチルス ブレビス IFO−12005の前培養液10mlを接種し、30℃で表1に示す日数静置培養した。培養中は時々培養液中のpHを測定し、pHが5〜6の範囲になるように11.6N塩酸で調整した。培養液を実施例1と同様に固液分離後、得られた上清を凍結乾燥及び粉砕した。この生成物100g当りのγ−アミノ酪酸含量を表1に示す。
【0027】
【表1】
【0028】
表1より、MSGを25g(本発明2)、50g(本発明3)、及び100g(本発明4)添加した麦焼酎廃液に乳酸菌を培養して得られたγ−アミノ酪酸は、それぞれ32、48、及び65g/100g−乾物であった。したがって、麦焼酎廃液にMSGを添加して乳酸菌を培養することによりγ−アミノ酪酸が著量生成されることが明らかになった。
【0029】
実施例3
本発明1に打錠機を用い、打錠時の圧力3,000Kg/cm2で常法に従い、1粒当り1gの粒状の固形物を作成した。該固形物は、アルコール製造廃液より得られたものであるので、アミノ酸、ビタミン、及びミネラル等の栄養価が高く、且つγ−アミノ酪酸を1粒当り21mg含有する天然原料由来の機能性を付与した栄養補助食品であり、食したところ香味の優れたものであった。
【0030】
実施例4
実施例1と同様にして米焼酎廃液からγ−アミノ酪酸含量が2.1g/100g−乾物の生成物を得た。該生成物を用い、表2に示す仕込配合で原材料を調合して95℃で殺菌後、1リットルのペットボトルに充填し、γ−アミノ酸含量0.05w/w%のみかん果汁入り飲料を得た。このようにして得られたみかん果汁入り飲料は、こく、旨味、及び濃厚感を呈する香味に優れたものであった。
【0031】
【表2】
【0032】
実施例5
濃口生揚げ醤油1リットルに本発明4を10g添加してγ−アミノ酪酸を強化した醤油を得た。この醤油の分析値は、γ−アミノ酪酸0.64w/v%、ブリックス度36.9、全窒素1.75w/v%、食塩16.8w/v%、直接還元糖3.5w/v%、pH4.5、アルコール2.6v/v%、日本醤油研究所による色度No.11、及び比重1.16であり、香味は添加前のものと遜色なかった。
【0033】
実施例6
電気透析装置で一部脱塩した魚醤油1リットルに本発明3を20g添加してγ−アミノ酪酸を強化した魚醤油を得た。この分析値は、γ−アミノ酪酸0.8w/v%、pH5.3、ホルモール窒素0.7w/v%、及び食塩19.5w/v%であり、香味は添加前のものと遜色なかった。
【0034】
実施例7
赤ワイン1リットルに本発明4を10g添加してγ−アミノ酪酸を強化したワイン様の酒類を得た。この酒類の分析値は、γ−アミノ酪酸0.65w/v%、アルコール分11.1v/v%、エキス分3.68w/v%、pH3.5、及び総酸(酒石酸換算)0.58w/v%であり、香味は添加前のものと遜色なかった。
【0035】
【発明の効果】
本発明によれば、穀類の分解物等の天然原料から成るアルコール発酵物等に乳酸菌を作用させることにより、機能性物質であるγ−アミノ酪酸を高濃度で生成させることができ、更にアルコール発酵物等にグルタミン酸及び/又はその塩を添加することにより、乳酸菌の生育を阻害することなく、γ−アミノ酪酸を生成させることができる。このようにして得られた生成物は栄養補助食品として摂取することができるだけでなく、医薬品原料として使用することも期待できる。本発明の生成物を食品又は飼料の製造に用いることにより、γ−アミノ酪酸を高含有する機能性食品及び機能性飼料を得ることができる。本発明はアルコール発酵物等の高度利用による資源再利用化を可能にしたものであり、更に廃棄物の量を減らし、地球環境の保全にも貢献できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing γ-aminobutyric acid, a method for producing a food or feed containing γ-aminobutyric acid, and a food or feed obtained by this method.
