[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4967360B2 - Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members - Google Patents

Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members Download PDF

Info

Publication number
JP4967360B2
JP4967360B2 JP2006030878A JP2006030878A JP4967360B2 JP 4967360 B2 JP4967360 B2 JP 4967360B2 JP 2006030878 A JP2006030878 A JP 2006030878A JP 2006030878 A JP2006030878 A JP 2006030878A JP 4967360 B2 JP4967360 B2 JP 4967360B2
Authority
JP
Japan
Prior art keywords
less
hot
steel sheet
plated steel
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006030878A
Other languages
Japanese (ja)
Other versions
JP2007211276A (en
Inventor
祐久 菊地
敏伸 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006030878A priority Critical patent/JP4967360B2/en
Publication of JP2007211276A publication Critical patent/JP2007211276A/en
Application granted granted Critical
Publication of JP4967360B2 publication Critical patent/JP4967360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法に関する。より詳しくは、本発明は、自動車のボデー構造部品、足廻り部品、シャ−シさらには各種補強部品等の用途に好適な熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法に関する。   The present invention relates to a hot-pressed plated steel sheet, a manufacturing method thereof, and a manufacturing method of a hot press-formed member. More specifically, the present invention relates to a hot-pressed plated steel sheet suitable for uses such as automobile body structural parts, undercarriage parts, chassis, and various reinforcing parts, a method for producing the same, and production of a hot press-formed member. Regarding the method.

近年、自動車の軽量化のため、鋼材の高強度化を図り、使用重量を低減する努力が進んでいる。自動車に広く使用される薄鋼板では、鋼板強度の増加に伴って、プレス成形性が低下し、複雑な形状に成形することが困難になってきている。具体的には、延性が低下し加工度が高い部位で破断したり、スプリングバックや壁反りが大きくなり寸法精度が劣化する。   In recent years, in order to reduce the weight of automobiles, efforts have been made to increase the strength of steel materials and reduce the weight used. In thin steel plates widely used in automobiles, as the strength of steel plates increases, press formability decreases, making it difficult to form into complicated shapes. Specifically, the ductility is reduced and the part is broken at a high degree of processing, or the spring back and wall warp are increased, resulting in deterioration of dimensional accuracy.

したがって、高強度の鋼板、特に780MPa級以上の鋼板にプレス成形を行ってプレス成形部品を製造することは容易ではない。プレス成形ではなくロール成形によれば、高強度の鋼板の加工は可能であるが、長手方向に一様な横断面を有する部品しか製造できない。   Therefore, it is not easy to produce a press-formed part by performing press forming on a high-strength steel plate, particularly a steel plate of 780 MPa class or higher. According to roll forming rather than press forming, it is possible to process a high-strength steel sheet, but only parts having a uniform cross section in the longitudinal direction can be produced.

これに対し、特許文献1に開示されるように、加熱した鋼板をプレス成形する熱間プレスと呼ばれる方法によれば、鋼板が高温で軟質、高延性になっているため、複雑な形状に寸法精度よく成形することが可能である。さらに、熱間プレス法によれば、鋼板をオーステナイト域に加熱しておき金型内で急冷(焼入れ)することにより、マルテンサイト変態による鋼板の高強度化も同時に達成できる。また、特許文献2には、室温で予め所定の形状に成形した後にオーステナイト域に加熱し、金型内で急冷することにより、鋼板の高強度化と成形性の確保とを同時に達成する予プレスクエンチ法が開示されている。   On the other hand, as disclosed in Patent Document 1, according to a method called hot press for press-molding a heated steel plate, the steel plate is soft and highly ductile at high temperatures, so that it has dimensions in a complicated shape. It is possible to mold with high accuracy. Furthermore, according to the hot pressing method, the steel sheet is heated in the austenite region and rapidly cooled (quenched) in the mold, so that the strength of the steel sheet can be increased by martensitic transformation. Patent Document 2 discloses a pre-press that simultaneously achieves high strength of a steel sheet and securing of formability by forming into a predetermined shape at room temperature and then heating to an austenite region and quenching in a mold. A quench method is disclosed.

このような熱間プレス法や予プレスクエンチ法は、部材の高強度化及び成形性を高い次元で両立できる優れた成形方法であるが、部材にはさらなる高強度化が求められてきている。しかしながら、部材の引張強さ(以下、TSとも表記する)が1000MPaを超えてくると、熱間プレス法や予プレスクエンチ法では靱性が不足する問題がある。   Such a hot press method and a pre-press quench method are excellent forming methods capable of achieving both high strength and formability of the member at a high level, but further enhancement of strength has been demanded of the member. However, when the tensile strength of the member (hereinafter also referred to as TS) exceeds 1000 MPa, there is a problem that the toughness is insufficient in the hot press method or the pre-press quench method.

一方、現在、熱間プレス成形品は適用部品のニーズが増大し、例えば自動車などでは、ドアビームならびにセンターピラー部の補強材、さらにはバンパー補強材といったように複雑な形状の部材にまで用いられている。そのため、複雑な形状の部材であっても焼き入れ後均一な硬度分布を確保でき、さらには、操業効率の面から短時間加熱で組織のオーステナイト化を図ることができる鋼板が求められている。   On the other hand, hot press-molded products are currently being used for parts with complex shapes such as door beams, center pillar reinforcements, and bumper reinforcements in automobiles, for example. Yes. Therefore, there is a demand for a steel plate that can ensure a uniform hardness distribution after quenching even for a member having a complicated shape, and that can achieve austenite structure by heating in a short time from the viewpoint of operation efficiency.

しかしながら、特許文献3や特許文献4等により開示された従来の技術には、そのような複雑な形状の部材を短時間で製造でき、かつ焼入れ後の部材に均一な硬度分布が確保されるような鋼板は、全く開示されていないのが現状である。   However, the conventional techniques disclosed in Patent Document 3, Patent Document 4, and the like can manufacture such a complex-shaped member in a short time and ensure a uniform hardness distribution in the member after quenching. However, no steel sheet is disclosed at all.

さらに、熱間プレス成形品は、厳しい腐食環境で使用される鋼材にまで、適用範囲が拡大されつつあり、より優れた耐食性を有することが求められている。そのため、熱間プレス成形品には優れた耐食性も求められており、今後めっき鋼板の適用が主流になりつつある。
英国特許公報1490535号公報 特開平10−96031号公報 特開2004−124221号公報 特開2004−197213号公報
Furthermore, the hot press-formed product is being expanded to a steel material used in a severe corrosive environment, and is required to have better corrosion resistance. Therefore, excellent corrosion resistance is also required for hot press-formed products, and the application of plated steel sheets is becoming mainstream in the future.
British Patent Publication No. 1490535 Japanese Patent Laid-Open No. 10-96031 JP 2004-124221 A JP 2004-197213 A

本発明の目的は、焼入れ後の成形部材において靱性に優れ、かつ、優れた焼き入れ性及び耐食性を有することから、自動車のボデー構造部品、足廻り部品、シャ−シさらには各種補強部品等の用途に好適な熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法を提供することである。   The object of the present invention is to provide excellent toughness in a molded member after quenching, and excellent quenchability and corrosion resistance, so that it can be used for automobile body structural parts, undercarriage parts, chassis and various reinforcing parts. An object of the present invention is to provide a hot-pressed plated steel sheet suitable for applications, a manufacturing method thereof, and a manufacturing method of a hot press-formed member.

本発明者らは、上述した技術課題を解決するために鋭意検討を重ねた結果、略述すると、鋼組織およびめっき後の鋼板の表面粗さを最適化することによって熱間プレス用途に好適な熱間プレス用めっき鋼板を得ることができることを知見した。   As a result of intensive studies in order to solve the technical problems described above, the present inventors, in short, are suitable for hot press applications by optimizing the steel structure and the surface roughness of the steel sheet after plating. It has been found that a hot-pressed plated steel sheet can be obtained.

本発明はこの知見に基づくものであり、本発明の要旨は、下記(1)〜(8)項に示す熱間プレス用めっき鋼板、(9)〜(11)項に示す熱間プレス用めっき鋼板の製造方法および(12)項に示す熱間プレス成形部材の製造方法である。   The present invention is based on this finding, and the gist of the present invention is the hot-pressed plated steel sheet shown in the following items (1) to (8) and the hot-pressed plating shown in items (9) to (11). It is the manufacturing method of a hot-press-formed member shown in the manufacturing method of a steel plate, and the term (12).

(1)鋼板の表面にめっき被膜を備えるめっき鋼板であって、この鋼板が、C:0.09%以上0.50%以下(以下、本明細書では特にことわりがない限り「%」は「質量%」を意味する)、Si:2.0%以下、Mn:0.8%以上3.5%以下、P:0.10%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下およびNb:0.005%以上0.20%以下を含有し、残部がFeおよび不純物である鋼組成を有するとともに、面積率で、ポリゴナルフェライト:30%以上97%以下、ベイナイト:0〜20%未満、残部がパーライトである鋼組織を有し、ポリゴナルフェライトの平均結晶粒径が2μm以上25μm以下であり、さらに、めっき鋼板の表面粗さRaが0.4μm以上2.2μm以下であることを特徴とする熱間プレス用めっき鋼板。   (1) A plated steel sheet having a plating film on the surface of the steel sheet, and this steel sheet is C: 0.09% or more and 0.50% or less (hereinafter, unless otherwise specified, “%” is “ Si: 2.0% or less, Mn: 0.8% or more and 3.5% or less, P: 0.10% or less, S: 0.05% or less, Al: 0.1 % Or less, N: 0.01% or less and Nb: 0.005% or more and 0.20% or less, and the balance is Fe and impurities, and the area ratio is polygonal ferrite: 30% 97% or less, bainite: 0 to less than 20%, the balance is a pearlite steel structure, the average crystal grain size of polygonal ferrite is 2 μm or more and 25 μm or less, and the surface roughness Ra of the plated steel sheet is It is 0.4 μm or more and 2.2 μm or less Hot pressing for a plated steel sheet to be.

(2)鋼組成が、Ti:0.20%以下およびV:1.0%以下からなる群から選ばれた1種または2種をさらに含有することを特徴とする(1)項に記載の熱間プレス用めっき鋼板。   (2) The steel composition further contains one or two selected from the group consisting of Ti: 0.20% or less and V: 1.0% or less. Plated steel sheet for hot pressing.

(3)鋼組成が、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれた1種または2種以上をさらに含有することを特徴とする(1)項または(2)項に記載の熱間プレス用めっき鋼板。   (3) The steel composition is selected from the group consisting of Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less. The hot-pressed plated steel sheet according to item (1) or (2), which further contains one or more selected ones.

(4)鋼組成が、Ca:0.01%以下、Mg:0.01%以下およびREM:0.1%以下からなる群から選ばれた1種または2種以上をさらに含有することを特徴とする(1)項から(3)項までのいずれか1項に記載の熱間プレス用めっき鋼板。   (4) The steel composition further contains one or more selected from the group consisting of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.1% or less. The plated steel sheet for hot press according to any one of items (1) to (3).

(5)鋼組成が、Ca:0.0005〜0.01%を含有し、かつ、下記式(1)を満足するものであることを特徴とする(4)項に記載の熱間プレス用めっき鋼板。
0.05≦Nb+Ti+5×Ca≦0.3 ・・・・・・・(1)
ここで、式(1)における元素記号は上述した鋼組成における各元素の含有量(%)を表す。
(5) The steel composition contains Ca: 0.0005 to 0.01% and satisfies the following formula (1): Plated steel sheet.
0.05 ≦ Nb + Ti + 5 × Ca ≦ 0.3 (1)
Here, the element symbol in Formula (1) represents content (%) of each element in the steel composition mentioned above.

(6)めっき被膜の片面当りの目付量が40g/m以上150g/m以下であることを特徴とする(1)項から(5)項までのいずれか1項に記載の熱間プレス用めっき鋼板。 (6) The hot press according to any one of items (1) to (5), wherein the basis weight per side of the plating film is 40 g / m 2 or more and 150 g / m 2 or less. Plated steel sheet.

(7)ポリゴナルフェライトに占める、粒内に0.2μm以上の粒径を有するセメンタイトを2個以上含有する結晶粒の個数割合が0.6以上1以下であることを特徴とする(1)項から(6)項までのいずれか1項に記載の熱間プレス用めっき鋼板。   (7) The ratio of the number of crystal grains containing two or more cementites having a grain size of 0.2 μm or more in the grains in the polygonal ferrite is 0.6 or more and 1 or less (1) The hot-pressed plated steel sheet according to any one of items 6 to (6).

(8)めっき被膜は、Feを5%以上25%以下含有する合金化溶融亜鉛めっき被膜であることを特徴とする(1)項から(7)項までのいずれか1項に記載の熱間プレス用めっき鋼板。   (8) The hot-roll according to any one of items (1) to (7), wherein the plating film is an alloyed hot-dip galvanized film containing 5% to 25% of Fe. Plated steel sheet for press.

(9)(1)項から(5)項までのいずれか1項に記載された鋼組成を有する溶鋼に中心偏析処理を施す連続鋳造法によりスラブとし、このスラブにAr点以上の温度域で熱間圧延を施し、その後2℃/秒以上の平均冷却速度で700℃以下まで冷却してから巻取りを行って熱間圧延鋼板とし、この熱間圧延鋼板に冷間圧延を施して冷間圧延鋼板とし、この冷間圧延鋼板を(Ac点−50℃)以上Ac点未満の温度域に5秒間以上保持した後に2℃/秒以上70℃/秒以下の平均冷却速度で400℃以上の所定の温度まで冷却した後にめっき処理を施し、その後表面粗さRaで3.0μm以下の調質圧延ロールにて伸び率0.05%以上1.00%以下の調質圧延を施すことを特徴とする熱間プレス用めっき鋼板の製造方法。 (9) A slab is formed by a continuous casting method in which molten steel having the steel composition described in any one of the items (1) to (5) is subjected to central segregation treatment, and the temperature range of Ar 3 points or more is applied to the slab. Then, the steel sheet is hot-rolled and then cooled to 700 ° C. or less at an average cooling rate of 2 ° C./second or more, and then wound to obtain a hot-rolled steel plate. A cold-rolled steel sheet is obtained, and the cold-rolled steel sheet is held at a temperature range of (Ac 1 point-50 ° C.) or more and less than Ac 3 point for 5 seconds or more, and then an average cooling rate of 2 ° C./second or more and 70 ° C./second or less is 400 After cooling to a predetermined temperature of ℃ or higher, plating is performed, and then temper rolling is performed with a temper rolling roll having a surface roughness Ra of 3.0 μm or less and an elongation of 0.05% or more and 1.00% or less. The manufacturing method of the hot-pressed plated steel plate characterized by the above-mentioned.

