[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4968533B2 - Copper alloy material for electrical and electronic parts - Google Patents

Copper alloy material for electrical and electronic parts Download PDF

Info

Publication number
JP4968533B2
JP4968533B2 JP2007309651A JP2007309651A JP4968533B2 JP 4968533 B2 JP4968533 B2 JP 4968533B2 JP 2007309651 A JP2007309651 A JP 2007309651A JP 2007309651 A JP2007309651 A JP 2007309651A JP 4968533 B2 JP4968533 B2 JP 4968533B2
Authority
JP
Japan
Prior art keywords
orientation
copper alloy
electronic parts
alloy material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007309651A
Other languages
Japanese (ja)
Other versions
JP2009132965A (en
Inventor
佳紀 山本
登 萩原
慶平 ▲冬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007309651A priority Critical patent/JP4968533B2/en
Publication of JP2009132965A publication Critical patent/JP2009132965A/en
Application granted granted Critical
Publication of JP4968533B2 publication Critical patent/JP4968533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、コネクタや電気接点等のような電気電子部品用の金属材料として好適な、導電性、機械的強度、曲げ加工性等の材質的特質を備えた電気・電子部品用銅合金材に関する。   The present invention relates to a copper alloy material for electrical / electronic parts having material characteristics such as electrical conductivity, mechanical strength, and bending workability, which is suitable as a metal material for electrical / electronic parts such as connectors and electrical contacts. .

コネクタ、リレー、スイッチのような電気・電子部品用の、主にばね材や接点材として用いられる金属材料には、高い接触圧を得るための十分な強度や高温下で長期間使用しても接触圧を維持できるような強度、通電時のジュ−ル熱発生を抑えると共に発生した熱を放散しやすくするための高導電性、複雑な曲げ加工においても割れ等の損傷を生じない曲げ加工性など、種々の特性が要求される。
近年、電気・電子部品の小型化に伴って、それに用いられる金属材料中を流れる電流の密度は、さらに増大する傾向にある。これに対応するために、電気・電子部品用の金属材料には、益々、高い導電性を確保することが要請されるようになって来ている。
また、いわゆる車載用の電気・電子部品においては、より高温環境下での使用に耐えることが要請されるので、耐応力緩和性をさらに高いものとすることが要請される。
Metal materials that are mainly used as spring materials and contact materials for electrical and electronic parts such as connectors, relays, and switches can be used for long periods of time at high strength and high temperatures to obtain high contact pressure. Strength to maintain contact pressure, high conductivity to suppress the generation of joule heat during energization and easy dissipation of generated heat, bending workability that does not cause damage such as cracking even in complicated bending processes Various characteristics are required.
In recent years, with the miniaturization of electrical / electronic components, the density of current flowing in the metal material used for the electronic / electronic components tends to further increase. In order to cope with this, it is increasingly demanded that metal materials for electric and electronic parts have high conductivity.
In addition, so-called in-vehicle electric / electronic parts are required to withstand use in a higher temperature environment, and therefore are required to have higher stress relaxation resistance.

ところが、このような電気・電子部品用の金属材料には、従来から黄銅や、りん青銅などのような、いわゆるばね材が使用されてきたが、上記のようなさらに高い導電性や耐応力緩和性等の要求を十分に満たすことは、ますます困難になってきている。   However, so-called spring materials, such as brass and phosphor bronze, have been used for such metal materials for electric and electronic parts, but higher conductivity and stress relaxation as described above. It has become increasingly difficult to fully satisfy the demands of sex.

そこで、上記のような高い導電性および耐応力緩和性の要求に対応可能な金属材料の有力な候補の一つとして、Cu−Cr−Zr系の合金が提案されている(特許文献1)。
Cu−Cr−Zr系合金は一般に、合金成分であるCrやZrが単独あるいは化合物の形で母相中に析出する析出硬化型の合金であり、70%IACSを超える高い導電率を達成可能であり、また耐応力緩和性についても従来の例えばリン青銅等を超える優れた特性を発揮可能であることが知られている。
しかし、同様の析出硬化型合金であるCu−Ni−Si系などと比べて、析出硬化による強度の上昇が小さい。このため、冷間圧延を行って加工硬化させ、析出硬化と加工硬化とを併用することによって強度を向上させるという方法が採用されている。
斯様なCu−Cr−Zr系合金において、上記のような高い接触圧を得るための十分な強度を達成するためには、冷間圧延の加工度をさらに高めて加工硬化させることが必要になる。しかし、そのような加工度の大幅な増加は、材料の延性低下を不可避的に伴うので、曲げ加工性を悪化させてしまう傾向にある。
Therefore, a Cu—Cr—Zr-based alloy has been proposed as one of the promising candidates for metal materials that can meet the demands for high conductivity and stress relaxation resistance as described above (Patent Document 1).
A Cu—Cr—Zr alloy is generally a precipitation hardening type alloy in which the alloy components Cr and Zr are precipitated in the matrix alone or in the form of a compound, and can achieve a high conductivity exceeding 70% IACS. In addition, it is known that the stress relaxation resistance can exhibit excellent characteristics exceeding those of conventional phosphor bronze, for example.
However, the increase in strength due to precipitation hardening is small as compared with Cu-Ni-Si series and the like, which are similar precipitation hardening type alloys. For this reason, a method is adopted in which cold rolling is performed and work hardening is performed, and strength is improved by using both precipitation hardening and work hardening.
In such a Cu-Cr-Zr-based alloy, in order to achieve sufficient strength to obtain the high contact pressure as described above, it is necessary to further increase the workability of cold rolling and to work harden it. Become. However, such a large increase in workability is inevitably accompanied by a decrease in the ductility of the material, and therefore tends to deteriorate the bending workability.

このように、電気・電子部品用として好適なCu−Cr−Zr系合金材を製造するためには、その合金材の延性低下に因る曲げ加工性の悪化を最小限に抑えつつ、加工硬化による強度向上を図る必要があるが、これは実際上、極めて困難であった。
ここで、曲げ加工性を維持しつつ加工硬化を進める手法としては、Cu−Fe−P系合
金について、その代表的な集合組織であるBrass方位、S方位、Copper方位の方位分布密度を適切な値に調節することにより、高強度と曲げ加工性との両立を達成する、という手法が提案されている(特許文献2)。
Thus, in order to produce a Cu—Cr—Zr alloy material suitable for electric / electronic parts, work hardening while minimizing the deterioration of bending workability due to the ductility reduction of the alloy material. Although it is necessary to improve the strength by this, it was extremely difficult in practice.
Here, as a method of proceeding work hardening while maintaining the bending workability, for Cu-Fe-P-based alloys, the orientation distribution density of Brass orientation, S orientation, and Copper orientation, which are typical textures, is appropriate. A method of achieving both high strength and bending workability by adjusting the value has been proposed (Patent Document 2).

