一実施の形態の撮像素子および撮像装置として、レンズ交換式デジタルスチルカメラを例に上げて説明する。図1は一実施の形態のカメラの構成を示すカメラの横断面図である。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。
交換レンズ202はレンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節と絞り211の開口径調節のための駆動制御や、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う他、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信を行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。
カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置に対応した部分に焦点検出画素が組み込まれている。この撮像素子212については詳細を後述する。
ボディ駆動制御装置214はマイクロコンピューター、メモリ、駆動制御回路などから構成され、撮像素子212の駆動制御と画像信号および焦点検出信号の読み出しと、焦点検出信号に基づく焦点検出演算と交換レンズ202の焦点調節を繰り返し行うとともに、画像信号の処理と記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206と通信を行い、レンズ情報の受信とカメラ情報(デフォーカス量や絞り値など)の送信を行う。
液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212によるスルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像を記憶する画像ストレージである。
交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、画像信号と焦点検出信号がボディ駆動制御装置214へ送られる。
ボディ駆動制御装置214は、撮像素子212の焦点検出画素からの焦点検出信号に基づいてデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212からの画像信号を処理して画像を生成し、メモリカード219に格納するとともに、撮像素子212からのスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。
レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値を検出し、これらのレンズ位置と絞り値に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値に応じたレンズ情報を選択する。
レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。
図2は、交換レンズ202の撮影画面上における焦点検出位置を示す図であり、後述する撮像素子212上の焦点検出画素列が焦点検出の際に撮影画面上で像をサンプリングする領域(焦点検出エリア、焦点検出位置)の一例を示す。この例では、矩形の撮影画面100上の中央および上下の3箇所に焦点検出エリア101〜103が配置される。長方形で示す焦点検出エリアの長手方向に、焦点検出画素が直線的に配列される。
図3は撮像素子212の詳細な構成を示す正面図であり、撮像素子212上の焦点検出エリア101の近傍を拡大して示す。撮像素子212には撮像画素310が二次元正方格子状に稠密に配列されるとともに、焦点検出エリア101に対応する位置には焦点検出用の焦点検出画素313、314が垂直方向の直線上に隣接して交互に配列される。なお、図示を省略するが、焦点検出エリア102、103の近傍の構成も図3に示す構成と同様である。
撮像画素310は、図4に示すようにマイクロレンズ10、光電変換部11、および色フィルター(不図示)から構成される。色フィルターは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図6に示す特性になっている。撮像素子212には、各色フィルターを備えた撮像画素310がベイヤー配列されている。
焦点検出画素313は、図5(a)に示すようにマイクロレンズ10と光電変換部13とから構成され、光電変換部13の形状は半円形である。また、焦点検出画素314は、図5(b)に示すようにマイクロレンズ10と光電変換部14とから構成され、光電変換部14の形状は半円形である。焦点検出画素313と焦点検出画素314とをマイクロレンズ10を重ね合わせて表示すると、光電変換部13と14が垂直方向に並んでいる。焦点検出画素313と焦点検出画素314は、焦点検出エリア101〜103において垂直方向(光電変換部13と14の並び方向)に交互に配置される。
焦点検出画素313、314には光量をかせぐために色フィルターが設けられておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図7参照)となる。つまり、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。
焦点検出用の焦点検出画素313、314は、撮像画素310のBとGが配置されるべき列に配置されている。焦点検出用の焦点検出画素313、314が、撮像画素310のBとGが配置されるべき列に配置されているのは、画素補間処理において補間誤差が生じた場合に、人間の視覚特性上、赤画素の補間誤差に比較して青画素の補間誤差が目立たないためである。