(10)(1)項から(5)項までのいずれか1項に記載された鋼組成を有する溶鋼に中心偏析処理を施す連続鋳造法によりスラブとし、このスラブにAr点以上の温度域で熱間圧延を施し、その後2℃/秒以上の平均冷却速度で700℃以下まで冷却してから巻取りを行って熱間圧延鋼板とし、この熱間圧延鋼板に冷間圧延を施して冷間圧延鋼板とし、この冷間圧延鋼板を(Ac点−50℃)以上Ac点未満の温度域に5秒間以上保持した後に2℃/秒以上20℃/秒以下の平均冷却速度で400℃以上の所定の温度まで冷却した後にめっき処理を施し、その後表面粗さRaで3.0μm以下の調質圧延ロールにて伸び率0.05%以上1.00%以下の調質圧延を施すことを特徴とする熱間プレス用めっき鋼板の製造方法。 (10) A slab is formed by a continuous casting method in which molten steel having the steel composition described in any one of the items (1) to (5) is subjected to central segregation treatment, and the temperature range of Ar 3 points or more is applied to the slab. Then, the steel sheet is hot-rolled and then cooled to 700 ° C. or less at an average cooling rate of 2 ° C./second or more, and then wound to obtain a hot-rolled steel plate. A cold-rolled steel sheet is used, and the cold-rolled steel sheet is held at a temperature range of (Ac 1 point-50 ° C.) or higher and less than Ac 3 point for 5 seconds or more, and then an average cooling rate of 2 ° C./second or more and 20 ° C./second or less is 400 After cooling to a predetermined temperature of ℃ or higher, plating is performed, and then temper rolling is performed with a temper rolling roll having a surface roughness Ra of 3.0 μm or less and an elongation of 0.05% or more and 1.00% or less. The manufacturing method of the hot-pressed plated steel plate characterized by the above-mentioned.

(11)上述しためっき処理が亜鉛めっき処理であって、めっき処理後かつ調質圧延前の鋼板に470℃以上(Ac+50℃)以下の表面温度で2秒間以上30秒間以下保持する合金化処理を施すことを特徴とする(9)項または(10)項に記載の熱間プレス用めっき鋼板の製造方法。 (11) The above-described plating treatment is a galvanizing treatment, and alloying is performed by keeping the steel sheet after the plating treatment and before the temper rolling at a surface temperature of 470 ° C. or more (Ac 1 + 50 ° C.) for 2 seconds or more and 30 seconds or less. The method for producing a plated steel sheet for hot pressing according to (9) or (10), wherein the treatment is performed.

(12)(1)項から(8)項までのいずれか1項に記載された熱間プレス用めっき鋼板を、Ac点超に加熱し、金型を用いて熱間成形を行うことによって、熱間成形と同時に焼入れを行って成形品とすることを特徴とする熱間プレス成形部材の製造方法。 (12) By heating the hot-pressed plated steel sheet described in any one of items (1) to (8) to more than 3 points of Ac and performing hot forming using a mold A method for producing a hot press-molded member, wherein a molded product is obtained by quenching simultaneously with hot forming.

本発明によれば、熱間プレス後の熱間プレス成形部材における硬度バラツキを小さくすることができる耐食性に優れた熱間プレス用めっき鋼板を提供することができる。さらに本発明の好適態様によれば、より短時間の加熱処理により熱間プレスに供することができる生産性に優れた熱間プレス用めっき鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the plated steel plate for hot press excellent in corrosion resistance which can make the hardness variation in the hot press-molded member after hot press small can be provided. Furthermore, according to the suitable aspect of this invention, the plated steel plate for hot press excellent in productivity which can be used for a hot press by heat processing for a shorter time can be provided.

このため、本発明により、強度1000MPa以上の熱間プレス成形部材の成形材料として好適な熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法を提供することができ、これにより、自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のメンバーや足廻り部品に代表される構造部材の素材として特に好適な熱間プレス用めっき鋼板その製造方法ならびに熱間プレス成形部材の製造方法を提供することができる。   For this reason, according to the present invention, it is possible to provide a hot-pressed plated steel sheet suitable as a molding material for a hot-pressed member having a strength of 1000 MPa or more, a method for producing the same, and a method for producing a hot-pressed member. Steel plate materials for hot press particularly suitable as materials for structural members used in automobiles and various industrial machines, especially as structural members represented by automobile members and undercarriage parts, manufacturing methods thereof, and hot press-formed members The manufacturing method of can be provided.

本発明にかかる熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法を実施するための最良の形態を、以下に説明する。
本実施の形態の熱間プレス用めっき鋼板の(a)組成、(b)組織、(c)めっき層および(d)表面粗さについて順次説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the hot-pressed plated steel sheet and the method for producing the same and the method for producing a hot-press formed member according to the present invention will be described below.
The (a) composition, (b) structure, (c) plating layer, and (d) surface roughness of the hot-pressed plated steel sheet according to the present embodiment will be sequentially described.

(a)組成
C:0.09%以上0.50%以下
熱間成形は、材料を加熱することにより軟質化させ、成形し易くすることが一つの特色であるが、あわせて、プレス金型等で急冷することにより焼入れし、より高強度の成形品を得るものである。焼入れ後の鋼の強度は主にC含有量によって決定されるため、目的とする強度に応じてC含有量を設定すればよい。本実施の形態では0.09%以上含有させる。より高強度の成形品が必要な場合にはC含有量を0.20%超とすることが望ましい。
(A) Composition
C: 0.09% or more and 0.50% or less Hot forming is characterized by softening the material by heating and making it easy to form, but it is also rapidly cooled with a press die or the like. Is hardened to obtain a molded product with higher strength. Since the strength of the steel after quenching is mainly determined by the C content, the C content may be set according to the intended strength. In the present embodiment, 0.09% or more is contained. When a higher strength molded product is required, the C content is preferably more than 0.20%.

一方、Cを過剰に含有すると、熱間成形部材の靱性が低下する恐れがあるため、C含有量は0.50%以下とする。さらに好ましい含有量は0.20%超0.35%以下であり、これにより、靱性劣化が少ない高強度成形部材を得ることが可能である。   On the other hand, if C is contained excessively, the toughness of the hot-formed member may be lowered, so the C content is 0.50% or less. Further, the preferable content is more than 0.20% and 0.35% or less, whereby a high-strength molded member with little toughness deterioration can be obtained.

Si:2.0%以下
Si含有量が2.0%超であると、熱間圧延時ならびに熱間成形時の加熱中にSiスケールを多く発生してスケール疵が発生し易くなる。そのため、Si含有量を2.0%以下とする。このような観点からはSi含有量の下限は特に規定しないが、Siは、鋼板の焼入れ性を高め、かつ焼入れ後の強度の安定効果をさらに高める有用な元素であるので、焼入れ性の効果を確実に得る場合にはSiを0.02%以上含有させることが好ましい。なお、コストと焼入れ性改善効果との観点からSi含有量は0.1%以上1.0%以下とすることがさらに好ましい。
Si: 2.0% or less When the Si content exceeds 2.0%, a large amount of Si scale is generated during hot rolling and during heating during hot forming, and scale flaws are likely to occur. Therefore, the Si content is set to 2.0% or less. From this point of view, the lower limit of the Si content is not particularly specified, but Si is a useful element that enhances the hardenability of the steel sheet and further enhances the effect of stabilizing the strength after quenching. In order to obtain it reliably, it is preferable to contain 0.02% or more of Si. In addition, it is more preferable that the Si content is 0.1% or more and 1.0% or less from the viewpoint of cost and hardenability improvement effect.

Mn:0.8%以上3.5%以下
Mnは、鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するために非常に有効な元素である。しかし、Mn含有量が0.8%未満ではこの効果は十分ではない。一方、Mn含有量が3.5%を超えるとその効果は飽和し、さらに熱間成形部材の靱性劣化を招く。したがって、Mn含有量を0.8%以上3.5%以下とする。コストと焼入れ性改善効果との観点からMn含有量は0.9%以上2.5%以下であることが望ましい。
Mn: 0.8% or more and 3.5% or less Mn is an extremely effective element for improving the hardenability of the steel sheet and for ensuring the strength after quenching stably. However, this effect is not sufficient when the Mn content is less than 0.8%. On the other hand, when the Mn content exceeds 3.5%, the effect is saturated, and the toughness of the hot-formed member is further deteriorated. Therefore, the Mn content is set to 0.8% to 3.5%. From the viewpoint of cost and hardenability improvement effect, the Mn content is desirably 0.9% or more and 2.5% or less.

P:0.10%以下
Pは、不純物として含有されるが、P含有量が0.10%を超えると熱間成形部材の靱性が劣化する。したがって、P含有量を0.10%以下とする。好ましくは0.03%以下であり、さらに好ましくは0.015%以下である。このような観点からはP含有量の下限は特に規定しないが、過度に低減することは相応のコスト増加につながる。したがって、製造コストの観点から、P含有量を0.002%以上とすることが好ましく、0.004%以上とすることがさらに好ましい。
P: 0.10% or less P is contained as an impurity, but when the P content exceeds 0.10%, the toughness of the hot-formed member deteriorates. Therefore, the P content is 0.10% or less. Preferably it is 0.03% or less, More preferably, it is 0.015% or less. From this point of view, the lower limit of the P content is not particularly specified, but excessive reduction leads to a corresponding increase in cost. Therefore, from the viewpoint of manufacturing cost, the P content is preferably 0.002% or more, and more preferably 0.004% or more.

S:0.05%以下
Sは、不純物として含有され、硫化物を形成して熱間成形部材の靱性を劣化させる。S含有量が0.05%を超えると熱間成形部材の靱性が著しく劣化する。したがって、S含有量を0.05%以下とする。好ましくは0.01%以下であり、さらに好ましくは0.002%以下である。S含有量の下限は特に規定しないが、過度に低減することは相応のコスト増加につながる。したがって、製造コストの観点から、S含有量を0.0002%以上とすることが好ましく、0.0004%以上とすることがさらに好ましい。
S: 0.05% or less S is contained as an impurity, and forms a sulfide to deteriorate the toughness of the hot-formed member. If the S content exceeds 0.05%, the toughness of the hot formed member is significantly deteriorated. Therefore, the S content is 0.05% or less. Preferably it is 0.01% or less, More preferably, it is 0.002% or less. Although the lower limit of the S content is not particularly defined, excessively reducing it leads to a corresponding increase in cost. Therefore, from the viewpoint of production cost, the S content is preferably 0.0002% or more, and more preferably 0.0004% or more.

Al:0.1%以下
Alは、鋼の脱酸剤として用いられるが、0.1%を超えて含有させると、鋼中に多くの酸化物を生成して熱間成形部材の靱性劣化を招く。したがって、Al含有量を0.1%以下とする。好ましくは0.08%以下である。一方、鋼の脱酸効果を確実に得るには0.005%以上含有させることが好ましく、0.01%以上含有させることがより好ましい。
Al: 0.1% or less Al is used as a deoxidizing agent for steel. However, if it is contained in an amount exceeding 0.1%, many oxides are generated in the steel and the toughness of the hot-formed member is deteriorated. Invite. Therefore, the Al content is 0.1% or less. Preferably it is 0.08% or less. On the other hand, in order to ensure the deoxidation effect of steel, it is preferable to contain 0.005% or more, and more preferably 0.01% or more.

N:0.01%以下
Nは、不純物として含有され、Al、Ti、Nb、B等と結合して窒化物を形成して熱間成形部材の靱性を劣化させる。N含有量が0.01%を超えると熱間成形部材の靱性が著しく劣化する。したがって、N含有量を0.01%以下とする。好ましくは0.005%以下である。N含有量の下限は特に規定しないが、過度に低減することは相応のコスト増加につながる。したがって、製造コストの観点から、N含有量を0.0002%以上とすることが好ましく、0.0005%以上とすることがさらに好ましい。
N: 0.01% or less N is contained as an impurity and combines with Al, Ti, Nb, B, etc. to form a nitride to deteriorate the toughness of the hot formed member. If the N content exceeds 0.01%, the toughness of the hot formed member is significantly deteriorated. Therefore, the N content is 0.01% or less. Preferably it is 0.005% or less. The lower limit of the N content is not particularly specified, but excessive reduction leads to a corresponding increase in cost. Therefore, from the viewpoint of manufacturing cost, the N content is preferably 0.0002% or more, and more preferably 0.0005% or more.

Nb:0.005%以上0.20%以下
Nbは、Ac点以上のオーステナイト域においてオーステナイトの粗大化を抑制することにより、熱間成形部材の靱性を改善する効果を有する。その効果を得るには0.005%以上の含有が必要である。好ましくは0.020%以上である。一方、Nb含有量が0.20%超になると、コストが増加するばかりか粗大なNb系の介在物や析出物を生成して熱間成形部材の靱性を却って劣化させる。したがって、Nb含有量の上限を0.20%とする。好ましくは0.12%である。
さらに、本実施の形態の熱間プレス用めっき鋼板は、以下に列記する元素を任意添加元素として含有してもよいので、これらの任意添加元素についても説明する。
Nb: 0.005% or more and 0.20% or less Nb has an effect of improving the toughness of the hot-formed member by suppressing the coarsening of austenite in the austenite region of Ac 3 points or more. In order to acquire the effect, 0.005% or more needs to be contained. Preferably it is 0.020% or more. On the other hand, when the Nb content exceeds 0.20%, not only the cost is increased, but also coarse Nb-based inclusions and precipitates are generated to deteriorate the toughness of the hot formed member. Therefore, the upper limit of the Nb content is 0.20%. Preferably it is 0.12%.
Furthermore, since the hot-pressed plated steel sheet of the present embodiment may contain the elements listed below as optional addition elements, these optional addition elements will also be described.