特開2007−039804号公報JP 2007-039804 A 特許第3962751号Japanese Patent No. 3962751

しかしながら、上記の特許文献2にて提案された手法は、Cu−Fe−P系の合金につ
いてのものであり、斯様な手法はCu−Cr−Zr系の合金については未だ全く試みられていない。従って、上記の特許文献2にて提案された手法がCu−Cr−Zr系の合金における強度、導電性、曲げ加工性のさらなる向上についても有効であるか否かは、全く未知のままであった。
本発明は、このような問題に鑑みて成されたもので、その目的は、高強度、高い導電率、曲げ加工性、耐応力緩和性を兼ね備えた電気・電子部品用銅合金材を提供することにある。
However, the technique proposed in Patent Document 2 described above is for a Cu—Fe—P alloy, and such a technique has not yet been attempted for a Cu—Cr—Zr alloy. . Therefore, whether the method proposed in Patent Document 2 is effective for further improving the strength, conductivity, and bending workability of Cu-Cr-Zr alloys remains unclear. It was.
The present invention has been made in view of such problems, and its object is to provide a copper alloy material for electric and electronic parts having high strength, high electrical conductivity, bending workability, and stress relaxation resistance. There is.

本発明の電気・電子部品用銅合金材は、第1に、Cu−Cr−Zr系の電気・電子部品用銅合金材であって、当該合金としての組成が、0.1質量%以上0.4質量%以下のCrと、0.02質量%以上0.2質量%以下のZrとを含有して、残部はCuおよび不可避的不純物からなるものであり、かつ当該合金としての集合組織におけるBrass方位の方
位分布密度が20以下であると共に、Brass方位とS方位とCopper方位との方位分布密度の合計が10以上50以下であることを特徴としている。
The copper alloy material for electric / electronic parts of the present invention is firstly a Cu—Cr—Zr-based copper alloy material for electric / electronic parts, and the composition of the alloy is 0.1 mass% or more and 0 .4% by mass or less of Cr and 0.02% by mass or more and 0.2% by mass or less of Zr, the balance being made of Cu and inevitable impurities, and in the texture as the alloy The orientation distribution density of the Brass orientation is 20 or less, and the total orientation distribution density of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less.

また、上記組成にさらに加えて、Fe、Ni、Co、Sn、Zn、Mgのうちの1種類以上の成分を、合計0.01質量%以上1質量%以下含有してなることを特徴としている。   Further, in addition to the above composition, one or more components of Fe, Ni, Co, Sn, Zn, and Mg are contained in a total of 0.01% by mass to 1% by mass. .

また、当該銅合金材からなる金属板材の、強度が引張強さ550N/mm以上であり、かつ導電率が70%IACS以上であり、かつ最小曲げ半径をRとし板厚をtとしたときの曲げ加工性R/tが1.0未満であることを特徴としている。 Further, when the metal plate made of the copper alloy material has a tensile strength of 550 N / mm 2 or more, an electrical conductivity of 70% IACS or more, a minimum bending radius R, and a plate thickness t. The bending workability R / t is characterized by being less than 1.0.

本発明によれば、高強度、高い導電率および曲げ加工性を備えたCu−Cr−Zr系の電気・電子部品用銅合金材が得られる。   According to the present invention, a Cu-Cr-Zr-based copper alloy material for electric and electronic parts having high strength, high electrical conductivity, and bending workability can be obtained.

以下、本発明の一実施の形態に係る電気・電子部品用銅合金材について、図面を参照して説明する。   Hereinafter, a copper alloy material for electric / electronic parts according to an embodiment of the present invention will be described with reference to the drawings.

本実施の形態に係る電気・電子部品用銅合金材は、Cu−Cr−Zr系の電気・電子部品用銅合金材であるが、その合金としての組成は、0.1質量%以上〜0.4質量%以下のCrと、0.02質量%以上〜0.2質量%以下のZrとを含有し、残部がCuおよび不可避的不純物からなるものであるように設定されている。
そして、その合金としての集合組織におけるBrass方位の方位分布密度が20以下であ
ると共に、Brass方位とS方位とCopper方位との方位分布密度の合計が10以上〜50以下に設定されている。
また、上記組成にさらに加えて、Fe、Ni、Co、Sn、Zn、Mgのうちの1種類以上の成分を、合計0.01質量%以上〜1質量%以下含有している。
The copper alloy material for electric / electronic parts according to the present embodiment is a Cu-Cr-Zr-based copper alloy material for electric / electronic parts, and the composition of the alloy is 0.1 mass% or more to 0%. .4 mass% or less of Cr and 0.02 mass% or more and 0.2 mass% or less of Zr, and the balance is set to be composed of Cu and inevitable impurities.
And the orientation distribution density of the Brass orientation in the texture as the alloy is 20 or less, and the total of the orientation distribution densities of the Brass orientation, the S orientation and the Copper orientation is set to 10 or more and 50 or less.
Further, in addition to the above composition, one or more kinds of components of Fe, Ni, Co, Sn, Zn, and Mg are contained in a total of 0.01% by mass to 1% by mass.

このように組成および集合組織の方位分布密度が設定されていることで、この電子部品
用銅合金材からなる金属板材の強度は、例えば引張強さ550N/mm以上となり、かつ導電率は、例えば70%IACS以上となり、かつ最小曲げ半径をRとし板厚をtとしたときの曲げ加工性R/tは、例えば1.0未満となる。
By setting the orientation distribution density of the composition and texture in this way, the strength of the metal plate made of the copper alloy material for electronic parts is, for example, a tensile strength of 550 N / mm 2 or more, and the conductivity is For example, the bending workability R / t when the minimum bending radius is R and the plate thickness is t is 70% IACS or more, for example, less than 1.0.

本実施の形態に係る電気・電子部品用銅合金材では、0.1質量%以上〜0.4質量%以下のCrと、0.02質量%以上〜0.2質量%以下のZrを含有し、残部がCuおよび不可避的不純物からなる銅合金を、素材として用いている。Crは、単独で母相中に析出して材料の強度を向上させると共に耐熱性を向上させる。また、Zrは、Cuと化合物を作って母相中に析出し、同じく強度や耐熱性を向上させる。そのそれぞれの含有量は、形成される析出粒子の量や大きさに影響を与えるが、上記の範囲内で含有させることによって、高レベルでバランスの良い特性が実現されやすくなるのである。   In the copper alloy material for electric / electronic parts according to the present embodiment, 0.1% by mass to 0.4% by mass Cr and 0.02% by mass to 0.2% by mass Zr are contained. However, a copper alloy whose balance is made of Cu and inevitable impurities is used as a material. Cr alone precipitates in the matrix phase to improve the strength of the material and improve the heat resistance. Zr also forms a compound with Cu and precipitates in the parent phase, which also improves strength and heat resistance. Each content affects the amount and size of the precipitated particles to be formed. However, inclusion in the above range makes it easy to realize a high level and well-balanced characteristic.

上記に加えて、Fe、Ni、Co、Sn、Zn、Mgのうちから選択した1種類以上の成分を、合計0.01質量%以上〜1質量%以下の範囲で含有させることにより、この電気・電子部品用銅合金材からなる金属板材の引張強さや耐応力緩和性のような機械的強度のさらなる増強を図ることができる。すなわち、上記の成分は、材料の強度を向上させる効果を持ち、Cr、Zrと併せて適度な量を添加することによって、より一層の強度向上が達成可能となる。   In addition to the above, by adding one or more components selected from Fe, Ni, Co, Sn, Zn, and Mg in a total range of 0.01% by mass to 1% by mass, -Further enhancement of mechanical strength such as tensile strength and stress relaxation resistance of a metal plate made of a copper alloy material for electronic parts can be achieved. That is, the above component has an effect of improving the strength of the material, and by adding an appropriate amount together with Cr and Zr, further improvement in strength can be achieved.