[0002]
[Prior art]
Alcohol production waste liquor by-produced by distilling distilled liquor and fermented rice cake in the alcohol production process is currently partly used for livestock feed and agricultural land reduction, but the amount used has also decreased year by year, Has been dumped into the ocean. However, ocean dumping is becoming increasingly difficult in terms of ratifying the London Convention and protecting the global environment. Alcohol production wastewater must be treated according to wastewater treatment laws, but the biological oxygen demand (BOD) is very high at 55,000-68,000 ppm in rice shochu wastewater. As a treatment method of alcohol production waste liquid, after solid-liquid separation, a solid part is concentrated and / or dried and incinerated, and a liquid part is an activated sludge method, a methane fermentation method, a yeast treatment method, or a combination thereof. And the like. However, any of these methods has the disadvantage of requiring very large equipment. Furthermore, the molasses-based waste liquid has a drawback that it is very difficult to decompose melanoidin in the waste liquid by microbial treatment.
[0003]
Alcohol production effluent is a safe material consisting of cereal degradation products, so many attempts have been made to effectively use it from the viewpoint of preserving the global environment by reusing resources, and it is used for feed, fertilizer, food, etc. A law has been proposed. For example, utilization methods for fertilizers and insect repellents and utilization methods for foods are disclosed in JP-A-5-168455 and JP-A-63-258555, respectively. In addition, due to the recent health food boom, attempts have been made to isolate functional factors and / or functional substances from alcohol production wastewater. This is particularly well done for alcohol production waste liquor that is produced as a by-product of oyster shochu production. Utilization of abundant organic acids such as citric acid in health foods, antioxidant properties, growth promoting factors, α-tocopherol, Presence of physiologically active substances such as enterobacterial growth factor, anti-fatty liver action, and promotion of primary cultured muscle cell growth has been reported [Chemistry and Biology, Vol. 36, No. 2, pp. 81-82 (1998) ]].
[0004]
One of the functional substances is γ-aminobutyric acid, which is produced from glutamic acid by the action of glutamic acid decarboxylase. Glutamate decarboxylase is widely distributed in microorganisms, plants, animals, and the like, and in mammals it has been suggested to be associated with inhibitory neurotransmission. As the function of γ-aminobutyric acid, blood pressure lowering action, alcohol metabolism promoting action, brain metabolism promoting action, and obesity preventing action are known, and γ obtained by acting plant and microorganism-derived glutamate decarboxylase Various foods containing a high amount of monoaminobutyric acid and methods for producing the same have been proposed.
[0005]
JP-A-3-224467 and JP-A-3-244366 disclose a method of using plant-derived glutamate decarboxylase, which uses immature tomatoes, pumpkins, carrot peels, ground radish and the like. Yes. Those derived from Aspergillus are disclosed in JP-A-11-103825, and those derived from lactic acid bacteria are disclosed in JP-A Nos. 2000-14356 and 2000-210075.
[0006]
Searching for microorganisms that produce high amounts of γ-aminobutyric acid has also been conducted, and recently it has been reported that lactic acid bacteria can be cultured in a synthetic medium supplemented with sodium glutamate to produce 3% or more (Journal of Japanese Society for Agricultural Chemistry) , Volume 75, Special Issue, Page 271, issued on March 5, 2001). In addition, it has been reported that fermented soybeans containing not less than 1,000 mg of γ-aminobutyric acid per 100 g of dry matter were obtained by anaerobic treatment after fermentation using fungi belonging to the genus Rhizopus on steamed soybeans. (Journal of Japanese Society for Agricultural Chemistry, Volume 75, Special Issue, Page 269, published on March 5, 2001).
[0007]
However, no conventional technology for producing γ-aminobutyric acid from alcohol production waste liquid has been found so far. Moreover, development of the foodstuff and feed containing high content of (gamma) -aminobutyric acid obtained only from a natural product raw material was calculated | required.
[0008]
[Problems to be solved by the invention]
The object of the present invention includes a method for producing γ-aminobutyric acid, which is a functional substance, by causing lactic acid bacteria to act on a raw material selected from alcohol fermentation or a processed product thereafter, and this method is included in the production process. It is in providing the manufacturing method of foodstuff or feed, and the foodstuff or feed containing (gamma) -aminobutyric acid.
[0009]
[Means for Solving the Problems]
Briefly describing the present invention, the first invention is a lactic acid bacterium belonging to Lactobacillus brevis having the ability to produce γ-aminobutyric acid, using as a raw material a residue produced as a by-product in the production of distilled liquor that is an alcohol production waste by fermentation. 1 × 10 5 to 2 × 10 9 per 1 m1 of the raw material, the pH is adjusted to 4 to 6, and the mixture is cultured at 30 to 37 ° C. for 1 hour to 10 days. relates to a manufacturing method, the second invention is related to method for producing food or feed comprising the manufacturing process of the first invention.