撮像画素310の光電変換部11は、マイクロレンズ10によって最も明るい交換レンズの射出瞳径(例えばF1.0)を通過する光束をすべて受光するような形状に設計される。また、焦点検出画素313、314の光電変換部13、14は、マイクロレンズ10によって交換レンズの射出瞳の所定の領域(例えばF2.8)を通過する光束をすべて受光するような形状に設計される。
図8は撮像画素310の断面図である。撮像画素310では撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11の形状が前方に投影される。光電変換部11は半導体回路基板29上に形成される。なお、不図示の色フィルターはマイクロレンズ10と光電変換部11の中間に配置される。
図9(a)は焦点検出画素313の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素313において、光電変換部13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部13の形状が前方に投影される。光電変換部13は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、画面上下の焦点検出エリア102、103に配置された焦点検出画素313の断面構造についても、図9(a)に示す断面構造と同様である。
図9(b)は焦点検出画素314の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素314において、光電変換部14の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部14の形状が前方に投影される。光電変換部14は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、画面上下の焦点検出エリア102、103に配置された焦点検出画素314の断面構造についても、図9(b)に示す断面構造と同様である。
図10は、マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す。なお、焦点検出画素の部分は拡大して示す。図において、90は、交換レンズ202(図1参照)の予定結像面に配置されたマイクロレンズから前方dの距離に設定された射出瞳である。この距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との間の距離などに応じて決まる距離であって、この明細書では測距瞳距離と呼ぶ。91は交換レンズの光軸、10a〜10dはマイクロレンズ、13a、13b、14a、14bは光電変換部、313a、313b、314a、314bは焦点検出画素、73,74、83,84は焦点検出光束である。
また、93は、マイクロレンズ10a、10cにより投影された光電変換部13a、13bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。同様に、94は、マイクロレンズ10b、10dにより投影された光電変換部14a、14bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。
図10では、撮影光軸に隣接する4つの焦点検出画素313a、313b、314a、314bを模式的に例示しているが、焦点検出エリア101のその他の焦点検出画素においても、また画面周辺部の焦点検出エリア102、103の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳93、94から各マイクロレンズに到来する光束を受光するように構成されている。焦点検出画素の配列方向は一対の測距瞳の並び方向、すなわち一対の光電変換部の並び方向と一致させる。
マイクロレンズ10a〜10dは交換レンズ202(図1参照)の予定結像面近傍に配置されており、マイクロレンズ10a〜10dによりその背後に配置された光電変換部13a、13b、14a、14bの形状がマイクロレンズ10a〜10cから測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、投影距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各焦点検出画素におけるマイクロレンズと光電変換部の相対的位置関係が定められ、それにより各焦点検出画素における光電変換部の投影方向が決定されている。
光電変換部13aは測距瞳93を通過し、マイクロレンズ10aに向う光束73によりマイクロレンズ10a上に形成される像の強度に対応した信号を出力する。同様に、光電変換部13bは測距瞳93を通過し、マイクロレンズ10cに向う光束83によりマイクロレンズ10c上に形成される像の強度に対応した信号を出力する。また、光電変換部14aは測距瞳94を通過し、マイクロレンズ10bに向う光束74によりマイクロレンズ10b上に形成される像の強度に対応した信号を出力する。同様に、光電変換部14bは測距瞳94を通過し、マイクロレンズ10dに向う光束84によりマイクロレンズ10d上に形成される像の強度に対応した信号を出力する。
上述した2種類の焦点検出画素を直線状に多数配置し、各画素の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94をそれぞれ通過する焦点検出用光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。
