[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4967465B2 - Polyimide resin, polyimide film and polyimide laminate - Google Patents

Polyimide resin, polyimide film and polyimide laminate Download PDF

Info

Publication number
JP4967465B2
JP4967465B2 JP2006159263A JP2006159263A JP4967465B2 JP 4967465 B2 JP4967465 B2 JP 4967465B2 JP 2006159263 A JP2006159263 A JP 2006159263A JP 2006159263 A JP2006159263 A JP 2006159263A JP 4967465 B2 JP4967465 B2 JP 4967465B2
Authority
JP
Japan
Prior art keywords
polyimide resin
polyimide
metal
group
diamine component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006159263A
Other languages
Japanese (ja)
Other versions
JP2007326962A (en
Inventor
毅士 美藤
秀太 木原
實雄 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006159263A priority Critical patent/JP4967465B2/en
Publication of JP2007326962A publication Critical patent/JP2007326962A/en
Application granted granted Critical
Publication of JP4967465B2 publication Critical patent/JP4967465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は良好な耐熱性、溶剤可溶性及び熱可塑性と低吸水性を示すポリイミド樹脂、該ポリイミド樹脂フィルム及び該ポリイミド樹脂からなる接着剤を用いた金属張積層体に関する。該金属張積層体は、プリント配線板、面発熱体、電磁波シールド材料、フラットケーブルなどに加工される。   The present invention relates to a polyimide resin exhibiting good heat resistance, solvent solubility, thermoplasticity and low water absorption, the polyimide resin film, and a metal-clad laminate using an adhesive comprising the polyimide resin. The metal-clad laminate is processed into a printed wiring board, a surface heating element, an electromagnetic shielding material, a flat cable, or the like.

金属張積層体には、絶縁基材と金属層とを接着剤あるいは接着性フィルムを介して接着することによって製造されるものがある。例えば、芳香族系ポリイミド樹脂フィルムからなる絶縁基材と金属層とを接着性フィルムを介して接着した3層構造の金属張積層体が提案されている(特許文献1参照)。   Some metal-clad laminates are manufactured by bonding an insulating substrate and a metal layer through an adhesive or an adhesive film. For example, a metal-clad laminate having a three-layer structure in which an insulating base material made of an aromatic polyimide resin film and a metal layer are bonded via an adhesive film has been proposed (see Patent Document 1).

従来、接着剤あるいは接着性フィルムとしては主にエポキシ系やアクリル系樹脂からなる接着剤及び接着性フィルムが用いられてきた。しかしながら、これらの樹脂は耐熱性が劣るために接着後の製品の耐熱性が不充分となり、その後の加工条件、使用条件に制約が生じていた。   Conventionally, as an adhesive or an adhesive film, an adhesive or an adhesive film mainly composed of an epoxy resin or an acrylic resin has been used. However, since these resins are inferior in heat resistance, the heat resistance of the product after bonding becomes insufficient, and the subsequent processing conditions and use conditions are restricted.

このため、耐熱性に優れる接着剤、接着性フィルムが求められている。例えば、ポリイミド樹脂あるいはポリアミド酸の溶液を絶縁基材に塗布し、その後溶剤除去と、場合によってはイミド化処理を行ない、熱圧着性の接着層を形成する方法、ポリイミド樹脂あるいはポリアミド酸の溶液をガラス板等に塗布し、その後溶剤除去と、場合によってはイミド化処理を行い、熱圧着性フィルムを形成する方法、及び、このようにして形成された接着層、接着性フィルムに、金属層などの被接着物を熱圧着する方法が開示されている(特許文献2、3参照)。上記した接着層形成方法は、大別してポリイミド樹脂の溶液を使用する方法と、ポリアミド酸溶液を使用する方法とに分けられる。   For this reason, the adhesive agent and adhesive film which are excellent in heat resistance are calculated | required. For example, a method of applying a polyimide resin or polyamic acid solution to an insulating substrate, then removing the solvent and optionally imidizing, and forming a thermocompression bonding layer, a polyimide resin or polyamic acid solution A method of forming a thermocompression-bonding film by applying to a glass plate and thereafter performing solvent removal and, in some cases, imidization, and the adhesive layer and adhesive film thus formed, a metal layer, etc. A method for thermocompression bonding of the adherend is disclosed (see Patent Documents 2 and 3). The adhesive layer forming method described above is roughly classified into a method using a polyimide resin solution and a method using a polyamic acid solution.

ポリアミド酸溶液を使用する方法では、ポリアミド酸溶液を絶縁基材又はガラス板に塗布した後、接着層又は接着性フィルムとするために300℃を越える高温でのイミド化工程を経なくてはならない。イミド化工程を省略して形成した金属張積層体の耐熱性は著しく低い。ポリイミド樹脂の溶液を使用する方法では、塗布した後は溶剤を揮発させるのみで良く、200℃程度までの低温で接着層又は接着性フィルムを形成することができる。従って、ポリイミド樹脂の溶液を使用する方法が高耐熱性金属張積層体製造上有利である。従来の全芳香族ポリイミド樹脂からなる接着層の多くは、ポリアミド酸溶液を用いて形成されていた。ポリイミド樹脂の溶液を得るには溶剤可溶型ポリイミド樹脂である必要がある。   In the method using a polyamic acid solution, after the polyamic acid solution is applied to an insulating substrate or a glass plate, an imidization process at a high temperature exceeding 300 ° C. must be performed to form an adhesive layer or an adhesive film. . The heat resistance of the metal-clad laminate formed by omitting the imidization step is extremely low. In the method using a polyimide resin solution, it is only necessary to volatilize the solvent after coating, and an adhesive layer or adhesive film can be formed at a low temperature up to about 200 ° C. Therefore, a method using a polyimide resin solution is advantageous in producing a highly heat-resistant metal-clad laminate. Many of the conventional adhesive layers made of wholly aromatic polyimide resins have been formed using a polyamic acid solution. In order to obtain a polyimide resin solution, it is necessary to be a solvent-soluble polyimide resin.

金属張積層体において、絶縁基材と金属層の間に配された接着層の残留揮発成分が多いと、250℃以上の高温度に達するはんだ工程の際に接着層の白化、膨れ、発泡等を生じ、絶縁基材と金属層の密着性を著しく損なうという問題を有していた(特許文献4参照)。この接着層の残留揮発成分とは、接着層又は接着性フィルムを形成する際のイミド化、溶剤除去工程において除去されなかった水分と溶剤、製造環境から吸収された水分、エッチング工程の水溶液浸漬時に吸収される水分等が挙げられる。この中で特に問題視されるのは水分である。上記問題を解決するためには、ポリイミドの水分含有率の指標となる吸水率を低くすることが望まれている。   In metal-clad laminates, if there are many residual volatile components in the adhesive layer placed between the insulating substrate and the metal layer, the adhesive layer will be whitened, swollen, foamed, etc. during the soldering process that reaches a high temperature of 250 ° C or higher. And the adhesion between the insulating substrate and the metal layer is significantly impaired (see Patent Document 4). The residual volatile components of the adhesive layer are imidization when forming the adhesive layer or adhesive film, moisture and solvent that were not removed in the solvent removal process, moisture absorbed from the manufacturing environment, and when the aqueous solution was immersed in the etching process. For example, absorbed moisture. Of these, moisture is a particular problem. In order to solve the above problems, it is desired to reduce the water absorption rate, which is an index of the moisture content of polyimide.

また、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物及びその反応性誘導体から得られた、熱溶融可能な分子主鎖中に1,2,4,5−シクロヘキサンテトラカルボン酸骨格を含むポリイミド樹脂が開示されている(特許文献6参照)。その実施例1には1,2,4,5−シクロヘキサンテトラカルボン酸二無水物及びその反応性誘導体をジアミノジフェニルメタンと反応させてアミド酸とし、これを塗布した後に加熱してイミド化し、さらにこれを加熱加圧成形してなるガラス転移温度304℃の透明で黄色のポリイミド樹脂フィルムが開示されている。また、特許文献5は、ジアミノジフェニルエーテルを用いて得たポリイミド樹脂溶液から、ガラス転移温度300℃以上で透明で着色の少ないポリイミド樹脂フィルムが得られることを開示している。   In addition, a 1,2,4,5-cyclohexanetetracarboxylic acid skeleton obtained from 1,2,4,5-cyclohexanetetracarboxylic dianhydride and its reactive derivative has a 1,2,4,5-cyclohexanetetracarboxylic acid skeleton in the heat-meltable molecular main chain. A polyimide resin is disclosed (see Patent Document 6). In Example 1, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and a reactive derivative thereof were reacted with diaminodiphenylmethane to form an amic acid, which was coated and then heated to imidize. A transparent yellow polyimide resin film having a glass transition temperature of 304 ° C. formed by heating and pressing is disclosed. Patent Document 5 discloses that a polyimide resin film that is transparent and has little coloration at a glass transition temperature of 300 ° C. or higher can be obtained from a polyimide resin solution obtained by using diaminodiphenyl ether.

上記の1,2,4,5−シクロへキサンテトラカルボン酸骨格を有するポリイミド樹脂は高分子量化が比較的容易で、フレキシブルなフィルムが得られ易い上に、溶剤に対する溶解度も充分に大きいので、フィルムの成形加工の面で有利である。また、塗布することによりフレキシブルで充分な厚み、耐久性を有する接着層を容易に形成できるので極めて有用である。
しかしながら、特許文献6記載のポリイミド樹脂フィルムは従来と同様に高温のイミド化工程を経て形成されるので、フィルムが着色し、また特許文献5及び6記載のポリイミド樹脂フィルムは、吸水率が高く、吸湿寸法安定性に劣るといった欠点を有していた。
The polyimide resin having the 1,2,4,5-cyclohexanetetracarboxylic acid skeleton is relatively easy to increase in molecular weight, and a flexible film is easily obtained, and the solubility in a solvent is sufficiently high. This is advantageous in terms of film forming. Further, it is extremely useful because it can easily form a flexible adhesive layer having sufficient thickness and durability by application.
However, since the polyimide resin film described in Patent Document 6 is formed through a high-temperature imidization step as in the past, the film is colored, and the polyimide resin films described in Patent Documents 5 and 6 have a high water absorption rate. It had a drawback of poor moisture absorption dimensional stability.