Ti:0.20%以下およびV:1.0%以下からなる群から選ばれた1種または2種
TiおよびVは、1種単独でまたは2種複合して添加することにより、鋼板の焼入れ性を高め、かつ焼入れ後の強度の安定効果をさらに高める効果を有するので、添加してもよい。さらに、Tiは、Nbと同様にAc点以上のオーステナイト域においてオーステナイトの粗大化を抑制することにより、熱間成形部材の靱性を改善する効果を有する。しかし、過剰に添加すると、鋼板の焼入れ性や焼入れ後の強度の安定効果が飽和しコスト増を招くばかりか、鋼中のNと結合し粗大な窒化物を形成して熱間成形部材の靱性を却って劣化させる場合がある。
One or two kinds of Ti and V selected from the group consisting of Ti: 0.20% or less and V: 1.0% or less are used to quench the steel sheet by adding one kind alone or two kinds in combination. It may be added because it has the effect of enhancing the properties and further enhancing the effect of stabilizing the strength after quenching. Further, Ti has the effect of improving the toughness of the hot-formed member by suppressing the coarsening of austenite in the austenite region of Ac 3 points or more like Nb. However, if added excessively, the effect of stabilizing the hardenability of the steel sheet and the strength after quenching is saturated, resulting in an increase in cost. In addition, it combines with N in the steel to form a coarse nitride to form the toughness of the hot formed member. May be deteriorated.

したがって、Ti、Vの含有量は、Ti:0.20%以下、V:1.0%以下とすることが好ましい。一方、上述した効果を確実に得るには、それぞれの含有量を、Ti:0.002%以上、V:0.02%以上とすることが好ましい。   Therefore, the Ti and V contents are preferably Ti: 0.20% or less and V: 1.0% or less. On the other hand, in order to reliably obtain the above-described effects, the respective contents are preferably set to Ti: 0.002% or more and V: 0.02% or more.

Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれた1種または2種以上
Cr、Mo、Cu、NiおよびBは、1種単独でまたは2種以上複合して添加することにより、鋼板の焼入れ性を高め、かつ焼入れ後の強度の安定効果をさらに高める効果を有するので、添加してもよい。しかし、これらの元素を過剰に添加すると、鋼板の焼入れ性や焼入れ後の強度の安定効果が飽和し、コスト増を招くだけとなるので、それぞれの含有量を、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下、B:0.01%以下とすることが好ましい。
One or two selected from the group consisting of Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less More than seeds Cr, Mo, Cu, Ni and B have the effect of increasing the hardenability of the steel sheet and further improving the strength stabilizing effect after quenching by adding one kind alone or two or more kinds in combination. Therefore, you may add. However, when these elements are added excessively, the effect of stabilizing the hardenability and strength after quenching of the steel sheet is saturated, and only the cost is increased. Therefore, the respective contents are Cr: 1.0% or less, It is preferable that Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less.

一方、上述した効果を確実に得るには、それぞれの含有量をCr:0.01%以上、Mo:0.01%以上、Cu:0.01%以上、Ni:0.01%以上、B:0.0001%以上とすることが好ましい。   On the other hand, in order to reliably obtain the above-described effects, the respective contents are Cr: 0.01% or more, Mo: 0.01% or more, Cu: 0.01% or more, Ni: 0.01% or more, B : 0.0001% or more is preferable.

Ca:0.01%以下、Mg:0.01%以下およびREM:0.1%以下からなる群から選ばれた1種または2種以上
Ca、MgおよびREMは、1種単独でまたは2種以上複合して添加することにより、鋼中の介在物の形態を微細化し、介在物による熱間プレス時の割れを防止する効果を有するので、添加してもよい。特にCaは、MnSを微細化する効果に加えて、TiN、NbN、(Ti,Nb)Nといった窒化物を微細化するため、熱間成形部材の靱性改善効果が著しい。しかし、これらの元素を過剰に添加すると、鋼中の介在物の形態を微細化する効果が飽和し、コスト増を招くだけとなるので、それぞれの含有量を、Ca:0.01%以下、Mg:0.01%以下、REM:0.1%以下とすることが好ましい。
One or two or more of Ca, Mg and REM selected from the group consisting of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.1% or less are used alone or in combination of two kinds By adding in a combined manner, the form of inclusions in the steel is refined and the effect of preventing cracking during hot pressing by inclusions may be added. In particular, Ca refines nitrides such as TiN, NbN, and (Ti, Nb) N in addition to the effect of refining MnS, so that the effect of improving the toughness of hot-formed members is remarkable. However, if these elements are added excessively, the effect of refining the form of inclusions in the steel is saturated and only increases the cost. Therefore, the respective contents of Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.1% or less are preferable.

一方、上述した効果を確実に得るには、それぞれの含有量をCa:0.0005%以上、Mg:0.0005%以上、REM:0.0005%以上とすることが好ましい。
上記以外は、Feおよび不純物である。
On the other hand, in order to reliably obtain the above-described effects, it is preferable that the respective contents are Ca: 0.0005% or more, Mg: 0.0005% or more, and REM: 0.0005% or more.
Other than the above are Fe and impurities.

さらに、本実施の形態の熱間プレス用めっき鋼板は、Ca:0.0005%以上0.01%以下を含有させるとともに、式(1):0.05≦(Nb+Ti+5×Ca)≦0.3を満足する鋼組成とすることが好ましいので、このことについても説明する。なお、式(1)における元素記号は上述した鋼組成における各元素の含有量(%)を表す。   Furthermore, the hot-pressed plated steel sheet of the present embodiment contains Ca: 0.0005% or more and 0.01% or less, and formula (1): 0.05 ≦ (Nb + Ti + 5 × Ca) ≦ 0.3 Therefore, this will also be described. In addition, the element symbol in Formula (1) represents content (%) of each element in the steel composition mentioned above.

鋼組成を、Ca:0.0005%以上0.01%以下を含有し、かつ、下記式(1)を満足させると、熱間成形部材の靱性が著しく改善される。Nb、TiによりAc点以上のオーステナイト域においてオーステナイトの粗大化を抑制されることに加えて、CaによりTiN、NbN、(Ti,Nb)Nなどの窒化物が微細化されるためである。窒化物が微細化されるのは、Caを含有する酸化物が窒化物の核生成サイトとなるためである。 When the steel composition contains Ca: 0.0005% or more and 0.01% or less and satisfies the following formula (1), the toughness of the hot-formed member is remarkably improved. This is because Nb and Ti suppress the coarsening of austenite in the austenite region of Ac 3 points or higher, and in addition, nitrides such as TiN, NbN, and (Ti, Nb) N are refined by Ca. The reason why the nitride is refined is that an oxide containing Ca serves as a nucleation site for nitride.

したがって、上述した効果を確実に得るには、(Nb+Ti+5×Ca)を0.05%以上とすることが好ましい。一方、(Nb+Ti+5×Ca)が0.3%超であると、TiN、NbN、(Ti,Nb)Nなどの窒化物量が多くなり、靱性劣化の傾向を示すため、(Nb+Ti+5×Ca)を0.3%以下とすることが好ましい。   Therefore, in order to surely obtain the above-described effect, it is preferable to set (Nb + Ti + 5 × Ca) to 0.05% or more. On the other hand, if (Nb + Ti + 5 × Ca) is more than 0.3%, the amount of nitride such as TiN, NbN, (Ti, Nb) N increases, and the tendency of toughness deterioration is shown. Therefore, (Nb + Ti + 5 × Ca) is reduced to 0. It is preferable to set it to 3% or less.

(b)組織
組織は、面積率で、ポリゴナルフェライト:30%以上97%以下、ベイナイト:0%以上20%未満、及び残部がパーライトである。さらに、このポリゴナルフェライトの平均結晶粒径は、2μm以上25μm以下である。
(B) Structure The structure is an area ratio, polygonal ferrite: 30% to 97%, bainite: 0% to less than 20%, and the balance is pearlite. Furthermore, the average crystal grain size of this polygonal ferrite is 2 μm or more and 25 μm or less.

ポリゴナルフェライトの面積率が30%未満であると、鋼板が硬質となり過ぎて平坦矯正が困難となり、鋼板の平坦度が劣化するおそれがある。熱間プレスに供される鋼板が良好な平坦度を有さないと、熱間プレス前にAc点以上の温度域に加熱を施しても鋼板の平坦は修正されないため、熱間プレス成形部材と金型との接触面積が不均一となり、熱間プレスにおける冷却速度も不均一となる。その結果、焼きの入り方が不均一となり、熱間プレス成形部材内において硬度のバラツキを生じ易くなってしまう。 If the area ratio of polygonal ferrite is less than 30%, the steel plate becomes too hard and flattening becomes difficult, and the flatness of the steel plate may be deteriorated. If the steel plate used for hot pressing does not have a good flatness, the flatness of the steel plate is not corrected even if heating is performed in a temperature range of Ac 3 points or higher before hot pressing. The contact area between the mold and the mold is non-uniform, and the cooling rate in the hot press is also non-uniform. As a result, the method of firing becomes uneven, and hardness variation tends to occur within the hot press-formed member.

なお、ポリゴナルフェライトとは、転位密度の少ないフェライトであり、転位密度の高いベイニティックフェライトや圧延未再結晶フェライトは含まない。転位密度の高いベイニティックフェライトや圧延未再結晶フェライトは、フェライト自体が硬質であることから、鋼板が硬質となり鋼板の平坦矯正ができない場合がある。このため、本実施の形態においてはポリゴナルフェライトの面積率を上述したように規定した。   Polygonal ferrite is ferrite having a low dislocation density, and does not include bainitic ferrite having a high dislocation density or rolled non-recrystallized ferrite. Since bainitic ferrite with high dislocation density and rolled non-recrystallized ferrite have a hard ferrite, the steel plate becomes hard and the steel plate may not be flattened. For this reason, in the present embodiment, the area ratio of polygonal ferrite is defined as described above.

一方、ポリゴナルフェライトの面積率が97%超になると、第2相の分散が不均一となる。熱間プレスは、熱間プレス前に鋼板を加熱して鋼板内の第2相を固溶させて固溶Cを生成させることにより、焼入れ性および焼入れ後の硬度を高める効果を得るが、第2相の分散が不均一であると、熱間プレス前の加熱において鋼板全体をオーステナイト変態させるのに比較的長い時間を要することになる。このため、短時間の加熱では固溶Cの濃度分布が不均一となり、その結果、焼入れ性および焼入れ後の硬度を高める効果が不均一となり、熱間プレス成形部材内において硬度のバラツキを生じ易くなる。   On the other hand, when the area ratio of polygonal ferrite exceeds 97%, the dispersion of the second phase becomes non-uniform. The hot press has the effect of increasing the hardenability and hardness after quenching by heating the steel plate before hot pressing to form a solid solution C by dissolving the second phase in the steel plate. If the two-phase dispersion is not uniform, it takes a relatively long time to austenite the entire steel sheet in the heating before hot pressing. For this reason, the concentration distribution of the solid solution C becomes non-uniform in heating for a short time, and as a result, the effect of increasing the hardenability and the hardness after quenching becomes non-uniform, and the hardness tends to vary in the hot press-formed member. Become.

熱間プレス前のAc点以上の温度域への加熱を長時間化することにより、オーステナイト中の固溶Cの濃度分布を均一化すること自体は可能ではあるものの、例えば、合金化溶融亜鉛めっき鋼板の場合には、亜鉛酸化被膜が厚く生成し、熱間プレス時に亜鉛酸化被膜の噛み込み疵が発生し易くなる。このため、熱間プレス前の加熱を長時間化することは好ましくない。 Although it is possible to make the concentration distribution of the solid solution C in the austenite uniform by increasing the heating to a temperature range of Ac 3 points or higher before hot pressing for a long time, for example, alloyed molten zinc In the case of a plated steel sheet, the zinc oxide film is formed thick, and the zinc oxide film is likely to be bitten during hot pressing. For this reason, it is not preferable to lengthen the heating before hot pressing.

したがって、本実施の形態ではポリゴナルフェライトの面積率は30%以上97%以下とする。ポリゴナルフェライトの面積率の好ましい下限は50%であり、好ましい上限は95%である。   Therefore, in this embodiment, the area ratio of polygonal ferrite is 30% or more and 97% or less. The preferable lower limit of the area ratio of polygonal ferrite is 50%, and the preferable upper limit is 95%.

次に、ベイナイトの面積率が20%以上では、ポリゴナルフェライトが過少の場合と同様に、鋼板が硬質となり過ぎて平坦矯正が困難となり、熱間プレス成形部材内において硬度のバラツキを生じ易くなってしまう。このため、ベイナイトの面積率は20%未満とする。なお、ベイナイトは存在しなくとも構わないので、ベイナイトの面積率の下限は0%である。   Next, when the area ratio of bainite is 20% or more, as in the case where polygonal ferrite is too small, the steel sheet becomes too hard and flattening becomes difficult, and hardness variation tends to occur in the hot press-formed member. End up. For this reason, the area ratio of bainite is less than 20%. Note that bainite may not exist, so the lower limit of the area ratio of bainite is 0%.

また、フェライトおよびベイナイト以外の残部が、パーライトではなく、マルテンサイトや残留オーステナイトである場合には、これらの組織がフェライト粒の3重点に多く生成する。熱間プレスは、熱間プレス前に鋼板を加熱して鋼板内のセメンタイトを固溶させて固溶Cを生成させることにより、焼入れ性および焼入れ後の硬度を高める効果を得るが、フェライト粒の3重点にマルテンサイトや残留オーステナイトが多く生成すると、熱間プレス前の加熱において鋼板全体をオーステナイト変態させるのに比較的長い時間を要することになる。このため、短時間の加熱では固溶Cの濃度分布が不均一となり、その結果、焼入れ性および焼入れ後の硬度を高める効果が不均一となり、熱間プレス成形部材内において硬度のバラツキを生じ易くなる。   Further, when the balance other than ferrite and bainite is not pearlite but martensite or retained austenite, many of these structures are generated at the triple points of ferrite grains. The hot press is effective in increasing the hardenability and hardness after quenching by heating the steel plate before hot pressing to form a solid solution C by dissolving the cementite in the steel plate. When a large amount of martensite and retained austenite is generated at the triple point, a relatively long time is required to transform the entire steel sheet into austenite in the heating before hot pressing. For this reason, the concentration distribution of the solid solution C becomes non-uniform in heating for a short time, and as a result, the effect of increasing the hardenability and the hardness after quenching becomes non-uniform, and the hardness tends to vary in the hot press-formed member. Become.

これに対し、パーライトは、マルテンサイトや残留オーステナイトとは異なり、フェライト粒の周辺に微細に生成する。このため、熱間プレス前の加熱において比較的短時間で鋼板全体がオーステナイト変態し、オーステナイト中の固溶Cの濃度が非常に短時間で均一化し、これにより、熱間プレス成形部材内における硬度のバラツキが生じ難くなる。   On the other hand, pearlite is finely generated around ferrite grains, unlike martensite and retained austenite. For this reason, the entire steel sheet undergoes austenite transformation in a relatively short time in heating before hot pressing, and the concentration of the solid solution C in the austenite becomes uniform in a very short time. Variation is less likely to occur.