図11は、一実施の形態のデジタルスチルカメラ(撮像装置)の撮像動作を示すフローチャートである。ボディ駆動制御装置214は、ステップ100でカメラの電源がオンされると、ステップ110以降の撮像動作を開始する。ステップ110において撮像画素のデータを間引き読み出しし、電子ビューファインダーに表示させる。続くステップ120では焦点検出画素列から一対の像に対応した一対の像データを読み出す。なお、焦点検出エリアは、撮影者が焦点検出エリア選択部材(不図示)を用いて焦点検出エリア101〜103の内のいずれかを予め選択しているものとする。
ステップ130では読み出された一対の像データに基づいて後述する像ズレ検出演算処理(相関演算処理)を行い、像ズレ量を演算してデフォーカス量に変換する。ステップ140で合焦近傍か否か、すなわち算出されたデフォーカス量の絶対値が所定値以内であるか否かを調べる。合焦近傍でないと判定された場合はステップ150へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置に駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。
なお、焦点検出不能な場合もこのステップに分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。
ステップ140で合焦近傍であると判定された場合はステップ160へ進み、シャッターボタン(不図示)の操作によりシャッターレリーズがなされたか否かを判別する。シャッターレリーズがなされていないと判定された場合はステップ110へ戻り、上述した動作を繰り返す。一方、シャッターレリーズがなされたと判定された場合はステップ170へ進み、レンズ駆動制御装置206へ絞り調整命令を送信し、交換レンズ202の絞り値を制御F値(撮影者または自動により設定されたF値)にする。絞り制御が終了した時点で、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素310および全ての焦点検出画素313,314から画像データを読み出す。
ステップ180において、焦点検出画素列の各画素位置の画素データを焦点検出画素の周囲の撮像画素のデータに基づいて画素補間する。続くステップ190では、撮像画素のデータおよび補間されたデータからなる画像データをメモリーカード219に記憶し、ステップ110へ戻って上述した動作を繰り返す。
図12は、図11のステップ130における焦点検出演算処理の詳細を示す示すフローチャートである。ボディ駆動制御装置214は、ステップ200からこの焦点検出演算処理(相関演算処理)を開始する。
ステップ210において、 焦点検出画素列から出力される一対のデータ列(α1〜αM、β1〜βM:Mはデータ数)に対して(1)式に示すような高周波カットフィルター処理を施し、第1データ列(A1〜AN)と第2データ列(B1〜BN)を生成する。これにより、データ列から相関処理に悪影響を及ぼすノイズ成分や高周波成分を除去することができる。なお、演算時間の短縮を図る場合や、すでに大きくデフォーカスしていて高周波成分が少ないことがわかっている場合などには、ステップ210の処理を省略することもできる。
An=αn+2・αn+1+αn+2,
Bn=βn+2・βn+1+βn+2 ・・・(1)
(1)式において、n=1〜Nである。
データ列An、Bnは、理想的には同一データ列を相対的にシフトしたものとなるはずであるが、上述した瞳分割方式の焦点検出画素で得られる一対のデータ列では、焦点検出光束のケラレ(口径蝕)により、同一性が崩れている。
図13は、焦点検出光束のケラレ(口径蝕)を説明するための図である。図において、位置x0(像高0)と位置x1(像高h)にある一対の焦点検出画素は、それぞれ予定焦点面92の前方dにある測距瞳面90において測距瞳領域93、94を通過する一対の焦点検出光束53,54および63、64を受光するように構成されている。予定焦点面92の前方d1(<d)の面95に光学系の絞り開口96がある場合には、位置x0(像高0)にある一対の焦点検出画素が受光する一対の焦点検出光束53,54は、絞り開口96により光軸91に対して対称に口径蝕が発生するため、一対の焦点検出画素が受光する光量のバランスは崩れない。
これに対し、位置x1(像高h)にある一対の焦点検出画素が受光する一対の焦点検出光束63,64は、絞り開口96によって非対称に口径蝕が発生するために、一対の焦点検出画素が受光する光量のバランスは崩れてしまう。
図14は、予定焦点面92から光軸91の方向に測距瞳面90を見た場合の図である。焦点検出光束64は絞り開口96により大きく口径蝕が発生しているのに対し、焦点検出光束63は絞り開口96による口径蝕の発生が少ないことがわかる。
図15(a)、(b)は、図13および図14の状態において位置x0(像高0)の近傍の焦点検出画素列が受光する一対の像と、位置x1(像高h)の近傍の焦点検出画素列が受光する一対の像の強度分布(縦軸は光量、横軸は撮影画面上の位置)を示したものである。焦点検出光束の口径蝕のバランスがとれている場合には、図15(a)に示すように、一対の像信号400,401は同一の像信号関数が単に横方向にシフトしたものとなっている。これに対し、焦点検出光束の口径蝕のバランスが崩れている場合には、図15(b)に示すように、一対の像信号402,403は同一の信号を相対的にシフトしたものにはならない。