特開昭55−91895号公報JP-A-55-91895 特開平5−32950号公報JP-A-5-32950 特開平5−59344号公報JP-A-5-59344 特開2001−329246号公報JP 2001-329246 A 特開2003−168800号公報JP 2003-168800 A 米国特許第3,639,343号明細書US Pat. No. 3,639,343

本発明の目的は、従来、接着層に用いられてきた全芳香族ポリイミド樹脂の問題点を解決し、熱可塑性、溶剤可溶性及び耐熱性が良好で、低吸水率、更には接着性に優れるポリイミド樹脂、その製造方法、該ポリイミド樹脂を含むフィルム及び該ポリイミド樹脂からなる接着層を含む金属張積層体を提供することにある。   The object of the present invention is to solve the problems of wholly aromatic polyimide resins that have been used in conventional adhesive layers, and have good thermoplasticity, solvent solubility and heat resistance, low water absorption, and excellent adhesion. The object is to provide a metal-clad laminate including a resin, a production method thereof, a film containing the polyimide resin, and an adhesive layer made of the polyimide resin.

本発明者らは上記の課題を解決するため鋭意検討した結果、特定の繰り返し単位で構成されるポリイミド樹脂が、熱可塑性、接着性、溶剤可溶性及び耐熱性が良好で、低吸水率であることを見出した。さらに、特定の構造又は特定の官能基を有する化合物をジアミン成分として併用することより、金属層及び絶縁基材に対する接着性が改善されることを見出した。これらの知見に基づき本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a polyimide resin composed of a specific repeating unit has good thermoplasticity, adhesiveness, solvent solubility and heat resistance, and low water absorption. I found. Furthermore, it discovered that the adhesiveness with respect to a metal layer and an insulation base material was improved by using together the compound which has a specific structure or a specific functional group as a diamine component. Based on these findings, the present invention has been achieved.

すなわち本発明は、下記式(1):
で表される繰り返し単位、又は、前記式(1)で表される繰り返し単位と下記式(2):
(式中、Xは炭素数が2〜39の2価の脂肪族基、炭素数が3〜39の2価の脂環族基、炭素数が6〜39の2価の芳香族基又はこれらの組み合わせからなる2価の基であり、Xの主鎖には、−O−、−SO−、−CH−、−C(CH−、−OSi(CH−、−CO−及び−S−からなる群から選ばれた少なくとも1種の結合基が介在していてもよく、Xはカルボキシル基、水酸基又はカルボニル基からなる群から選ばれた少なくとも1種の官能基を有していてもよい)
で表される少なくとも1種の繰り返し単位からなるポリイミド樹脂であって、前記式(1)の繰り返し単位の割合が全繰り返し単位の50モル%を超えるポリイミド樹脂を提供する。
That is, the present invention provides the following formula (1):
Or a repeating unit represented by the formula (1) and the following formula (2):
(In the formula, X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or these. A main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, At least one bonding group selected from the group consisting of —C 2 H 4 O— and —S— may intervene, and X is at least one selected from the group consisting of a carboxyl group, a hydroxyl group or a carbonyl group. It may have a kind of functional group)
The polyimide resin which consists of at least 1 type of repeating unit represented by these, Comprising: The ratio of the repeating unit of said Formula (1) provides the polyimide resin exceeding 50 mol% of all the repeating units.

さらに本発明は、前記ポリイミド樹脂の製造方法を提供する。   Furthermore, this invention provides the manufacturing method of the said polyimide resin.

また、本発明は、上記ポリイミド樹脂の溶液を、支持体上にキャストし、有機溶剤を蒸発除去する工程を含むポリイミド樹脂フィルムの製造方法を提供する。   Moreover, this invention provides the manufacturing method of the polyimide resin film including the process of casting the solution of the said polyimide resin on a support body, and evaporating and removing an organic solvent.

さらに、本発明は、絶縁基材、金属層及び前記絶縁基材と金属層との間に配置された接着層を含む金属張積層体であり、前記接着層が上記ポリイミド樹脂により形成されている金属張積層体を提供する。   Furthermore, the present invention is a metal-clad laminate including an insulating base material, a metal layer, and an adhesive layer disposed between the insulating base material and the metal layer, and the adhesive layer is formed of the polyimide resin. A metal-clad laminate is provided.

本発明のポリイミド樹脂は、熱可塑性、溶剤可溶性及び耐熱性が良好で、低吸水率、更には接着性に優れる。溶剤可溶性故にその製造方法は溶液重合が可能であり、得られた本発明のポリイミド樹脂溶液から接着層を形成する際には溶媒除去のみでよく、従来の300℃以上に及ぶ高温を必要としない。本発明のポリイミド樹脂を接着層として得られた金属張積層体は密着性、はんだ耐熱性に優れる。   The polyimide resin of the present invention has good thermoplasticity, solvent solubility and heat resistance, and is excellent in low water absorption and further adhesiveness. Since it is soluble in the solvent, the production method can be solution-polymerized, and when forming the adhesive layer from the obtained polyimide resin solution of the present invention, it is only necessary to remove the solvent and does not require the conventional high temperature of 300 ° C. or higher. . The metal-clad laminate obtained by using the polyimide resin of the present invention as an adhesive layer is excellent in adhesion and solder heat resistance.

以下、本発明を詳細に説明する。
本発明のポリイミド樹脂(以下、適宜、ポリイミドAと記す)は、下記式(1):
で表される繰り返し単位、又は上記式(1)で表される繰り返し単位と下記式(2):
で表される繰り返し単位からなり、式(1)で表される繰り返し単位の割合が全繰り返し単位の50モル%を超え、好ましくは70モル%以上、より好ましくは80モル%以上(それぞれ100モル%を含む)である。式(1)で表される繰り返し単位の割合が全繰り返し単位の50モル%を超えると低吸水性を達成できるが、50モル%以下であると、式(2)の構造によっては吸水率が高くなり、そのポリイミドを接着剤として使用した金属張積層板のはんだ耐熱性が低下する事がある。ポリイミドAは、ブロックコポリマーあるいはランダムコポリマーのどちらでも良い。
Hereinafter, the present invention will be described in detail.
The polyimide resin of the present invention (hereinafter appropriately referred to as polyimide A) has the following formula (1):
Or a repeating unit represented by the above formula (1) and the following formula (2):
The ratio of the repeating unit represented by the formula (1) exceeds 50 mol%, preferably 70 mol% or more, more preferably 80 mol% or more (each 100 mol). % Is included). When the proportion of the repeating unit represented by the formula (1) exceeds 50 mol% of all repeating units, low water absorption can be achieved, but when it is 50 mol% or less, depending on the structure of the formula (2), the water absorption may be The solder heat resistance of the metal-clad laminate using the polyimide as an adhesive may be lowered. Polyimide A may be either a block copolymer or a random copolymer.

上記式(2)中のXは下記式(4):
とは異なり、炭素数2〜39の2価の脂肪族基、炭素数3〜39の2価の脂環族基、炭素数6〜39の2価の芳香族基又はこれらの組み合わせからなる2価の基である。Xの主鎖には、−O−、−SO−、−CH−、−C(CH−、−OSi(CH−、−CO−、及び−S−からなる群から選ばれた少なくとも1の結合基が介在していてもよい。また、Xはカルボキシル基、水酸基及びカルボニル基(Xの主鎖に含まれる)からなる群から選ばれた少なくとも一つの官能基を有していてもよい。Xの具体例としては、ポリアルキレン、ポリオキシアルキレン、キシリレン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体などの2価の脂肪族基;シクロヘキサン、ジシクロヘキシルメタン、ジメチルシクロヘキサン、イソフォロン、ノルボルナン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体等から誘導される2価の脂環族基;及び、ベンゼン、ナフタレン、ビフェニル、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルフォン、ベンゾフェノン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体等から誘導される2価の芳香族基が挙げられる。接着層の諸特性のバランスを保ちながら接着強度を向上させるためには、m−キシリレン基又は下記式(3)で表される構造であるのが好ましい。
X in the above formula (2) is the following formula (4):
2 which is composed of a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or a combination thereof. Is a valent group. The main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O—, and —S. At least one linking group selected from the group consisting of — may intervene. X may have at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group and a carbonyl group (included in the main chain of X). Specific examples of X include polyalkylene, polyoxyalkylene, xylylene and their alkyl-substituted, halogen-substituted, carboxy-substituted, and hydroxy-substituted divalent aliphatic groups; cyclohexane, dicyclohexylmethane, dimethylcyclohexane, Divalent alicyclic groups derived from isophorone, norbornane and their alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted, etc .; and benzene, naphthalene, biphenyl, diphenylmethane, diphenyl ether, diphenylsulfone, benzophenone And divalent aromatic groups derived from these alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted and the like. In order to improve the adhesive strength while maintaining the balance of various properties of the adhesive layer, it is preferably a m-xylylene group or a structure represented by the following formula (3).