したがって、本実施の形態では残部はパーライトとする。
また、ポリゴナルフェライトの平均結晶粒径は2μm以上25μm以下とする。フェライトの平均結晶粒径が2μm未満であると、鋼板が硬質となり過ぎて平坦矯正が困難となって鋼板の平坦度が劣化し、焼きの入り方が不均一となり、熱間プレス成形部材内において硬度のバラツキを生じ易くなる。
Therefore, in the present embodiment, the remainder is pearlite.
The average crystal grain size of polygonal ferrite is 2 μm or more and 25 μm or less. If the average crystal grain size of ferrite is less than 2 μm, the steel plate becomes too hard and flatness correction becomes difficult, the flatness of the steel plate deteriorates, and the method of quenching becomes uneven. Hardness variation tends to occur.

一方、フェライトの平均結晶粒径が25μm超であると、残部であるベイナイトおよびパーライトが微細に分散することが困難になり、残部がマルテンサイト、残留オーステナイトである場合と同様に熱間プレス前の加熱において鋼板全体をオーステナイト変態させるのに比較的長い時間を要することになる。鋼板の平坦確保と熱間プレス成形部材内における硬度のバラツキ抑制との観点から、フェライトの平均結晶粒径は4μm以上15μm以下であることがさらに好ましい。   On the other hand, if the average crystal grain size of the ferrite is more than 25 μm, it becomes difficult to finely disperse the bainite and pearlite that are the balance, and the balance is martensite and retained austenite before hot pressing. It takes a relatively long time to transform the entire steel sheet into austenite during heating. From the viewpoint of ensuring the flatness of the steel sheet and suppressing variation in hardness in the hot press-formed member, the average crystal grain size of ferrite is more preferably 4 μm or more and 15 μm or less.

また、このポリゴナルフェライトは、粒内に0.2μm以上の粒径を有するセメンタイトを2個以上含有する結晶粒の個数割合が0.6以上1以下であることが一層望ましい。粒内に0.2μm以上の粒径を有するセメンタイトを2個以上含有する結晶粒の個数割合が0.6以上1以下であると、熱間プレス前の加熱においてオーステナイト変態が促進されるため、オーステナイト中の固溶Cの濃度が非常に短時間で均一化して、熱間プレス成形部材内における硬度のバラツキがより一層生じ難くなる。   Further, in this polygonal ferrite, it is more desirable that the number ratio of crystal grains containing two or more cementites having a grain size of 0.2 μm or more in the grain is 0.6 or more and 1 or less. When the number ratio of the crystal grains containing two or more cementite having a grain size of 0.2 μm or more in the grains is 0.6 or more and 1 or less, the austenite transformation is promoted in the heating before hot pressing, The concentration of the solid solution C in the austenite is made uniform in a very short time, and the hardness variation in the hot press-formed member becomes even less likely to occur.

粒内に0.2μm以上の粒径を有するセメンタイトを2個以上含有する結晶粒の個数割合が0.6未満であると、上述したオーステナイト変態促進効果を十分に得ることが困難になる。   When the number ratio of the crystal grains containing two or more cementites having a grain size of 0.2 μm or more in the grains is less than 0.6, it is difficult to sufficiently obtain the austenite transformation promoting effect described above.

ポリゴナルフェライトの粒内に含有されるセメンタイトは、C含有量の観点より粒径0.2μm以上のものが2個以上であることが好ましい。個数の上限は特に規定しないが、過剰に含有すると鋼板の硬質化を招き平坦矯正を困難とするので200個以下とすることが好ましい。特に好ましくは、粒径0.2μm以上のセメンタイトを5個以上80個以下含有する場合である。   From the viewpoint of the C content, the cementite contained in the polygonal ferrite grains is preferably two or more having a particle diameter of 0.2 μm or more. The upper limit of the number is not particularly specified, but if it is excessively contained, the steel sheet is hardened and flattening is difficult, so it is preferable to set it to 200 or less. Particularly preferred is the case of containing 5 or more and 80 or less cementite having a particle size of 0.2 μm or more.

なお、ここでいうセメンタイトには、TiC、NbC、VCなどの析出強化型微細炭化物は含まない。析出強化型微細炭化物はその大きさが数〜数十nmと非常に小さいためにAc点以上の加熱により短時間で固溶してしまうためである。 In addition, the cementite here does not include precipitation strengthening type fine carbides such as TiC, NbC, and VC. This is because the precipitation strengthening type fine carbide has a very small size of several to several tens of nanometers, so that it is dissolved in a short time by heating at three or more points of Ac.

(c)めっき層
本実施の形態にかかる熱間プレス用めっき鋼板におけるめっきは、耐食性の向上の目的に適うものであればよく、公知の溶融金属めっきや電気めっき等を施すことができる。溶融金属めっきとしては、例えば、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、さらには溶融アルミニウム−亜鉛めっき等を例示することができる。
(C) Plating layer The plating in the hot-pressed plated steel sheet according to the present embodiment may be any one that meets the purpose of improving corrosion resistance, and can be performed by known molten metal plating, electroplating, or the like. Examples of the molten metal plating include hot dip galvanizing, alloyed hot dip galvanizing, hot dip aluminum plating, and hot dip aluminum-zinc plating.

溶融金属めっき層が硬質であると、熱間プレス時にめっき層にクラックが生じて熱間プレス成形部材の耐食性が劣化するおそれがある。このため、溶融金属めっきとしては、めっき層が軟質である溶融亜鉛めっきや合金化溶融亜鉛めっきが好適である。   If the molten metal plating layer is hard, cracks may occur in the plating layer during hot pressing, which may deteriorate the corrosion resistance of the hot press-formed member. For this reason, as the hot metal plating, hot dip galvanization or galvannealing with a soft plating layer is suitable.

溶融金属めっきが溶融亜鉛めっきや合金化溶融亜鉛めっきである場合、鋼板表面に施すめっきの付着量は、片面当たり3g/m以上200g/m以下とすることが好ましい。めっき付着量が片面あたり3g/m未満であると、耐食性の向上効果を確実に得ることが難しい。一方、めっき付着量が片面当たり200g/mを超えると、溶接時にブローホール等の欠陥を生じ易くなる。 When the hot metal plating is hot dip galvanizing or alloying hot dip galvanizing, the amount of plating applied to the steel sheet surface is preferably 3 g / m 2 or more and 200 g / m 2 or less per side. When the plating adhesion amount is less than 3 g / m 2 per side, it is difficult to reliably obtain the effect of improving the corrosion resistance. On the other hand, if the plating adhesion amount exceeds 200 g / m 2 per side, defects such as blow holes are likely to occur during welding.

したがって、めっき付着量は片面当たり3g/m以上200g/m以下が好ましい。さらに、耐食性の向上とコスト上昇の抑制との観点から、めっき付着量は片面当たり40g/m以上150g/m以下がさらに好ましい。 Therefore, the plating adhesion amount is preferably 3 g / m 2 or more and 200 g / m 2 or less per side. Furthermore, from the viewpoint of improving the corrosion resistance and suppressing the cost increase, the plating adhesion amount is more preferably 40 g / m 2 or more and 150 g / m 2 or less per side.

また、熱間プレス前のめっき被膜の蒸発を抑制して熱間プレス成形部材の耐食性を向上させる観点からは、めっきが合金化溶融亜鉛めっきであることが好ましい。合金化溶融亜鉛めっきの合金化度としては、めっき被膜中のFe含有量を5%以上25%以下とすることが好ましい。めっき被膜中のFe含有量が5%未満であると、熱間プレス時のめっき被膜の蒸発の抑制作用が十分でなく、一方、めっき被膜中のFe含有量が25%超では、熱間プレス後の熱間プレス成形部材のパウダリング性が劣化し、加工中に剥がれためっき粉により表面疵が発生する場合がある。めっき被膜の蒸発抑制ならびにパウダリング性の確保の観点から、めっき被膜中のFe含有量は7%以上18%以下とすることがさらに好ましい。なお、亜鉛めっき層または合金化溶融亜鉛めっき層の表面にさらに有機系あるいは無機系の被膜を施した場合にも本発明の効果は損なわれない。   From the viewpoint of suppressing the evaporation of the plating film before hot pressing and improving the corrosion resistance of the hot press-formed member, the plating is preferably alloyed hot dip galvanizing. As the degree of alloying of the alloyed hot dip galvanizing, the Fe content in the plating film is preferably 5% or more and 25% or less. When the Fe content in the plating film is less than 5%, the effect of suppressing evaporation of the plating film during hot pressing is not sufficient, while when the Fe content in the plating film exceeds 25%, hot pressing is performed. The powdering property of the later hot press-formed member may deteriorate, and surface defects may occur due to the plating powder peeled off during processing. From the viewpoint of suppressing evaporation of the plating film and ensuring powdering properties, the Fe content in the plating film is more preferably 7% or more and 18% or less. The effect of the present invention is not impaired even when an organic or inorganic coating is further applied to the surface of the galvanized layer or alloyed hot dip galvanized layer.

(d)鋼板の表面粗さ
本実施の形態にかかる熱間プレス用めっき鋼板における表面粗さRaは0.4μm以上2.2μm以下である。表面粗さRaが0.4μm未満であると、熱間プレス時に、鋼板と金型との摩擦が大きくなり、熱間プレス成形部材に表面疵が発生する場合がある。一方、表面粗さRaが2.2μm超であると、鋼板と金型との接触ムラが発生し、熱間プレス成形部材内において硬度のバラツキを生じ易くなる。そのため、鋼板表面粗さRaは0.4μm以上2.2μm以下とする。
(D) Surface roughness of steel sheet The surface roughness Ra of the hot-pressed plated steel sheet according to the present embodiment is 0.4 μm or more and 2.2 μm or less. When the surface roughness Ra is less than 0.4 μm, the friction between the steel plate and the mold increases during hot pressing, and surface flaws may occur in the hot press-formed member. On the other hand, when the surface roughness Ra exceeds 2.2 μm, contact unevenness between the steel plate and the mold occurs, and hardness variation tends to occur in the hot press-formed member. Therefore, the steel sheet surface roughness Ra is set to 0.4 μm or more and 2.2 μm or less.

本実施の形態の熱間プレス用めっき鋼板は、以上のように構成される。次に、この熱間プレス用めっき鋼板の好適な製造方法を、(1)スラブの中心偏析処理、(2)熱間圧延工程、(3)めっき工程の順に説明する。   The hot-pressed plated steel sheet of the present embodiment is configured as described above. Next, the suitable manufacturing method of this hot press plated steel plate is demonstrated in order of (1) center segregation process of a slab, (2) hot rolling process, and (3) plating process.

(1)スラブの中心偏析処理
本実施の形態にかかる熱間プレス用めっき鋼板の好適な製造方法は、上記(a)項に示す鋼組成を有する溶鋼を連続鋳造によりスラブとなすにあたり、中心偏析処理を施す連続鋳造工程を備えるものである。
(1) Center segregation treatment of slab The preferred method for producing a hot-pressed plated steel sheet according to the present embodiment is center segregation when a molten steel having the steel composition shown in (a) above is made into a slab by continuous casting. A continuous casting process for performing the treatment is provided.

溶鋼を連続鋳造によりスラブとする際にスラブ厚中心部の偏析処理を実施し、得られたスラブを鋼板とすることで、熱間プレス成形部材の靱性を更に向上させることができる。連続鋳造されたスラブの中心部には、Fe以外の元素、特にMn、P、S、Nb、Ti、N等の元素が濃化されており、その元素濃化により、粗大なMnS、NbN、Ti−N、Ti−Nb−N等の介在物、析出物が存在し、熱間プレス成形部材の靱性を劣化させる要因になる。スラブ段階で析出したこれらの粗大なMnS、NbN、Ti−Nb−N等は、その後の熱間圧延前における加熱やめっき前の焼鈍の段階でも完全には再固溶せず、最終的な熱間プレス成形部材においても残存する。   When the molten steel is made into a slab by continuous casting, the segregation treatment of the center portion of the slab thickness is performed, and the obtained slab is made into a steel plate, whereby the toughness of the hot press-formed member can be further improved. At the center of the continuously cast slab, elements other than Fe, especially elements such as Mn, P, S, Nb, Ti, N, and the like are concentrated. Due to the element concentration, coarse MnS, NbN, Inclusions and precipitates such as Ti-N and Ti-Nb-N are present, which becomes a factor of deteriorating the toughness of the hot press-formed member. These coarse MnS, NbN, Ti—Nb—N, etc. precipitated in the slab stage are not completely re-dissolved even in the stage of heating before subsequent hot rolling or annealing before plating, and the final heat It remains in the intermediate press-formed member.

したがって、スラブ段階で中心偏析処理を実施することで靱性を向上させることができる。具体的には、スラブ最終凝固部において連続鋳造機内の上下対のロール間隔を狭めて濃化溶鋼を吐き出させる方法や電磁攪拌等によるスラブの中心偏析処理が効果的である。   Therefore, toughness can be improved by performing the center segregation process in the slab stage. Specifically, in the slab final solidification part, the method of discharging the concentrated molten steel by narrowing the gap between the upper and lower pairs in the continuous casting machine, or the center segregation treatment of the slab by electromagnetic stirring or the like is effective.

なお、このスラブの中心偏析処理工程は、必ず行わなければならないものではなく、鋼種や、予想される偏析の程度に応じて、適宜選択して行えばよい。
(2)熱間圧延工程
本実施の形態にかかる熱間プレス用めっき鋼板の好適な製造方法は、上記(1)項に示すスラブに熱間圧延を施し、Ar点以上で熱間圧延を完了し、その後2℃/秒以上の平均冷却速度で700℃以下まで冷却してから巻取りを行う熱間圧延工程を備えるものである。
The center segregation treatment process of the slab is not necessarily performed, and may be appropriately selected according to the steel type and the expected degree of segregation.
(2) Hot rolling process The suitable manufacturing method of the hot-pressed plated steel plate concerning this Embodiment performs hot rolling on the slab shown to the said (1) term, and performs hot rolling at Ar 3 or more points. Completing, and thereafter, a hot rolling process is performed in which winding is performed after cooling to 700 ° C. or lower at an average cooling rate of 2 ° C./second or higher.

そこで、この熱間圧延工程の特徴(i)〜(iii)を詳細に説明する。
(i)熱間圧延完了温度:Ar点以上
本実施の形態では、熱間圧延を完了する温度(以下、「仕上温度」ともいう)を、Ar点以上とする。
Therefore, features (i) to (iii) of this hot rolling process will be described in detail.
(I) Hot rolling completion temperature: Ar 3 points or higher In the present embodiment, the temperature at which hot rolling is completed (hereinafter also referred to as “finishing temperature”) is Ar 3 points or higher.

仕上温度がAr点未満であると、ポリゴナルフェライトの生成が促進されて、その後の冷間圧延工程および焼鈍工程を経てもポリゴナルフェライトの面積率が97%超となる場合がある。また、フェライト変態に伴う体積膨張に起因して鋼板の平坦度が劣化する。このため、本実施の形態では、仕上温度を、Ar点以上1000℃以下とする。 If the finishing temperature is less than Ar 3 , the formation of polygonal ferrite is promoted, and the area ratio of polygonal ferrite may exceed 97% even after the subsequent cold rolling and annealing steps. Further, the flatness of the steel sheet deteriorates due to the volume expansion accompanying the ferrite transformation. Therefore, in the present embodiment, the finishing temperature, the Ar 3 point or higher 1000 ° C. or less.

一方、本発明では仕上温度の上限は特に限定する必要はないが、1000℃以下が好ましい。仕上温度が1000℃超になると、熱間圧延後におけるスケール生成が顕著となり、スケールに起因する表面疵が生じやすくなるからである。   On the other hand, the upper limit of the finishing temperature is not particularly limited in the present invention, but is preferably 1000 ° C. or lower. This is because when the finishing temperature exceeds 1000 ° C., scale formation after hot rolling becomes remarkable, and surface flaws caused by the scale tend to occur.

なお、熱間圧延を開始する前のスラブの温度は熱間圧延時の温度をAr点以上に確保することができる温度であればよく、例えば連続鋳造ままのスラブの温度が(Ar+50℃)以上の場合には加熱を施さなくてもよい。スラブの温度が(Ar+50℃)未満の場合には、熱間圧延中の温度降下により仕上温度をAr点以上とすることができない場合があるので、このような場合には加熱を施すことが好ましい。 The temperature before the slab starting the hot rolling may be a temperature capable of securing the temperature of hot rolling to 3 point or more Ar, for example, the temperature of the slab remains continuous casting (Ar 3 +50 In the case of [° C.] or higher, heating may not be performed. When the temperature of the slab is lower than (Ar 3 + 50 ° C.), the finishing temperature may not be 3 or more points due to a temperature drop during hot rolling. In such a case, heating is performed. It is preferable.

熱間圧延を開始する前のスラブの温度の上限は特に規定しないが、1350℃超であるとスラブが自重で変形してしまい熱間圧延を行うことができなくなる場合があるので、1350℃以下とすることが好ましい。   The upper limit of the temperature of the slab before starting the hot rolling is not particularly specified, but if it exceeds 1350 ° C., the slab may be deformed by its own weight and the hot rolling cannot be performed. It is preferable that

(ii)熱間圧延後巻取りまでの平均冷却速度:2℃/秒以上
熱間圧延後巻取りまでの平均冷却速度は2℃/秒以上とする。
この平均冷却速度が2℃/秒未満であると、ポリゴナルフェライトの生成が促進されて、その後の冷間圧延工程および焼鈍工程を経てもポリゴナルフェライトの面積率が97%超となる場合がある。平均冷却速度の上限は特に限定しないが、200℃/秒を超えると、熱間圧延鋼板が硬質化して後続する冷間圧延が困難となる場合があるので、200℃/秒以下とすることが好ましい。
(Ii) Average cooling rate until winding after hot rolling: 2 ° C./second or more The average cooling rate until winding after hot rolling is 2 ° C./second or more.
When the average cooling rate is less than 2 ° C./second, the formation of polygonal ferrite is promoted, and the area ratio of polygonal ferrite may exceed 97% even after the subsequent cold rolling and annealing steps. is there. The upper limit of the average cooling rate is not particularly limited, but if it exceeds 200 ° C./second, the hot-rolled steel sheet may become hard and subsequent cold rolling may be difficult, so it may be 200 ° C./second or less. preferable.

(iii)巻取温度:700℃以下
巻取温度が700℃超であると、ポリゴナルフェライトの生成が促進され、ポリゴナルフェライトの面積率が97%超となる場合がある。巻取温度の下限は特に限定しないが、350℃未満であるとマルテンサイトが生成して鋼板が硬質化し、上述したように冷間圧延が困難になる場合がある。また、後述するように、本発明鋼は、フェライトの面積率30%以上を確保するためにAc点未満のフェライト域での焼鈍を実施するため、熱間圧延時に生成されたフェライトは、その後の冷間圧延工程・焼鈍工程を経ても所望するフェライト面積率に影響を及ぼす。このため、巻取温度は350℃以上とすることが好ましい。
(Iii) Winding temperature: 700 ° C. or less When the winding temperature is higher than 700 ° C., the formation of polygonal ferrite is promoted, and the area ratio of polygonal ferrite may be higher than 97%. The lower limit of the coiling temperature is not particularly limited, but if it is less than 350 ° C., martensite is generated and the steel sheet becomes hard, and cold rolling may be difficult as described above. Further, as described later, the steel according to the present invention performs annealing in a ferrite region of less than Ac 3 point in order to ensure a ferrite area ratio of 30% or more. Even if it goes through the cold rolling process / annealing process, it affects the desired ferrite area ratio. For this reason, it is preferable that winding temperature shall be 350 degreeC or more.

(3)めっき工程
めっきは、熱間プレス後の熱間プレス成形部材の耐食性の向上を目的として、上述した熱間圧延工程により得られる熱間圧延鋼板に慣用の方法で冷間圧延を行って得られる冷間圧延鋼板の表面に施すものであるから、耐食性の向上の目的に適うものであればよく、公知の溶融金属めっきや電気めっきなどを公知の方法により施すことができる。化学めっきや蒸着めっき等であっても構わない。
(3) Plating process For the purpose of improving the corrosion resistance of the hot press-formed member after hot pressing, the plating is performed by cold rolling the hot-rolled steel sheet obtained by the hot rolling process described above by a conventional method. Since it is applied to the surface of the obtained cold-rolled steel sheet, it may be applied to the purpose of improving the corrosion resistance, and known hot metal plating, electroplating, etc. can be applied by a known method. Chemical plating, vapor deposition plating, or the like may be used.

ただし、本実施の形態にかかる熱間プレス用めっき鋼板は、目的とする鋼組織を具備することも必要であるから、電気めっき等のように鋼板を鋼組織に影響を及ぼす程度の高温域まで昇温することがない場合には特段注意を払う必要はないが、焼鈍設備とめっき設備とが連結された連続溶融金属めっき装置を用いた溶融金属めっきのように、通常の操業において鋼板を鋼組織に影響を及ぼしかねない程度の高温域まで昇温しなければならない場合には注意が必要である。   However, since the plated steel sheet for hot pressing according to the present embodiment also needs to have a target steel structure, the steel sheet has a high temperature range that affects the steel structure, such as electroplating. If the temperature does not rise, there is no need to pay special attention. However, steel plates are normally used in normal operations, such as hot metal plating using a continuous hot metal plating machine in which annealing equipment and plating equipment are connected. Care must be taken when the temperature must be raised to a high temperature range that may affect the tissue.

加工後の耐食性およびコストの観点から連続溶融亜鉛めっき装置を用いた溶融亜鉛めっきを行うことが好ましいので、連続溶融金属めっき装置を用いた溶融金属めっきとして連続溶融亜鉛めっき装置を用いた溶融亜鉛めっきを例にとって、説明する。   Since it is preferable to perform hot dip galvanization using a continuous hot dip galvanizing device from the viewpoint of corrosion resistance and cost after processing, hot dip galvanizing using a continuous hot dip galvanizing device as a hot metal plating using a continuous hot metal plating device Is described as an example.

本実施の形態では、連続溶融亜鉛めっき装置を用いて行う溶融亜鉛めっき工程において、上述した工程を経て製造された冷間圧延鋼板を表面温度が(Ac点−50℃)以上Ac点未満の温度に5秒間以上保持してから、2℃/秒以上70℃/秒以下の平均冷却速度で400℃以上の温度まで冷却し、その後溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきを行う。 In this Embodiment, in the hot dip galvanizing process performed using a continuous hot dip galvanizing apparatus, the surface temperature of the cold-rolled steel sheet manufactured through the steps described above is (Ac 1 point-50 ° C.) or more and less than Ac 3 points. Then, it is cooled to a temperature of 400 ° C. or higher at an average cooling rate of 2 ° C./second or more and 70 ° C./second or less, and then immersed in a hot dip galvanizing bath to perform hot dip galvanization.

冷間圧延鋼板の温度がAc点以上になると、ポリゴナルフェライトの面積率を30%以上とすることが困難になる。一方、冷間圧延鋼板の温度が(Ac点−50℃)未満であると、圧延未再結晶フェライトが残存し、鋼板が硬質化して平坦矯正が困難となり、熱間プレス鋼板部材内の硬度バラツキをもたらす場合がある。 When the temperature of the cold-rolled steel sheet is Ac 3 or higher, it is difficult to set the area ratio of polygonal ferrite to 30% or higher. On the other hand, if the temperature of the cold-rolled steel sheet is less than (Ac 1 point-50 ° C.), the unrecrystallized rolled ferrite remains, the steel sheet becomes hard and flattening becomes difficult, and the hardness in the hot-pressed steel sheet member May cause variation.

同様に、保持時間が5秒間未満の場合にも、圧延未再結晶フェライトが残存し、鋼板が硬質化して平坦矯正が困難となり、熱間プレス鋼板部材内の硬度バラツキをもたらす場合がある。   Similarly, even when the holding time is less than 5 seconds, the non-recrystallized rolled ferrite remains, the steel plate becomes hard and flattening becomes difficult, and hardness variations in the hot pressed steel plate member may be caused.

さらに、本実施の形態では、冷間圧延鋼板を(Ac点−50℃)以上Ac点未満の温度に5秒間以上保持した後に、2℃/秒以上70℃/秒以下の平均冷却速度で400℃以上の温度まで冷却することにより、ポリゴナルフェライトの平均結晶粒径を2μm以上25μm以下、ベイナイトの面積率を20%未満、残部をパーライトに容易にすることができる。 Furthermore, in this Embodiment, after hold | maintaining a cold-rolled steel plate at the temperature of (Ac 1 point-50 degreeC) or more and less than Ac 3 point for 5 second or more, the average cooling rate of 2 to 70 degree C / second or less is held. By cooling to 400 ° C. or higher, the average crystal grain size of polygonal ferrite can be made 2 μm or more and 25 μm or less, the area ratio of bainite can be less than 20%, and the remainder can be easily made pearlite.

平均冷却速度が70℃/秒超であると、ポリゴナルフェライトの粒成長が抑制されポリゴナルフェライトの平均結晶粒径が2μm未満となる場合があり、一方、平均冷却速度が2℃/秒未満であると、フェライトの粒成長が促進されフェライトの平均結晶粒径が25μm超となる場合がある。   If the average cooling rate exceeds 70 ° C./second, the grain growth of polygonal ferrite may be suppressed and the average crystal grain size of polygonal ferrite may be less than 2 μm, while the average cooling rate is less than 2 ° C./second. If this is the case, the grain growth of ferrite is promoted, and the average crystal grain size of ferrite may exceed 25 μm.

また、冷却停止温度が400℃未満では、ベイナイトの面積率が20%以上となり鋼板が硬質となって平坦矯正が困難となり、熱間プレス成形部材内における硬度のバラツキを生じ易くなる。   On the other hand, when the cooling stop temperature is less than 400 ° C., the area ratio of bainite is 20% or more, the steel plate becomes hard and flattening becomes difficult, and the hardness in the hot press-formed member tends to vary.

特に、平均冷却速度を2℃/秒以上20℃/秒以下とすれば、ポリゴナルフェライト粒内に粒径0.2μm以上のセメンタイトを2個以上含有するポリゴナルフェライトの個数割合を0.6以上1以下とすることが容易になるので、焼入れ性の均質化に一層効果的である。   In particular, when the average cooling rate is 2 ° C./second or more and 20 ° C./second or less, the number ratio of polygonal ferrite containing two or more cementites having a particle size of 0.2 μm or more in the polygonal ferrite grains is 0.6. Since it becomes easy to make it above 1 or less, it is more effective for homogenization of hardenability.

この冷却を行った後、溶融亜鉛めっき浴中にて溶融亜鉛めっきを行い、必要に応じて合金化処理を行う。溶融亜鉛めっき浴の温度は、特に規定しないが、生産性の観点から融点以上(融点+200℃)以下とすることが好ましい。   After this cooling, hot dip galvanization is performed in a hot dip galvanizing bath, and an alloying treatment is performed as necessary. The temperature of the hot dip galvanizing bath is not particularly specified, but it is preferably not less than the melting point (melting point + 200 ° C.) from the viewpoint of productivity.

合金化処理を実施する場合には、めっきを施した後、鋼板の表面温度が470℃以上(Ac点+50℃)以下となった状態で1秒間以上30秒間以下保持することが望ましい。鋼板の表面温度が470℃未満では、温度が低すぎて合金化処理に長い時間を要するので好ましくない。生産性の観点からは合金化処理時の鋼板の表面温度は500℃以上が望ましい。一方、鋼板の表面温度が(Ac点+50℃)超では、鋼組織が変化し、所望の鋼組織を得ることが困難となる。合金化処理時間を1秒間以上30秒間以下とすることで、めっき被膜中のFe含有量を5質量%以上25質量%以下とすることができる。 When carrying out the alloying treatment, it is desirable to hold the steel sheet for 1 second to 30 seconds in a state where the surface temperature of the steel sheet is 470 ° C. or higher (Ac 1 point + 50 ° C.) or lower after plating. If the surface temperature of the steel sheet is less than 470 ° C., the temperature is too low and it takes a long time for the alloying treatment, which is not preferable. From the viewpoint of productivity, the surface temperature of the steel sheet during the alloying treatment is desirably 500 ° C. or higher. On the other hand, if the surface temperature of the steel sheet exceeds (Ac 1 point + 50 ° C.), the steel structure changes and it becomes difficult to obtain a desired steel structure. By setting the alloying treatment time to 1 second to 30 seconds, the Fe content in the plating film can be set to 5 mass% to 25 mass%.

本実施の形態では、めっきを施した鋼板に、表面粗さRaで3.0μm以下の調質圧延ロールにて伸び率0.05%以上1.0%以下の調質圧延を施す。
表面粗さRaで3.0μm以下の調質圧延ロールにてめっき後の鋼板の伸び率を0.05%以上1.0%以下で調質圧延を施すことにより、容易にめっき後の鋼板の表面粗さRaを0.4μm以上2.2μm以下にすることができるので好ましい。
In the present embodiment, the plated steel sheet is subjected to temper rolling with an elongation of 0.05% or more and 1.0% or less by a temper rolling roll having a surface roughness Ra of 3.0 μm or less.
By subjecting the steel sheet after plating with a temper rolling roll having a surface roughness Ra of 3.0 μm or less to temper rolling at a rate of 0.05% or more and 1.0% or less, Since surface roughness Ra can be made into 0.4 micrometer or more and 2.2 micrometers or less, it is preferable.

調質圧延ロールの表面粗さRaが3.0μm超では、調質圧延ロールの表面の凹凸が大きいために鋼板の表面粗さを2.2μm以下に制御することが困難となる。調質圧延ロールの表面粗さRaを精度良く制御するためには、調質圧延ロールの表面粗さは2.5μm以下とすることが好ましい。調質圧延ロールの表面粗さRaの下限は特に規定しないが、調質圧延ロールの表面粗さRaが小さすぎると調質圧延ロールと鋼板との間で焼き付きが発生する場合がある。調質圧延ロールの加工に要するコストの増加なども踏まえると調質圧延ロールの表面粗さRaは0.5μm以上が好ましい。   When the surface roughness Ra of the temper rolling roll is more than 3.0 μm, it is difficult to control the surface roughness of the steel sheet to 2.2 μm or less because the surface irregularities of the temper rolling roll are large. In order to accurately control the surface roughness Ra of the temper rolling roll, the surface roughness of the temper rolling roll is preferably 2.5 μm or less. The lower limit of the surface roughness Ra of the temper rolling roll is not particularly specified, but if the surface roughness Ra of the temper rolling roll is too small, seizure may occur between the temper rolling roll and the steel plate. Considering an increase in cost required for processing the temper rolling roll, the surface roughness Ra of the temper rolling roll is preferably 0.5 μm or more.

調質圧延時の伸び率は0.05%以上1.0%以下とすることが好ましい。伸び率が1.0%超では、圧下率が高すぎて鋼板の表面粗さRaが0.4μm未満となる場合がある。また、伸び率が0.05%未満では、鋼板の表面粗さRaが2.2μm超となる場合がある。   The elongation during temper rolling is preferably 0.05% or more and 1.0% or less. If the elongation exceeds 1.0%, the rolling reduction is too high, and the surface roughness Ra of the steel sheet may be less than 0.4 μm. Moreover, if elongation rate is less than 0.05%, the surface roughness Ra of a steel plate may exceed 2.2 micrometers.

本実施の形態では、このようにして熱間プレス用めっき鋼板を製造する。次に、こうして得られた熱間プレス用めっき鋼板を素材として、熱間プレス成形部材を製造する方法を説明する。   In the present embodiment, the hot-pressed plated steel sheet is manufactured in this way. Next, a method of manufacturing a hot press-formed member using the hot-pressed plated steel sheet thus obtained will be described.

本実施の形態では、この熱間プレス用めっき鋼板をAc点超に加熱し、金型を用いて熱間成形を施すことによって、熱間成形と同時に焼入れを施して、成形品である熱間プレス成形部材とする。 In the present embodiment, this hot-pressed plated steel sheet is heated to more than Ac 3 points, and hot forming is performed using a mold, thereby quenching at the same time as hot forming, Inter-press forming member.

熱間成形前の加熱温度がAc点以下であると、熱間プレス用めっき鋼板中にフェライト、パーライト、ベイナイトが残存してしまい、熱間プレス成形部材がマルテンサイト単相組織にならないため、所望の硬度が得られない。また、熱間プレス成形部材内における硬度のバラツキが大きくなる。熱間プレス前の加熱温度の上限は特に規定しないが、加熱温度を1100℃超とすると、オーステナイトが粗大化し熱間プレス成形部材の靱性を劣化させる場合がある。したがって、加熱温度の上限は1100℃とすることが好ましい。 When the heating temperature before hot forming is Ac 3 points or less, ferrite, pearlite, and bainite remain in the hot-pressed plated steel sheet, and the hot press-formed member does not have a martensite single-phase structure. The desired hardness cannot be obtained. Further, the variation in hardness in the hot press-formed member increases. The upper limit of the heating temperature before hot pressing is not particularly defined, but if the heating temperature is higher than 1100 ° C., austenite may become coarse and deteriorate the toughness of the hot press-formed member. Therefore, the upper limit of the heating temperature is preferably 1100 ° C.

また、加熱時間は、1分間以上10分間以下とすることが好ましい。加熱時間が1分間未満では、加熱してもオーステナイト単相にすることが困難であり、一方、加熱時間が10分間超であると、オーステナイトが粗大化してしまい、上述した問題が発生する。生産性の向上ならびにオーステナイト粗大化の抑制の観点からは、加熱時間を7分間以下とすることがさらに好ましい。   The heating time is preferably 1 minute or more and 10 minutes or less. When the heating time is less than 1 minute, it is difficult to obtain an austenite single phase even when heated, whereas when the heating time is longer than 10 minutes, the austenite becomes coarse and the above-described problems occur. From the viewpoint of improving productivity and suppressing austenite coarsening, the heating time is more preferably 7 minutes or less.

熱間成形の開始温度はAr点以上が望ましい。Ar点未満であると、フェライト変態が始まるために、その後に強制冷却を行ってもマルテンサイト単一組織にならないからである。 The starting temperature of hot forming is preferably Ar 3 points or more. If it is less than Ar 3 point, ferrite transformation starts, so that even if forced cooling is performed thereafter, a martensite single structure is not obtained.

熱間成形後の冷却速度は、10℃/秒以上、さらに好ましくは20℃/秒以上とすることが好ましい。冷却速度の上限は特に規定しない。冷却開始後、熱間プレス成形部材の温度を一気に350℃以下の温度まで下げる。100℃以下まで下げることが好ましく、室温まで下げることがさらに好ましい。熱間プレス成形部材の温度を一気に350℃以下の温度まで下げることにより、熱間プレス成形部材内の硬度バラツキの小さいマルテンサイト単相組織の熱間プレス成形部材を得ることができる。   The cooling rate after hot forming is preferably 10 ° C./second or more, more preferably 20 ° C./second or more. There is no particular upper limit on the cooling rate. After the start of cooling, the temperature of the hot press-formed member is lowered to a temperature of 350 ° C. or less at once. The temperature is preferably lowered to 100 ° C. or lower, and more preferably to room temperature. By reducing the temperature of the hot press-formed member to a temperature of 350 ° C. or less at a stretch, it is possible to obtain a hot press-formed member having a martensite single phase structure with small hardness variation in the hot press formed member.

このように、熱間プレス成形部材の金属組織は、1000MPa超の引張強度を達成するためにマルテンサイト単相組織であることが必要であるが、マルテンサイト単相とするのは、熱間プレス成形部材において強度を求められる部位であり、例えば、熱間プレス成形部材に後加工を施すために軟質な部位を形成させる場合、意図的に相対的に強度を低下させた部位を形成させる場合、さらには強度を要しない部位が存在する場合などは、これらの部位をマルテンサイト単相とする必要がないことはいうまでもない。   As described above, the metal structure of the hot-press formed member needs to be a martensite single-phase structure in order to achieve a tensile strength of more than 1000 MPa. It is a part that requires strength in the molded member, for example, when forming a soft part to perform post-processing on a hot press-formed member, when forming a part that has a relatively low strength intentionally, Further, when there are parts that do not require strength, it is needless to say that these parts do not need to be a martensite single phase.

部材の靱性を向上させるためには、熱間プレス成形部材の引張強度が1000MPa以上の場合にはマルテンサイトの平均粒径を15μm以下とし、熱間プレス成形部材の引張強度が1500MPa以上の場合にはマルテンサイトの平均粒径を12μm以下とし、熱間プレス成形部材の引張強度が1800MPa以上の場合にはマルテンサイトの平均粒径を10μm以下とすることが、好ましい。   In order to improve the toughness of the member, when the tensile strength of the hot press-formed member is 1000 MPa or more, the average particle size of martensite is 15 μm or less, and when the tensile strength of the hot press-formed member is 1500 MPa or more. Preferably has an average particle size of martensite of 12 μm or less, and when the tensile strength of the hot press-formed member is 1800 MPa or more, the average particle size of martensite is preferably 10 μm or less.

また、熱間プレス成形部材のマルテンサイトの粒径は、熱間プレス前の加熱時におけるオーステナイト粒径と同等なので、それぞれの加熱時のオーステナイト平均粒径を15μm以下、12μm以下、10μm以下にすることが好ましい。   Further, since the martensite particle size of the hot press-formed member is equivalent to the austenite particle size at the time of heating before hot pressing, the average austenite particle size at the time of heating is set to 15 μm or less, 12 μm or less, and 10 μm or less. It is preferable.

以上説明したように、本実施の形態により、熱間プレス後の熱間プレス成形部材の硬度バラツキを小さくすることができ、耐食性に優れ、さらに、強度1000MPa以上の熱間プレス成形部材の成形材料として好適な熱間プレス用めっき鋼板を、低コストで安価に提供できる。   As described above, according to the present embodiment, the hardness variation of the hot press-formed member after hot pressing can be reduced, the corrosion resistance is excellent, and further, the molding material of the hot press-formed member having a strength of 1000 MPa or more As such, a suitable hot-pressed plated steel sheet can be provided at low cost at a low cost.

このため、例えば自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のボデーや足廻り部品に代表される構造部材の素材として特に好適な熱間プレス用めっき鋼板を提供できる。   For this reason, for example, it is possible to provide a hot-pressed plated steel sheet that is particularly suitable as a material for structural members used in automobiles and various industrial machines, particularly as a material for structural members represented by automobile bodies and undercarriage parts.

本発明を、実施例を参照しながらより具体的に説明する。
表1に示す鋼組成を備える鋼を転炉試験機で溶製し、連続鋳造試験機で連続鋳造を行ってスラブとした。表2に示すように、一部については、スラブ最終凝固部において連続鋳造試験機内の上下対のロール間隔を狭める中心偏析処理を実施し、一部については、中心偏析処理を実施しなかった。
The present invention will be described more specifically with reference to examples.
Steel having the steel composition shown in Table 1 was melted with a converter tester and continuously cast with a continuous casting tester to obtain a slab. As shown in Table 2, for some, center segregation processing was performed to narrow the gap between the upper and lower rolls in the continuous casting tester in the final solidification part of the slab, and for some, center segregation processing was not performed.

また、表2に示す条件でスラブを加熱し、熱間圧延試験機にて熱間圧延を行った。熱間圧延後の板厚は4.0mmとし、その後、酸洗を行い、圧下率50%の冷間圧延を施して板厚2.0mmの冷間圧延鋼板とした。その後、連続溶融めっき試験機にて溶融めっきを施した後、一部については合金化処理を行った。めっきについては、亜鉛めっきならびにAlめっきを実施した。その後、表面粗さRa1.7μmの調質圧延ロールを備える調質圧延機を用いて調質圧延を施した。連続溶融めっきの試験条件ならびに調質圧延の条件を表3に示す。   Moreover, the slab was heated on the conditions shown in Table 2, and it hot-rolled with the hot rolling tester. The plate thickness after hot rolling was 4.0 mm, and then pickling was performed, and cold rolling with a reduction rate of 50% was performed to obtain a cold rolled steel plate with a plate thickness of 2.0 mm. Thereafter, after hot-dip plating was performed using a continuous hot-dip plating tester, a part was subjected to alloying treatment. As for plating, zinc plating and Al plating were performed. Thereafter, temper rolling was performed using a temper rolling mill provided with a temper rolling roll having a surface roughness Ra of 1.7 μm. Table 3 shows the test conditions for continuous hot dipping and temper rolling.

Figure 0004967360
Figure 0004967360

Figure 0004967360
Figure 0004967360

Figure 0004967360
Figure 0004967360

熱間プレス試験装置を用いて、得られ熱間プレス用めっき鋼板を図1に示す断面形状を有する熱間プレス成形部材に熱間成形した。熱間成形は、熱間プレス用めっき鋼板を加熱炉内で表面温度900℃に到達させ、その温度で4分間保持し、加熱炉より取り出し、直ちに冷却装置付きの金型にて熱間成形を行って焼入れ処理を行った。   Using the hot press test apparatus, the obtained hot-pressed plated steel sheet was hot-formed into a hot-press-formed member having the cross-sectional shape shown in FIG. In hot forming, a hot-pressed plated steel sheet is allowed to reach a surface temperature of 900 ° C. in a heating furnace, held at that temperature for 4 minutes, taken out of the heating furnace, and immediately hot-formed in a mold with a cooling device. Went and quenched.

この熱間プレス成形部材の形状は、M型の形状(ブランクサイズ:厚み2.0mm×巾900mm×長さ460mm)とした。このときの熱間プレス成形条件は、成形高さ85mmとした。   The shape of this hot press-molded member was an M shape (blank size: thickness 2.0 mm × width 900 mm × length 460 mm). The hot press molding conditions at this time were a molding height of 85 mm.

そして、以下に列記する内容で、熱間プレス用めっき鋼板の金属組織、機械特性および表面性状と、熱間プレス成形部材の表面性状および硬度バラツキとを評価した。
(I)熱間プレス用めっき鋼板の金属組織
熱間プレス用めっき鋼板の圧延方向に平行な断面について、走査型電子顕微鏡を用いて、金属組織を観察した。
Then, with the contents listed below, the metal structure, mechanical properties and surface properties of the hot-pressed plated steel sheet, and the surface properties and hardness variations of the hot-press formed member were evaluated.
(I) Metal structure of hot-pressed plated steel sheet The cross-section parallel to the rolling direction of the hot-pressed plated steel sheet was observed using a scanning electron microscope.

測定は、板厚(1/4)t部について倍率2000倍で実施し、各供試材について20視野ずつ測定した。得られた画像をもとに各組織の面積率、ポリゴナルフェライトの結晶粒径、ポリゴナルフェライト粒内における粒径0.2μm以上のセメンタイトの個数を画像処理により調査し、ポリゴナルフェライトの面積率、ベイナイトの面積率、パーライトの面積率、ポリゴナルフェライトの平均結晶粒径、ポリゴナルフェライトの全個数(α)に対するポリゴナルフェライト粒内にセメンタイトが2個以上存在しているフェライトの個数(α)比を算術計算にて求めた。ポリゴナルフェライトの平均結晶粒径は、JIS G 0552に準拠して測定した。 The measurement was performed at a magnification of 2000 times for the plate thickness (1/4) t portion, and 20 fields of view were measured for each specimen. Based on the obtained image, the area ratio of each structure, the crystal grain size of polygonal ferrite, and the number of cementite with a grain size of 0.2 μm or more in the polygonal ferrite grain were investigated by image processing, and the area of polygonal ferrite Ratio, area ratio of bainite, area ratio of pearlite, average crystal grain size of polygonal ferrite, number of ferrites in which two or more cementites exist in polygonal ferrite grains relative to the total number of polygonal ferrites (α) ( The α c ) ratio was determined by arithmetic calculation. The average crystal grain size of polygonal ferrite was measured according to JIS G 0552.

(II)熱間プレス用めっき鋼板の機械特性評価
各熱間プレス用めっき鋼板の圧延直角方向からJIS 5号引張試験を採取して引張試験を行い、降伏点YP、引張強さTSおよび伸びElを測定した。試験方法はJIS Z2241に準じた。
(II) Evaluation of mechanical properties of hot-pressed plated steel sheet JIS No. 5 tensile test was taken from the direction perpendicular to the rolling direction of each hot-pressed plated steel sheet, and the tensile test was performed. Yield point YP, tensile strength TS and elongation El Was measured. The test method conformed to JIS Z2241.

(III)熱間プレス用めっき鋼板の表面粗さ
各熱間プレス用めっき鋼板における表面粗さを2元粗さ計により求めた。圧延方向ならびに圧延直角方向の平均粗さRaを求め算術計算にて平均値とした。
(III) Surface roughness of hot-pressed plated steel sheet The surface roughness of each hot-pressed plated steel sheet was determined by a binary roughness meter. The average roughness Ra in the rolling direction as well as in the direction perpendicular to the rolling was determined and used as an average value by arithmetic calculation.

(IV)熱間プレス成形部材の硬度バラツキ
得られた熱間プレス成形部材を図1の切断位置1、2、3、4、5の5箇所で切断した。各々の切断位置において、断面硬度測定箇所A〜Kの11箇所の断面硬度を測定した。硬度測定は、ビッカース硬度計を用い9.8Nの荷重で測定した。測定方法はJIS Z 2244に準拠した。断面の測定位置は板厚の中心部とした。得られた硬度値の最大値ならびに最小値から、硬度ばらつき(偏差)を求めた。
(IV) Hardness variation of hot press-molded member The obtained hot press-formed member was cut at five positions of cutting positions 1, 2, 3, 4, and 5 in FIG. At each cutting position, cross-sectional hardness at 11 points of cross-sectional hardness measurement points A to K was measured. The hardness was measured using a Vickers hardness tester with a load of 9.8 N. The measuring method was based on JIS Z 2244. The measurement position of the cross section was the center of the plate thickness. The hardness variation (deviation) was determined from the maximum value and the minimum value of the obtained hardness values.

(V)熱間プレス成形部材の靱性
得られた熱間プレス成形部材からシャルピー試験片を切り出し、シャルピー衝撃試験を実施した。切り出し位置は、図1の切断位置1、2、3、4、5の5箇所について、断面硬度測定箇所A、C、F、I、Kから各1個ずつ切り出し、5枚を重ね合わせてビス止めをし、板厚10mmの試験片とした。試験片形状は、JIS Z 2202に記載されているVノッチシャルピ−試験片とした。試験方法は、JIS Z 2242に記載されている方法に準じ、−120℃温度における吸収エネルギーを調査した。
(V) Toughness of hot press-formed member A Charpy test piece was cut out from the obtained hot press-formed member, and a Charpy impact test was performed. The cut-out positions are 5 cut positions 1, 2, 3, 4 and 5 in FIG. 1, one cut from each of the cross-section hardness measurement points A, C, F, I, and K. A test piece having a thickness of 10 mm was formed. The specimen shape was a V-notch Charpy specimen described in JIS Z2202. The test method investigated the absorbed energy at -120 degreeC temperature according to the method described in JISZ2242.

(VI)熱間プレス成形部材の塗装耐食性
得られた熱間プレス成形部材の切断位置3近傍から試験部材を切り出した。その後、日本パーカライジング(株)製PBL−3080で通常の化成処理条件により燐酸亜鉛処理を行った後、関西ペイント(株)製電着塗料GT−10を電圧200Vのスロープ通電で電着塗装し、焼き付け温度150℃で20分焼き付け塗装した。塗膜厚みは20μmとした。試験片の塗膜にカッターナイフで素地に達するスクラッチ傷を入れた後、JIS Z 2371に規定された塩水噴霧試験を480時間行った。傷部からの塗膜膨れ幅もしくは錆幅を測定し、塗装後耐食性を評価した。評価基準は錆幅、塗膜膨れ幅のいずれか大きい方の値で◎:0〜2mm、○:2.1〜4.0mm、×:4.1mm以上とした。
(VI) Coating corrosion resistance of hot press-formed member A test member was cut out from the vicinity of the cutting position 3 of the obtained hot press-formed member. Then, after carrying out zinc phosphate treatment under normal chemical conversion treatment conditions with PBL-3080 manufactured by Nippon Parkerizing Co., Ltd., electrodeposition coating GT-10 manufactured by Kansai Paint Co., Ltd. was applied by slope energization with a voltage of 200V, Baking was applied at a baking temperature of 150 ° C. for 20 minutes. The coating thickness was 20 μm. After scratch scratches reaching the substrate with a cutter knife were put on the coating film of the test piece, a salt spray test defined in JIS Z 2371 was performed for 480 hours. The film swelling width or rust width from the scratch was measured, and the corrosion resistance after coating was evaluated. The evaluation criteria were the larger value of the rust width or the coating film swelling width, and ◎: 0 to 2 mm, ○: 2.1 to 4.0 mm, x: 4.1 mm or more.

(VII)熱間プレス成形部材の表面疵の発生調査
部材表裏面を目視で観察した。
熱間プレス用めっき鋼板、およびこの熱間プレス用めっき鋼板を素材とする熱間プレス成形部材の試験結果を表4、5にまとめて示す。
(VII) Investigation of occurrence of surface flaws on hot press-formed member The front and back surfaces of the member were visually observed.
Tables 4 and 5 collectively show the test results of the hot-pressed plated steel sheet and the hot-press formed members made of the hot-pressed plated steel sheet.

以下、表1〜5を参照しながら試験結果を簡単に説明する。   Hereinafter, the test results will be briefly described with reference to Tables 1 to 5.

Figure 0004967360
Figure 0004967360

Figure 0004967360
Figure 0004967360

表4、5に示すように、本発明例である供試材A1〜A18は、熱間プレス成形部材の硬度差12Hv以下とバラツキも少なく、シャルピー衝撃試験において−120℃での吸収エネルギーが42〜60J/cmで靱性にも優れていた。 As shown in Tables 4 and 5, sample materials A1 to A18, which are examples of the present invention, have less variation with a hardness difference of 12 Hv or less in the hot press-formed member, and the absorbed energy at -120 ° C. is 42 in the Charpy impact test. The toughness was excellent at ˜60 J / cm 2 .

これに対し、供試材A19は、熱間圧延時の仕上げ圧延温度が740℃とAr点以下で本発明外であった。そのため、ポリゴナルフェライトの面積率が98%と本発明外となった。したがって、熱間プレス成形部材の硬度差が34Hvと悪い結果になった。 On the other hand, the specimen A19 was outside the scope of the present invention, with the finish rolling temperature during hot rolling being 740 ° C. and Ar 3 points or less. Therefore, the area ratio of polygonal ferrite was 98%, which is outside the scope of the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 34 Hv.

供試材A20は、仕上げ圧延後の冷却速度が1℃/秒と本発明外であった。そのため、ポリゴナルフェライトの面積率が98%と本発明外となった。したがって、熱間プレス成形部材の硬度差が27Hvと悪い結果になった。   Specimen A20 was outside the scope of the present invention, with a cooling rate after finish rolling of 1 ° C./second. Therefore, the area ratio of polygonal ferrite was 98%, which is outside the scope of the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 27 Hv.

供試材A21は、巻き取り温度が720℃と本発明外であった。巻き取り温度が高いため、ポリゴナルフェライトの面積率が98%と本発明外となった。したがって、熱間プレス成形部材の硬度差が29Hvと悪い結果になった。   The specimen A21 had a winding temperature of 720 ° C., which was outside the present invention. Since the winding temperature was high, the area ratio of polygonal ferrite was 98%, which was outside the scope of the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 29 Hv.

供試材A22は、めっき前の加熱温度が600℃とAc点−50℃未満の温度で、本発明外であった。ポリゴナルフェライトの面積率が10%と本発明外となった。したがって、熱間プレス成形部材の硬度差が22Hvと悪い結果になった。 Specimen A22 was outside the scope of the present invention at a heating temperature before plating of 600 ° C. and a temperature of less than Ac 1 point −50 ° C. The area ratio of polygonal ferrite was 10%, which is outside the scope of the present invention. Therefore, the hardness difference of the hot press-molded member was a bad result of 22 Hv.

供試材A23は、めっき前の加熱温度が840℃とAc点以上の温度で、本発明外であった。そのため、ポリゴナルフェライトの面積率が25%と本発明外となった。したがって、熱間プレス成形部材の硬度差が39Hvと悪い結果になった。 Specimen A23 was outside the scope of the present invention, with a heating temperature before plating of 840 ° C. and a temperature of Ac 3 or higher. Therefore, the area ratio of polygonal ferrite was 25%, which was outside the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 39 Hv.

供試材A24は、めっき前の加熱時間が4秒と本発明外であった。そのため、ポリゴナルフェライトの面積率が5%と本発明外となった。したがって、熱間プレス成形部材の硬度差が36Hvと悪い結果になった。   The specimen A24 had a heating time before plating of 4 seconds, which was outside the present invention. Therefore, the area ratio of polygonal ferrite was 5%, which was outside the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 36 Hv.

供試材A25は、めっき前加熱後の冷却速度が1℃/秒と本発明外であった。そのため、ポリゴナルフェライトの平均粒径が26μmと本発明外となった。したがって、熱間プレス成形部材の硬度差が20Hvと悪い結果になった。   The specimen A25 was outside the scope of the present invention, with a cooling rate after heating before plating of 1 ° C./second. Therefore, the average particle diameter of polygonal ferrite was 26 μm, which was outside the scope of the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 20 Hv.

供試材A26は、めっき前加熱後の冷却速度が72℃/秒と本発明外であった。そのため、ポリゴナルフェライトの平均粒径が1μmと本発明外となった。したがって、熱間プレス成形部材の硬度差が46Hvと悪い結果になった。   Specimen A26 was outside the scope of the present invention, with a cooling rate after heating before plating of 72 ° C./second. Therefore, the average particle diameter of polygonal ferrite was 1 μm, which was outside the scope of the present invention. Therefore, the hardness difference of the hot press-molded member was a bad result of 46 Hv.

供試材A27は、めっき前加熱後の冷却停止温度が380℃と本発明外であった。冷却停止温度が低いため、ベイナイト面積率が38%と本発明外となった。したがって、熱間プレス成形部材の硬度差が45Hvと悪い結果になった。   Specimen A27 was outside the scope of the present invention, with a cooling stop temperature of 380 ° C. after heating before plating. Since the cooling stop temperature was low, the bainite area ratio was 38%, which was outside the scope of the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 45 Hv.

供試材A28は、めっき後の調質圧延時の鋼板伸び率が0.03%と本発明外であった。そのため、めっき後の鋼板表面粗さが2.3μmと本発明外となった。したがって、熱間プレス成形部材の硬度差が21Hvと悪い結果になった。   Specimen A28 had a steel sheet elongation percentage of 0.03% during temper rolling after plating, which was outside the scope of the present invention. Therefore, the steel plate surface roughness after plating was 2.3 μm, which is outside the scope of the present invention. Therefore, the hardness difference of the hot press-formed member was a bad result of 21 Hv.

供試材A29は、めっき後の調質圧延時の鋼板伸び率が1.20%と本発明外であった。そのため、めっき後の鋼板表面粗さが0.3μmと本発明外となった。したがって、熱間プレス成形部材に表面疵が発生した。   Specimen A29 was outside the present invention, with a steel plate elongation of 1.20% during temper rolling after plating. Therefore, the steel plate surface roughness after plating was 0.3 μm, which was outside the scope of the present invention. Therefore, surface flaws occurred in the hot press-formed member.

供試材A30は、供試材成分のうちNbが0.001%と外れた。そのため熱間プレス成形部材のシャルピー衝撃試験において−120℃での吸収エネルギーが10J/cmとなり、靱性が悪くなった。 In the test material A30, Nb was 0.001% out of the test material components. Therefore, the absorbed energy at −120 ° C. was 10 J / cm 2 in the Charpy impact test of the hot press-formed member, and the toughness was deteriorated.

さらに、供試材A31は、供試材成分のうちNbが0.210%と外れた。そのため熱間プレス成形部材のシャルピー衝撃試験において−120℃での吸収エネルギーが15J/cmとなり、靱性が悪くなった。 Further, the sample material A31 had a Nb of 0.210% out of the sample material components. Therefore, the absorbed energy at −120 ° C. was 15 J / cm 2 in the Charpy impact test of the hot press-formed member, and the toughness was deteriorated.

熱間プレス部材の形状と試験片の切り出し位置とを示す説明図である。It is explanatory drawing which shows the shape of a hot press member, and the cutout position of a test piece.

Claims (12)

鋼板の表面にめっき被膜を備えるめっき鋼板であって、前記鋼板が、質量%で、C:0.09〜0.50%、Si:2.0%以下、Mn:0.8〜3.5%、P:0.10%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下およびNb:0.005〜0.20%を含有し、残部がFeおよび不純物である鋼組成を有するとともに、面積率で、ポリゴナルフェライト:30〜97%、ベイナイト:0〜20%未満、残部がパーライトである鋼組織を有し、前記ポリゴナルフェライトの平均結晶粒径が2〜25μmであり、さらに、前記めっき鋼板の表面粗さRaが0.4〜2.2μmであることを特徴とする熱間プレス用めっき鋼板。 A plated steel sheet provided with a plating film on the surface of the steel sheet, wherein the steel sheet is in mass%, C: 0.09 to 0.50%, Si: 2.0% or less, Mn: 0.8 to 3.5 %, P: 0.10% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.01% or less, and Nb: 0.005 to 0.20%, the balance being It has a steel composition that is Fe and impurities, and has an area ratio of polygonal ferrite: 30 to 97%, bainite: 0 to less than 20%, and the balance is pearlite, and the average crystal of the polygonal ferrite. A plated steel sheet for hot pressing, wherein the grain size is 2 to 25 μm, and the surface roughness Ra of the plated steel sheet is 0.4 to 2.2 μm. 前記鋼組成が、質量%で、Ti:0.20%以下およびV:1.0%以下からなる群から選ばれた1種または2種をさらに含有することを特徴とする請求項1に記載の熱間プレス用めっき鋼板。 2. The steel composition according to claim 1, wherein the steel composition further contains one or two selected from the group consisting of Ti: 0.20% or less and V: 1.0% or less in mass%. Plated steel sheet for hot pressing. 前記鋼組成が、質量%で、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれた1種または2種以上をさらに含有することを特徴とする請求項1または請求項2に記載の熱間プレス用めっき鋼板。 The steel composition is, in mass%, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less. The plated steel sheet for hot press according to claim 1 or 2, further comprising one or more selected from the group. 前記鋼組成が、質量%で、Ca:0.01%以下、Mg:0.01%以下およびREM:0.1%以下からなる群から選ばれた1種または2種以上をさらに含有することを特徴とする請求項1から請求項3までのいずれか1項に記載の熱間プレス用めっき鋼板。 The steel composition further contains one or more selected from the group consisting of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.1% or less in mass%. The plated steel sheet for hot press according to any one of claims 1 to 3, wherein: 前記鋼組成が、質量%で、Ca:0.0005〜0.01%を含有し、かつ、下記式(1)を満足するものであることを特徴とする請求項4に記載の熱間プレス用めっき鋼板。
0.05≦Nb+Ti+5×Ca≦0.3 ・・・・・・・(1)
ここで、式(1)における元素記号は前記鋼組成における各元素の含有量(単位:質量%)を表す。
5. The hot press according to claim 4, wherein the steel composition contains Ca: 0.0005 to 0.01% by mass% and satisfies the following formula (1): 5. Plated steel sheet.
0.05 ≦ Nb + Ti + 5 × Ca ≦ 0.3 (1)
Here, the element symbol in Formula (1) represents content (unit: mass%) of each element in the said steel composition.
前記めっき被膜の片面当りの目付量が40〜150g/mであることを特徴とする請求項1から請求項5までのいずれか1項に記載の熱間プレス用めっき鋼板。 Hot-press coated steel sheet according to any one of claims 1 to 5 in which the basis weight per one surface of the plating film characterized in that it is a 40~150g / m 2. 前記ポリゴナルフェライトに占める、粒内に0.2μm以上の粒径を有するセメンタイトを2個以上含有する結晶粒の個数割合が0.6〜1であることを特徴とする請求項1から請求項6までのいずれか1項に記載の熱間プレス用めっき鋼板。 The number ratio of crystal grains containing two or more cementites having a grain size of 0.2 µm or more in the grains in the polygonal ferrite is 0.6 to 1. The plated steel sheet for hot press according to any one of 6 to 6. 前記めっき被膜は、Feを5〜25質量%含有する合金化溶融亜鉛めっき被膜であることを特徴とする請求項1から請求項7までのいずれか1項に記載の熱間プレス用めっき鋼板。 The plated steel sheet for hot press according to any one of claims 1 to 7, wherein the plated film is an alloyed hot-dip galvanized film containing 5 to 25 mass% of Fe. 請求項1から請求項5までのいずれか1項に記載された鋼組成を有する溶鋼に中心偏析処理を施す連続鋳造法によりスラブとし、該スラブにAr点以上の温度域で熱間圧延を施し、その後2℃/秒以上の平均冷却速度で700℃以下まで冷却してから巻取りを行って熱間圧延鋼板とし、該熱間圧延鋼板に冷間圧延を施して冷間圧延鋼板とし、該冷間圧延鋼板を(Ac点−50℃)以上Ac点未満の温度域に5秒間以上保持した後に2〜70℃/秒の平均冷却速度で400℃以上の所定の温度まで冷却した後にめっき処理を施し、その後表面粗さRaで3.0μm以下の調質圧延ロールにて伸び率0.05〜1.00%の調質圧延を施すことを特徴とする熱間プレス用めっき鋼板の製造方法。 The molten steel having the steel composition described in any one of claims 1 to 5 is made into a slab by a continuous casting method in which center segregation treatment is performed, and the slab is hot-rolled in a temperature range of Ar 3 points or more. Then, after cooling to 700 ° C. or less at an average cooling rate of 2 ° C./second or more, it is wound into a hot-rolled steel plate, cold-rolled to the hot-rolled steel plate to obtain a cold-rolled steel plate, The cold-rolled steel sheet was held at a temperature range of (Ac 1 point-50 ° C.) or more and less than Ac 3 point for 5 seconds or more, and then cooled to a predetermined temperature of 400 ° C. or more at an average cooling rate of 2 to 70 ° C./second. Plating steel sheet for hot press, which is subjected to a plating treatment and then subjected to a temper rolling with an elongation of 0.05 to 1.00% using a temper rolling roll having a surface roughness Ra of 3.0 μm or less. Manufacturing method. 請求項1から請求項5までのいずれか1項に記載された鋼組成を有する溶鋼に中心偏析処理を施す連続鋳造法によりスラブとし、該スラブにAr点以上の温度域で熱間圧延を施し、その後2℃/秒以上の平均冷却速度で700℃以下まで冷却してから巻取りを行って熱間圧延鋼板とし、該熱間圧延鋼板に冷間圧延を施して冷間圧延鋼板とし、該冷間圧延鋼板を(Ac点−50℃)以上Ac点未満の温度域に5秒間以上保持したのちに2〜20℃/秒の平均冷却速度で400℃以上の所定の温度まで冷却した後にめっき処理を施し、その後表面粗さRaで3.0μm以下の調質圧延ロールにて伸び率0.05〜1.00%の調質圧延を施すことを特徴とする熱間プレス用めっき鋼板の製造方法。 The molten steel having the steel composition described in any one of claims 1 to 5 is made into a slab by a continuous casting method in which center segregation treatment is performed, and the slab is hot-rolled in a temperature range of Ar 3 points or more. Then, after cooling to 700 ° C. or less at an average cooling rate of 2 ° C./second or more, it is wound into a hot-rolled steel plate, cold-rolled to the hot-rolled steel plate to obtain a cold-rolled steel plate, The cold rolled steel sheet is held in a temperature range of (Ac 1 point-50 ° C.) or more and less than Ac 3 point for 5 seconds or more, and then cooled to a predetermined temperature of 400 ° C. or more at an average cooling rate of 2 to 20 ° C./second. And then subjected to temper rolling with a surface roughness Ra of 3.0 μm or less and a temper rolling with an elongation of 0.05 to 1.00%. A method of manufacturing a steel sheet. 前記めっき処理が亜鉛めっき処理であって、めっき処理後かつ調質圧延前の鋼板に470℃以上(Ac+50℃)以下の表面温度で2〜30秒間保持する合金化処理を施すことを特徴とする請求項9または請求項10に記載の熱間プレス用めっき鋼板の製造方法。 The plating process is a galvanizing process, and the steel sheet after the plating process and before the temper rolling is subjected to an alloying process for 2 to 30 seconds at a surface temperature of 470 ° C. or higher (Ac 1 + 50 ° C.) or lower. A method for producing a hot-pressed plated steel sheet according to claim 9 or 10. 請求項1から請求項8までのいずれか1項に記載された熱間プレス用めっき鋼板を、Ac点超に加熱し、金型を用いて熱間成形を行うことによって、熱間成形と同時に焼入れを行って成形品とすることを特徴とする熱間プレス成形部材の製造方法。 The hot-pressed plated steel sheet according to any one of claims 1 to 8 is heated to more than Ac 3 points, and hot forming is performed using a die, thereby forming hot forming and A method for producing a hot press-molded member, wherein the molded product is formed by quenching at the same time.
JP2006030878A 2006-02-08 2006-02-08 Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members Active JP4967360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030878A JP4967360B2 (en) 2006-02-08 2006-02-08 Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030878A JP4967360B2 (en) 2006-02-08 2006-02-08 Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members

Publications (2)

Publication Number Publication Date
JP2007211276A JP2007211276A (en) 2007-08-23
JP4967360B2 true JP4967360B2 (en) 2012-07-04

Family

ID=38489977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030878A Active JP4967360B2 (en) 2006-02-08 2006-02-08 Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members

Country Status (1)

Country Link
JP (1) JP4967360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724875A (en) * 2019-09-20 2020-01-24 南京钢铁股份有限公司 Steel plate for railway and manufacturing method for improving yield strength of steel plate

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098864B2 (en) * 2008-07-11 2012-12-12 新日鐵住金株式会社 High strength automotive parts with excellent post-painting corrosion resistance and plated steel sheets for hot pressing
KR101109953B1 (en) 2008-09-29 2012-02-24 현대제철 주식회사 High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR101008042B1 (en) * 2009-01-09 2011-01-13 주식회사 포스코 Aluminum Coated Steel Sheet with Excellent Corrosion Resistance and Hot Press Formed Article Using The Same and Manufacturing Method Thereof
US8444780B2 (en) 2009-02-20 2013-05-21 Nucor Corporation Hot rolled thin cast strip product and method for making the same
JP5503195B2 (en) * 2009-06-18 2014-05-28 株式会社神戸製鋼所 Steel for machine structure suitable for friction welding, manufacturing method thereof, friction welding component
JP5018934B2 (en) * 2010-06-29 2012-09-05 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP5263258B2 (en) * 2010-10-25 2013-08-14 新日鐵住金株式会社 Manufacturing method of high-strength automobile parts and high-strength parts
EP2695963B1 (en) 2011-04-01 2021-11-03 Nippon Steel Corporation Hot stamp-molded high-strength component having excellent corrosion resistance after coating
US20140056753A1 (en) 2011-06-10 2014-02-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot press-formed product, process for producing same, and thin steel sheet for hot press forming
CN104136650B (en) * 2012-03-07 2017-04-19 杰富意钢铁株式会社 Steel sheet for hot pressing, manufacturing process therefor, and process for producing hot-pressed member using same
JP6001884B2 (en) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
JP5965344B2 (en) * 2012-03-30 2016-08-03 株式会社神戸製鋼所 Hot-dip galvanized steel sheet for press forming excellent in cold workability, mold hardenability and surface properties, and method for producing the same
CN102650018B (en) * 2012-05-29 2013-12-25 江苏省沙钢钢铁研究院有限公司 Seawater corrosion resistant steel plate and production method thereof
MX2015001687A (en) * 2012-08-07 2015-04-10 Nippon Steel & Sumitomo Metal Corp Zinc-plated steel sheet for hot press molding.
MX2015001772A (en) * 2012-08-15 2015-05-08 Nippon Steel & Sumitomo Metal Corp Steel sheet for hot pressing use, method for producing same, and hot press steel sheet member.
JP5835624B2 (en) * 2012-08-21 2015-12-24 新日鐵住金株式会社 Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
CA2913487C (en) 2013-06-07 2018-12-04 Nippon Steel & Sumitomo Metal Corporation Heat-treated steel material and method of manufacturing the same
EP2848715B1 (en) * 2013-09-13 2018-10-31 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating
JP6326761B2 (en) * 2013-10-23 2018-05-23 新日鐵住金株式会社 Hot stamping steel manufacturing method, hot stamping steel plate manufacturing method and hot stamping steel plate
CN106661685B (en) * 2014-05-15 2018-04-20 新日铁住金株式会社 Hot forming steel plate member
JP6379717B2 (en) * 2014-06-23 2018-08-29 新日鐵住金株式会社 Method for producing alloyed hot-dip galvanized steel for hot stamping
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
KR20200066350A (en) * 2017-11-13 2020-06-09 제이에프이 스틸 가부시키가이샤 Hot press steel plate member and its manufacturing method
CN107723603A (en) * 2017-11-29 2018-02-23 安徽工业大学 Yield strength 500MPa levels corrosion-resistant steel bar and manufacture method
CN108374127A (en) * 2018-04-28 2018-08-07 育材堂(苏州)材料科技有限公司 Hot press-formed steel, hot press-formed technique and hot press-formed component
KR102236852B1 (en) * 2018-11-30 2021-04-06 주식회사 포스코 Steel plate for structure having excellent low yield ratio property and low temperature toughness and manufacturing method thereof
JP7436824B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
JP7518337B2 (en) 2020-03-26 2024-07-18 日本製鉄株式会社 Steel sheet for hot stamped parts and its manufacturing method
JP7564419B2 (en) 2020-03-26 2024-10-09 日本製鉄株式会社 Manufacturing method of hot stamped parts
JP7436825B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
JP7525773B2 (en) 2020-03-26 2024-07-31 日本製鉄株式会社 Steel sheet for hot stamped parts and its manufacturing method
WO2022091351A1 (en) * 2020-10-30 2022-05-05 日本製鉄株式会社 Zn-plated hot-stamped molded article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195075A (en) * 1992-01-13 1993-08-03 Nippon Steel Corp Production of high strength galvanized steel sheet
JP3680262B2 (en) * 2000-06-28 2005-08-10 Jfeスチール株式会社 Hot-dip galvanized steel sheet with excellent stretch flangeability and manufacturing method thereof
JP3687624B2 (en) * 2002-04-18 2005-08-24 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4000943B2 (en) * 2002-08-02 2007-10-31 住友金属工業株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724875A (en) * 2019-09-20 2020-01-24 南京钢铁股份有限公司 Steel plate for railway and manufacturing method for improving yield strength of steel plate

Also Published As

Publication number Publication date
JP2007211276A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4967360B2 (en) Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members
CN110312813B (en) High-strength steel sheet and method for producing same
CN109072380B (en) Steel sheet, plated steel sheet, and method for producing same
JP6414246B2 (en) High strength steel plate and manufacturing method thereof
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6304455B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
CN111936656B (en) High-strength steel sheet and method for producing same
CN111936658A (en) High-strength steel sheet and method for producing same
KR102165051B1 (en) Thin steel sheet and plated steel sheet, and manufacturing method of thin steel sheet and plating steel sheet
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
CN107075643A (en) High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, high-strength hot aludip and high intensity plated steel sheet and their manufacture method
EP3647445A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
KR20150029736A (en) High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
KR20140031337A (en) Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same
EP2752500A1 (en) Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP5533144B2 (en) Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP7255634B2 (en) HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
CN109937265B (en) High-strength steel sheet and method for producing same
JP5776763B2 (en) Hot-dip cold-rolled steel sheet and manufacturing method thereof
CN114585761A (en) High-strength steel sheet and method for producing same
JP7215519B2 (en) HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350