この一実施の形態においては、焦点検出光束の口径蝕により同一性が崩れた一対の像信号を図17に示すようにF(x)、G(x)とした場合に、一対の像信号間に次式のような関連性があると仮定し、この仮定に基づいて一対の像信号間の像ズレ量を検出する。
G(x)=F(x)・m・(1+a・x) ・・・(2)
すなわち、焦点検出光束の口径蝕によって一対の像信号の同一性が崩れ、一対の像信号の内の一方の像信号はF(x)になり、他方の像信号はG(x)になる。
(2)式において、右辺のm・(1+a・x)は一対の像信号間の関連性を表す項であって、口径蝕のバランス崩れにより平均的にはm倍の光量比が発生するとともに、局所的には位置xの1次関数で表される光量変化が発生することを表す。なお、口径蝕によるバランス崩れは局所的には緩やかな変化であるので、パラメータaは位置xに対して微小な係数になっており、位置xの変化に対して光量が急激に変化することはない。
第1データ列(A1〜AN)に対して第2データ列(B1〜BN)を相対的にシフト(シフト量=k)させて相関量を演算するにあたって、データAnとこれに対応するデータBn+k、およびこのデータペアの前後のデータペア(An-1、Bn-1+k)、(An+1、Bn+1+k)に対して(2)式を適用した場合、以下の式が得られる。ただし、第1データ列(A1〜AN)を(2)式のF(x)、第2データ列(B1〜BN)を(2)式のG(x)に対応させ、データペア(An、Bn+k)においてx=0になるとする。
Bn+k=An・m ・・・(3),
Bn-1+k=An-1・m・(1−a・g) ・・・(4),
Bn+1+k=An+1・m・(1+a・g) ・・・(5)
(4)式、(5)式において、gはデータピッチである。
(3)〜(5)式を変形すると以下の式が得られる。
m=Bn+k/An ・・・(6),
m・(1−a・g)=Bn-1+k/An-1 ・・・(7),
m・(1+a・g)=Bn+1+k/An+1 ・・・(8)
(7)式と(8)式を加算すると以下の式が得られる。
2・m=(Bn-1+k/An-1)+(Bn+1+k/An+1) ・・・(9)
(6)式と(9)式からmを消去して通分すると以下の式が得られる。
(Bn-1+k・An・An+1)−(2・An-1・Bn+k・An+1)+(An-1・An・Bn+1+k)=0 ・・・(10)
(10)式は、最初に仮定した一対の像信号間の関連性を表す関数m・(1+a・x)のパラメータm、aに対して不変な不変量となっている。また、通分を行うことによってデータが0になった場合の発散現象を回避することができる。シフト量kにおいて焦点検出光束の口径蝕により同一性が崩れる前の像信号が一致する場合には(10)式の不変量も0になり、シフト量kにおいて同一性が崩れる前の像信号が一致しない場合には(10)式の不変量も0以外の値になる可能性が高くなる。(10)式の不変量の絶対値をとり、さらにデータの位置nを所定領域に亘って積算したものを一対のデータ間のシフト量kにおける相関量C(k)と定義すれば、この相関量は一対の像信号間の同一性が崩れていた場合においても、同一性が崩れる前の像信号が一致するシフト量kにおいて極小値を取ることになる。
C(k)=Σ|(Bn-1+k・An・An+1)−(2・An-1・Bn+k・An+1)+(An-1・An・Bn+1+k)| ・・・(11)
図16は、上記相関量C(k)の演算と一対のデータ列(A1〜AN、B1〜BN)との関係を図式化したものである。例えば図17に示すような同一性の崩れたサイン波形の一対の像データに対し、上述した特許文献1に開示された相関演算を適用した場合には、相関量C(k)は図18に示すようなグラフとなり、最高相関を示す相関量C(k)の落ち込み箇所がなく、一対の像データ間の像ズレ量を検出することができない。
同じ一対の像データに対し(11)式に示す相関演算を適用した場合には、相関量C(k)は図19に示すようなグラフとなり、最高相関を示す相関量C(k)の落ち込みが現れ、一対の像データ間の像ズレ量を検出することができるようになる。このように、(11)式に示す相関演算式は、一対のデータ間のバランス崩れのパラメータに対して略不変となる不変量を算出するとともに、これを積算しているので、一対の像の相関度が高いシフト位置で顕著な落ち込みを示すという特性を有する。
図12に戻って説明を続ける。ステップ220において第1データ列(A1〜AN)と第2データ列(B1〜BN)を相対的にずらし(シフト量k)ながら、(11)式の相関量C(k)の演算を行う。なお、シフト量kは整数であり、一対のデータの検出ピッチを単位とした相対的シフト量である。
ステップ230において、(11)式の演算結果は、図20(a)に示すように、一対のデータの相関が高いシフト量(図20(a)ではk=kj=2)において相関量C(k)が最小(小さいほど相関度が高い)になる。(12)式〜(15)式による3点内挿の手法を用いて、連続的な相関量に対する最小値C(x)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(12),
C(x)= C(kj)−|D| ・・・(13),
D={C(kj-1)−C(kj+1)}/2 ・・・(14),
SLOP=MAX{C(kj+1)−C(kj),C(kj-1)−C(kj)} ・・・(15)
ステップ240では、(12)式で求めたシフト量xを用いて被写体像面の予定結像面に対するデフォーカス量DEFを次式により求めることができる。
DEF=KX・PY・x ・・・(16)
(16)式において、PYは検出ピッチであり、KXは一対の測距瞳の重心の開き角の大きさによって決まる変換係数である。