[0010]
The inventors of the present invention used a natural product raw material obtained by alcohol fermentation, or a raw material selected from processed products thereafter (hereinafter collectively referred to as an alcohol fermented product, etc.). We have intensively studied how to use it effectively. As a result, it is possible to produce a large amount of γ-aminobutyric acid as a functional substance by allowing lactic acid bacteria having the ability to produce γ-aminobutyric acid to act on alcohol fermented products and the like, and to alcohol fermented products and the like of 30 w / v% or less. By adding L-glutamic acid and / or a salt thereof within the range, it was found that growth inhibition of lactic acid bacteria was not caused and a higher concentration of γ-aminobutyric acid could be produced, and the present invention was completed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The product obtained by alcohol fermentation used in the present invention is not particularly limited as long as it is a product obtained by alcohol fermentation using cereals and / or sugars as at least a part of the raw material, and is a liquid product or a solid product. There may be. For example, a cocoon can be mentioned as a liquid thing. Further, the post-processed product is not particularly limited as long as it is a product obtained by a process after alcohol fermentation. Examples thereof include a liquid part obtained by solid-liquid separation of soot, a residue by-produced at this time, and a residue by-produced by distilling soot. Among these, it is preferable to use a residue produced as a by-product by solid-liquid separation of the soot or by distillation of the soot (hereinafter collectively referred to as alcohol production waste). Alcohol production waste is fermented from raw materials such as residue, waste molasses, corn, etc. produced by the production of distilled liquors such as oyster shochu, shellfish shochu, awamori, white liquor, vodka, brandy, whiskey, rum, and gin. The residue after distillation produced when industrial alcohol production is carried out by the method, the brewed liquor such as sake, beer and wine, and the residue by-produced by the production of mirin are shown. Among these, it is more preferable to use a residue produced as a by-product from the production of distilled liquor, and a residue produced as a by-product from the production of shochu such as rice shochu, barley shochu, shochu shochu, soba shochu, brown sugar shochu, and awamori is particularly suitable. It is.
[0012]
Alcohol production waste can be used without performing solid-liquid separation, but it is also possible to use a supernatant from which solids have been removed and a product obtained by suspending solids after solid-liquid separation in water. It is also possible to use a concentrated solution. Residues produced by the production of brewed liquor and mirin can be used as they are, but many of them contain alcohol and have a high percentage of solids, so those suspended in water can be separated by solid-liquid separation. It is preferable to use the supernatant obtained or from which the alcohol contained therein has been removed. Suspension, solid-liquid separation, and alcohol removal may be performed according to conventional methods. These are examples of the post-processed product in the present invention.
[0013]
Γ-aminobutyric acid can be produced by allowing lactic acid bacteria having the ability to produce γ-aminobutyric acid to act on the aforementioned alcohol fermented product. The lactic acid bacterium used in the present invention is not particularly limited as long as it has the ability to produce γ-aminobutyric acid. Examples thereof include Lactobacillus (hereinafter abbreviated as L.), Leuconostoc, Streptococcus. Examples include those belonging to the genus (Streptococcus), the genus Pediococcus, the genus Bifidobacterium and the like. Among these, those belonging to the genus Lactobacillus are preferred, and examples thereof include Lactobacillus brevis (L. brevis), Lactobacillus bulgaricus (L. bulgaricus), Lactobacillus delbreckii (L. delbrueckii), Lactobacillus reichmannii (L. leichmannii), Lactobacillus plantarum (L. plantarum), Lactobacillus lactis (L. lactis), Lactobacillus helveticus (L. heliceticus), Lactobacillus acidophilus (L. acidophilus), Lactobacillus casei (L. casei) Lactobacillus fermentum (L. fermentum) etc. can be mentioned. Among these, those belonging to Lactobacillus brevis are particularly preferred, and examples thereof include Lactobacillus brevis IFO-12005, Lactobacillus brevis IFO-3345, Lactobacillus brevis IFO-3960, and Lactobacillus brevis IFO-12520. Can do.