そして、本実施の形態に係る電気・電子部品用銅合金材では、その合金としての集合組織について、Brass方位の方位分布密度を20以下とし、かつBrass方位とS方位とCopper
方位の方位分布密度の合計を10以上〜50以下の範囲になるように設定されている。
ここで、Brass方位;{110}<112>、S方位;{123}<634>、Copper方位;{112}<111>は、それぞれ冷間圧延によって発達する集合組織であり、これらが発達するほど高い強度が得られるが、同時に延性が低下して曲げ加工性の悪化につながる。曲げ加工性の悪化を抑えつつ高強度を得るためには、これらの集合組織が過度に発達しないように、方位分布密度を上記に規定したような範囲内に制御することが有効となるのである。
In the copper alloy material for electric / electronic parts according to the present embodiment, the orientation distribution density of the Brass orientation is set to 20 or less, and the Brass orientation, the S orientation, and the Copper in the texture as the alloy.
The total orientation distribution density of the orientation is set to be in the range of 10 to 50.
Here, the Brass orientation; {110} <112>, the S orientation; {123} <634>, the Copper orientation; {112} <111> are textures developed by cold rolling, respectively, and these are developed. Higher strength can be obtained, but at the same time, ductility is lowered and bending workability is deteriorated. In order to obtain high strength while suppressing deterioration of bending workability, it is effective to control the orientation distribution density within the range specified above so that these textures do not develop excessively. .

上記の各条件の限定理由について、以下にさらに補足して説明する。
Crの含有量は、0.1質量%以上〜0.4質量%以下に規定する。この規定範囲よりも含有量が少ない場合には、Crの析出物が不足することに因って時効硬化が不十分になると共に、耐応力緩和性についても十分な特性を得ることができなくなる傾向にある。また逆に、規定範囲よりも含有量が多い場合には、Cr析出物の形状が粗大になりやすくなる。Cr析出物が粗大になると、強度向上の効果を得ることが困難なものとなると共に、曲げ加工時の割れの起点となる確率が高くなることから、曲げ加工性の低下の原因にもなる傾向にある。そこで、Cr含有量を上記のように0.1質量%以上〜0.4質量%以下とすることにより、耐応力緩和性と曲げ加工性との両方を十分に、かつ確実に、高いものとすることが可能となる。なお、さらに望ましくは、0.2質量%以上〜0.3質量%以下の範囲とすることで、耐応力緩和性と曲げ加工性との両方のさらなる向上が達成可能となる。
The reasons for limiting each of the above conditions will be further described below.
The Cr content is specified to be 0.1% by mass to 0.4% by mass. When the content is less than this specified range, age hardening becomes insufficient due to insufficient Cr precipitates, and sufficient stress relaxation resistance tends not to be obtained. It is in. Conversely, when the content is greater than the specified range, the shape of the Cr precipitates tends to be coarse. When the Cr precipitate becomes coarse, it becomes difficult to obtain the effect of improving the strength, and the probability of becoming the starting point of the crack at the time of bending increases, which tends to cause a decrease in bending workability. It is in. Therefore, by setting the Cr content to 0.1 mass% to 0.4 mass% as described above, both the stress relaxation resistance and the bending workability are sufficiently and surely high. It becomes possible to do. It is more desirable that the stress relaxation resistance and the bending workability can be further improved by setting the content in the range of 0.2% by mass to 0.3% by mass.

Zrの含有量は、0.02質量%以上〜0.2質量%以下に規定する。Zrの含有量もCrと同様の作用を有している。規定範囲よりも含有量が少ない場合には、強度や耐応力緩和性が不十分になり、規定範囲より含有量が多い場合には、曲げ加工性の低下の原因となる。なお、このZr含有量は、0.05質量%以上〜0.1質量%以下とすることで、耐応力緩和性と曲げ加工性との両方の、さらなる向上が達成可能となるので、さらに望ましい。   The Zr content is specified to be 0.02% by mass to 0.2% by mass. The content of Zr has the same effect as Cr. When the content is less than the specified range, strength and stress relaxation resistance are insufficient, and when the content is more than the specified range, bending workability is deteriorated. The Zr content is more preferably 0.05% by mass to 0.1% by mass because further improvement in both stress relaxation resistance and bending workability can be achieved. .

それらCr、Zrと併せて添加することが望ましいFe、Ni、Co、Sn、Zn、M
gのうちの1種類以上の成分の合計量は、0.01質量%以上〜1質量%以下の範囲に規定する。ここで、規定範囲よりも含有量が少ない場合には、その成分を添加したにも関わらず十分な効果を得ることが困難になる。あるいは逆に、規定範囲よりも含有量が多過ぎる場合には、導電性の低下や曲げ加工性の悪化等の弊害が大きくなる虞が高くなる。
Fe, Ni, Co, Sn, Zn, M preferably added together with these Cr and Zr
The total amount of one or more kinds of components in g is specified in the range of 0.01% by mass to 1% by mass. Here, when the content is less than the specified range, it is difficult to obtain a sufficient effect despite the addition of the component. Or conversely, if the content is more than the specified range, there is a high possibility that adverse effects such as a decrease in conductivity and a deterioration in bending workability will increase.

集合組織は、加工や熱処理の方法等によって異なったものとなる。多くの方位因子の構成比率が変わることにより、塑性変形に異方性が生じて、曲げ加工性が変化する。本実施の形態で上記のように規定したBrass方位、S方位、Copper方位は、それぞれ冷間圧延によって発達する集合組織であり、これらが発達することによって高い強度を得ることはできるが、同時にこの銅合金の延性が低下して、この銅合金からなる金属板材の曲げ加工性が悪化する。本実施の形態に係る電気・電子部品用銅合金材では、特にBrass方位の発達が
曲げ加工性に大きく影響し、その方位分布密度が20を超えると曲げ加工性の悪化が問題となる。また、高い強度と良好な曲げ加工性とをバランス良く両立させるためには、Brass方位、S方位、Copper方位の方位分布密度の合計を10以上〜50以下の範囲内にすることが有効であり、これが50を超えると曲げ加工性の悪化が大きく、10未満の場合は強度が不足する。
The texture differs depending on the processing and heat treatment methods. By changing the composition ratio of many orientation factors, anisotropy occurs in plastic deformation and bending workability changes. The Brass orientation, S orientation, and Copper orientation defined as described above in the present embodiment are textures developed by cold rolling, respectively, and by developing these, high strength can be obtained. The ductility of a copper alloy falls and the bending workability of the metal plate material which consists of this copper alloy deteriorates. In the copper alloy material for electric / electronic parts according to the present embodiment, particularly, the development of the Brass orientation greatly affects the bending workability, and when the orientation distribution density exceeds 20, the deterioration of the bending workability becomes a problem. In order to achieve both high strength and good bending workability in a well-balanced manner, it is effective to set the total orientation distribution density of the Brass, S, and Copper orientations within a range of 10 to 50. If this value exceeds 50, the bending workability is greatly deteriorated, and if it is less than 10, the strength is insufficient.

ここで、上記のような方位分布密度の測定は、X線回折法により(100)、(110)、(111)の完全極点図を作成し、その結果から結晶方位分布関数を用いて各方位の強度ピ−ク値の合計に対する特定方位(Brass方位、S方位、Copper方位)の強度ピ−ク値の割合を計算することで求められる(長島晋一編著「集合組織」(1984年、丸善株式会社刊、P8〜44)、金属学会セミナ−「集合組織」(1981年、日本金属学会編、P3〜7)参照)。また、このような方位分布密度は、SEM(Scanning Electron Microscopy)−EBSD(Electron Backscatter Diffraction)を用いて測定したデ−タからも求めることができる。   Here, the measurement of the orientation distribution density as described above is performed by creating complete pole figures of (100), (110), and (111) by the X-ray diffraction method, and using the crystal orientation distribution function from the results, Calculated by calculating the ratio of the intensity peak value of a specific orientation (Brass orientation, S orientation, and Copper orientation) to the total strength peak value ("Texture", edited by Junichi Nagashima (1984, Maruzen Co., Ltd.) Company publication, P8-44), Metallurgical Society seminar “Assembly” (1981, edited by the Japan Institute of Metals, P3-7). Such orientation distribution density can also be obtained from data measured using SEM (Scanning Electron Microscopy) -EBSD (Electron Backscatter Diffraction).

本発明者らは、曲げ加工性を維持しつつ加工硬化をさらに高いものとするために有力であると考えられる手法として、結晶粒微細化、析出物の分散状態制御、集合組織制御などを選び、それらについて種々の実験を試行し、またその結果に対する考察を行って、本発明を完成するに至った。   The present inventors have selected crystal grain refinement, precipitate dispersion state control, texture control, etc. as methods that are considered to be effective for further improving work hardening while maintaining bending workability. Then, various experiments were tried on them, and the results were considered, and the present invention was completed.

上記の手法のうち、集合組織制御について、その最も近似したものでは、Cu−Fe−P系合金の強度および曲げ加工性の向上を目的とした発明として、特許第3962751
号が提案されている。これは、代表的な集合組織であるBrass方位、S方位、Copper方位の方位分布密度を制御することにより、高い強度と良好な曲げ加工性の両立を図る、というものである。但し、この特許第3962751号に提案された手法は、あくまでCu−Fe−P系合金を対象としたものであって、それがそのままCu−Cr−Zr系合金にも効
果を奏するか否かは、一般に合金の分野では化合物の分野の場合とほぼ同様に、実験等によって実証されない限り、予測不可能である。
Among the above methods, the most approximate one of the texture control is Japanese Patent No. 3962751 as an invention aimed at improving the strength and bending workability of the Cu—Fe—P alloy.
No. has been proposed. This is to achieve both high strength and good bending workability by controlling the orientation distribution density of typical textures, Brass orientation, S orientation, and Copper orientation. However, the method proposed in Japanese Patent No. 3962751 is intended only for Cu—Fe—P based alloys, and whether or not it is effective for Cu—Cr—Zr based alloys as they are. Generally, in the field of alloys, almost in the same way as in the field of compounds, it is unpredictable unless it is proved by experiments.

そこで、本発明者らは、上記のような集合組織制御の手法を、Cu−Cr−Zr系合金に適用して、下記の実施例で詳述するような種々の実験および考察を行って、そのCu−Cr−Zr系合金からなる金属板材の導電性、強度、曲げ加工性の向上が有効に達成されるか否かを確認した。またそれと共に、導電性、強度、曲げ加工性について、さらに望ましい特性を確実に達成することができるための諸条件を検討した。その結果、上記のような構成によって、従来よりも飛躍的に高い導電性、強度、および曲げ加工性を兼ね備えた銅合金材を実現することができるという新知見を得るに至ったのである。   Therefore, the present inventors applied the texture control method as described above to a Cu—Cr—Zr alloy, and conducted various experiments and considerations as detailed in the following examples. It was confirmed whether or not the improvement in conductivity, strength, and bending workability of the metal plate made of the Cu—Cr—Zr alloy could be effectively achieved. At the same time, various conditions were examined to ensure that more desirable characteristics could be achieved with respect to conductivity, strength, and bending workability. As a result, the present inventors have obtained a new finding that the above configuration can realize a copper alloy material having conductivity, strength, and bending workability that are dramatically higher than those of the prior art.

次に、上記のような本実施の形態に係る電気・電子部品用銅合金材の製造方法の一例について説明する。
この電気・電子部品用銅合金材は、上記のように組成を設定してなるインゴットを用いたCu−Cr−Zr系の銅合金条の製造工程における、冷間圧延と低温での熱処理とを適切な条件で組み合わせて実施することによって、製造することができる。
Next, an example of the manufacturing method of the copper alloy material for electric / electronic parts according to the present embodiment as described above will be described.
This copper alloy material for electric and electronic parts is subjected to cold rolling and heat treatment at low temperature in the manufacturing process of a Cu-Cr-Zr-based copper alloy strip using an ingot having a composition set as described above. It can manufacture by combining and implementing on suitable conditions.

まず、上記のように規定した組成の銅合金を鋳造し、それに熱間圧延を施す。このときの熱間圧延の加熱は、合金中のCr、Zrを一旦固溶させる溶体化の効果を持つため、圧延終了直後の温度を可能な限り高温に維持し、その後、可及的速やかに冷却することが望ましい。   First, a copper alloy having a composition as defined above is cast and hot rolled. The heating of the hot rolling at this time has a solution effect of once dissolving Cr and Zr in the alloy, so the temperature immediately after the end of rolling is maintained as high as possible, and then as quickly as possible. It is desirable to cool.

続いて、通常の一次冷間圧延と中間焼鈍とを行った後、加工度を10%〜50%に規定した冷間圧延を実施し、続いて、350〜600℃で10秒〜10分間加熱する熱処理を行う。
この工程で、加工度が10%未満であると、Brass方位とS方位とCopper方位の方位分布密度の合計が10未満になりやすく、加工度が50%を超えると、Brass方位の方位分布
密度が20を超えるか、またはBrass方位とS方位とCopper方位の方位分布密度の合計が50を超える可能性が高くなる。また、熱処理が前述の条件より低温または短時間である場合には、Brass方位の方位分布密度が20を超えるか、Brass方位とS方位とCopper方位の
方位分布密度の合計が50を超える可能性が高くなる。また逆に、熱処理が前述の条件よりも高温または長時間である場合には、Brass方位とS方位とCopper方位の方位分布密度の合計が10未満になりやすくなる。この加工度を規定して行われる冷間圧延と熱処理の組み合わせは、2回または3回繰り返して実施することができ、斯様な繰り返しによって、より好ましい高強度を得ることができる。
このようにして、本実施の形態に係る電気・電子部品用銅合金材を製造することができる。
Subsequently, after performing normal primary cold rolling and intermediate annealing, cold rolling with a workability of 10% to 50% is performed, followed by heating at 350 to 600 ° C. for 10 seconds to 10 minutes. Heat treatment is performed.
In this process, if the degree of processing is less than 10%, the total of the azimuth distribution density of the Brass, S, and Copper directions tends to be less than 10, and if the degree of processing exceeds 50%, the azimuth distribution density of the Brass azimuth. Or the sum of the orientation distribution densities of the Brass, S, and Copper orientations exceeds 50. Also, if the heat treatment is at a lower temperature or shorter time than the above conditions, the orientation distribution density of the Brass orientation may exceed 20, or the sum of the orientation distribution densities of the Brass orientation, the S orientation, and the Copper orientation may exceed 50. Becomes higher. Conversely, when the heat treatment is performed at a higher temperature or longer time than the above-mentioned conditions, the total of the orientation distribution density of the Brass orientation, the S orientation, and the Copper orientation tends to be less than 10. The combination of cold rolling and heat treatment performed by specifying the degree of work can be performed twice or three times, and more preferable high strength can be obtained by such repetition.
Thus, the copper alloy material for electric / electronic parts according to the present embodiment can be manufactured.

Cu−Cr−Zr系合金においては、従来、引張強さが550N/mm2以上の高強度
を得ようとすると、曲げ加工性が低下しやすくなる傾向にあったが、本実施の形態に係る電気・電子部品用銅合金材によれば、その合金としての組成を、0.1質量%以上〜0.4質量%以下のCrと0.02質量%以上〜0.2質量%以下のZrとを含有し残部がCuおよび不可避的不純物からなるものであるように設定すると共に、その合金としての集合組織におけるBrass方位の方位分布密度を20以下とし、かつBrass方位とS方位とCopper方位との方位分布密度の合計を10以上〜50以下に設定することにより、引張強さ5
50N/mm2以上のような、従来よりも顕著に高い強度や耐応力緩和性、およびR/t
が0.1未満のような極めて良好な曲げ加工性、ならびに70%IACS以上のような高い導電率を、全て併せて達成することが可能となる。
Conventionally, in a Cu—Cr—Zr alloy, bending workability tends to be lowered when trying to obtain a high strength with a tensile strength of 550 N / mm 2 or more. According to the copper alloy material for electric / electronic parts, the composition of the alloy is 0.1 mass% to 0.4 mass% Cr and 0.02 mass% to 0.2 mass% Zr. And the balance is made of Cu and inevitable impurities, the orientation distribution density of the Brass orientation in the texture as the alloy is 20 or less, and the Brass orientation, the S orientation, and the Copper orientation By setting the sum of the orientation distribution densities of 10 to 50 or less, the tensile strength 5
Remarkably higher strength and stress relaxation resistance than conventional, such as 50 N / mm 2 or more, and R / t
It is possible to achieve very good bending workability such as less than 0.1 and high conductivity such as 70% IACS or more all together.

なお、本実施の形態に係る電気・電子部品用銅合金材は、上記のような数値で規定される組成およびそれに対応して上記のような数値で評価される特性を有するもののみには限定されないことは言うまでもない。上記は言うなれば最良の一形態であって、本実施の形態に係る電気・電子部品用銅合金材は、より定性的に、Cu−Cr−Zr系合金の集合組織におけるBrass方位の方位分布密度、およびBrass方位とS方位とCopper方位との方位分
布密度の合計を適切に制御することにより、強度や耐応力緩和性、曲げ加工性、導電率を、従来のCu−Cr−Zr系合金の場合よりも明確に高いものとすることが可能である。
The copper alloy material for electrical / electronic parts according to the present embodiment is limited to only those having the composition defined by the numerical values as described above and the characteristics evaluated by the numerical values as described above. It goes without saying that it is not done. In other words, the copper alloy material for electrical / electronic parts according to the present embodiment is more qualitatively, the orientation distribution of the Brass orientation in the texture of the Cu—Cr—Zr alloy. By appropriately controlling the density, and the total orientation distribution density of the Brass, S, and Copper orientations, the strength, stress relaxation resistance, bending workability, and electrical conductivity can be controlled by conventional Cu-Cr-Zr alloys. Can be clearly higher than in the case of.

本実施の形態に係る電気・電子部品用銅合金材は、高い導電性、耐応力緩和性、曲げ加工性を兼ね備えた金属材料であることが要求される、例えばスイッチまたはコネクタもしくはリレーなどのような電気・電子部品用の、ばね材あるいは接点材料としての使用に好適なものである。   The copper alloy material for electric / electronic parts according to the present embodiment is required to be a metal material having high conductivity, stress relaxation resistance and bending workability, such as a switch, a connector or a relay. It is suitable for use as a spring material or contact material for various electrical / electronic parts.

上記の実施の形態で説明したような設定に基づいて、実施例1〜9としての電気・電子部品用銅合金材を作製した。またそれと並行して、上記の実施の形態とは敢えて異なった設定による比較例1〜12としての電気・電子部品用銅合金材を作製し、その各種特性を比較・検討した。
図1は、本発明の実施例1〜7および比較例1〜6に係る電気・電子部品用銅合金材の試料のそれぞれについての組成を一表に纏めて示す図、図2は、図1に示した各々の試料についての集合組織、曲げ加工性、引張強さ、導電率を、一表に纏めて示す図、図3は、本発明の実施例1、8、9および比較例7〜12に係る電気・電子部品用銅合金材の試料のそれぞれについての冷間圧延、熱処理条件、およびそれらの繰り返し回数を一表に纏めて示す図、図4は、図3に示した各々の試料についての集合組織、曲げ加工性、引張強さ、導電率を、一表に纏めて示す図である。
Based on the settings described in the above embodiment, copper alloy materials for electric / electronic parts as Examples 1 to 9 were produced. At the same time, copper alloy materials for electric / electronic parts as Comparative Examples 1 to 12 with settings different from those of the above embodiment were prepared, and various characteristics were compared and examined.
FIG. 1 is a diagram showing the composition of each of the copper alloy material samples for electric / electronic parts according to Examples 1 to 7 and Comparative Examples 1 to 6 of the present invention, and FIG. FIG. 3 is a table showing the texture, bending workability, tensile strength, and electrical conductivity of each sample shown in Table 1, and FIG. 3 shows Examples 1, 8, and 9 of the present invention and Comparative Examples 7 to FIG. 4 is a table showing the cold rolling and heat treatment conditions and the number of repetitions of each of the copper alloy material samples for electrical / electronic parts according to No. 12, and FIG. 4 is a diagram showing each sample shown in FIG. It is a figure which puts together the texture, bending workability, tensile strength, and electrical conductivity for the table.

無酸素銅を母材として用いて、図1に示したような組成で、Cr;0.2質量%、Zr;0.1質量%を含有した銅合金を高周波溶解炉で溶製し、厚さ25mm、幅30mm、長さ150mmのインゴットに鋳造した。これを950℃に加熱して、厚さ8mmまで熱間圧延し、その後、厚さ1mmまで冷間圧延して、800℃で焼鈍した。
続いて、これに加工度40%の冷間加工と、500℃で1分間加熱する熱処理とを、3
回繰り返して行って、厚さ0.22mmの金属板材を作製し、これを実施例1の試料とした。
A copper alloy containing Cr: 0.2% by mass and Zr: 0.1% by mass with an oxygen-free copper as a base material and having a composition as shown in FIG. This was cast into an ingot having a length of 25 mm, a width of 30 mm, and a length of 150 mm. This was heated to 950 ° C., hot-rolled to a thickness of 8 mm, then cold-rolled to a thickness of 1 mm, and annealed at 800 ° C.
Subsequently, cold working with a workability of 40% and heat treatment heated at 500 ° C. for 1 minute are performed.
A metal plate material having a thickness of 0.22 mm was produced by repeating the process, and this was used as the sample of Example 1.

この実施例1の試料について集合組織を調べたところ、図2に示したように、Brass方
位の方位分布密度は17、Brass方位とS方位とCopper方位の方位分布密度の合計は44であり、上記の実施の形態で規定したような集合組織を持った試料となっていることが確認された。
この集合組織の評価では、通常のX線回折法によって、(100)、(110)、(111)の完全極点図を作成し、この結果から結晶方位分布関数を用いて各方位の強度ピ−ク値の合計に対する特定方位の強度ピ−クの割合を計算し、Brass方位の方位分布密度、Brass方位とS方位とCopper方位の方位分布密度の合計とをそれぞれ求めた。
When the texture of the sample of Example 1 was examined, as shown in FIG. 2, the orientation distribution density of the Brass orientation was 17, and the total of the orientation distribution densities of the Brass orientation, the S orientation, and the Copper orientation was 44. It was confirmed that the sample had a texture as defined in the above embodiment.
In this texture evaluation, complete pole figures of (100), (110), and (111) are prepared by a normal X-ray diffraction method, and the intensity peak of each orientation is obtained from the result using a crystal orientation distribution function. The ratio of the intensity peak of a specific orientation to the sum of the peak values was calculated, and the orientation distribution density of the Brass orientation, and the sum of the orientation distribution densities of the Brass orientation, the S orientation, and the Copper orientation were obtained.

また、この実施例1の試料について、曲げ加工性を評価した。この曲げ加工性の評価は、JIS H3100において規定されたW曲げ試験によって行った。すなわち、曲げ軸を圧延平行方向(Bad way方向)に取り、試料の表面に割れが発生しない最小曲げ半径R
(mm)を測定し、板厚t(mm)との比率;R/tの値で評価した。このR/tの値が小さいほど厳しい曲げ加工に対応でき、曲げ加工性が良好であると言える。
その結果、実施例1の試料は、図2に示したように、曲げ半径0mmのW曲げでも割れ
が発生せず、良好な曲げ加工性を備えていることが確認された。
Further, the bending workability of the sample of Example 1 was evaluated. This bending workability was evaluated by a W bending test specified in JIS H3100. That is, the bending axis is taken in the rolling parallel direction (Bad way direction), and the minimum bending radius R that does not cause cracks on the surface of the sample
(Mm) was measured, and the ratio to the plate thickness t (mm) was evaluated by the value of R / t. It can be said that the smaller the value of R / t, the better the bending workability and the better the bending workability.
As a result, as shown in FIG. 2, it was confirmed that the sample of Example 1 did not generate cracks even in W bending with a bending radius of 0 mm and had good bending workability.

さらに、実施例1の試料について、引張強さ、導電率をそれぞれ測定した。その結果、引張強さは556N/mm2、導電率は80%IACSという値となった。
これらの結果から、実施例1の試料は、R/tがほぼ0と極めて良好な曲げ加工性を維持しつつ、引張強さ550N/mm2以上の高い強度と、80%IACSという(70%
IACSを明らかに超えた)高い導電性とを、兼ね備えた電気・電子部品用銅合金材となっていることが確認できた。
Further, the tensile strength and conductivity of the sample of Example 1 were measured. As a result, the tensile strength was 556 N / mm 2 and the conductivity was 80% IACS.
From these results, the sample of Example 1 maintains a very good bending workability with an R / t of almost 0, and has a high strength with a tensile strength of 550 N / mm 2 or more and 80% IACS (70%
It was confirmed that the copper alloy material for electric / electronic parts had high conductivity (which clearly exceeded IACS).

次に、上記の実施例1の場合と同じ組成中に、さらに図2に示したような割合で、Fe、Ni、Co、Sn、Zn、Mgをそれぞれ添加した銅合金を各々鋳造し、実施例1と同様の圧延工程等を経ることで、集合組織における方位分布密度が実施例1と同等となるように試料を作製して、それらを実施例2〜7とした。そして、それら実施例2〜7についても、実施例1の場合と同様に、集合組織、曲げ加工性、引張強さ、導電率の各特性を評価した。
その結果、図2に示したように、実施例2〜7のいずれの試料についても、R/tがほぼ0と極めて極めて良好な曲げ加工性を維持しつつ、550N/mm2を超える極めて高
い強度と、70%IACSを超える高い導電性とを、兼ね備えたものとなっていることが確認できた。
Next, each of the copper alloys added with Fe, Ni, Co, Sn, Zn, and Mg respectively in the same composition as in the case of the above-described Example 1 at a ratio as shown in FIG. By passing through the rolling process similar to Example 1, the sample was produced so that the orientation distribution density in a texture might become equivalent to Example 1, and they were set as Examples 2-7. And also about these Examples 2-7, each characteristic of a texture, bending workability, tensile strength, and electrical conductivity was evaluated similarly to the case of Example 1.
As a result, as shown in FIG. 2, in any of the samples of Examples 2 to 7, the R / t was almost 0 and extremely high exceeding 550 N / mm 2 while maintaining extremely good bending workability. It was confirmed that the strength and the high conductivity exceeding 70% IACS were combined.

このような本発明の実施例1〜7に係る電気・電子部品用銅合金材の、合金としての組成を、上記の実施の形態で説明したような数値範囲に規定した理由について、比較例1〜6の結果と比較・対照することで説明する。
比較例1〜4の試料は、それぞれCr、Zrの含有量を敢えて実施例1〜7の規定範囲から逸脱した値に設定したものである。
より詳細には、比較例1、2は、Cr、Zrの添加量を低すぎるように設定したものである。この場合には、図2に示したように、実施例1〜7よりも引張強さが低い、従って実施例1〜7よりも強度が低いものとなった。
比較例3、4は、Cr、Zrの添加量を過多に設定したものである。この場合には、特に曲げ加工性が悪化する結果となった。
比較例5、6は、Cr、Zr以外の副成分(Fe、Ni、Co、Sn、Zn、Mg)を過剰に添加量したものである。この場合には、引張強さは高くなるが、導電率が明らかに低下した。また、曲げ加工性についても、実施例1〜7と比べて悪化する結果となった。
The reason why the composition of the copper alloy material for electric / electronic parts according to Examples 1 to 7 of the present invention as an alloy is defined in the numerical range as described in the above embodiment is Comparative Example 1. It demonstrates by comparing and contrasting with the result of ~ 6.
In the samples of Comparative Examples 1 to 4, the contents of Cr and Zr were each set to values deviating from the specified ranges of Examples 1 to 7.
More specifically, in Comparative Examples 1 and 2, the amount of Cr and Zr added is set to be too low. In this case, as shown in FIG. 2, the tensile strength was lower than those of Examples 1 to 7, and thus the strength was lower than that of Examples 1 to 7.
In Comparative Examples 3 and 4, the amount of Cr and Zr added is set excessively. In this case, bending workability was particularly deteriorated.
In Comparative Examples 5 and 6, subcomponents (Fe, Ni, Co, Sn, Zn, Mg) other than Cr and Zr are excessively added. In this case, the tensile strength was increased, but the conductivity was clearly reduced. Moreover, it became a result which worsened also about bending workability compared with Examples 1-7.

以上のような比較例1〜6の実験結果と実施例1〜7のそれとの比較から、Crの含有量を0.1質量%以上〜0.4質量%以下とし、かつZrの含有量を0.02質量%以上〜0.2質量%以下とすることが望ましいということが確認された。また、副成分として添加するFe、Ni、Co、Sn、Zn、Mgの添加量(含有量)の合計は、0.01質量%以上〜1質量%以下とすることが望ましいということが確認された。   From the comparison between the experimental results of Comparative Examples 1-6 and those of Examples 1-7, the Cr content is 0.1 mass% to 0.4 mass%, and the Zr content is It was confirmed that it is desirable to set it to 0.02 mass% or more and 0.2 mass% or less. In addition, it was confirmed that the total addition amount (content) of Fe, Ni, Co, Sn, Zn, and Mg added as subcomponents is desirably 0.01% by mass to 1% by mass. It was.

次に、集合組織の方位分布密度については、圧延および熱処理の設定に対応して種々変化させることができる。そこで、実施例1と同じ組成の材料を鋳造して熱間圧延した後、厚さ1mmまで冷間圧延し800℃で焼鈍し、さらに、図3に示したようなそれぞれ異なった条件設定で、冷間圧延および熱処理を繰り返し施すことにより、実施例8〜9および比較例7〜12の各試料を作製した。そして、そのそれぞれの資料について、集合組織の方位分布密度、曲げ加工性、引張強さ、導電率を測定し、その結果を比較・対照することで、集合組織の方位分布密度の相違による各種特性の評価・考察を行った。   Next, the orientation distribution density of the texture can be changed variously according to the setting of rolling and heat treatment. Therefore, after casting and hot-rolling a material having the same composition as in Example 1, it is cold-rolled to a thickness of 1 mm and annealed at 800 ° C., and further, with different setting conditions as shown in FIG. The samples of Examples 8 to 9 and Comparative Examples 7 to 12 were produced by repeatedly performing cold rolling and heat treatment. For each material, the orientation distribution density, bending workability, tensile strength, and conductivity of the texture are measured, and the results are compared and contrasted. Was evaluated and considered.

実施例1、8、9は、各試料の合金としての集合組織における方位分布密度を上記の実施の形態で規定したような範囲内に設定したものであるが、それら実施例1、8、9の試料のいずれもが、図4に示したように、曲げ半径0mmのW曲げでも割れが生じておらず、極めて良好な曲げ加工性を備えていることが確認できた。また、引張強さ550N/mm2以上、導電率70%IACS以上の特性も同時に達成されていることが確認できた。 In Examples 1, 8, and 9, the orientation distribution density in the texture as an alloy of each sample is set within the range defined in the above embodiment, but those Examples 1, 8, and 9 are set. As shown in FIG. 4, it was confirmed that none of the samples had cracks even in W-bending with a bending radius of 0 mm and had extremely good bending workability. It was also confirmed that the properties of tensile strength of 550 N / mm 2 or more and electrical conductivity of 70% IACS or more were achieved at the same time.

それに対して、比較例7、8の試料は、Brass方位の方位分布密度、およびBrass方位とS方位とCopper方位の方位分布密度の合計を、いずれも上記の実施の形態で規定した範囲
を超えた過大な値に設定したものである。この場合、図4に示したように、曲げ加工性が顕著に悪化した。
比較例9、10の試料は、Brass方位の方位分布密度、もしくはBrass方位とS方位とCopper方位の方位分布密度の合計の、いずれか一方を、上記の実施の形態で規定した範囲を
逸脱した値に設定したものである。この場合も、曲げ加工性が実施例1、8、9よりも明らかに悪化した。
比較例11〜12の試料は、Brass方位とS方位とCopper方位の方位分布密度の合計を、規定範囲を下回る値に設定したものである。この場合には、曲げ加工性については実施例1、8、9と同様に良好なものとなったが、引張強さが顕著に低下した。
On the other hand, the samples of Comparative Examples 7 and 8 exceeded the range defined in the above embodiment, with the azimuth distribution density of the Brass azimuth and the sum of the azimuth distribution densities of the Brass azimuth, S azimuth, and Copper azimuth. It is set to an excessive value. In this case, as shown in FIG. 4, the bending workability deteriorated remarkably.
In the samples of Comparative Examples 9 and 10, either the orientation distribution density of the Brass orientation or the sum of the orientation distribution densities of the Brass orientation, the S orientation, and the Copper orientation deviated from the range defined in the above embodiment. Set to value. Also in this case, the bending workability was clearly deteriorated as compared with Examples 1, 8, and 9.
In the samples of Comparative Examples 11 to 12, the total of the orientation distribution density of the Brass orientation, the S orientation, and the Copper orientation is set to a value that falls below the specified range. In this case, bending workability was good as in Examples 1, 8, and 9, but the tensile strength was significantly reduced.

このような実施例1、8、9と比較例7〜12との実験結果の比較対照による考察から、組成が全く同じCu−Cr−Zr系の合金であっても、その合金としての集合組織におけるBrass方位の方位分布密度を20以下とすると共に、Brass方位とS方位とCopper方位
との方位分布密度の合計を10以上〜50以下とすることにより、従来のCu−Cr−Zr系合金よりも明確に高い導電性および耐応力緩和性(引張強度)ならびに良好な曲げ加工性を兼ね備えたものとすることが可能であることが確認できた。
From the consideration by comparison of the experimental results of Examples 1, 8, and 9 and Comparative Examples 7 to 12, even if the composition is the same Cu—Cr—Zr alloy, the texture as the alloy By setting the orientation distribution density of the Brass orientation at 20 or less and the total orientation distribution density of the Brass orientation, S orientation, and Copper orientation at 10 to 50, the conventional Cu-Cr-Zr alloy can be obtained. It was also confirmed that it was possible to have both clearly high electrical conductivity, stress relaxation resistance (tensile strength) and good bending workability.

以上説明したような本実施例に係る電気・電子部品用銅合金材は、従来の材料に比べて高導電率、高強度、高曲げ加工性、耐応力緩和性等の特性を高いレベルでバランスよく兼備している。これにより、本実施例に係る電気・電子部品用銅合金材は、電気・電子部品の製造技術の向上を、高い特性を備えた銅合金材を供給するという面から支えることで、その発展に大きく寄与するものである。より具体的には、本実施例に係る電気・電子部品用銅合金材は、例えば車載用コネクタなどのような苛酷な環境下で使用される電気・電子部品への利用に最適であり、これらの部品の小型化、高機能化等に多大な効果をもたらすことが期待できる。   As described above, the copper alloy material for electrical / electronic parts according to the present embodiment balances characteristics such as high conductivity, high strength, high bending workability, and stress relaxation resistance at a high level compared to conventional materials. It is well combined. As a result, the copper alloy material for electric / electronic parts according to the present embodiment is supported by the improvement of the manufacturing technology of electric / electronic parts from the aspect of supplying copper alloy materials with high characteristics. It greatly contributes. More specifically, the copper alloy material for electric / electronic parts according to the present embodiment is optimal for use in electric / electronic parts used under harsh environments such as in-vehicle connectors. It can be expected to bring about a great effect on downsizing and high functionality of the parts.

本発明の実施例1〜7および比較例1〜6に係る電気・電子部品用銅合金材の試料のそれぞれについての組成を一表に纏めて示す図である。It is a figure which shows the composition about each of the sample of the copper alloy material for electrical / electronic components which concerns on Examples 1-7 of this invention, and Comparative Examples 1-6 collectively on a table | surface. 図1に示した各々の試料についての集合組織、曲げ加工性、引張強さ、導電率を、一表に纏めて示す図である。FIG. 2 is a table showing the texture, bending workability, tensile strength, and conductivity of each sample shown in FIG. 1 in a table. 本発明の実施例1、8、9および比較例7〜12に係る電気・電子部品用銅合金材の試料のそれぞれについての冷間圧延、熱処理条件、およびそれらの繰り返し回数を一表に纏めて示す図である。Table 1 summarizes cold rolling, heat treatment conditions, and the number of repetitions of each of the copper alloy material samples for electric and electronic parts according to Examples 1, 8, and 9 and Comparative Examples 7 to 12 of the present invention. FIG. 図3に示した各々の試料についての集合組織、曲げ加工性、引張強さ、導電率を、一表に纏めて示す図である。FIG. 4 is a table showing the texture, bending workability, tensile strength, and conductivity of each sample shown in FIG. 3 in one table.

Claims (4)

Cu−Cr−Zr系の電気・電子部品用銅合金材であって、
当該合金としての組成が、0.1質量%以上0.4質量%以下のCrと、0.02質量%以上0.2質量%以下のZrとを含有し、残部がCuおよび不可避的不純物からなるものであり、
かつ当該合金としての集合組織におけるBrass方位の方位分布密度が20以下であると共に、Brass方位とS方位とCopper方位との方位分布密度の合計が10以上50以下である
ことを特徴とする電気・電子部品用銅合金材。
A Cu-Cr-Zr-based copper alloy material for electric and electronic parts,
The composition as the alloy contains 0.1% by mass or more and 0.4% by mass or less of Cr and 0.02% by mass or more and 0.2% by mass or less of Zr, with the balance being Cu and inevitable impurities. And
In addition, the orientation distribution density of the Brass orientation in the texture as the alloy is 20 or less, and the total orientation distribution density of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less. Copper alloy material for electronic parts.
請求項1記載の電気・電子部品用銅合金材において、
前記組成にさらに加えて、Fe、Ni、Co、Sn、Zn、Mgのうちの1種類以上の成分を、合計0.01質量%以上1質量%以下含有してなる
ことを特徴とする電気・電子部品用銅合金材。
In the copper alloy material for electric / electronic parts according to claim 1,
In addition to the above-mentioned composition, one or more kinds of components of Fe, Ni, Co, Sn, Zn, and Mg are contained in a total of 0.01% by mass to 1% by mass. Copper alloy material for electronic parts.
請求項1または2記載の電気・電子部品用銅合金材において、
当該銅合金材からなる金属板材の強度が引張強さ550N/mm2以上であり、かつ導電率が70%IACS以上であり、かつ最小曲げ半径をRとし板厚をtとしたときの曲げ加工性R/tが1.0未満である
ことを特徴とする電気・電子部品用銅合金材。
In the copper alloy material for electric / electronic parts according to claim 1 or 2,
Bending when the metal plate made of the copper alloy material has a tensile strength of 550 N / mm 2 or more, an electrical conductivity of 70% IACS or more, a minimum bending radius of R, and a plate thickness of t. A copper alloy material for electrical and electronic parts, wherein the property R / t is less than 1.0.
請求項1ないしのうちいずれか1項に記載の電気・電子部品用銅合金材において、
当該銅合金材からなる金属板材が、スイッチ用またはコネクタ用の接点材料もしくはばね材として用いられるものである
ことを特徴とする電気・電子部品用銅合金材。
In the copper alloy material for electric / electronic parts according to any one of claims 1 to 3 ,
A copper alloy material for electrical and electronic parts, wherein the metal plate material made of the copper alloy material is used as a contact material or a spring material for a switch or a connector.
JP2007309651A 2007-11-30 2007-11-30 Copper alloy material for electrical and electronic parts Active JP4968533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309651A JP4968533B2 (en) 2007-11-30 2007-11-30 Copper alloy material for electrical and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309651A JP4968533B2 (en) 2007-11-30 2007-11-30 Copper alloy material for electrical and electronic parts

Publications (2)

Publication Number Publication Date
JP2009132965A JP2009132965A (en) 2009-06-18
JP4968533B2 true JP4968533B2 (en) 2012-07-04

Family

ID=40865115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309651A Active JP4968533B2 (en) 2007-11-30 2007-11-30 Copper alloy material for electrical and electronic parts

Country Status (1)

Country Link
JP (1) JP4968533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242177A (en) * 2009-04-07 2010-10-28 Hitachi Cable Ltd Copper alloy material for electrical and electronic part
EP3950979A4 (en) * 2019-03-25 2022-08-10 JX Nippon Mining & Metals Corporation Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068135A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
JP5411679B2 (en) * 2009-12-07 2014-02-12 株式会社Shカッパープロダクツ Copper alloy material
JP5590990B2 (en) * 2010-06-30 2014-09-17 株式会社Shカッパープロダクツ Copper alloy
EP2610359A4 (en) * 2010-08-27 2017-08-02 Furukawa Electric Co., Ltd. Copper alloy sheet and method for producing same
EP2610358A4 (en) * 2010-08-27 2017-05-03 Furukawa Electric Co., Ltd. Copper alloy sheet and manufacturing method for same
JP5571616B2 (en) * 2011-05-17 2014-08-13 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5834528B2 (en) * 2011-06-22 2015-12-24 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment
TWI571518B (en) 2011-08-29 2017-02-21 Furukawa Electric Co Ltd Copper alloy material and manufacturing method thereof
JP5869288B2 (en) * 2011-10-14 2016-02-24 三菱伸銅株式会社 Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
JP5833892B2 (en) * 2011-11-15 2015-12-16 三菱伸銅株式会社 Modified cross-section copper alloy sheet with low bending anisotropy and excellent stress relaxation resistance, and method for producing the same
JP6099080B2 (en) * 2012-10-18 2017-03-22 大塚テクノ株式会社 Non-energized breaker
JP5470483B1 (en) * 2012-10-22 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6190646B2 (en) * 2013-07-10 2017-08-30 古河電気工業株式会社 Copper alloy rolled foil for secondary battery current collector and method for producing the same
JP6063592B1 (en) 2016-05-13 2017-01-18 三芳合金工業株式会社 Copper alloy tube excellent in high temperature brazing and manufacturing method thereof
JP7133326B2 (en) * 2018-03-16 2022-09-08 Jx金属株式会社 Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP7133327B2 (en) * 2018-03-16 2022-09-08 Jx金属株式会社 Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125631A (en) * 1986-11-14 1988-05-28 Nippon Mining Co Ltd High-tensile high-conductivity copper alloy
JP2670670B2 (en) * 1986-12-12 1997-10-29 日鉱金属 株式会社 High strength and high conductivity copper alloy
JPH01139742A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Manufacture of high-strength and high-conductivity copper alloy
JPH07258804A (en) * 1994-03-23 1995-10-09 Nikko Kinzoku Kk Production of copper alloy for electronic equipment
JPH10183274A (en) * 1996-12-25 1998-07-14 Nikko Kinzoku Kk Copper alloy for electronic equipment
JP4087307B2 (en) * 2003-07-09 2008-05-21 日鉱金属株式会社 High strength and high conductivity copper alloy with excellent ductility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242177A (en) * 2009-04-07 2010-10-28 Hitachi Cable Ltd Copper alloy material for electrical and electronic part
EP3950979A4 (en) * 2019-03-25 2022-08-10 JX Nippon Mining & Metals Corporation Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation

Also Published As

Publication number Publication date
JP2009132965A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4968533B2 (en) Copper alloy material for electrical and electronic parts
JP5320541B2 (en) Copper alloy material for electrical and electronic parts
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5448763B2 (en) Copper alloy material
JP4440313B2 (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP5590990B2 (en) Copper alloy
JP5619389B2 (en) Copper alloy material
JP2008266787A (en) Copper alloy material and its manufacturing method
JP2009242814A (en) Copper alloy material and producing method thereof
JP2006009137A (en) Copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2006233314A (en) High-strength copper alloy
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350