算出されたデフォーカス量DEFの信頼性があるかどうかは、以下のようにして判定される。図20(b)に示すように、一対のデータの相関度が低い場合は、内挿された相関量の最小値C(x)の値が大きくなる。したがって、C(x)が所定値以上の場合は信頼性が低いと判定する。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は信頼性が低いと判定する。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたデフォーカス量DEFの信頼性が低いと判定する。図20(c)に示すように、一対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、最小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。焦点検出が可能であった場合には算出された像ズレ量に所定の変換係数を乗じてデフォーカス量を算出する。
ステップ250で、焦点検出演算処理(相関演算処理)を終了して図11のステップ140へリターンする。
《発明の他の実施の形態》
上述した実施の形態において、(11)式で示す相関演算式は、一対のデータ列(A1〜AN、B1〜BN)に対して非対称な演算となっているので、対称な演算となるように(17)式および(18)式のように( )でくくった第2項を加算または減算してもよい。
C(k)=Σ|(Bn-1+k・An・An+1−2・An-1・Bn+k・An+1+An-1・An・Bn+1+k)+(An-1・Bn+k・Bn+1+k−2・Bn-1+k・An・Bn+1+k+Bn-1+k・Bn+k・An+1)| ・・・(17),
C(k)=Σ|(Bn-1+k・An・An+1−2・An-1・Bn+k・An+1+An-1・An・Bn+1+k)−(An-1・Bn+k・Bn+1+k−2・Bn-1+k・An・Bn+1+k+Bn-1+k・Bn+k・An+1)| ・・・(18)
上述した一実施の形態では、一対の像信号F(x)、G(x)の間に(2)式のような関連性があると仮定して(11)式の相関演算式を導出したが、関連性を仮定する式としては(2)式に限定されない。例えば同一性が崩れた一対の像信号F(x)、G(x)の間に次式のような関連性があると仮定し、この仮定に基づいて以下のように相関演算式を導出することができる。
F(x)=E(x)・m1・(1−a・x),
G(x)=E(x)・m2・(1+a・x) ・・・(19)
(19)式において、E(x)は同一性が崩れる前の像信号関数であり、m1・(1+a・x)、m2・(1−a・x)は一対の像信号間の関連性を表す項である。第1データ列(A1〜AN)に対して第2データ列(B1〜BN)を相対的にシフト(シフト量=k)させて相関量を演算するにあたって、データAnとこれに対応するデータBn+k、およびこのデータペアの前後のデータペア(An-1、Bn-1+k)、(An+1、Bn+1+k)に対して(19)式を適用し、E(x)を消去した場合、以下の式が得られる。ただし、第1データ列(A1〜AN)を(19)式のF(x)、第2データ列(B1〜BN)を(19)式のG(x)に対応させ、データペア(An、Bn+k)においてx=0になるとする。
Bn+k/m2=An/m1 ・・・(20),
Bn-1+k/(m2・(1−a・g))=An-1/(m1・(1+a・g)) ・・・(21),
Bn+1+k/(m2・(1+a・g))=An+1/(m1・(1−a・g)) ・・・(22)
(21)式、(22)式において、gはデータピッチである。
(20)式、(21)式および(22)式を変形すると以下の式が得られる。
m2/m1=Bn+k/An ・・・(23),
(m2・(1−a・g))/(m1・(1+a・g))=Bn-1+k/An-1 ・・・(24),
(m2・(1+a・g))/(m1・(1−a・g))=Bn+1+k/An+1 ・・・(25)
(24)式と(25)式を乗算すると以下の式が得られる。
(m2/m1)2=(Bn-1+k/An-1)・(Bn+1+k/An+1) ・・・(26)
(23)式と(26)式からm1、m2を消去して通分すると以下の式が得られる。
(Bn-1+k・An2・Bn+1+k)−(An-1・Bn+k2・An+1)=0 ・・・(27)
(27)式は、最初に仮定した一対の像信号間の関連性を表す関数m1・(1−a・x)、m2・(1+a・x)のパラメータm1、m2、aに対して不変な不変量となっている。(27)式の不変量の絶対値をとり、さらにデータの位置nを所定区間に亘って積算したものを一対のデータ間のシフト量kにおける相関量C(k)と定義すれば、この相関量は一対の像信号間の同一性が崩れていた場合においても、同一性が崩れる前の像信号が一致するシフト量kにおいて極小値を取ることになる。
C(k)=Σ|(Bn-1+k・An2・Bn+1+k)−(An-1・Bn+k2・An+1)| ・・・(28)
図17に示すような同一性の崩れたサイン波形の一対の像データに対し、(28)式に示す相関演算を適用した場合、相関量C(k)は図21に示すようなグラフとなり、最高相関を示す相関量C(k)の落ち込みが現れ、一対の像データ間の像ズレ量を検出することができるようになる。このように、(28)式で示す相関演算式は、一対のデータ間のバランス崩れのパラメータに対して略不変となる不変量を算出するとともに、これを積算しているので、一対の像の相関度が高いシフト位置で顕著な落ち込みを示すという特性を有する。