[0014]
Lactic acid bacteria are preferably pre-cultured. The preculture is not particularly limited as long as it is a medium in which lactic acid bacteria can grow. Examples thereof include a medium containing 1 w / v% of glucose, peptone, and yeast extract and adjusted to pH 5.0. it can. Moreover, you may use alcohol fermented material etc. as a culture medium.
These media are preferably precultured with glutamic acid and / or a salt thereof. The pre-cultured lactic acid bacteria suspension can be allowed to act as it is, but pretreatment may be performed before the suspension. Examples of the pretreatment method include collection of bacteria, washing, suspension in water, etc., immobilization by a carrier binding method or a crosslinking method, or a combination of these. These methods may be carried out according to conventional methods.
[0015]
Lactic acid bacteria may be allowed to act by adding glutamic acid and / or a salt thereof to a fermented alcohol product or the like. More γ-aminobutyric acid can be produced by increasing the substrate content. Although there is no restriction | limiting in particular in addition amount, 30 w / v% or less is preferable and more than 0.0-10 w / v% is more preferable. If it is higher than 30 w / v%, the growth of lactic acid bacteria is inhibited. The method of adding may be either the method of adding the whole amount at once or the method of adding in multiple times. In the former case, the addition of more than the solubility does not inhibit the action of lactic acid bacteria, and the addition amount per time in the latter may be appropriately selected. The timing of addition may be either before or during the action of lactic acid bacteria. Furthermore, you may add a nitrogen source, an inorganic salt, and / or vitamins etc. to alcohol fermented material. Addition of these can further enhance the action of lactic acid bacteria. When making alcohol fermented products etc. into a liquid state, pH is adjusted to 3-7, Preferably it is 4-6. If the pH is less than 3 or greater than 7, the glutamic acid decarboxylase activity in lactic acid bacteria is inhibited, and the desired amount of γ-aminobutyric acid produced cannot be reached. The alcohol fermented product prepared as described above is preferably sterilized. The sterilization method is not particularly limited, and examples thereof include a low temperature holding sterilization method, a high temperature holding sterilization method, and a high temperature high pressure sterilization method.
[0016]
The number of bacteria that cause lactic acid bacteria to act on alcohol fermented products is not particularly limited. However, if the number of bacteria to be applied is small, it takes time for the lactic acid bacteria to grow, so contamination with bacteria tends to occur. And the cost is high. For this reason, it is preferable to cause 1 × 10 5 to 2 × 10 9 lactic acid bacteria to act per 1 ml of alcohol fermented product. As a method of action, it is carried out by a batch method in which aeration, agitation, standing, or a combination thereof is applied, or a continuous method in which a lactic acid bacterium having been subjected to the above-described immobilization treatment is filled in a column or the like. The working temperature is 20 to 45 ° C., preferably 30 to 37 ° C., and the time may be appropriately selected from 1 hour to 10 days. For changes in pH that occur when lactic acid bacteria are allowed to act, pH adjustment may be carried out with acid or alkali, and pH measurement and adjustment may be carried out according to conventional methods.
[0017]
Measurement of glutamic acid and γ-aminobutyric acid in alcohol fermented products and the like can be performed as follows.
First, an equal amount of 3% sulfosalicylic acid was added to the measurement sample to remove the generated precipitate, which was then diluted with a pH 2.2 citrate buffer, and the amino acid automatic analyzer L-8500A (manufactured by Hitachi, Ltd.) was used. taking measurement.
[0018]
After lactic acid bacteria are allowed to act, γ-aminobutyric acid may be isolated, as it is, or after-treatment. The isolation method can be performed by a conventional method such as a centrifugal separation method or a column chromatography method. Post-treatment methods include sedimentation separation, centrifugation, or removal of undegraded granules and lactic acid bacteria by solid-liquid separation using filtration, concentration under normal or reduced pressure, membrane separation, Decolorization and / or deodorization by activated carbon treatment method or synthetic adsorbent treatment method, addition of alcohol, salt or sugar, freeze drying method, vacuum drying method, foam layer drying method, spray drying method, etc., compression crushing Pulverization method, shear crushing method, impact crushing method, impact crushing method, explosion crushing method, ultrasonic crushing method, etc., or a combination thereof, etc. Good.