ポリイミドAは溶液として使用されるので、その分子量は粘度、特に対数粘度で表すことが好ましい。ポリイミドAの対数粘度η(0.5g/dLのN−メチル−2−ピロリドン溶液を用いて30℃で測定)は、0.3〜2dL/gである。0.3dL/g未満であると、ポリイミド樹脂自体の強度が弱く、充分な剥離強度を有する金属張積層体が得られない。2.0dL/gを超えるとその溶液(ワニス)が高粘度になり塗布し難く、大幅な希釈が必要となり、取り扱いが難しくなる。接着層の諸特性のバランスを保ちながら接着強度を向上させるためには、対数粘度ηは0.3〜1.5dL/gであることが好ましい。   Since polyimide A is used as a solution, its molecular weight is preferably expressed by viscosity, particularly logarithmic viscosity. The logarithmic viscosity η (measured at 30 ° C. using a 0.5 g / dL N-methyl-2-pyrrolidone solution) of polyimide A is 0.3 to 2 dL / g. If it is less than 0.3 dL / g, the strength of the polyimide resin itself is weak and a metal-clad laminate having sufficient peel strength cannot be obtained. If it exceeds 2.0 dL / g, the solution (varnish) becomes highly viscous and difficult to apply, requiring significant dilution, making handling difficult. In order to improve the adhesive strength while keeping the balance of various properties of the adhesive layer, the logarithmic viscosity η is preferably 0.3 to 1.5 dL / g.

通常、ポリイミドAの分子末端は、アミノ基、カルボキシル基、又はカルボン酸無水物基である。これらの分子末端にカルボン酸無水物基やアミノ基を有する化合物を反応させることにより、分子末端の官能基を可能な限り減らすこと、又は、意図的に分子末端にアミノ基、カルボキシル基などの官能基やこれ以外の置換基を導入することができる。吸水率を低下させるために、分子末端に極性の小さい置換基(官能性のない置換基)を導入してもよい。後述する方法で測定したポリイミドAの吸水率は、2.5%以下が好ましい。工業的に達成できる吸水率の最小値は通常約1%である。   Usually, the molecular terminal of the polyimide A is an amino group, a carboxyl group, or a carboxylic anhydride group. By reacting a compound having a carboxylic acid anhydride group or amino group at the molecular end, the functional group at the molecular end is reduced as much as possible, or an intentionally functional group such as an amino group or a carboxyl group at the molecular end. Groups and other substituents can be introduced. In order to reduce the water absorption rate, a substituent having a small polarity (substituent having no functionality) may be introduced at the molecular end. The water absorption rate of polyimide A measured by the method described later is preferably 2.5% or less. The minimum value of water absorption that can be achieved industrially is usually about 1%.

ポリイミドAは、1,2,4,5−シクロヘキサンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(HPMDA)及び1,2,4,5−シクロヘキサンテトラカルボン酸エステル類などの反応性誘導体から選ばれる少なくとも1種のテトラカルボン酸成分(Y)と、ジアミン及びその反応性誘導体から選ばれる少なくとも1種のジアミン成分(Z)とを反応させる事により得られる。テトラカルボン酸成分(Y)としては、HPMDAが好ましい。なお、テトラカルボン酸成分(Y)及びジアミン成分(Z)は異性体を含む。   Polyimide A consists of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA) and 1,2,4,5-cyclohexanetetracarboxylic acid esters. It is obtained by reacting at least one tetracarboxylic acid component (Y) selected from reactive derivatives such as diamine and at least one diamine component (Z) selected from diamines and reactive derivatives thereof. As the tetracarboxylic acid component (Y), HPMDA is preferable. In addition, the tetracarboxylic acid component (Y) and the diamine component (Z) include isomers.

ジアミン成分(Z)としては、ジアミン、ジイソシアネート、ジアミノジシランなどが挙げられるが、ジアミンが好ましい。上記式(1)の繰り返し単位を形成するためのジアミン成分(ジアミン成分(Z1))は、4,4’−ビス(4−アミノフェノキシ)ビフェニル(BAPB)及びその反応性誘導体であり、上記式(2)の繰り返し単位を形成するためのジアミン成分(ジアミン成分(Z2))はNH−X−NH(Xは前記と同様)及びその反応性誘導体である。 Examples of the diamine component (Z) include diamine, diisocyanate, and diaminodisilane, and diamine is preferred. The diamine component (diamine component (Z1)) for forming the repeating unit of the above formula (1) is 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) and a reactive derivative thereof. The diamine component (diamine component (Z2)) for forming the repeating unit (2) is NH 2 —X—NH 2 (X is the same as described above) and a reactive derivative thereof.

ジアミン成分(Z2)は、芳香族ジアミン、脂肪族ジアミン、脂環族ジアミン、前記ジアミンの反応性誘導体、及びこれらの混合物のいずれでも良く、カルボキシル基、水酸基及びカルボニル基(Xの主鎖に含まれる)からなる群から選ばれた少なくとも一つの官能基を有していてもよい。なお、本発明において“芳香族ジアミン”とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。“脂肪族ジアミン”とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。“脂環族ジアミン”とは、アミノ基が脂環族基に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。例えば、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP)は、アミノ基が芳香族環(ベンゼン環)に直接結合しているので芳香族ジアミンであり、m−キシリレンジアミン(MXDA)はアミノ基が脂肪族基(メチレン基)に直接結合しているので脂肪族ジアミンである。   The diamine component (Z2) may be an aromatic diamine, an aliphatic diamine, an alicyclic diamine, a reactive derivative of the diamine, or a mixture thereof, including a carboxyl group, a hydroxyl group, and a carbonyl group (included in the main chain of X). It may have at least one functional group selected from the group consisting of: In the present invention, “aromatic diamine” means a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group, an alicyclic group, an aromatic group, other It may contain a substituent. “Aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and the structure includes an aliphatic group, an alicyclic group, an aromatic group, and other substituents. May be. “Alicyclic diamine” refers to a diamine in which an amino group is directly bonded to an alicyclic group, and an aliphatic group, an alicyclic group, an aromatic group, and other substituents are partly included in the structure. It may be included. For example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is an aromatic diamine because the amino group is directly bonded to the aromatic ring (benzene ring), and m-xylyl. Range amine (MXDA) is an aliphatic diamine because the amino group is directly bonded to an aliphatic group (methylene group).

一般に、テトラカルボン酸二無水物と脂肪族ジアミン又は脂環族ジアミンを反応させると、中間生成物であるポリアミド酸と脂肪族ジアミン又は脂環族ジアミン由来のアミノ基が強固な塩を形成するために、高分子量ポリイミドが得られにくい。そのため、塩の溶解性が比較的高い溶剤、例えばクレゾールを用いるなどの工夫が必要になる。しかし、テトラカルボン酸二無水物として1,2,4,5−シクロへキサンテトラカルボン酸二無水物を用いると、ポリアミド酸と脂肪族ジアミン又は脂環族ジアミン由来のアミノ基が比較的弱い結合の塩を形成するに留まるので、イミド化反応が比較的容易に進行し、容易に高分子量化できる。   In general, when tetracarboxylic dianhydride is reacted with an aliphatic diamine or alicyclic diamine, the polyamic acid as an intermediate product and the amino group derived from the aliphatic diamine or alicyclic diamine form a strong salt. In addition, it is difficult to obtain a high molecular weight polyimide. Therefore, it is necessary to devise such as using a solvent having a relatively high salt solubility, such as cresol. However, when 1,2,4,5-cyclohexanetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride, the amino group derived from the polyamic acid and the aliphatic diamine or alicyclic diamine is relatively weak. Thus, the imidization reaction proceeds relatively easily, and the molecular weight can be easily increased.

脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3−アミノプロピル)エーテル、ポリプロピレングリコールビス(3−アミノプロピル)エーテル、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、p−キシリレンジアミン、m−キシリレンジアミン、シロキサンジアミン類等が挙げられる。   Examples of the aliphatic diamine include ethylene diamine, hexamethylene diamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, 1,4. -Bis (aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, siloxane diamines and the like.

脂環族ジアミンとしては、例えば、4,4’−ジアミノジシクロヘキシルメタン、イソフォロンジアミン、ノルボルナンジアミンなどが挙げられる。   Examples of the alicyclic diamine include 4,4'-diaminodicyclohexylmethane, isophorone diamine, norbornane diamine, and the like.

芳香族ジアミンとしては、例えば、1,4−フェニレンジアミン、1,3−フェニレンジアミン、2,4−トルエンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン、α,α’−ビス(3−アミノフェニル)−1,4−ジイソプロピルベンゼン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、4,4’−ジアミノジフェニルスルホン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、2,6−ジアミノナフタレン、1,5−ジアミノナフタレン等が挙げられる。   Examples of the aromatic diamine include 1,4-phenylenediamine, 1,3-phenylenediamine, 2,4-toluenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and 4,4′-. Diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, α, α′-bis (4 -Aminophenyl) -1,4-diisopropylbenzene, α, α'-bis (3-aminophenyl) -1,4-diisopropylbenzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3 Aminophenoxy) phenyl] sulfone, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene and the like.

上記官能基を有するジアミンとしては、例えば、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,5−ジアミノ安息香酸、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、2,4−ジアミノフェノール、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノンが挙げられ、特に、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン(MBAA)、3,5−ジアミノ安息香酸(DBA)、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル(HAB)、4,4’−ジアミノベンゾフェノン(4,4’−DBP)が好ましい。   Examples of the diamine having a functional group include 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2,4-diaminophenol, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, and in particular, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane (MBAA), 3,5 -Diaminobenzoic acid (DBA), 3,3'-dihydroxy-4,4'-diaminobiphenyl (HAB), 4,4'-diaminobenzophenone (4,4'-DBP) are preferred.

ジアミン成分(Z2)として、MXDA、BAPPを使用することにより、ポリイミド樹脂の接着力を向上させることができる。   By using MXDA or BAPP as the diamine component (Z2), the adhesive force of the polyimide resin can be improved.

ポリイミドAは、前記ジアミン成分(Z)(ジアミン成分(Z1)、又は、ジアミン成分(Z1)+ジアミン成分(Z2))1モルに対して前記テトラカルボン酸成分(Y)を、好ましくは0.66〜1.5モル、より好ましくは0.9〜1.1モル、さらに好ましくは0.97〜1.03モル反応させることにより製造される。   Polyimide A is the above-mentioned tetracarboxylic acid component (Y) with respect to 1 mol of the diamine component (Z) (diamine component (Z1) or diamine component (Z1) + diamine component (Z2)), preferably 0.00. It is produced by reacting 66 to 1.5 mol, more preferably 0.9 to 1.1 mol, and still more preferably 0.97 to 1.03 mol.