上述した一実施の形態では、同一性が崩れた一対の像信号F(x)、G(x)間に位置xの1次関数で示される関連性があると仮定し、この仮定に基づいて相関演算式を導出しているが、一対の像信号F(x)、G(x)間の関連性を位置xの2次以上の高次関数で仮定して相関演算式を導出してもよい。例えば一対の像信号F(x)、G(x)間に(29)式のように位置xの2次関数で示される関連性があると仮定した場合には、以下のように相関演算式を導出することができる。
G(x)=F(x)・m・(1+b・x+a・x2) ・・・(29)
(29)式において、m・(1+b・x+a・x2)は一対の像信号間の関連性を表す項であって、口径蝕のバランス崩れにより平均的にはm倍の光量比が発生するとともに、局所的には位置xの2次関数で表される光量変化が発生することを表す。第1データ列(A1〜AN)に対して第2データ列(B1〜BN)を相対的にシフト(シフト量=k)させて相関量を演算するにあたって、データAnとこれに対応するデータBn+k、およびこのデータペアの前後のデータペア(An-2、Bn-2+k)、(An-1、Bn-1+k)、(An+1、Bn+1+k)に対して(29)式を適用した場合には、以下の式が得られる。ただし、第1データ列(A1〜AN)を(29)式のF(x)、第2データ列(B1〜BN)を(29)式のG(x)に対応させ、データペア(An、Bn+k)においてx=0になるとする。
Bn+k=An・m ・・・(30),
Bn-2+k=An-2・m・(1−2・b・g+4・a・g2) ・・・(31),
Bn-1+k=An-1・m・(1−b・g+a・g2) ・・・(32),
Bn+1+k=An+1・m・(1+b・g+a・g2) ・・・(33)
(31)式〜(33)式において、gはデータピッチである。
(30)式〜(33)式を変形すると以下の式が得られる。
m=Bn+k/An ・・・(34),
m・(1−2・b・g+4・a・g2)=Bn-2+k/An-2 ・・・(35),
m・(1−b・g+a・g2)=Bn-1+k/An-1 ・・・(36),
m・(1+b・g+a・g2)=Bn+1+k/An+1 ・・・(37)
(37)式と3倍した(36)式とを加算し、さらに(35)式を減算すると以下の式が得られる。
3・m=−(Bn-2+k/An-2)+3・(Bn-1+k/An-1)+(Bn+1+k/An+1) ・・・(38)
(34)式と(38)式からmを消去すると以下の式が得られる。
−(Bn-2+k/An-2)+3・(Bn-1+k/An-1)−3・Bn+k/An+(Bn+1+k/An+1)=0 ・・・(39)
さらに通分すると(40)式が得られる。
−Bn-2+k・An-1・An・An+1+3・An-2・Bn-1+k・An・An+1−3・An-2・An-1・Bn+k・An+1+An-2・An-1・An・Bn+1+k=0 ・・・(40)
(40)式は、最初に仮定した一対の像信号間の関連性を表す関数m・(1+b・x+a・x2)のパラメータm、a、bに対して不変な不変量となっている。(40)式の不変量の絶対値をとり、さらにデータの位置nを所定区間に亘って積算したものを一対のデータ間のシフト量kにおける相関量C(k)と定義すれば、この相関量は一対の像信号間の同一性が崩れていた場合においても、同一性が崩れる前の像信号が一致するシフト量kにおいて極小値を取ることになる。
C(k)=Σ|−Bn-2+k・An-1・An・An+1+3・An-2・Bn-1+k・An・An+1−3・An-2・An-1・Bn+k・An+1+An-2・An-1・An・Bn+1+k| ・・・(41)
図17に示すような同一性の崩れたサイン波形の一対の像データに対し、(41)式に示す相関演算を適用した場合、相関量C(k)は図22に示すようなグラフとなり、最高相関を示す相関量C(k)の落ち込みが現れ、一対の像データ間の像ズレ量を検出することができるようになる。このように、(41)式に示す相関演算式は、一対のデータ間のバランス崩れのパラメータに対して略不変となる不変量を算出するとともに、これを積算しているので、一対の像の相関度が高いシフト位置で顕著な落ち込みを示すという特性を有する。
以上の実施の形態では、データ間のピッチがgとなるデータを用いて相関演算式を定めているが、データ間のピッチが2g、3g・・・となるデータを用いて相関演算式を定めることができる。例えばデータピッチを2gとした場合には、(11)式の相関演算式は次式のようになる。
C(k)=Σ|(Bn-2+k・An・An+2)−(2・An-2・Bn+k・An+2)+(An-2・An・Bn+2+k)| ・・・(42)
以上の実施の形態では、不変量の絶対値をとり、さらにデータの位置nを所定区間に亘って積算したものを一対のデータ間のシフト量kにおける相関量C(k)と定義したが、相関量の演算はこれに限定されず、例えば不変量の偶数乗や不変量の絶対値の奇数乗を演算し、さらにデータの位置nを所定区間に亘って積算したものを一対のデータ間のシフト量kにおける相関量C(k)と定義してもよい。
撮像素子における焦点検出エリアの配置は図2に限定されることはなく、対角線方向や、その他の位置に水平方向および垂直方向に焦点検出エリアを配置することも可能である。
図3に示す撮像素子212では、焦点検出画素313、314がひとつの画素内にひとつの光電変換部を備えた例を示したが、ひとつの画素内に一対の光電変換部を備えるようにしてもよい。図23は、図3の撮像素子212に対応した撮像素子212Aの部分拡大図であり、焦点検出画素311はひとつの画素内に一対の光電変換部を備える。図に示す焦点検出画素311は、図3に示す焦点検出画素313と焦点検出画素314のペアに相当した機能を果たす。
焦点検出画素311は、図24に示すようにマイクロレンズ10と一対の光電変換部13,14から構成される。焦点検出画素311には光量をかせぐために色フィルターは配置されておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図7参照)となる。つまり、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。
図25は、図23に示す撮像素子212Aの焦点検出画素による瞳分割方式の焦点検出動作を説明するための図である。図において、90は、交換レンズの予定結像面に配置されたマイクロレンズの前方dの距離に設定された射出瞳である。ここで、距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離であって、以下では測距瞳距離と呼ぶ。91は交換レンズの光軸、50、60はマイクロレンズ、(53,54)、(63,64)は焦点検出画素の対の光電変換部、73,74、83,84は焦点検出用光束である。
さらに、93はマイクロレンズ50、60により投影された光電変換部53,63の領域であり、以下では測距瞳と呼ぶ。同様に、94はマイクロレンズ50、60により投影された光電変換部54,64の領域であり、以下では測距瞳と呼ぶ。図25では、光軸91上にある焦点検出画素(マイクロレンズ50と一対の光電変換部53、54からなる)と、隣接する焦点検出画素(マイクロレンズ60と一対の光電変換部63、64からなる)を模式的に例示しているが、撮像面上の周辺に配置された焦点検出用画素においても、一対の光電変換部はそれぞれ一対の測距瞳93、94から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向と一致させる。
マイクロレンズ50、60は光学系の予定結像面近傍に配置されており、光軸91上に配置されたマイクロレンズ50によって、その背後に配置された一対の光電変換部53、54の形状がマイクロレンズ50、60から測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。また、マイクロレンズ50に隣接して配置されたマイクロレンズ60によって、その背後に配置された一対の光電変換部63、64の形状が測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、測距瞳距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各画素のマイクロレンズと光電変換部の位置関係が決定されている。
光電変換部53は、測距瞳93を通過してマイクロレンズ50へ向う焦点検出光束73によってマイクロレンズ50上に形成される像の強度に対応した信号を出力する。また、光電変換部54は、測距瞳94を通過してマイクロレンズ50へ向う焦点検出光束74によってマイクロレンズ50上に形成される像の強度に対応した信号を出力する。同様に、光電変換部63は、測距瞳93を通過してマイクロレンズ60へ向う焦点検出光束83によってマイクロレンズ60上に形成される像の強度に対応した信号を出力する。また、光電変換部64は、測距瞳94を通過してマイクロレンズ60へ向う焦点検出光束84によってマイクロレンズ60上に形成される像の強度に対応した信号を出力する。
このような焦点検出用画素を直線状に多数配置し、各画素の一対の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94を各々通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に所定の変換処理を施すことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。
次に、図3に示す撮像素子212では撮像画素310がベイヤー配列の色フィルターを備えた例を示したが、色フィルターの構成や配列はこれに限定されることはなく、補色フィルター(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列を採用してもよい。また、図3に示す撮像素子212では焦点検出画素313、314に色フィルターを設けない例を示したが、撮像画素310と同色の色フィルターの内のひとつのフィルター(例えば緑フィルター)を設けるようにした場合でも、本発明を適用することができる。
また、上述した一実施の形態の図5、図24に示す焦点検出画素311、313、314では、光電変換部の形状を半円形や矩形にした例を示したが、焦点検出画素の光電変換部の形状はこれらに限定されず、他の形状であってもよい。例えば焦点検出画素の光電変換部の形状を楕円や多角形にすることも可能である。
さらに、図3に示す撮像素子212では、撮像画素と焦点検出画素を稠密正方格子配列に配置した例を示したが、稠密六方格子配列としてもよい。
上述した一実施の形態では、マイクロレンズを用いた瞳分割方式による焦点検出動作を説明したが、本発明はこのような方式の焦点検出に限定されず、再結像瞳分割方式の焦点検出にも適用可能である。図26により、再結像瞳分割方式の焦点検出動作を説明する。図26において、191は交換レンズの光軸、110,120はコンデンサレンズ、111、121は絞りマスク、112,113、122,123は絞り開口、114、115、124,125は再結像レンズ、116、126は焦点検出用のイメージセンサー(CCD)である。