[0019]
In this way, a product containing γ-aminobutyric acid can be obtained from the fermented alcohol or the like (hereinafter referred to as product). As described above, the fermented alcohol used in the present invention is a product resulting from fermentation using a natural food material such as cereal as a raw material. Therefore, the product obtained can be ingested as it is, and becomes a food or feed material derived from natural products. By adding glutamic acid and / or a salt thereof to an alcohol fermented product or the like, an extremely high concentration of γ-aminobutyric acid can be produced in the alcohol fermented product or the like, and this product can also produce food or feed in the same manner. . Furthermore, since γ-aminobutyric acid is used as a therapeutic agent for hypertension and various brain injuries, the aforementioned products can be used as these therapeutic agents.
[0020]
The food as used in the present invention is not particularly limited, and examples thereof include nutritional supplements, seasonings, beverages, pickles, jams, and alcoholic beverages. Nutritional supplements can not only consume the product as it is, but also rolling granulation method, stirring granulation method, fluidized bed granulation method, air flow granulation method, extrusion granulation method, compression molding granulation method, It can be granulated by the granulation method, spray granulation method, spray granulation method or the like to form a granular solid, and if necessary, can be ingested by coating with sugar coating or the like. Moreover, it can supply with forms, such as a capsule, a granule, a jelly agent, and a drink, These can be manufactured in accordance with a conventional method. The seasoning liquid is stirred by adding the product, koji and / or protease preparation, salt, and water to the seasoning raw material, and after aging by adding the soy sauce yeast and soy sauce lactic acid bacteria as it is, filtering, kneading, activated carbon treatment, It can be obtained by sterilization and filling. As an example of a beverage, carbonated beverages are prepared by mixing a product prepared by mixing products, flavors and acidulants and sugars with water that has undergone iron removal, desalting, microfiltration, and deaeration processes, cooling, Nation and filling methods can be used. Marmalade can be obtained by the following method. The citrus fruits are washed and peeled, and separated into a pulp part and an outer skin. The outer skin that has undergone the shaping, shredding, heating, and water-bleaching steps is mixed with the fruit juice obtained by crushing, and then the back cocoon process, and the product and sugar are added and heated. Thereafter, filling, sealing, sterilization, and cooling can be sequentially performed. In the production of pickles, the product can be added to the step of adding various additives or seasoning liquids, the products can be used for at least some of the ingredients of the seasoning liquids, or a combination thereof. Additives include salt, rice bran, chili pepper, kelp, red shiso, acetic acid, sugar, mirin, sake lees, and mirin miso. Seasonings include miso, mirin, sugar and umami seasonings. , Soy sauce, soy sauce moromi, mixed soy sauce made from mirin, etc., mixed vinegar made from acetic acid, sugar, water, salt, etc., and seasoned rice cake made from rice bran, sugar, mirin, salt, etc. The food product thus obtained contains γ-aminobutyric acid, which is a functional substance, and has an excellent flavor, and has an antihypertensive effect, an alcohol metabolism promoting effect, a brain metabolism promoting effect, an obesity preventing effect and the like. It is a functional food.
[0021]
Moreover, liquor containing (gamma) -aminobutyric acid can be obtained using a product. There are no particular restrictions on the type, but sake, wine, beer and other brewed sake, shochu, whiskey, brandy, rum, gin, vodka and other distilled liquor, mirin, reconstitution, liqueur, miscellaneous sake, etc. Can be mentioned. During the production of these alcoholic beverages, the product may be added at least once, and the addition amount may be appropriately selected. In the case of brewed liquor, the timing of addition may be any time, but it is preferably after the late stage of fermentation, more preferably after the end of fermentation. In distilled liquor, it may be added at any time after distillation. In mirin and refurbishment, it may be added at any time until product filling. In liqueurs, products such as alcohol, acidulant, fragrance, and the like can be mixed and obtained through a sterilization step, a product filling step, and the like. The alcoholic beverages obtained in this manner are imparted with functionality by γ-aminobutyric acid and have excellent flavor.
[0022]
The feed as used in the present invention refers to livestock feed, cultured feed, and pet feed. The product can be used as the above-mentioned feed as it is, or can be obtained by blending and / or molding with at least one or more other feed ingredients that are usually used. Raw materials used for blending livestock feed include cereals, grain by-products, beans, seeds, oil cake, agricultural by-products, fish cake, milk, whey, hay, silage, root vegetables, straw, calcium, phosphorus, salt, etc. be able to. Examples of the raw material for cultured feed include fish meal, oil cake, corn gluten meal, starch, rice bran, vitamins, and minerals. What is necessary is just to mix | blend suitably according to the kind of livestock, aquaculture fish, and a pet, and a shaping | molding method should just implement according to a conventional method. Since the feed obtained in this way is derived from an alcohol fermented product or the like, it has a balanced and high nutritional value, and is further provided with functionality by γ-aminobutyric acid and lactic acid bacteria.