例えば、原料の使用割合、反応温度と時間、末端停止剤の使用の有無と使用量、触媒量などの少なくとも一つの条件を調整することにより、前記範囲内の対数粘度ηを有するポリイミドAを製造することができる。前記条件の調整は、予備反応などを行うことにより、当業者であれば容易に行うことができる。例えば、対数粘度ηを前記テトラカルボン酸成分(Y)と前記ジアミン成分(Z)とのモル比及び反応時間によって調整する場合、前記モル比が1に近い程、また、反応時間が長い程、対数粘度ηが前記範囲内で大きくなる。前記モル比が0.66〜1.5の範囲内で1から遠く離れる程、また、反応時間が短い程、対数粘度ηは前記範囲内で小さくなる。溶液重合法では、反応溶液の粘度、反応時間その他の反応条件などと、これに対応した対数粘度との関係を予め求めておき、この関係に基づいて反応の終了時点を決定することにより、所定対数粘度ηのポリイミドAを製造することができる。反応時間は2〜12時間、反応温度は180〜205℃であるのが好ましい。   For example, a polyimide A having a logarithmic viscosity η within the above range is produced by adjusting at least one condition such as the ratio of raw material used, reaction temperature and time, presence / absence and usage of a terminal terminator, and the amount of catalyst. can do. Those skilled in the art can easily adjust the conditions by performing a preliminary reaction or the like. For example, when the logarithmic viscosity η is adjusted by the molar ratio of the tetracarboxylic acid component (Y) and the diamine component (Z) and the reaction time, the closer the molar ratio is to 1, the longer the reaction time, The logarithmic viscosity η increases within the above range. As the molar ratio is far from 1 in the range of 0.66 to 1.5 and the reaction time is shorter, the logarithmic viscosity η is smaller in the range. In the solution polymerization method, the relationship between the viscosity of the reaction solution, the reaction time, and other reaction conditions, and the logarithmic viscosity corresponding thereto are obtained in advance, and the end point of the reaction is determined based on this relationship, thereby obtaining a predetermined value. Polyimide A having a logarithmic viscosity η can be produced. The reaction time is preferably 2 to 12 hours, and the reaction temperature is preferably 180 to 205 ° C.

ポリイミドAは、通常、有機溶剤溶液として製造される。
有機溶剤としては特に限定されないが、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m−クレゾ−ル、フェノ−ル、p−クロルフェノール、2−クロル−4−ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ−ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノンなどが使用可能であり、2種以上を併用しても良い。しかし、ポリイミドAと溶剤からなるポリイミドワニスの性能を考慮すると、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAC)、γ−ブチロラクトン(GBL)を単独又は併用するのが好ましい。有機溶剤は、得られる有機溶剤溶液中のポリイミドA濃度が、好ましくは1〜50重量%、より好ましくは5〜40重量%になるような量用いる。また、溶液重合による製造の場合、上記溶剤と併せてヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロルベンゼン、o−ジクロロベンゼン等の貧溶媒を、重合体が析出しない程度に使用することができる。
Polyimide A is usually produced as an organic solvent solution.
Although it does not specifically limit as an organic solvent, For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl Caprolactam, hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ- Butyrolactone, dioxolane, cyclohexanone, cyclopentanone and the like can be used, and two or more kinds may be used in combination. However, considering the performance of polyimide varnish composed of polyimide A and a solvent, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), and γ-butyrolactone (GBL) may be used alone or in combination. preferable. The organic solvent is used in such an amount that the polyimide A concentration in the obtained organic solvent solution is preferably 1 to 50% by weight, more preferably 5 to 40% by weight. In addition, in the case of production by solution polymerization, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene and the like can be used together with the above solvent to such an extent that the polymer does not precipitate.

ポリイミドAは、(1)溶液重合法、(2)ポリアミック酸溶液を調製し、これを製膜し、イミド化する方法、(3)HPMDAのハーフエステル塩などの塩又はイミドオリゴマーを得、固相重合を行なう方法、(4)テトラカルボン酸二無水物とジイソシアネートを反応させる方法、その他従来公知の方法で製造することができる。それぞれの方法を併用しても良い。テトラカルボン酸成分(Y)とジアミン成分(Z)との反応は、酸、三級アミン類、無水物などの従来公知の触媒の存在下で行ってもよい。   Polyimide A is obtained by (1) a solution polymerization method, (2) a method of preparing a polyamic acid solution, forming a film and imidizing it, and (3) obtaining a salt or imide oligomer such as a half ester salt of HPMDA. It can be produced by a method of performing phase polymerization, (4) a method of reacting tetracarboxylic dianhydride and diisocyanate, or other conventionally known methods. You may use each method together. The reaction between the tetracarboxylic acid component (Y) and the diamine component (Z) may be carried out in the presence of a conventionally known catalyst such as an acid, a tertiary amine or an anhydride.

これらの方法の中で、ポリイミドAの有機溶剤溶液が直接得られるので、下記(1)〜(3)の溶液重合法が好ましい。
(1)ジアミン成分(Z)、有機溶剤、及び必要に応じて触媒を含む混合物を10〜600rpmで攪拌して均一溶液とし、これを温度30〜90℃に保ち、テトラカルボン酸成分(Y)及び必要に応じて触媒を添加する。
(2)テトラカルボン酸成分(Y)、有機溶剤、及び必要に応じて触媒を含む混合物を10〜600rpmで攪拌して均一溶液とし、これを温度30〜90℃に保ち、ジアミン成分(Z)及び必要に応じて触媒を添加する。
(3)(1)又は(2)の方法の後に、0.1〜6時間かけて160〜230℃、好ましくは180〜205℃まで昇温する。この温度は使用する有機溶剤の沸点によって左右される。反応系外に除去される成分を捕集しつつ、温度を0.5〜24時間、好ましくは2〜12時間ほぼ一定に保つ。その後必要ならば有機溶剤を更に添加し、適温まで冷却する。
Among these methods, since an organic solvent solution of polyimide A is obtained directly, the following solution polymerization methods (1) to (3) are preferable.
(1) A mixture containing a diamine component (Z), an organic solvent, and, if necessary, a catalyst is stirred at 10 to 600 rpm to form a homogeneous solution, which is maintained at a temperature of 30 to 90 ° C., and the tetracarboxylic acid component (Y) And if necessary, a catalyst is added.
(2) A mixture containing a tetracarboxylic acid component (Y), an organic solvent, and, if necessary, a catalyst is stirred at 10 to 600 rpm to obtain a uniform solution, which is kept at a temperature of 30 to 90 ° C., and a diamine component (Z) And if necessary, a catalyst is added.
(3) After the method (1) or (2), the temperature is raised to 160 to 230 ° C, preferably 180 to 205 ° C over 0.1 to 6 hours. This temperature depends on the boiling point of the organic solvent used. While collecting the components to be removed outside the reaction system, the temperature is kept substantially constant for 0.5 to 24 hours, preferably 2 to 12 hours. Thereafter, if necessary, an organic solvent is further added and cooled to an appropriate temperature.

ポリイミドAを製造するための溶液重合は、トリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、トリエチレンジアミン、N−メチルピロリジン、N−エチルピロリジン、N−メチルピペリジン、N−エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどの3級アミン化合物から選ばれる少なくとも1種の触媒の存在下で行ってもよい。使用する場合、触媒の使用量は、テトラカルボン酸成分(Y)の0.1〜100モル%が好ましく、1〜10モル%がより好ましい。   Solution polymerization for producing polyimide A includes trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N- The reaction may be performed in the presence of at least one catalyst selected from tertiary amine compounds such as methylpyrrolidine, N-ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline and isoquinoline. When using, the usage-amount of a catalyst has preferable 0.1-100 mol% of the tetracarboxylic-acid component (Y), and 1-10 mol% is more preferable.

ポリイミドAの有機溶剤溶液には、フッ素系、ポリシロキサン系などの界面活性剤を添加しても良い。これによって、表面平滑性の良好な接着層、ポリイミド樹脂フィルムを得やすくなる。   A surfactant such as fluorine or polysiloxane may be added to the organic solvent solution of polyimide A. This makes it easy to obtain an adhesive layer and a polyimide resin film with good surface smoothness.

ポリイミド樹脂フィルムは、上記ポリイミドAの有機溶剤溶液を、離型性を付与したガラス板、金属板などの平滑な支持体上に塗布(キャスト)し、50〜350℃に加熱して有機溶剤を蒸発除去することにより製造できる。120℃以下の温度で溶剤を蒸発させて自己支持性のフィルムとした後、該フィルムを支持体より剥離し、該フィルムの端部を固定し、用いた有機溶剤の沸点〜350℃で乾燥してポリイミド樹脂フィルムを製造することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。ポリイミド樹脂フィルムの厚さは1〜100μmが好ましく、2〜50μmがより好ましい。ポリイミドAの有機溶剤溶液の代わりにポリアミド酸溶液を平滑な支持体上に塗布し、50℃〜350℃に加熱して脱水イミド化反応を行うことによってポリイミド樹脂フィルムを製造することもできる。   The polyimide resin film is obtained by applying (casting) the organic solvent solution of polyimide A on a smooth support such as a glass plate or a metal plate to which releasability is imparted, and heating the organic solvent to 50 to 350 ° C. It can be manufactured by evaporating off. After evaporating the solvent at a temperature of 120 ° C. or less to form a self-supporting film, the film is peeled off from the support, the edges of the film are fixed, and dried at the boiling point of the organic solvent used to 350 ° C. It is preferable to manufacture a polyimide resin film. The pressure in the dry atmosphere may be any of reduced pressure, normal pressure, and increased pressure. 1-100 micrometers is preferable and, as for the thickness of a polyimide resin film, 2-50 micrometers is more preferable. A polyimide resin film can also be produced by applying a polyamic acid solution on a smooth support instead of the organic solvent solution of polyimide A and heating to 50 ° C. to 350 ° C. to carry out a dehydration imidation reaction.