また、132,133、142,143は焦点検出光束、190は交換レンズの予定結像面の前方d5の距離に設定された射出瞳である。ここで、距離d5は、コンデンサレンズ110,120の焦点距離と、コンデンサレンズ110,120と絞り開口112,113、122,123との間の距離などに応じて決まる距離であって、以下では測距瞳距離と呼ぶ。192は、コンデンサレンズ110,120により投影された絞り開口112,122の領域であり、以下では測距瞳と呼ぶ。同様に、193は、コンデンサレンズ110,120により投影された絞り開口113,123の領域であり、以下では測距瞳と呼ぶ。コンデンサレンズ110、絞りマスク111、絞り開口112,113、再結像レンズ114、115およびイメージセンサー116が、一つの位置で焦点検出を行う再結像方式の瞳分割方位相差検出の焦点検出ユニットを構成する。
図26においては、光軸191上にある焦点検出ユニットと光軸外にある焦点検出ユニットとを模式的に例示している。複数の焦点検出ユニットを組み合わせることによって、図2に示す3箇所の焦点検出位置101〜103において再結像方式の瞳分割位相差検出で焦点検出を行う焦点検出装置を実現することができる。
コンデンサレンズ110からなる焦点検出ユニットは、交換レンズの予定結像面近傍に配置されたコンデンサレンズ110、その背後に配置されたイメージサンサ116、コンデンサレンズ110とイメージサンサ116との間に配置され、予定結像面近傍に結像された1次像をイメージセンサー116上に再結像する一対の再結像レンズ114、115、一対の再結像レンズの近傍(図では前面)に配置された一対の絞り開口112、113を有する絞りマスク11から構成される。
イメージセンサー116は、複数の光電変換部が直線に沿って密に配置されたラインサンサであり、光電変換部の配置方向は一対の測距瞳の分割方向(=絞り開口の並び方向)と一致させる。このイメージセンサー116からは、イメージセンサー116上に再結像された一対の像の強度分布に対応した情報が出力され、この情報に対して後述する像ズレ検出演算処理(相関処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式(再結像方式)で一対の像の像ズレ量が検出される。さらに、像ズレ量に所定の変換係数を乗ずることによって、予定結像面に対する現在の結像面の偏差(デフォーカス量)が算出される。
イメージセンサー116は再結像レンズ114、115により予定結像面上に投影されており、デフォーカス量(像ズレ量)の検出精度は、像ズレ量の検出ピッチ(再結像方式の場合は予定結像面上に投影された光電変換部の配列ピッチ)により決まる。
コンデンサレンズ110は、絞りマスク111の絞り開口112、113を射出瞳190上に領域192、193として投影している。領域192,193を測距瞳と呼ぶ。すなわち、イメージセンサー116上に再結像される一対の像は射出瞳190上の一対の測距瞳192,193を通過する光束によって形成される。射出瞳190上の一対の測距瞳192,193を通過する光束132、133を焦点検出用光束と呼ぶ。
このような再結像瞳分割方式においても、測距瞳の口径蝕によってイメージセンサー上に形成される一対の像のバランス崩れが生ずるので、イメージセンサーの出力信号を処理する際に本発明を適用することができる。
また、本発明は撮影光学系を通過する光束を瞳分割する方式の焦点検出に限定されず、外光三角測距方式による距離測定にも適用可能である。図27により、外光三角測距方式の焦点検出動作を説明する。図27において、レンズ320とその結像面に配置されたイメージセンサー326からなるユニットと、レンズ330とその結像面に配置されたイメージセンサー336からなるユニットとが基線長を隔てて配置される。これらの一対のユニットが測距装置347を構成する。
測距対象350の像が、レンズ320および330によりイメージセンサー326および336上に形成される。イメージセンサー326および336上に形成される像の位置関係は、測距装置347から測距対象350までの距離に応じて変化する。したがって、イメージセンサー326および336の信号データに対して本発明を適用した像ズレ検出を行うことによって、2像の相対的位置関係を検出し、この位置関係に基づいて測距対象350までの距離を測定することができる。
外光三角測距方式においては、レンズ320とレンズ330に汚れや雨滴が付着することによって、一対の信号にレベル差が生じたり歪みが生じたりすることが発生するので、本発明の適用は有効である。
なお、撮像装置としては、上述したようなカメラボディに交換レンズが装着される構成のデジタルスチルカメラやフィルムスチルカメラに限定されない。例えばレンズ一体型のデジタルスチルカメラ、フィルムスチルカメラ、あるいはビデオカメラにも本発明を適用することができる。さらには、携帯電話などに内蔵される小型カメラモジュール、監視カメラやロボット用の視覚認識装置などにも適用できる。
また、本発明は、カメラ以外の焦点検出装置や測距装置、さらにはステレオ測距装置にも適用できる。さらに、時間が異なるイメージセンサーの信号間の相関を検出して被写体像の動きやカメラのブレを検出する装置にも適用できる。さらにまた、イメージセンサーの画像信号と特定の画像信号のパターンマッチングにも適用できる。
さらに、本発明は、画像信号データの相関を検出するものに限定されず、音に関するデータの相関やその他一般に2つの信号の相関を検出するものにも適用することができる。
10;マイクロレンズ、11、13、14;光電変換部、202;交換レンズ、212、212A;撮像素子、214 ボディ駆動制御装置、310;撮像画素、311、313、314;焦点検出画素