[0023]
Thus, according to the present invention, it is possible to provide a method for producing γ-aminobutyric acid from a fermented alcohol or the like, and a food or feed containing γ-aminobutyric acid.
[0024]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0025]
Example 1
Rice and rice bran were used as raw materials, and the rice bran fermented by ordinary two-stage charging was distilled under reduced pressure, and then a rice shochu waste liquid adjusted to pH 5.0 was obtained. 1,000 ml of this rice shochu waste liquid is placed in a 2 liter Erlenmeyer flask and sterilized at 120 ° C. for 15 minutes at high temperature and high pressure, then inoculated with 10 ml of a pre-culture solution of Lactobacillus brevis IFO-12005 as a lactic acid bacterium and left at 30 ° C. for 2 days. Cultured. The pre-culture solution was inoculated into a 100 ml Erlenmeyer flask containing 60 ml of a medium (glucose, peptone, yeast extract, and L-glutamic acid, 1 w / v%, pH 5.0, respectively) at 30 ° C. It was obtained by pre-culturing for 2 days. After stationary culture, solid-liquid separation is performed by performing far separation at 10,000 × g for 30 minutes, and the resulting supernatant is successively subjected to vacuum concentration, lyophilization, and pulverization with a rotary evaporator to obtain a product. It was. The content of γ-aminobutyric acid in the dried product was 2.1 g / 100 g-dry product (hereinafter referred to as the present invention 1).
[0026]
Example 2
Using wheat and wheat straw as raw materials, the barley shochu waste liquid obtained in the same manner as in Example 1 was dispensed in 1,000 ml portions into a 2-liter Erlenmeyer flask, and the amount of monosodium L-glutamate shown in Table 1 was added thereto. (Monosodium L-glutamate, hereinafter referred to as MSG) was added to adjust the pH to 5, and then sterilized at 120 ° C. for 15 minutes at high temperature and high pressure. This was inoculated with 10 ml of the precultured Lactobacillus brevis IFO-12005 precultured in the same manner as in Example 1 and cultured at 30 ° C for the number of days shown in Table 1. During the cultivation, the pH in the culture solution was sometimes measured and adjusted with 11.6N hydrochloric acid so that the pH was in the range of 5-6. The culture solution was subjected to solid-liquid separation in the same manner as in Example 1, and the obtained supernatant was freeze-dried and pulverized. The γ-aminobutyric acid content per 100 g of this product is shown in Table 1.
[0027]
[Table 1]
[0028]
From Table 1, γ-aminobutyric acid obtained by culturing lactic acid bacteria in a barley shochu liquor added with 25 g (present invention 2), 50 g (present invention 3), and 100 g (present invention 4) of MSG is 32, 48 and 65 g / 100 g-dry matter. Therefore, it was clarified that γ-aminobutyric acid was produced in a significant amount by culturing lactic acid bacteria by adding MSG to the wheat shochu waste liquid.
[0029]
Example 3
Using the tableting machine of the present invention 1, a granular solid of 1 g per tablet was prepared according to a conventional method at a pressure of 3,000 kg / cm 2 during tableting. Since the solid is obtained from the alcohol production waste liquid, it has high nutritional value such as amino acids, vitamins and minerals, and imparts functionality derived from natural raw materials containing 21 mg of γ-aminobutyric acid per grain. It was a nutritional supplement, and it was excellent in flavor when eaten.
[0030]
Example 4
In the same manner as in Example 1, a product having a gamma-aminobutyric acid content of 2.1 g / 100 g-dry matter was obtained from the rice shochu waste liquor. Using this product, the raw materials were prepared according to the formulation shown in Table 2 and sterilized at 95 ° C., and then filled into a 1 liter PET bottle to obtain a beverage containing only γ-amino acid content 0.05 w / w% in orange juice. It was. The orange juice-containing beverage thus obtained was excellent in richness, umami, and flavor with a rich feeling.