本発明の金属張積層体は、絶縁基材、金属層及びこれらの間に配置されたポリイミドAからなる接着層を含む。
金属張積層体は、ポリイミドAの有機溶剤溶液を絶縁基材及び金属層の一方又は双方に塗布し、有機溶剤を50〜350℃で蒸発除去して接着層を形成した後、絶縁基材と金属層を接着層を介して重ね合わせ、次いで熱圧着する方法、又は、上記ポリイミド樹脂フィルムを絶縁基材と金属層との間に配置し、熱圧着する方法により製造することができる。また、ポリイミド樹脂フィルムの片面にスパッタリング、蒸着、無電解めっき等の方法で金属薄膜を直接形成し、他方の面に絶縁基材を戴置し熱圧着する方法、及び、絶縁基材表面に接着層を形成し、該接着層の表面に、スパッタリング、蒸着、無電解めっき等の方法で金属薄膜を形成する方法によっても絶縁基材と金属層が強固に接着した金属張積層体を製造することができる。
接着層の厚さは、好ましくは1〜100μm、より好ましくは2〜50μmである。ポリイミドAのガラス転移温度は、選択するジアミンにより異なるが、通常、200〜350℃、好ましくは、230〜300℃である。ポリイミドAはガラス転移温度以上の温度で接着性を示すので、ガラス転移温度が高すぎると熱圧着温度が高くなりすぎ、ガラス転移温度が低すぎるとフィルム自体の耐熱性が不足する。
The metal-clad laminate of the present invention includes an insulating base material, a metal layer, and an adhesive layer made of polyimide A disposed therebetween.
The metal-clad laminate is formed by applying an organic solvent solution of polyimide A to one or both of the insulating base and the metal layer, evaporating and removing the organic solvent at 50 to 350 ° C., and forming an adhesive layer. It can be manufactured by a method in which a metal layer is superposed through an adhesive layer and then thermocompression bonded, or a method in which the polyimide resin film is disposed between an insulating substrate and a metal layer and thermocompression bonded. Also, a metal thin film is directly formed on one side of the polyimide resin film by sputtering, vapor deposition, electroless plating, etc., an insulating base is placed on the other side and thermocompression bonded, and the surface of the insulating base is adhered. Forming a metal-clad laminate in which the insulating substrate and the metal layer are firmly bonded to each other by a method of forming a metal thin film on the surface of the adhesive layer by sputtering, vapor deposition, electroless plating, or the like. Can do.
The thickness of the adhesive layer is preferably 1 to 100 μm, more preferably 2 to 50 μm. The glass transition temperature of polyimide A varies depending on the selected diamine, but is usually 200 to 350 ° C, preferably 230 to 300 ° C. Since polyimide A exhibits adhesion at a temperature equal to or higher than the glass transition temperature, if the glass transition temperature is too high, the thermocompression bonding temperature becomes too high, and if the glass transition temperature is too low, the heat resistance of the film itself is insufficient.

金属層は、電解、圧延等の方法により得られた金属箔により形成してもよいし、上記したようにポリイミド樹脂フィルムの表面又は絶縁基材上に形成された接着層の表面に直接形成してもよい。金属層の厚さは、特に制限がないが、1〜100μmの範囲が好ましい。金属層の材料は銅が好ましい。また、金属箔の片面(接着面)又は両面を表面粗さRzが0.1〜12μmになるように表面処理を施してもよい。一般的にロープロファイルと呼ばれる銅箔の場合、Rzは、好ましくは0.1〜2μm、より好ましくは0.4〜2μm、さらに好ましくは1.0〜2μmである。なお、接着用の表面処理を施していない金属箔は、通常、表面が防錆剤などで処理されていることが多いので、アセトンその他の有機溶剤をしみ込ませた布などで表面を拭くなどした後に用いることが好ましい。   The metal layer may be formed of a metal foil obtained by a method such as electrolysis or rolling, or may be directly formed on the surface of the polyimide resin film or the surface of the adhesive layer formed on the insulating base as described above. May be. Although the thickness of a metal layer does not have a restriction | limiting in particular, The range of 1-100 micrometers is preferable. The material of the metal layer is preferably copper. Moreover, you may surface-treat so that the surface roughness Rz may be set to 0.1-12 micrometers on one side (adhesion surface) or both surfaces of metal foil. In the case of a copper foil generally called a low profile, Rz is preferably 0.1 to 2 μm, more preferably 0.4 to 2 μm, and still more preferably 1.0 to 2 μm. In addition, since the surface of metal foil that has not been subjected to surface treatment for bonding is usually treated with a rust preventive agent, etc., the surface was wiped with a cloth soaked with acetone or other organic solvent. It is preferable to use it later.

本発明の絶縁基材は、金属層を電気的に絶縁することができるものであれば特に限定はない。また、絶縁基材にはフレキシブルタイプのものとリジッドタイプのものがあり、いずれも使用できる。絶縁基材の厚さは前記タイプにより異なるが、3〜2000μmが好ましい。フレキシブルタイプの絶縁基材としては、ポリイミド樹脂(ポリイミドAを除く)、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリアミド(アラミドを含む)、ポリエーテルイミド、ポリアミドイミド、ポリエステル(液晶性ポリエステルを含む)、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトンなどのフィルムが挙げられるが、好ましくはポリイミド樹脂フィルムであり、具体的には、商品名“カプトンEN”、“カプトンV”、“カプトンH”(東レ・デュポン(株)製)、商品名“アピカルNPI”、“アピカルAH”((株)カネカ製)などが挙げられる。厚さは特に制限されないが、3〜150μmが好ましく、7.5〜75μmがより好ましい。   The insulating substrate of the present invention is not particularly limited as long as it can electrically insulate the metal layer. Insulating base materials include a flexible type and a rigid type, both of which can be used. Although the thickness of an insulating base material changes with the said types, 3-2000 micrometers is preferable. Flexible insulating base materials include polyimide resin (excluding polyimide A), polybenzimidazole, polybenzoxazole, polyamide (including aramid), polyetherimide, polyamideimide, polyester (including liquid crystalline polyester), polysulfone , Polyethersulfone, polyetherketone, polyetheretherketone, etc., but preferably a polyimide resin film, specifically, “Kapton EN”, “Kapton V”, “Kapton H”. (Manufactured by Toray DuPont Co., Ltd.), trade names “Apical NPI”, “Apical AH” (manufactured by Kaneka Corporation), and the like. Although thickness in particular is not restrict | limited, 3-150 micrometers is preferable and 7.5-75 micrometers is more preferable.

リジッドタイプの絶縁基材としては、ガラス板、セラミック板、プラスチック板等の絶縁材板や金属板に絶縁皮膜を形成したもの、液晶ポリマー、フェノール樹脂、エポキシ樹脂等の熱可塑性や熱硬化性の各種樹脂を、ガラス繊維布、プラスチック繊維布やガラス短繊維等の補強剤に含浸、混練させた成形体が挙げられる。厚さは特に制限されないが、30〜2000μmが好ましい。   Rigid type insulating base materials include glass plates, ceramic plates, plastic plates, etc. and metal plates with insulating coatings, liquid crystal polymers, phenolic resins, epoxy resins, and other thermoplastic and thermosetting materials. Examples include molded products obtained by impregnating and kneading various resins with reinforcing agents such as glass fiber cloth, plastic fiber cloth, and short glass fiber. The thickness is not particularly limited, but is preferably 30 to 2000 μm.

熱圧着の方法としては、通常、多段(真空)プレス機による方法、加圧ロールなどを使用した連続プレス法など適宜採用できる。
熱圧着の温度は、好ましくは200〜400℃、より好ましくは250〜350℃であり、上記したように用いたポリイミドAのガラス転移温度を考慮して選択する。熱圧着の圧力は、好ましくは0.01〜20MPa、より好ましくは0.1〜10MPaである。また、溶剤及び気泡を除くために減圧雰囲気で熱圧着することも好ましい。
後述の方法で測定した本発明の金属張積層体の金属層の剥離強度は、0.5N/mm以上であれば実用に供しうるが、0.8N/mm以上であることが好ましい。
As a method for thermocompression bonding, a method using a multistage (vacuum) press machine, a continuous press method using a pressure roll or the like can be employed as appropriate.
The thermocompression bonding temperature is preferably 200 to 400 ° C., more preferably 250 to 350 ° C., and is selected in consideration of the glass transition temperature of the polyimide A used as described above. The pressure for thermocompression bonding is preferably 0.01 to 20 MPa, more preferably 0.1 to 10 MPa. It is also preferable to perform thermocompression bonding in a reduced pressure atmosphere to remove the solvent and bubbles.
The peel strength of the metal layer of the metal-clad laminate of the present invention measured by the method described below can be practically used if it is 0.5 N / mm or more, but is preferably 0.8 N / mm or more.

以下、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
物性の測定方法を以下に示す。
Hereinafter, the present invention will be described specifically by way of examples. However, this invention is not restrict | limited at all by these Examples.
A method for measuring physical properties is shown below.

(1)IRスペクトル
日本電子(株)製 JIR−WINSPEC50を用いて測定した。
(1) IR spectrum It measured using JEOL Co., Ltd. product JIR-WINSPEC50.

(2)対数粘度η
0.5g/dLのポリイミドのN−メチル−2−ピロリドン溶液を調製した。30℃恒温水槽中、キャノンフェンスケ粘度計によってこの溶液の標線間の液面落下時間を計測し、下式により求めた。
η=ln(溶液落下時間/N−メチル−2−ピロリドン落下時間)/0.5
対数粘度はその値が固有粘度に近似しており、簡便に求められる。
(2) Logarithmic viscosity η
A 0.5 g / dL polyimide N-methyl-2-pyrrolidone solution was prepared. The liquid surface drop time between the marked lines of this solution was measured with a Canon Fenceke viscometer in a constant temperature water bath at 30 ° C., and determined by the following formula.
η = ln (solution falling time / N-methyl-2-pyrrolidone falling time) /0.5
The logarithmic viscosity has a value that approximates the intrinsic viscosity and can be easily obtained.

(3)ガラス転移温度
DSC法により求めた。(株)島津製作所製 DSC−50を用い、40〜350℃、昇温速度10℃/minで測定して得られた中間点ガラス転移温度Tmgをガラス転移温度とした。
(3) Glass transition temperature Determined by the DSC method. Using a DSC-50 manufactured by Shimadzu Corporation, the midpoint glass transition temperature Tmg obtained by measurement at 40 to 350 ° C. and a heating rate of 10 ° C./min was defined as the glass transition temperature.

(4)ポリイミドの吸水率
IPC−TM−650 2.6.2.1の方法に従って求めた。
50.8×50.8mmのポリイミドフィルムを120℃で1時間乾燥した後、重量(W)を測定した。このフィルムを23℃の蒸留水に24時間浸漬し、表面の水分を拭き取った後速やかに重量(W)を測定した。
吸水率(%)=(W−W)÷W×100
(4) Water absorption rate of polyimide It was determined according to the method of IPC-TM-650 2.6.2.1.
A polyimide film of 50.8 × 50.8 mm was dried at 120 ° C. for 1 hour, and then the weight (W 0 ) was measured. This film was immersed in distilled water at 23 ° C. for 24 hours, wiped off the moisture on the surface, and immediately measured for weight (W 1 ).
Water absorption (%) = (W 1 −W 0 ) ÷ W 0 × 100

(5)金属層の剥離強度
JIS C6471の90°剥離による銅はくの剥離強度測定法(剥離強度測定用回転ドラム型支持金具を用いた方法A)に従って求めた。
(5) Peel strength of metal layer It was determined according to the peel strength measurement method for copper foil by 90 ° peel according to JIS C6471 (method A using a rotating drum type support fitting for peel strength measurement).

(6)はんだ耐熱性
JIS C6471を参考に、以下の試験を行なった。
金属張積層体から10×50mmの試験片を切り取り、湿度50%、23℃の恒温室中に24時間放置した。次いで、はんだ浴(260℃と280℃)に20秒間浮かべた。膨れ、剥がれ等の外観異常が発生しない場合をA、外観異常が発生した場合をCとした。
(6) Solder heat resistance The following tests were conducted with reference to JIS C6471.
A 10 × 50 mm test piece was cut from the metal-clad laminate and left in a constant temperature room at 50% humidity and 23 ° C. for 24 hours. Subsequently, it floated in the solder bath (260 degreeC and 280 degreeC) for 20 seconds. The case where no abnormality in appearance such as swelling or peeling occurred was A, and the case where abnormality in appearance occurred was C.

実施例1
ステンレス製半月型攪拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5ツ口ガラス製丸底フラスコ中で、4,4’−ビス(4−アミノフェノキシ)ビフェニル(BAPB、和歌山精化工業(株)製)26.48g(0.07187モル)、γ−ブチロラクトン(GBL、三菱化学(株)製)51.11g、及び触媒としてトリエチルアミン(TEA、関東化学(株)製)0.364gを、窒素雰囲気下、100rpmで攪拌して溶液を得た。
これに1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(HPMDA、三菱ガス化学(株)製)16.11g(0.07187モル)とジメチルアセトアミド(DMAC、三菱ガス化学(株)製)12.78gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約20分かけて反応系内温度を180℃まで上げた。留去される成分を捕集しながら、反応系内温度を180℃に3.5時間維持した。
DMAC96.11gを添加後、130℃付近で約30分攪拌して均一な溶液とし、10分程度で100℃まで空冷し固形分濃度20重量%のポリイミドA溶液を得た。
Example 1
In a 300 mL 5-neck glass round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap, 4,4′-bis (4 -Aminophenoxy) biphenyl (BAPB, Wakayama Seika Kogyo Co., Ltd.) 26.48 g (0.07187 mol), γ-butyrolactone (GBL, Mitsubishi Chemical Co., Ltd.) 51.11 g, and triethylamine (TEA) as a catalyst , Produced by Kanto Chemical Co., Ltd.) was stirred at 100 rpm in a nitrogen atmosphere to obtain a solution.
To this, 16.11 g (0.07187 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and dimethylacetamide (DMAC, manufactured by Mitsubishi Gas Chemical Co., Ltd.) ) 12.78 g of each was added in one batch, and then heated with a mantle heater, and the temperature in the reaction system was raised to 180 ° C. over about 20 minutes. While collecting the components to be distilled off, the reaction system internal temperature was maintained at 180 ° C. for 3.5 hours.
After adding 96.11 g of DMAC, the mixture was stirred at about 130 ° C. for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C. in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.

得られたポリイミドA溶液を離型剤が極少量散布された平滑なガラス板上にコーターで塗布した後、100℃のホットプレート上で1時間加温して自己支持性フィルムを形成した。ガラス板から剥離したフィルムをステンレス製型枠にクリップで数箇所固定した後、200℃の真空乾燥機中で5時間放置して溶剤をほぼ完全に(1重量%未満)除去し、ポリイミドAフィルムを得た。このポリイミドAフィルムのIRスペクトルを測定したところ、ν(C=O)1779、1704(cm−1)にイミド環の特性吸収が認められた。このポリイミドAの対数粘度は1.28dL/g、ガラス転移温度は297℃、吸水率は2.2%であった。 The obtained polyimide A solution was coated on a smooth glass plate coated with a very small amount of a release agent with a coater, and then heated on a hot plate at 100 ° C. for 1 hour to form a self-supporting film. After fixing the film peeled from the glass plate to the stainless steel mold with clips, it was left in a vacuum dryer at 200 ° C. for 5 hours to remove the solvent almost completely (less than 1% by weight), and polyimide A film Got. When the IR spectrum of this polyimide A film was measured, characteristic absorption of an imide ring was observed at ν (C═O) 1779 and 1704 (cm −1 ). The logarithmic viscosity of this polyimide A was 1.28 dL / g, the glass transition temperature was 297 ° C., and the water absorption was 2.2%.

厚さ25μmのポリイミド樹脂フィルム(商品名;カプトン100EN、東レ・デュポン社製)を絶縁基材とし、片面に上記で得たポリイミドA溶液を塗布し、ホットプレート上で100℃、0.5時間加熱後、真空乾燥機中で200℃、5時間乾燥し、絶縁基材上に厚さ4μmの接着層を形成した。金属層としてRz=1.5μmの接着用表面粗化処理してなる厚さ9μmの電解銅箔(品名;F2−WS、古河サーキットフォイル(株)製)を使用し、絶縁基材上に形成した接着層上に粗化面を介して電解銅箔を重ねた。これをステンレス鏡面板で挟み、温度330℃の熱プレス機の熱盤間に入れて接触圧(0MPa)にて3分間保持した後、330℃、5MPa、5分間の条件で加熱圧着した。次いで、常温のプレス機の熱盤間に入れて、5MPa、2分の条件で冷却し金属張積層体を得た。
得られた金属張積層体の金属層の剥離強度は0.80N/mm、はんだ耐熱性はAであった。
A polyimide resin film having a thickness of 25 μm (trade name: Kapton 100EN, manufactured by Toray DuPont) is used as an insulating base, and the polyimide A solution obtained above is applied to one side, and then heated at 100 ° C. for 0.5 hour on a hot plate. After heating, it was dried in a vacuum dryer at 200 ° C. for 5 hours to form an adhesive layer having a thickness of 4 μm on the insulating substrate. Using an electrolytic copper foil (product name; F2-WS, manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 9 μm, which is obtained by roughening the surface for bonding with Rz = 1.5 μm, as a metal layer, formed on an insulating substrate An electrolytic copper foil was overlaid on the adhesive layer through the roughened surface. This was sandwiched between stainless mirror plates, placed between hot plates of a hot press machine having a temperature of 330 ° C., held at a contact pressure (0 MPa) for 3 minutes, and then thermocompression bonded under conditions of 330 ° C., 5 MPa, and 5 minutes. Subsequently, the metal-clad laminate was obtained by putting it between hot plates of a normal temperature press and cooling it under conditions of 5 MPa for 2 minutes.
The peel strength of the metal layer of the obtained metal-clad laminate was 0.80 N / mm, and the solder heat resistance was A.

実施例2
実施例1で使用したものと同様の5ツ口ガラス製丸底フラスコ中で、BAPB24.869g(0.06750モル)、m−キシリレンジアミン(MXDA、三菱ガス化学(株)製)1.021g(0.00750モル)、及びN−メチル−2−ピロリドン(NMP、三菱化学(株)製)50.000gを、窒素雰囲気下、100rpmで攪拌して溶液を得た。
これにHPMDA16.813g(0.07500モル)とNMP14.054gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約20分かけて190℃まで反応系内温度を上げた。留去される成分を捕集しながら、反応系内温度を190℃に5時間維持した。
DMAC95.946gを添加後、温度130℃付近で約30分攪拌して均一溶液とし、100℃まで10分程度で空冷し固形分濃度20重量%のポリイミドA溶液を得た。
Example 2
In a five-neck glass round bottom flask similar to that used in Example 1, BAPB 24.869 g (0.06750 mol), m-xylylenediamine (MXDA, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 1.021 g (0.00750 mol) and 50.000 g of N-methyl-2-pyrrolidone (NMP, manufactured by Mitsubishi Chemical Corporation) were stirred at 100 rpm in a nitrogen atmosphere to obtain a solution.
To this, 16.813 g (0.07500 mol) of HPMDA and 14.054 g of NMP were added all at once, and then heated with a mantle heater, and the temperature in the reaction system was raised to 190 ° C. over about 20 minutes. The temperature inside the reaction system was maintained at 190 ° C. for 5 hours while collecting the components to be distilled off.
After adding 95.946 g of DMAC, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C. to obtain a uniform solution, and air-cooled to about 100 minutes in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.