[0031]
[Table 2]
[0032]
Example 5
10 g of the present invention 4 was added to 1 liter of deep-fried deep-fried soy sauce to obtain a soy sauce enriched with γ-aminobutyric acid. The analytical values of this soy sauce were as follows: γ-aminobutyric acid 0.64 w / v%, Brix degree 36.9, total nitrogen 1.75 w / v%, salt 16.8 w / v%, direct reducing sugar 3.5 w / v% , PH 4.5, alcohol 2.6 v / v%, chromaticity no. 11 and a specific gravity of 1.16, and the flavor was not inferior to that before the addition.
[0033]
Example 6
20 g of the present invention 3 was added to 1 liter of fish soy sauce partially desalted with an electrodialyzer to obtain fish soy sauce enriched with γ-aminobutyric acid. This analytical value was γ-aminobutyric acid 0.8 w / v%, pH 5.3, formol nitrogen 0.7 w / v%, and sodium chloride 19.5 w / v%, and the flavor was comparable to that before addition. .
[0034]
Example 7
10 g of the present invention 4 was added to 1 liter of red wine to obtain a wine-like liquor enriched with γ-aminobutyric acid. Analyzed values of this liquor were: γ-aminobutyric acid 0.65 w / v%, alcohol content 11.1 v / v%, extract content 3.68 w / v%, pH 3.5, and total acid (tartaric acid equivalent) 0.58 w. The flavor was not inferior to that before addition.
[0035]
【Effect of the invention】
According to the present invention, lactic acid bacteria can be allowed to act on alcohol fermented products made of natural raw materials such as cereal decomposition products, so that a functional substance γ-aminobutyric acid can be produced at a high concentration. By adding glutamic acid and / or a salt thereof to a product or the like, γ-aminobutyric acid can be produced without inhibiting the growth of lactic acid bacteria. The product thus obtained can be used not only as a dietary supplement but also as a raw material for pharmaceuticals. By using the product of the present invention for the production of food or feed, a functional food and a functional feed containing a high content of γ-aminobutyric acid can be obtained. The present invention makes it possible to reuse resources by advanced utilization of alcohol fermented products, etc., and further contribute to the conservation of the global environment by reducing the amount of waste.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001178177A JP4968869B2 (en) | 2001-06-13 | 2001-06-13 | Method for producing γ-aminobutyric acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001178177A JP4968869B2 (en) | 2001-06-13 | 2001-06-13 | Method for producing γ-aminobutyric acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002360289A JP2002360289A (en) | 2002-12-17 |
JP4968869B2 true JP4968869B2 (en) | 2012-07-04 |
Family
ID=19018918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001178177A Expired - Lifetime JP4968869B2 (en) | 2001-06-13 | 2001-06-13 | Method for producing γ-aminobutyric acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4968869B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004298080A (en) * | 2003-03-31 | 2004-10-28 | Fisheries Research Agency | Feed for fish and shellfish, and method for producing the same |
JP2005065691A (en) * | 2003-08-06 | 2005-03-17 | Akita Prefecture | COMPOSITION CONTAINING gamma-AMINOBUTYRIC ACID AND METHOD FOR MANUFACTURING THE SAME |
JP2005198578A (en) * | 2004-01-16 | 2005-07-28 | Ehime Prefecture | METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID AND FERMENTED LIQUID YIELDED THEREBY |
KR101255360B1 (en) | 2004-11-12 | 2013-04-17 | 카오카부시키가이샤 | Liquid seasoning |
JP4630042B2 (en) | 2004-11-12 | 2011-02-09 | 花王株式会社 | Liquid seasoning |
JP4921721B2 (en) * | 2005-03-14 | 2012-04-25 | ヤマモリ株式会社 | Production method of functional food |
KR100683948B1 (en) * | 2005-12-27 | 2007-02-16 | 씨제이 주식회사 | MEDIUM COMPRISING GOCHUJANG-FERMENTATION OR SOYBEAN SAUCE AND PRODUCTION METHOD OF gamma;-AMINOBUTYRIC ACID |
TW200811288A (en) | 2006-02-21 | 2008-03-01 | Kikkoman Corp | Lactic acid bacterium capable of producing gamma-aminobutyric acid |
JP5196094B2 (en) * | 2006-06-02 | 2013-05-15 | 独立行政法人農業・食品産業技術総合研究機構 | Feed containing γ-aminobutyric acid-containing composition and method for producing the same |