得られたポリイミドA溶液を用いた以外は実施例1と同様にしてポリイミドAフィルムを得た。このポリイミドAフィルムのIRスペクトルを測定したところ、ν(C=O)1776、1704(cm−1)にイミド環の特性吸収が認められた。このポリイミドAの対数粘度ηは0.97dL/g、ガラス転移温度は289℃、吸水率は2.2%であった。
得られたポリイミドA溶液を用いた以外は実施例1と同様にして金属張積層体を得た。得られた金属張積層体の金属層の剥離強度は0.95N/mm、はんだ耐熱性はAだった。
A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR spectrum of this polyimide A film was measured, characteristic absorption of an imide ring was observed at ν (C═O) 1776 and 1704 (cm −1 ). The polyimide A had a logarithmic viscosity η of 0.97 dL / g, a glass transition temperature of 289 ° C., and a water absorption of 2.2%.
A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.95 N / mm, and the solder heat resistance was A.

実施例3
実施例1で使用したものと同様の5ツ口ガラス製丸底フラスコ中で、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP、和歌山精化工業(株)製)11.455g(0.02790モル)、BAPB15.421g(0.04186モル)、GBL51.017g、及びTEA0.353gを、窒素雰囲気下、100rpmで攪拌して溶液を得た。
Example 3
In a five-neck glass round bottom flask similar to that used in Example 1, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP, manufactured by Wakayama Seika Kogyo Co., Ltd.) 11.455 g (0.02790 mol), BAPB 15.421 g (0.04186 mol), GBL 51.007 g, and TEA 0.353 g were stirred at 100 rpm in a nitrogen atmosphere to obtain a solution.

これにHPMDA15.638g(0.06976モル)とDMAC12.754gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約20分かけて180℃まで反応系内温度を上げた。留去される成分を捕集しながら、反応系内温度を180℃に4時間維持した。
DMAC96.229gを添加後、温度130℃付近で約30分攪拌して均一溶液とし、100℃まで10分程度で空冷し固形分濃度20重量%のポリイミドA溶液を得た。
HPMDA (15.638 g, 0.06976 mol) and DMAC (12.754 g) were added all at once, and then heated with a mantle heater to raise the temperature in the reaction system to 180 ° C. over about 20 minutes. While collecting the components to be distilled off, the temperature in the reaction system was maintained at 180 ° C. for 4 hours.
After adding 96.229 g of DMAC, the mixture was stirred at a temperature of about 130 ° C. for about 30 minutes to obtain a homogeneous solution, and then cooled to 100 ° C. in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.

得られたポリイミドA溶液を用いた以外は実施例1と同様にしてポリイミドAフィルムを得た。このポリイミドAフィルムのIRスペクトルを測定したところ、ν(C=O)1779、1704(cm−1)にイミド環の特性吸収が認められた。このポリイミドAの対数粘度ηは0.98dL/g、ガラス転移温度は282℃、吸水率は2.0%であった。
得られたポリイミドA溶液を用いた以外は実施例1と同様にして金属張積層体を得た。得られた金属張積層体の金属層の剥離強度は0.85N/mm、はんだ耐熱性はAだった。
A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR spectrum of this polyimide A film was measured, characteristic absorption of an imide ring was observed at ν (C═O) 1779 and 1704 (cm −1 ). The polyimide A had a logarithmic viscosity η of 0.98 dL / g, a glass transition temperature of 282 ° C., and a water absorption of 2.0%.
A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.85 N / mm, and the solder heat resistance was A.

比較例1
実施例1で使用したものと同様の5ツ口ガラス製丸底フラスコ中で、4,4’−ジアミノジフェニルエーテル(ODA、和歌山精化工業(株)製)20.624g(0.10299モル)、GBL52.45g、及びTEA0.52gを、窒素雰囲気下、100rpmで攪拌して溶液を得た。
これにHPMDA23.088g(0.10299モル)、DMAC13.11gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約20分かけて反応系内温度を180℃まで上げた。留去される成分を捕集しながら、反応系内温度を180℃に5時間維持した。
DMAC94.43gを添加後、温度130℃付近で約30分攪拌して均一溶液とし、100℃まで10分程度で空冷し固形分濃度20重量%のポリイミド樹脂溶液を得た。
Comparative Example 1
In a 5-neck glass round bottom flask similar to that used in Example 1, 20,624 g (0.10299 mol) of 4,4′-diaminodiphenyl ether (ODA, manufactured by Wakayama Seika Kogyo Co., Ltd.) GBL (52.45 g) and TEA (0.52 g) were stirred at 100 rpm in a nitrogen atmosphere to obtain a solution.
HPMDA (23.088 g, 0.10299 mol) and DMAC (13.11 g) were added all at once, and then heated with a mantle heater, and the reaction system internal temperature was raised to 180 ° C. over about 20 minutes. While collecting the components to be distilled off, the temperature in the reaction system was maintained at 180 ° C. for 5 hours.
After adding 94.43 g of DMAC, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C. to obtain a uniform solution, and air-cooled to about 100 minutes in about 10 minutes to obtain a polyimide resin solution having a solid content concentration of 20% by weight.

得られたポリイミド樹脂溶液を用いた以外は実施例1と同様にしてポリイミド樹脂フィルムを得た。このポリイミド樹脂フィルムのIRスペクトルを測定したところ、ν(C=O)1772、1700(cm−1)にイミド環の特性吸収が認められた。このポリイミドの対数粘度ηは1.06dL/gだった。ガラス転移温度は316℃、吸水率は5.5%であった。
得られたポリイミド樹脂溶液を用いた以外は実施例1と同様にして金属張積層体を得た。得られた金属張積層体の金属層は手で簡単に剥がすことができ、剥離強度が極めて低かった。
A polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. When the IR spectrum of this polyimide resin film was measured, characteristic absorption of an imide ring was observed at ν (C═O) 1772 and 1700 (cm −1 ). The logarithmic viscosity η of this polyimide was 1.06 dL / g. The glass transition temperature was 316 ° C. and the water absorption rate was 5.5%.
A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The metal layer of the obtained metal-clad laminate could be easily peeled by hand, and the peel strength was extremely low.

比較例2
実施例1で使用したものと同様の5ツ口ガラス製丸底フラスコ中で、α,α’−ビス(3−アミノフェニル)−1,4−ジイソプロピルベンゼン(ビスアニリンM、三井化学(株)製)19.404g(0.05633モル)、GBL38.44g、及びTEA0.28gを、窒素雰囲気下、100rpmで攪拌して溶液を得た。
これにHPMDA12.627g(0.05633モル)、DMAC9.61gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約20分かけて反応系内温度を180℃まで上げた。留去される成分を捕集しながら、反応系内温度を180℃に12時間維持した。
DMAC 71.96gを添加後、温度130℃付近で約30分攪拌して均一溶液とし、100℃まで10分程度で空冷し固形分濃度20重量%のポリイミド樹脂溶液を得た。
Comparative Example 2
In a 5-neck glass round bottom flask similar to that used in Example 1, α, α′-bis (3-aminophenyl) -1,4-diisopropylbenzene (Bisaniline M, manufactured by Mitsui Chemicals, Inc.) ) 19.404 g (0.05633 mol), GBL 38.44 g, and TEA 0.28 g were stirred at 100 rpm in a nitrogen atmosphere to obtain a solution.
To this, 12.627 g (0.05633 mol) of HPMDA and 9.61 g of DMAC were added all at once, and then heated with a mantle heater, and the reaction system internal temperature was raised to 180 ° C. over about 20 minutes. While collecting the components to be distilled off, the temperature in the reaction system was maintained at 180 ° C. for 12 hours.
After adding 71.96 g of DMAC, the mixture was stirred at a temperature of about 130 ° C. for about 30 minutes to obtain a uniform solution, and then cooled to 100 ° C. in about 10 minutes to obtain a polyimide resin solution having a solid content concentration of 20% by weight.

得られたポリイミド樹脂溶液を用いた以外は実施例1と同様にしてポリイミド樹脂フィルムを得た。このポリイミド樹脂フィルムのIRスペクトルを測定したところ、ν(C=O)1774、1704(cm−1)にイミド環の特性吸収が認められた。このポリイミドの対数粘度ηは0.52dL/g、ガラス転移温度は220℃、吸水率は1.5%であった。
得られたポリイミド樹脂溶液を用いた以外は実施例1と同様にして金属張積層体を得た。得られた金属張積層体の金属層の剥離強度は0.45N/mm、はんだ耐熱性はAだった。
A polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. When the IR spectrum of this polyimide resin film was measured, characteristic absorption of the imide ring was observed at ν (C═O) 1774 and 1704 (cm −1 ). The polyimide had a logarithmic viscosity η of 0.52 dL / g, a glass transition temperature of 220 ° C., and a water absorption of 1.5%.
A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.45 N / mm, and the solder heat resistance was A.

Claims (14)

下記式(1):

で表される繰り返し単位下記式(2):

(式中、Xはm−キシリレン基、又は下記式(3)で表される基である
で表される繰り返し単位からなるポリイミド樹脂であって、前記式(1)の繰り返し単位の割合が全繰り返し単位の50モル%を超えるポリイミド樹脂。
Following formula (1):

In repeating units and formula represented (2):

(In the formula, X is an m-xylylene group or a group represented by the following formula (3) ).
The polyimide resin which consists of a repeating unit represented by these, Comprising: The ratio of the repeating unit of said Formula (1) exceeds 50 mol% of all repeating units.
請求項に記載のポリイミド樹脂と有機溶剤を含むポリイミド樹脂溶液。 A polyimide resin solution comprising the polyimide resin according to claim 1 and an organic solvent. 1,2,4,5−シクロヘキサンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物及び1,2,4,5−シクロヘキサンテトラカルボン酸の反応性誘導体からなる群から選ばれた少なくとも1種のテトラカルボン酸成分(Y)と、ジアミン成分(Z1)ジアミン成分(Z2)からなる混合物であるジアミン成分(Z)とを反応させる工程を含む、下記式(1):

で表される繰り返し単位下記式(2):

(式中、Xはm−キシリレン基、又は下記式(3)で表される基である

で表される繰り返し単位からなり、前記式(1)の繰り返し単位の割合が全繰り返し単位の50モル%を超えるポリイミド樹脂の製造方法であって、
(a)該ジアミン成分(Z1)は、4,4’−ビス(4−アミノフェノキシ)ビフェニル及びその反応性誘導体からなる群から選ばれた少なくとも1種の化合物であり;
(b)該ジアミン成分(Z2)は該ジアミン成分(Z1)とは異なり、NH−X−NH(Xは前記と同様)で表されるジアミン及びその反応性誘導体からなる群から選ばれた少なくとも1種の化合物であり;
(c)ジアミン成分(Z1)の使用量は該ジアミン成分(Z1)と該ジアミン成分(Z2)の合計量の50モル%を超えることを特徴とする請求項1に記載のポリイミド樹脂の製造方法。
Selected from the group consisting of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and reactive derivatives of 1,2,4,5-cyclohexanetetracarboxylic acid Including the step of reacting at least one tetracarboxylic acid component (Y) thus obtained with a diamine component (Z) that is a mixture of the diamine component (Z1) and the diamine component (Z2):

In repeating units and formula represented (2):

(In the formula, X is an m-xylylene group or a group represented by the following formula (3) ).

In it a repeating unit represented, the proportion of the repeating units is a method for producing a polyimide resin of greater than 50 mol% of all repeating units of the formula (1),
(A) The diamine component (Z1) is at least one compound selected from the group consisting of 4,4′-bis (4-aminophenoxy) biphenyl and reactive derivatives thereof;
(B) Unlike the diamine component (Z1), the diamine component (Z2) is selected from the group consisting of a diamine represented by NH 2 —X—NH 2 (X is the same as described above) and reactive derivatives thereof. At least one compound;
(C) The amount of the diamine component (Z1) the production of a polyimide resin according to claim 1, characterized in that more than 50 mole% of the total amount of the diamine component (Z1) and the diamine component (Z2) Method.
該反応を有機溶剤溶液中、触媒の存在下又は不存在下で加熱下に行ってポリイミド樹脂溶液を得る請求項に記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 3 , wherein the reaction is carried out in an organic solvent solution with heating in the presence or absence of a catalyst to obtain a polyimide resin solution. 該触媒が、第3級アミンである請求項記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 4 , wherein the catalyst is a tertiary amine. 該加熱を温度180〜205℃で2〜12時間行う請求項又は記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 4 or 5, wherein the heating is performed at a temperature of 180 to 205 ° C for 2 to 12 hours. 請求項記載のポリイミド樹脂溶液、又は請求項記載の製造方法により得られるポリイミド樹脂溶液を、支持体上にキャストし、有機溶剤を蒸発除去する工程を含むポリイミド樹脂フィルムの製造方法。 A method for producing a polyimide resin film comprising a step of casting the polyimide resin solution according to claim 2 or the polyimide resin solution obtained by the production method according to claim 4 on a support and evaporating and removing an organic solvent. 該有機溶剤を120℃以下の温度で蒸発除去して自己支持性のフィルムにし、支持体より剥離した該フィルムの端部を固定し、該有機溶剤の沸点〜350℃で乾燥する請求項記載のポリイミド樹脂フィルムの製造方法。 The organic solvent is evaporated and removed at a temperature of 120 ° C. or lower to form a self-supporting film, the end of the film peeled off from the support is fixed, and dried at a boiling point of the organic solvent to 350 ° C. 8. Manufacturing method of polyimide resin film. 絶縁基材、金属層、及び請求項に記載のポリイミド樹脂又は請求項に記載の製造方法により得られたポリイミド樹脂から形成され、該絶縁基材と金属層との間に配置された接着層を含む金属張積層体。 Insulating base material, a metal layer, and is formed of a polyimide resin obtained by the method according to the polyimide resin or claim 3 according to claim 1, disposed between the insulating substrate and the metal layer adhered A metal-clad laminate comprising layers. 該接着層を、請求項記載のポリイミド樹脂溶液又は請求項記載の製造法により得られたポリイミド樹脂溶液を絶縁基材及び金属層の一方又は双方に塗布し、次いで、有機溶剤を蒸発除去して形成する請求項記載の金属張積層体。 The adhesive layer is coated on one or both of the insulating substrate and the metal layer with the polyimide resin solution according to claim 2 or the polyimide resin solution obtained by the production method according to claim 4 , and then the organic solvent is removed by evaporation. The metal-clad laminate according to claim 9, which is formed as follows. 該接着層を、請求項記載の製造方法により得られたポリイミド樹脂フィルムにより形成する請求項記載の金属張積層体。 The adhesive layer, according to claim 9 metal-clad laminate according to form a polyimide resin film obtained by the production method according to claim 7. 該ポリイミド樹脂のガラス転移温度が310℃以下である請求項11のいずれかに記載の金属張積層体。 The metal-clad laminate according to any one of claims 9 to 11 , wherein the polyimide resin has a glass transition temperature of 310 ° C or lower. 該金属層の、接着層に対向する面の表面粗さRzが0.1〜2μmである請求項12のいずれかに記載の金属張積層体。 The metal-clad laminate according to any one of claims 9 to 12 , wherein the surface roughness Rz of the surface of the metal layer facing the adhesive layer is 0.1 to 2 µm. JISC6471の90°剥離による銅はくの剥離強度測定法により測定した金属層の剥離強度が0.5N/mm以上である請求項13のいずれかに記載の金属張積層体。 The metal-clad laminate according to any one of claims 9 to 13 , wherein the peel strength of the metal layer measured by a copper foil peel strength measuring method by 90 ° peeling of JISC6471 is 0.5 N / mm or more.
JP2006159263A 2006-06-08 2006-06-08 Polyimide resin, polyimide film and polyimide laminate Active JP4967465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159263A JP4967465B2 (en) 2006-06-08 2006-06-08 Polyimide resin, polyimide film and polyimide laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159263A JP4967465B2 (en) 2006-06-08 2006-06-08 Polyimide resin, polyimide film and polyimide laminate

Publications (2)

Publication Number Publication Date
JP2007326962A JP2007326962A (en) 2007-12-20
JP4967465B2 true JP4967465B2 (en) 2012-07-04

Family

ID=38927654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159263A Active JP4967465B2 (en) 2006-06-08 2006-06-08 Polyimide resin, polyimide film and polyimide laminate

Country Status (1)

Country Link
JP (1) JP4967465B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303372A (en) * 2007-05-09 2008-12-18 Jfe Chemical Corp Polyimide precursor having asymmetric structure, polyimide, and their production methods
JP2012224755A (en) * 2011-04-20 2012-11-15 Hitachi Chemical Dupont Microsystems Ltd Highly transparent polyimide precursor and resin composition using the same, polyimide molded article and method for producing the molding, plastic substrate, protective film, and electronic component and display device having the film
CN104334643B (en) * 2012-06-07 2016-03-16 三井化学株式会社 Polyimide resin composition, film, caking agent and parts
KR102277807B1 (en) 2014-10-17 2021-07-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition, polyimide film and laminate
TW202039655A (en) * 2019-02-04 2020-11-01 日商三菱瓦斯化學股份有限公司 Colorless transparent polyimide film
KR20220007595A (en) * 2019-05-09 2022-01-18 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682895B2 (en) * 1985-10-31 1994-10-19 三井東圧化学株式会社 Flexible printed circuit board and manufacturing method thereof
JPS63199237A (en) * 1987-02-13 1988-08-17 Toray Ind Inc Polyimide composition
JPH07292103A (en) * 1994-04-25 1995-11-07 Shin Etsu Chem Co Ltd Polyimide copolymer and method for producing the same
JP2000143801A (en) * 1998-09-11 2000-05-26 Ind Technol Res Inst Low-pretilt-angle alignment layer material
JP2003168800A (en) * 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc Thin film transistor substrate
JP4872187B2 (en) * 2003-05-09 2012-02-08 三菱瓦斯化学株式会社 Metal-clad laminate
JP4375533B2 (en) * 2003-06-26 2009-12-02 三菱瓦斯化学株式会社 Method for producing solvent-soluble polyimide

Also Published As

Publication number Publication date
JP2007326962A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5565502B2 (en) Polyimide resin
US8580913B2 (en) Polyimide resin
JP5470678B2 (en) Polyimide resin, polyimide film and polyimide laminate
JP5293182B2 (en) Thermosetting polyimide resin composition
KR100503984B1 (en) Flexible aromatic polyimide film/metal film composite sheet
KR101076254B1 (en) Copper-clad laminate
US6699572B2 (en) Metal film/aromatic polyimide film laminate
TWI417418B (en) Material for plating and use thereof
JP4967465B2 (en) Polyimide resin, polyimide film and polyimide laminate
JP5063257B2 (en) Method for producing metal laminated film and metal laminated film
JPH03133634A (en) Heat resistant laminated body and production therefor
CN115491154A (en) Adhesive, adhesive sheet, and flexible copper-clad laminate
JP2021025008A (en) Method of manufacturing polyimide film and method of manufacturing a metal-clad laminate
JP2007045150A (en) Fiber-resin composite, its manufacturing method and printed wiring board
JP2007046048A (en) Material for electroless plating and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4967465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3