JP2008017703A (en) * | 2006-07-10 | 2008-01-31 | Unitika Ltd | METHOD FOR PRODUCING FOOD COMPRISING gamma-AMINOBUTYRIC ACID AND ORNITHINE |
ITRM20070398A1 (en) * | 2007-07-17 | 2009-01-18 | Giuliani Spa | PROCEDURE FOR THE PREPARATION OF BUTIRRIC GAMMA-AMINO ACID (GABA) THROUGH LACTIC BACTERIA (LAB) ON AGRO-FOOD SURPLUS. |
JP5035679B2 (en) * | 2007-08-14 | 2012-09-26 | 沖縄県 | Sugarcane fermented product and brown sugar-like food produced therefrom |
JP6425840B1 (en) * | 2018-01-16 | 2018-11-21 | 株式会社トーテン | Method of treating shochu, and processing apparatus of shochu |
JP7259181B2 (en) * | 2018-08-31 | 2023-04-18 | ハウスウェルネスフーズ株式会社 | Food composition containing amino acid fermentation product |
JP2022166792A (en) * | 2021-04-21 | 2022-11-02 | 陽太郎 金田 | Long term storage and cost reduction of pulverized unhulled rice for feed to which lactic acid bacteria are added |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2704493B2 (en) * | 1994-02-18 | 1998-01-26 | 京都府 | Production method of fermented food |
JPH08308590A (en) * | 1995-05-18 | 1996-11-26 | Fukuoka Pref Gov | Production of poly-gamma-gultamic acid |
JP2000032923A (en) * | 1998-07-21 | 2000-02-02 | Chugoku National Agricultural Experiment Station | Fodder and its production |
JP4332247B2 (en) * | 1999-01-21 | 2009-09-16 | 大洋香料株式会社 | A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. |
JP3527661B2 (en) * | 1999-06-04 | 2004-05-17 | 三和酒類株式会社 | Culture medium for lactic acid bacteria separated from barley shochu distillation residue |
-
2001
- 2001-06-13 JP JP2001178177A patent/JP4968869B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002360289A (en) | 2002-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102379410B (en) | Method for preparing nutritious flavoring by using shellfishes and by-products of shellfishes | |
JP4968869B2 (en) | Method for producing γ-aminobutyric acid | |
JP2004313032A (en) | Method for producing functional raw material | |
JP2021526861A (en) | A method for growing mycelium of fungi and then forming edible products | |
CA2359338C (en) | Bacillus subtilis takemi and use thereof | |
JP2003259835A (en) | Production of fermented product and its utilization | |
KR20030005268A (en) | Cultured protein hydrolysate | |
CN101300341B (en) | Lactic acid bacterium having immunoregulatory activity derived from moromi for wine fermentation | |
JP2004215529A (en) | Method for producing lactic acid bacterium fermentation food product, beverage product, and seasoned food product all having good flavor and high gaba content | |
CN115777921B (en) | Preparation method of functional fruit and vegetable pulp and solid powder by composite strain fermentation | |
JP2004345986A (en) | Fermented material and method for producing the same | |
JP2002300862A (en) | METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID-CONTAINING NATURAL FOOD MATERIAL | |
JP2001204405A (en) | Method for producing cabbage syrup and use thereof | |
JP2008017703A (en) | METHOD FOR PRODUCING FOOD COMPRISING gamma-AMINOBUTYRIC ACID AND ORNITHINE | |
KR20120093645A (en) | Korean sauce and paste using salted liquefied pacific saury and process for preparing the same | |
KR101439321B1 (en) | Functional pear fermented liquid using by-product of pear processing and its application method | |
JPH07227245A (en) | Production of fermented food product | |
KR20130001560A (en) | Process for preparing yacon pickle | |
CN1104051A (en) | Perfume | |
JPH11103825A (en) | Production of food rich in gamma-aminobutyric acid using aspergillus oryzae | |
KR101195590B1 (en) | manufacturing method for feedstuff containing by-product of salted fish sauce | |
JP2004350570A (en) | Wort and malt extract, method for producing the same and non-alcoholic food and drink containing the same | |
KR100418687B1 (en) | METHOD FOR PREPARING KIMCHI CONTAINING γ- AMINO BUTYLIC ACID IN GREAT QUANTITIES | |
WO2007094317A1 (en) | Vinegar and method of producing the same | |
JP3354528B2 (en) | Citric acid-containing beverage and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110225 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120402 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |