[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4961102B2 - Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite - Google Patents

Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite Download PDF

Info

Publication number
JP4961102B2
JP4961102B2 JP2004225410A JP2004225410A JP4961102B2 JP 4961102 B2 JP4961102 B2 JP 4961102B2 JP 2004225410 A JP2004225410 A JP 2004225410A JP 2004225410 A JP2004225410 A JP 2004225410A JP 4961102 B2 JP4961102 B2 JP 4961102B2
Authority
JP
Japan
Prior art keywords
zeolite
silver
producing
fuel
silver ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004225410A
Other languages
Japanese (ja)
Other versions
JP2006044965A (en
Inventor
幸三 高津
岳二 竹越
義実 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004225410A priority Critical patent/JP4961102B2/en
Publication of JP2006044965A publication Critical patent/JP2006044965A/en
Application granted granted Critical
Publication of JP4961102B2 publication Critical patent/JP4961102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、ゼオライト結晶の破壊が少ない銀イオン交換ゼオライトの製造方法、並びに該銀イオン交換ゼオライトを含む硫黄化合物除去用吸着剤、更に、該吸着剤を用いて脱硫処理した炭化水素燃料又はジメチルエーテル燃料から、燃料電池に使用可能な水素を効果的に製造する方法及びその水素を用いる燃料電池システムに関するものである。   The present invention relates to a method for producing a silver ion exchanged zeolite with less destruction of zeolite crystals, an adsorbent for removing a sulfur compound containing the silver ion exchanged zeolite, and a hydrocarbon fuel or dimethyl ether fuel desulfurized using the adsorbent. The present invention relates to a method for effectively producing hydrogen usable for a fuel cell and a fuel cell system using the hydrogen.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。
この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用又は自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。
一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、更にはLPG、ナフサ、灯油などの石油系炭化水素の使用が研究されている。
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies.
This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Or, practical research has been actively conducted for automobiles.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used.
On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and petroleum-based systems such as LPG, naphtha and kerosene The use of hydrocarbons has been studied.

これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に部分酸化改質、オートサーマル改質又は水蒸気改質などで処理する方法が用いられている。
LPG、都市ガス、灯油などの炭化水素燃料を改質して燃料用水素を製造する場合、改質触媒の被毒を抑制するためには、燃料中の硫黄分を0.1ppm以下に低減させることが要求される。
また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を0.1ppm以下に低減させることが要求される。
前記LPG中には、硫黄化合物として、一般にメタンチオールや硫化カルボニル(COS)などに加えて、着臭剤として添加されたジメチルスルフィド(DMS)、2−メチル−2−プロパンチオール(MPT)、メチルエチルスルフィドなどが含まれている。
また、最近ジメチルエーテルを燃料として利用する計画が進められている。
このジメチルエーテル自体は、硫黄化合物を含有していないが、漏洩対策から意図的に上記着臭剤の添加が検討されている。
When producing hydrogen using these gaseous or liquid hydrocarbons, generally, there is a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst. It is used.
When reforming hydrocarbon fuels such as LPG, city gas, and kerosene to produce hydrogen for fuel, the sulfur content in the fuel is reduced to 0.1 ppm or less in order to suppress poisoning of the reforming catalyst. Is required.
Further, when propylene, butene, etc. are used as a raw material for petrochemical products, the sulfur content is required to be reduced to 0.1 ppm or less in order to prevent poisoning of the catalyst.
In the LPG, dimethyl sulfide (DMS), 2-methyl-2-propanethiol (MPT), methyl added as a odorant in addition to methanethiol, carbonyl sulfide (COS) or the like as a sulfur compound. Ethyl sulfide and the like are included.
Recently, a plan to use dimethyl ether as a fuel is underway.
Although this dimethyl ether itself does not contain a sulfur compound, the addition of the above odorant has been studied intentionally in order to prevent leakage.

LPGや都市ガスなどの炭化水素燃料中の硫黄化合物を吸着除去する各種吸着剤が知られているが、従来の吸着剤は吸着容量が十分ではなく、長期間使用するには、しばしば取り替える必要がある。
例えば、硫黄化合物除去用吸着剤として、アルカリ土類金属以外の多価金属イオン(Mn、Fe、Co、Ni、Cu、Sn及びZn)を交換したゼオライト系脱硫剤(例えば、特許文献1参照)、疎水性ゼオライトにAg、Cu、Zn、Fe、Co、Niなどをイオン交換により担持させた脱硫剤(例えば、特許文献2参照)や、Y型ゼオライト、βゼオライト又はX型ゼオライトにAg又はCuを担持した脱硫剤(例えば、特許文献3参照)などが開示されている。
これらの脱硫剤は、いずれも硝酸塩、酢酸塩、塩化物を用いてイオン交換を行うことが記載されている。
しかしながら、このような方法でイオン交換を行った場合、実際には1回のイオン交換では、担持量を十分に多くすることが困難である。
従って、担持量を増大させるには、繰り返しイオン交換を行う必要があり、又、このようにして担持量が多い金属交換ゼオライトを調製しても、硫黄化合物の吸着性能は十分ではない。
また、金属アンミン錯イオンを含有する溶液を用いて製造した金属イオン交換ゼオライトを含む脱硫剤(例えば、特許文献4参照)が開示されている。
しかし、この方法では、脱硫剤の性能を向上するためAgの担持量を5質量%以上に増加しようとするとゼオライトの結晶破壊が生じる場合があり、性能が十分でないことがある。
Various adsorbents that adsorb and remove sulfur compounds in hydrocarbon fuels such as LPG and city gas are known, but conventional adsorbents do not have sufficient adsorption capacity and need to be replaced frequently for long-term use. is there.
For example, as a sulfur compound removing adsorbent, a zeolite-based desulfurization agent in which polyvalent metal ions other than alkaline earth metals (Mn, Fe, Co, Ni, Cu, Sn, and Zn) are exchanged (see, for example, Patent Document 1) A desulfurization agent (for example, see Patent Document 2) in which Ag, Cu, Zn, Fe, Co, Ni, etc. are supported on a hydrophobic zeolite by ion exchange, or Ag or Cu on Y-type zeolite, β-zeolite or X-type zeolite. A desulfurizing agent supporting slag (see, for example, Patent Document 3) is disclosed.
All of these desulfurizing agents are described as performing ion exchange using nitrate, acetate, and chloride.
However, when ion exchange is performed by such a method, it is actually difficult to sufficiently increase the loading amount by one ion exchange.
Therefore, it is necessary to repeatedly perform ion exchange in order to increase the loading amount, and even if a metal-exchanged zeolite having a large loading amount is prepared in this manner, the adsorption performance of the sulfur compound is not sufficient.
Moreover, the desulfurization agent (for example, refer patent document 4) containing the metal ion exchange zeolite manufactured using the solution containing a metal ammine complex ion is disclosed.
However, in this method, if an attempt is made to increase the supported amount of Ag to 5% by mass or more in order to improve the performance of the desulfurizing agent, crystal destruction of the zeolite may occur, and the performance may not be sufficient.

特開平6−306377号公報JP-A-6-306377 特開2001−286753号公報JP 2001-286753 A 特開2001−305123号公報JP 2001-305123 A 特開2004−168648号公報JP 2004-168648 A

本発明は、このような状況下でなされたもので、炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤に好適に使用できる銀イオン交換ゼオライトの製造方法、並びに前記銀イオン交換ゼオライトを含む硫黄化合物除去用吸着剤、更にその吸着剤を用いて脱硫処理した炭化水素燃料又はジメチルエーテル燃料から、燃料電池に使用可能な水素を効果的に製造する方法及びその水素を用いる燃料電池システムを提供することを目的とするものである。   The present invention has been made under such circumstances, and it can be suitably used as an adsorbent for removing sulfur compounds that can efficiently remove sulfur compounds in hydrocarbon fuels or dimethyl ether fuels to a low concentration even at room temperature. A method for producing ion exchange zeolite, an adsorbent for removing a sulfur compound containing the silver ion exchange zeolite, and a hydrogen fuel usable for a fuel cell from a hydrocarbon fuel or dimethyl ether fuel desulfurized using the adsorbent are effectively used. It is an object of the present invention to provide a method for producing the fuel cell and a fuel cell system using the hydrogen.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、銀アンミン錯イオンを含む溶液を用い、pH4〜9で銀イオン交換したゼオライトは、1回の操作で銀金属担持量を高くすることができ、かつゼオライトの結晶破壊が少なく、9を超えるpHで得られた銀イオン担持ゼオライト系脱硫剤に比べて、硫黄化合物に対する吸着性能に優れていること、そしてこの吸着剤を用いて脱硫処理した炭化水素燃料又はジメチルエーテル燃料を改質処理することにより、燃料電池用として使用可能な水素が効果的に得られることを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the inventors of the present invention use a solution containing silver ammine complex ions, and a zeolite ion-exchanged at pH 4 to 9 has a silver metal loading in one operation. And has a high adsorption performance for sulfur compounds compared to a silver ion-supported zeolite desulfurization agent obtained at a pH of more than 9, and there is little crystal destruction of the zeolite. It has been found that hydrogen that can be used for fuel cells can be effectively obtained by reforming the hydrocarbon fuel or dimethyl ether fuel desulfurized using the same.
The present invention has been completed based on such findings.

即ち、本発明は、
1.銀アンミン錯イオンを含む溶液を用い、pH4〜9でイオン交換法により銀を担持することを特徴とする銀イオン交換ゼオライトの製造方法、
2.銀アンミン錯イオンをアンモニア及び/又は硝酸アンモニウムを用いて調製する上記1に記載の銀イオン交換ゼオライトの製造方法、
3.ゼオライトが、HY型及びUSY型ゼオライト並びにβゼオライトの中から選ばれる少なくとも一種である上記1又は2に記載の銀イオン交換ゼオライトの製造方法、
4.銀担持量が、銀金属として5〜30質量%である上記1〜3のいずれかに記載の銀イオン交換ゼオライトの製造方法、
5.ゼオライトが、成型体ゼオライトである上記1〜4のいずれかに記載の銀イオン交換ゼオライトの製造方法、
6.上記1〜5のいずれかに記載の方法で得られた銀イオン交換ゼオライトを含むことを特徴とする吸着剤、
7.上記1〜5のいずれかに記載の方法で得られた銀イオン交換ゼオライトを含むことを特徴とする触媒、
8.上記1〜5のいずれかに記載の方法で得られた銀イオン交換ゼオライトを含むことを特徴とする、炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物除去用吸着剤、
9.炭化水素燃料が、LPG、都市ガス、天然ガス、ナフサ、灯油、軽油あるいはエタン、エチレン、プロパン、プロピレン、ブタン及びブテンの中から選ばれる少なくとも一種の炭化水素化合物である上記8記載の硫黄化合物除去用吸着剤、
10.上記8又は9に記載の硫黄化合物除去用吸着剤を用いて、炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物を脱硫処理した後、この脱硫処理燃料を部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする水素の製造方法、
11.部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系又はニッケル系触媒である上記10に記載の水素の製造方法、
12.上記10又は11に記載の方法で製造された水素を用いることを特徴とする燃料電池システム
を提供するものである。
That is, the present invention
1. A method for producing a silver ion-exchanged zeolite, comprising using a solution containing silver ammine complex ions and carrying silver by an ion exchange method at a pH of 4 to 9,
2. The method for producing a silver ion-exchanged zeolite according to 1 above, wherein the silver ammine complex ion is prepared using ammonia and / or ammonium nitrate,
3. The method for producing a silver ion-exchanged zeolite according to 1 or 2 above, wherein the zeolite is at least one selected from HY type and USY type zeolites and β zeolites,
4). The method for producing a silver ion-exchanged zeolite according to any one of the above 1 to 3, wherein the silver loading is 5 to 30% by mass as silver metal,
5. The method for producing a silver ion-exchanged zeolite according to any one of the above 1 to 4, wherein the zeolite is a molded zeolite,
6). An adsorbent comprising the silver ion-exchanged zeolite obtained by the method according to any one of 1 to 5 above,
7). A catalyst comprising the silver ion-exchanged zeolite obtained by the method according to any one of 1 to 5 above,
8). An adsorbent for removing a sulfur compound in a hydrocarbon fuel or dimethyl ether fuel, comprising the silver ion-exchanged zeolite obtained by the method according to any one of 1 to 5 above.
9. 9. The sulfur compound removal according to 8 above, wherein the hydrocarbon fuel is at least one hydrocarbon compound selected from LPG, city gas, natural gas, naphtha, kerosene, light oil or ethane, ethylene, propane, propylene, butane and butene. Adsorbent,
10. After the sulfur compound in the hydrocarbon fuel or dimethyl ether fuel is desulfurized using the sulfur compound removing adsorbent according to 8 or 9, the desulfurized fuel is used as a partial oxidation reforming catalyst, an autothermal reforming catalyst, or A method for producing hydrogen, characterized by contacting with a steam reforming catalyst;
11. The method for producing hydrogen according to 10 above, wherein the partial oxidation reforming catalyst, autothermal reforming catalyst or steam reforming catalyst is a ruthenium-based or nickel-based catalyst,
12 The present invention provides a fuel cell system using hydrogen produced by the method described in 10 or 11 above.

本発明によれば、銀アンミン錯イオンを含む溶液を用い、pH5〜9で銀イオン交換した銀イオン交換ゼオライトは、銀担持量を5質量%以上としてもゼオライト結晶の破壊が少なく、該銀イオン交換ゼオライトを含む吸着剤は、硫黄化合物を室温においても極めて効率よく除去することができる。   According to the present invention, a silver ion-exchanged zeolite that has been subjected to silver ion exchange at a pH of 5 to 9 using a solution containing silver ammine complex ions has little destruction of zeolite crystals even when the silver loading is 5% by mass or more. The adsorbent containing exchanged zeolite can remove sulfur compounds very efficiently even at room temperature.

本発明の銀イオン交換ゼオライトの製造方法は、銀アンミン錯イオンを含む溶液を用い、pH4〜9で銀イオン交換してゼオライトに該銀金属を担持する方法である。
本発明においては、前記ゼオライトとして、FAU、BEA、MOR、MTW、GME、OFF、MFI、MEL、FER、TON、及びLTA構造を有するものの中から選ばれる少なくとも一種を用いることができる。
これらの中で、FAU、BEA構造を有するゼオライトが好ましく、特に吸着性能の点から、FAU構造としてHY型及びUSY型ゼオライト、BEA構造としてβゼオライトが好適である。
以下、銀イオン交換ゼオライトの製造方法について説明する。
銀アンミン錯イオンを含む溶液としては、水溶性の銀アンミン錯イオンを水に溶解させた溶液、又は硝酸銀、炭酸銀、酢酸銀、硫酸銀及び塩化銀などの銀化合物を水に溶解させ、これに過剰のアンモニア水を加えるか、又はアンモニア水に溶解させて、銀アンミン錯イオンを形成させた溶液などを用いることができる。
また、銀アンミン錯イオンの形成において、硝酸アンモニウム、尿素及びアミン類などを加えることができる。
特に、アンモニア及び/又は硝酸アンモニウムが好適に用いられる。
The method for producing a silver ion-exchanged zeolite of the present invention is a method in which a silver metal exchange is performed at pH 4 to 9 using a solution containing silver ammine complex ions and the silver metal is supported on the zeolite.
In the present invention, as the zeolite, at least one selected from those having FAU, BEA, MOR, MTW, GME, OFF, MFI, MEL, FER, TON, and LTA structures can be used.
Among these, zeolites having FAU and BEA structures are preferred, and HY type and USY type zeolites are particularly preferred as FAU structures, and β zeolite is preferred as a BEA structure from the viewpoint of adsorption performance.
Hereinafter, the manufacturing method of a silver ion exchange zeolite is demonstrated.
As a solution containing silver ammine complex ions, a solution in which water-soluble silver ammine complex ions are dissolved in water or a silver compound such as silver nitrate, silver carbonate, silver acetate, silver sulfate and silver chloride is dissolved in water. An excess of aqueous ammonia can be added to or dissolved in aqueous ammonia to form a silver ammine complex ion.
In addition, ammonium nitrate, urea, amines and the like can be added in the formation of silver ammine complex ions.
In particular, ammonia and / or ammonium nitrate is preferably used.

本発明における銀イオン交換ゼオライトを調製するには、先ず銀アンミン錯イオンを含む溶液に、ゼオライトを加えて、攪拌し、必要に応じ、アンモニア又はアミン等、場合により硝酸を加えてpHを4〜9の範囲とし、通常0〜90℃、好ましくは20〜70℃の範囲の温度において、1〜数時間程度、好ましくは攪拌しながらイオン交換処理を行なう。
銀アンミン錯イオンを含む溶液のpHが4以上であると、銀の担持量を高くすることができ、pHが9以下であると、ゼオライト結晶の破壊が少い。
次いで、固形物をろ過などの手段で分離し、水などで洗浄した後、500℃以下(好ましくは50〜200℃程度)の温度で乾燥処理する。
このイオン交換処理は繰り返し行うことができる。
次に、500℃以下(好ましくは200〜500℃程度)の温度で数時間程度焼成処理することにより、目的の銀イオン交換ゼオライトが得られる。
このようにして得られた銀イオン交換ゼオライト中の銀の担持量は、銀として5〜30質量%の範囲が好ましく、特に10〜30質量%の範囲が好適である。
また、このように銀イオン交換したゼオライトは、適当なバインダーを用いて押出成型、打錠成型、転動造粒、スプレードライなどの通常の方法で成型して使用できる。
また、予め成型したゼオライトを本方法の銀イオン交換を行い、使用することもできる。
ゼオライトとしては、粉末よりも成型したゼオライトが好ましく、その粒径は小さいほど好ましい。
In order to prepare the silver ion exchanged zeolite in the present invention, first, zeolite is added to a solution containing silver ammine complex ions and stirred, and if necessary, ammonia or amine or the like, and nitric acid is optionally added to adjust the pH to 4 to 4. The ion exchange treatment is carried out at a temperature in the range of 9 to 0 to 90 ° C., preferably 20 to 70 ° C., preferably for about 1 to several hours, preferably with stirring.
When the pH of the solution containing silver ammine complex ions is 4 or more, the supported amount of silver can be increased, and when the pH is 9 or less, the zeolite crystals are hardly broken.
Next, the solid is separated by a means such as filtration, washed with water, and then dried at a temperature of 500 ° C. or lower (preferably about 50 to 200 ° C.).
This ion exchange treatment can be repeated.
Next, the target silver ion-exchanged zeolite is obtained by firing at a temperature of 500 ° C. or less (preferably about 200 to 500 ° C.) for several hours.
The supported amount of silver in the silver ion-exchanged zeolite thus obtained is preferably in the range of 5 to 30% by mass as silver, and particularly preferably in the range of 10 to 30% by mass.
Further, the silver ion-exchanged zeolite as described above can be used after being molded by an ordinary method such as extrusion molding, tableting molding, rolling granulation, spray drying and the like using an appropriate binder.
In addition, a pre-formed zeolite can be used after performing silver ion exchange in the present method.
Zeolite is preferably molded zeolite rather than powder, and the smaller the particle size, the more preferable.

上記の方法で製造された銀イオン交換ゼオライトの結晶化度は、X線回折によって測定することができ、例えば、銀イオン交換ゼオライトと未処理のゼオライトのX線回折ピーク(XRD)の相対強度で示すことができる。
即ち、この相対強度は、ゼオライト結晶の大きさや交換された金属種により異なるので結晶化度を直接示すものではないが、同一の金属を交換したものについては比較することができる。
具体的には、X線回折ピークのうち、主要なピーク(2θ=10〜40°)の範囲で、強度が高く、分離のよいものを3〜10本を選び、各ピークの相対強度の平均値で示す。
〔X線回折測定の条件〕
Cu−Kα線:波長λ=1.5406Å、出力:40kV、40mA
光学系:反射法;2θ・θ連続スキャン、DS、SSスリット:1°
RSスリット:0.3mm、ステップ間隔:0.02°、スキャン速度:1°/分
The crystallinity of the silver ion exchanged zeolite produced by the above method can be measured by X-ray diffraction, for example, by the relative intensity of the X-ray diffraction peak (XRD) of the silver ion exchanged zeolite and the untreated zeolite. Can show.
That is, since this relative strength differs depending on the size of the zeolite crystal and the exchanged metal species, it does not directly indicate the degree of crystallinity, but it can be compared for those obtained by exchanging the same metal.
Specifically, among the X-ray diffraction peaks, 3 to 10 peaks having high intensity and good separation in the main peak range (2θ = 10 to 40 °) are selected, and the average of the relative intensity of each peak is selected. Shown by value.
[Conditions for X-ray diffraction measurement]
Cu-Kα ray: wavelength λ = 1.5406Å, output: 40 kV, 40 mA
Optical system: reflection method; 2θ · θ continuous scan, DS, SS slit: 1 °
RS slit: 0.3 mm, step interval: 0.02 °, scan speed: 1 ° / min

また、上記の方法で製造された銀イオン交換ゼオライトは、硫黄化合物除去用吸着剤だけでなく、エチレンの酸化によるエチレンオキサイドの製造、メタノールの脱水素によるホルムアルデヒドの製造、排ガスからの窒素酸化物の除去等の触媒、各種炭化水素の吸着、自動車排ガス中の炭化水素の吸着、硫黄化合物の吸着、空気中の窒素の選択的吸着等の吸着剤に好適に使用される。   In addition, the silver ion exchanged zeolite produced by the above method is not only an adsorbent for removing sulfur compounds, but also the production of ethylene oxide by oxidation of ethylene, the production of formaldehyde by dehydrogenation of methanol, and the production of nitrogen oxides from exhaust gas. It is suitably used for adsorbents such as catalysts for removal, adsorption of various hydrocarbons, adsorption of hydrocarbons in automobile exhaust gas, adsorption of sulfur compounds, selective adsorption of nitrogen in the air, and the like.

前記のようにして得られた銀イオン交換ゼオライトを含む硫黄化合物除去用吸着剤は、炭化水素燃料又はジメチルエーテル燃料に適用される。
ここで、炭化水素燃料としては、例えばLPG、都市ガス、天然ガス、ナフサ、灯油、軽油あるいはエタン、エチレン、プロパン、プロピレン、ブタン及びブテンの中から選ばれる少なくとも一種の炭化水素化合物などを挙げることができる。
本発明の吸着剤が適用される炭化水素ガス中の硫黄化合物の濃度としては、0.001〜10,000容量ppmが好ましく、特に0.1〜100容量ppmが好ましい。
また、脱硫条件としては、通常、温度は−50〜150℃の範囲で選ばれ、GHSVは100〜1,000,000h-1の範囲で選ばれる。
脱硫温度が150℃を超えると硫黄化合物の吸着が起こり難くなる。
好ましい温度は−50〜120℃、より好ましくは−20〜100℃の範囲である。
また、好ましいGHSVは100〜100,000h-1、より好ましくは100〜50,000h-1の範囲である。
また、液体燃料を使用する場合には、硫黄化合物の濃度は、0.001〜10,000質量ppmが好ましく、特に0.1〜100質量ppmが好ましい。
脱硫条件としては、通常、温度は−50〜150℃の範囲で選ばれ、WHSVは0.1〜1,000h-1の範囲で選ばれる。
The sulfur compound-removing adsorbent containing silver ion-exchanged zeolite obtained as described above is applied to hydrocarbon fuel or dimethyl ether fuel.
Here, examples of the hydrocarbon fuel include LPG, city gas, natural gas, naphtha, kerosene, light oil, or at least one hydrocarbon compound selected from ethane, ethylene, propane, propylene, butane, and butene. Can do.
The concentration of the sulfur compound in the hydrocarbon gas to which the adsorbent of the present invention is applied is preferably 0.001 to 10,000 ppm by volume, and particularly preferably 0.1 to 100 ppm by volume.
As desulfurization conditions, the temperature is usually selected in the range of −50 to 150 ° C., and the GHSV is selected in the range of 100 to 1,000,000 h −1 .
When the desulfurization temperature exceeds 150 ° C., adsorption of sulfur compounds is difficult to occur.
A preferred temperature is in the range of −50 to 120 ° C., more preferably −20 to 100 ° C.
Also preferred GHSV is 100~100,000H -1, more preferably from 100~50,000h -1.
Moreover, when using liquid fuel, the density | concentration of a sulfur compound has preferable 0.001-10,000 mass ppm, and 0.1-100 mass ppm is especially preferable.
As desulfurization conditions, the temperature is usually selected in the range of −50 to 150 ° C., and the WHSV is selected in the range of 0.1 to 1,000 h −1 .

本発明の銀イオン交換ゼオライトは、銀アンミン錯イオンを含む溶液を用い、pH4〜9でゼオライトを銀イオン交換することにより製造でき、一回のイオン交換処理による銀金属の担持量が多く、ゼオライトの結晶破壊も少ない。
また、本発明の銀イオン交換ゼオライトを含む吸着剤は、9を超えるpHで銀イオン交換した銀イオン交換ゼオライトを含む吸着剤よりも、脱硫性能に優れている。
次に、本発明の燃料電池に使用可能な水素の製造方法においては、前述の本発明の吸着剤を用いて、炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物を脱硫処理した後、この脱硫処理燃料を改質することにより、水素を製造する。
The silver ion-exchanged zeolite of the present invention can be produced by silver ion exchange of zeolite at pH 4 to 9 using a solution containing silver ammine complex ions, and has a large amount of silver metal supported by a single ion exchange treatment. There is little crystal destruction.
Moreover, the adsorbent containing the silver ion-exchanged zeolite of the present invention is superior in desulfurization performance than the adsorbent containing silver ion-exchanged zeolite that has been subjected to silver ion exchange at a pH exceeding 9.
Next, in the method for producing hydrogen that can be used in the fuel cell of the present invention, the sulfur compound in the hydrocarbon fuel or dimethyl ether fuel is desulfurized using the adsorbent of the present invention, and then the desulfurized fuel. To produce hydrogen.

この際、改質方法として、部分酸化改質、オートサーマル改質、水蒸気改質などの方法を用いることができる。
この改質方法においては、脱硫処理炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.1容量ppm以下が好ましく、特に0.005容量ppm以下が好ましい。
前記部分酸化改質は、炭化水素の部分酸化反応により、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、GHSV1,000〜100,000h-1、酸素(O2)/炭素比0.2〜0.8の条件で改質反応が行われる。
また、オートサーマル改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって、オートサーマル改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、酸素(O2)/炭素比0.1〜1、スチーム/炭素比0.1〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
更に、水蒸気改質は、炭化水素に水蒸気を接触させて、水素を製造する方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜3MPa、反応温度200〜900℃、スチーム/炭素比1.5〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
At this time, methods such as partial oxidation reforming, autothermal reforming, and steam reforming can be used as reforming methods.
In this reforming method, the concentration of the sulfur compound in the desulfurized hydrocarbon fuel or dimethyl ether fuel is preferably 0.1 ppm by volume or less, particularly preferably 0.005 ppm by volume or less, from the viewpoint of the life of each reforming catalyst. preferable.
The partial oxidation reforming is a method for producing hydrogen by a partial oxidation reaction of hydrocarbons, and in the presence of a partial oxidation reforming catalyst, usually a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1,100 ° C. The reforming reaction is carried out under the conditions of GHSV 1,000 to 100,000 h −1 and oxygen (O 2 ) / carbon ratio 0.2 to 0.8.
Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined. In the presence of an autothermal reforming catalyst, the reaction pressure is usually from normal pressure to 5 MPa, and the reaction temperature is from 400 to 1,100. The reforming reaction is carried out under the conditions of ° C., oxygen (O 2 ) / carbon ratio of 0.1 to 1, steam / carbon ratio of 0.1 to 10, and GHSV of 1,000 to 100,000 h −1 .
Furthermore, steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon, usually in the presence of a steam reforming catalyst, at a reaction pressure of normal pressure to 3 MPa, a reaction temperature of 200 to 900 ° C., steam. The reforming reaction is performed under the conditions of / carbon ratio of 1.5 to 10 and GHSV of 1,000 to 100,000 h −1 .

本発明においては、前記の部分酸化改質触媒、オートサーマル改質触媒、水蒸気改質触媒としては、従来公知の各触媒の中から適宜選択して用いることができるが、特にルテニウム系及びニッケル系触媒が好適である。
また、これらの触媒の担体としては、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含む担体を好ましく挙げることができる。
該担体は、これらの金属酸化物のみからなる担体であってもよく、アルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸化物を含有させてなる担体であってもよい。
In the present invention, the partial oxidation reforming catalyst, autothermal reforming catalyst, and steam reforming catalyst can be appropriately selected from conventionally known catalysts, but are particularly ruthenium-based and nickel-based. A catalyst is preferred.
Moreover, as a support | carrier of these catalysts, the support | carrier containing at least 1 type chosen from manganese oxide, a cerium oxide, and a zirconia can be mentioned preferably.
The carrier may be a carrier composed of only these metal oxides, or may be a carrier obtained by adding the above metal oxide to another refractory porous inorganic oxide such as alumina.

本発明はまた、前記製造方法で得られた水素を用いる燃料電池システムを提供する。
以下に本発明の燃料電池システムについて添付図1に従い説明する。
図1は本発明の燃料電池システムの一例を示す概略フロー図である。
図1によれば、燃料タンク21内の燃料は、燃料ポンプ22を経て脱硫器23に流入する。
脱硫器内には本発明の吸着剤を充填することができる。
脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合した後、気化器1に導入されて気化され、次いで空気ブロアー35から送り出された空気と混合され改質器31に送り込まれる。
改質器31の内部には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(水蒸気、酸素及び炭化水素燃料若しくは酸素含有炭化水素燃料を含む混合気体)から、前述した改質反応のいずれかによって水素又は合成ガスが製造される。
The present invention also provides a fuel cell system using hydrogen obtained by the production method.
The fuel cell system of the present invention will be described below with reference to FIG.
FIG. 1 is a schematic flowchart showing an example of the fuel cell system of the present invention.
According to FIG. 1, the fuel in the fuel tank 21 flows into the desulfurizer 23 via the fuel pump 22.
The desulfurizer can be filled with the adsorbent of the present invention.
The fuel desulfurized by the desulfurizer 23 is mixed with water from the water tank through the water pump 24, then introduced into the vaporizer 1, vaporized, and then mixed with the air sent out from the air blower 35 to the reformer 31. It is sent.
The reformer 31 is filled with the above-described reforming catalyst, and from the fuel mixture (mixed gas containing water vapor, oxygen and hydrocarbon fuel or oxygen-containing hydrocarbon fuel) fed into the reformer 31, Hydrogen or synthesis gas is produced by any of the reforming reactions described above.

このようにして製造された水素又は合成ガスはCO変成器32、CO選択酸化器33を通じてそのCO濃度が燃料電池の特性に影響を及ぼさない程度まで低減される。
これらの反応器に用いる触媒の例としては、CO変成器32では、鉄―クロム系触媒、銅―亜鉛系触媒又は貴金属系触媒が、CO選択酸化炉33では、ルテニウム系触媒、白金系触媒又はそれらの混合物等を挙げることができる。
燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子型燃料電池である。
負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロワー35から送られる空気が、それぞれ必要に応じて適当な加湿処理を行った後(加湿装置は図示せず)導入される。
このとき負極側では、水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。
負極には、白金黒、活性炭担持のPt触媒又はPt−Ru合金触媒などが、正極には白金黒、活性炭担持のPt触媒などが用いられる。
The hydrogen or synthesis gas thus produced is reduced through the CO converter 32 and the CO selective oxidizer 33 to such an extent that the CO concentration does not affect the characteristics of the fuel cell.
Examples of the catalyst used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, a platinum catalyst or a noble metal catalyst in the CO selective oxidation furnace 33. The mixture etc. can be mentioned.
The fuel cell 34 is a solid polymer fuel cell having a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B.
The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 35 is introduced into the positive electrode side after performing appropriate humidification treatment as necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and releases electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. To do.
Platinum black, activated carbon-supported Pt catalyst or Pt-Ru alloy catalyst is used for the negative electrode, and platinum black, Pt catalyst supported on activated carbon is used for the positive electrode.

負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。
また、正極34B側に接続された気水分離器36において、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水は水蒸気の生成に利用することができる。
尚、燃料電池34では、発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。
排熱回収装置37は、反応時に生じた熱を奪う熱交換機37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られた温水は、他の設備などで有効利用することができる。
The surplus hydrogen can be used as fuel by connecting the burner 31A of the reformer 31 to the negative electrode 34A side.
Further, in the steam separator 36 connected to the positive electrode 34B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side are separated, and the water is used to generate water vapor. Can be used.
In the fuel cell 34, since heat is generated with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use.
The exhaust heat recovery device 37 includes a heat exchanger 37A that takes away the heat generated during the reaction, a heat exchanger 37B that exchanges heat taken by the heat exchanger 37A with water, a cooler 37C, and these heat exchanges. The hot water obtained in the heat exchanger 37B can be effectively used in other facilities. The pumps 37A and 37B and the pump 37D circulate the refrigerant to the cooler 37C.

次に、本発明を実施例により、更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例1
市販のHY型ゼオライト成型体(東ソー製、HSZ−320HOD1A)を砕いて0.5〜1mmの粒径とした。
硝酸銀394gを水2.5Lに溶解し、これに硝酸アンモニウム276g及び30質量%のアンモニア水220gを加え、銀アンミン錯イオン溶液を得た。
この銀アンミン錯イオン溶液に、上記ゼオライト1kgを投入した。
この液を攪拌し、6時間銀イオン交換処理を行った。
このときの溶液のpHは6.8であった。
その後、固形物をろ取し、水洗した後、120℃で乾燥し、更に400℃で3時間焼成処理することにより、銀イオン交換Y型ゼオライトを得た。
銀の含有量は11.2質量%であった。
X線回折測定を行い、ミラー指数(5、3、3)、(6、4、2)、(5、5、5)の3本のピークについて、未処理のHY型ゼオライトのX線回折強度(XRD)と平均値を比較したところ、このものの強度比は65%であった。
この結果を表1に示す。
Example 1
A commercially available HY-type zeolite molding (manufactured by Tosoh, HSZ-320HOD1A) was crushed to a particle size of 0.5 to 1 mm.
394 g of silver nitrate was dissolved in 2.5 L of water, and 276 g of ammonium nitrate and 220 g of 30% by mass ammonia water were added thereto to obtain a silver ammine complex ion solution.
1 kg of the zeolite was charged into the silver ammine complex ion solution.
This solution was stirred and subjected to silver ion exchange treatment for 6 hours.
The pH of the solution at this time was 6.8.
Thereafter, the solid matter was collected by filtration, washed with water, dried at 120 ° C., and further subjected to calcination treatment at 400 ° C. for 3 hours to obtain a silver ion-exchanged Y-type zeolite.
The silver content was 11.2% by mass.
X-ray diffraction measurement was performed, and X-ray diffraction intensity of untreated HY-type zeolite was measured for three peaks of Miller indices (5, 3, 3), (6, 4, 2), (5, 5, 5). When the average value was compared with (XRD), the strength ratio of this product was 65%.
The results are shown in Table 1.

実施例2
市販のβゼオライト成型体(東ソー製HSZ−930HODA)を砕いて0.5〜1mmの粒径としたものを使用したこと以外は、実施例1と同様に銀イオン交換処理を行ない、銀イオン交換βゼオライトを得た。
銀イオン交換処理のpHは6.0であり、銀の含有量は11.5質量%であった。
X線回折測定を行い、ミラー指数(3、0、2)、(3、0、6)、(2、1、4)の3本のピークについて、未処理のβゼオライトのX線回折強度と平均値を比較したところ、このものの強度比は61%であった。
この結果を表1に示す。
Example 2
Silver ion exchange treatment was performed in the same manner as in Example 1 except that a commercially available β zeolite molded product (HSZ-930HODA manufactured by Tosoh Corp.) was used to obtain a particle size of 0.5 to 1 mm. β zeolite was obtained.
The pH of the silver ion exchange treatment was 6.0, and the silver content was 11.5% by mass.
X-ray diffraction measurement was performed, and the three peaks of Miller indices (3, 0, 2), (3, 0, 6), (2, 1, 4) When the average values were compared, the strength ratio of this product was 61%.
The results are shown in Table 1.

比較例1
実施例1において、硝酸アンモニウムを加えずに、30質量%のアンモニア水440gを加えたこと以外は、実施例1と同様に銀イオン交換処理を行ない、銀イオン交換Y型ゼオライトを得た。
銀イオン交換処理のpHは9.6であり、銀の含有量は12.7質量%であった。
X線回折測定を行い、ミラー指数(5、3、3)、(6、4、2)、(5、5、5)の3本のピークについて、未処理のHY型ゼオライトのX線回折強度と平均値を比較したところ、このものの強度比は29%であった。
この結果を表1に示す。
Comparative Example 1
In Example 1, silver ion exchange treatment was performed in the same manner as in Example 1 except that 440 g of 30% by mass of ammonia water was added without adding ammonium nitrate to obtain silver ion exchanged Y-type zeolite.
The pH of the silver ion exchange treatment was 9.6, and the silver content was 12.7% by mass.
X-ray diffraction measurement was performed, and X-ray diffraction intensity of untreated HY-type zeolite was measured for three peaks of Miller indices (5, 3, 3), (6, 4, 2), (5, 5, 5). When the average value was compared, the strength ratio of this product was 29%.
The results are shown in Table 1.

試験例1
実施例1及び2並びに比較例1の銀イオン交換ゼオライトを0.5〜1mmに成型し、吸着剤1cm3を内径9mmの脱硫管に充填した。
常圧で吸着剤温度を20℃とし、ジメチルスルフィド(DMS)及び2−メチル−2−プロパンチオール(MPT)を各20容量ppm(合計40容量ppm)含むプロパンガスを、常圧、GHSV(ガス時空間速度)20,000h-1の条件で流通させた。
脱硫管出口ガスの各硫黄化合物濃度をSCD(Sulfur Chemiluminescence Detector)ガスクロマトグラフィーにより、1時間毎に測定した。
表1に、各硫黄化合物濃度が0.1容量ppmを超える時間を示した。
Test example 1
The silver ion exchange zeolites of Examples 1 and 2 and Comparative Example 1 were molded to 0.5 to 1 mm, and 1 cm 3 of an adsorbent was filled in a desulfurization tube having an inner diameter of 9 mm.
The adsorbent temperature is 20 ° C. at normal pressure, and propane gas containing 20 ppm by volume (total 40 ppm by volume) of dimethyl sulfide (DMS) and 2-methyl-2-propanethiol (MPT) is used at normal pressure, GHSV (gas It was made to circulate on the condition of space-time velocity 20,000h < -1 >.
The concentration of each sulfur compound in the desulfurization pipe outlet gas was measured every hour by SCD (Sulfur Chemiluminescence Detector) gas chromatography.
Table 1 shows the time for each sulfur compound concentration to exceed 0.1 ppm by volume.

Figure 0004961102
Figure 0004961102

実施例1及び2と比較例1とを比べて分かるように、9を超えるpHで銀イオン交換したゼオライトに対して、本発明のpH4〜9で銀イオン交換したゼオライトは、ゼオライトの結晶破壊が少ない。
また、ほぼ同一の銀の担持量では、本発明の銀イオン交換ゼオライトの方が、脱硫性能が優れている。
As can be seen from a comparison between Examples 1 and 2 and Comparative Example 1, the zeolite subjected to silver ion exchange at pH 4 to 9 according to the present invention has a crystal destruction of the zeolite in contrast to the zeolite subjected to silver ion exchange at a pH exceeding 9. Few.
In addition, the silver ion-exchanged zeolite of the present invention is superior in desulfurization performance at almost the same silver loading.

本発明の燃料電池システムの一例を示す概略フロー図である。It is a schematic flowchart which shows an example of the fuel cell system of this invention.

符号の説明Explanation of symbols

1: 気化器
2: 燃料電池システム
20: 水素製造システム
21: 燃料タンク
23: 脱硫器
31: 改質器
31A:ボイラー
32: CO変成器
33: CO選択酸化器
34: 燃料電池
34A:負極
34B:正極
34C:高分子電解質
36: 気水分離器
37: 排熱回収装置
37A:熱交換機
37B:熱交換器
37C:冷却器

1: Vaporizer 2: Fuel cell system 20: Hydrogen production system 21: Fuel tank 23: Desulfurizer 31: Reformer 31A: Boiler 32: CO converter 33: CO selective oxidizer 34: Fuel cell 34A: Negative electrode 34B: Cathode 34C: Polymer electrolyte 36: Steam separator 37: Waste heat recovery device 37A: Heat exchanger 37B: Heat exchanger 37C: Cooler

Claims (9)

水溶性の銀アンミン錯イオンを水に溶解させるか、銀化合物を水に溶解させ、これに過剰のアンモニア水を加えるか、あるいは銀化合物をアンモニア水に溶解させて得られる銀アンミン錯イオンを含む溶液を用い、pH4〜9でイオン交換法により銀を担持することを特徴とする銀イオン交換ゼオライトの製造方法。 Contains silver ammine complex ions obtained by dissolving water-soluble silver ammine complex ions in water, dissolving silver compounds in water and adding excess ammonia water thereto, or dissolving silver compounds in ammonia water A method for producing a silver ion-exchanged zeolite, comprising using a solution and carrying silver by an ion exchange method at a pH of 4 to 9. 銀アンミン錯イオンをアンモニア及び/又は硝酸アンモニウムを用いて調製する請求項1に記載の銀イオン交換ゼオライトの製造方法。   The method for producing a silver ion-exchanged zeolite according to claim 1, wherein the silver ammine complex ion is prepared using ammonia and / or ammonium nitrate. ゼオライトが、HY型及びUSY型ゼオライト並びにβゼオライトの中から選ばれる少なくとも一種である請求項1又は2に記載の銀イオン交換ゼオライトの製造方法。   The method for producing a silver ion-exchanged zeolite according to claim 1 or 2, wherein the zeolite is at least one selected from HY type, USY type zeolite, and β zeolite. 銀担持量が、銀金属として5〜30質量%である請求項1〜3のいずれかに記載の銀イオン交換ゼオライトの製造方法。   The method for producing a silver ion-exchanged zeolite according to any one of claims 1 to 3, wherein the silver loading is 5 to 30% by mass as silver metal. ゼオライトが、成型体ゼオライトである請求項1〜4のいずれかに記載の銀イオン交換ゼオライトの製造方法。   The method for producing a silver ion-exchanged zeolite according to any one of claims 1 to 4, wherein the zeolite is a molded zeolite. 請求項1〜5のいずれかに記載の方法で得られた銀イオン交換ゼオライトを含むことを特徴とする、炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物除去用吸着剤。   An adsorbent for removing sulfur compounds in hydrocarbon fuel or dimethyl ether fuel, comprising the silver ion exchanged zeolite obtained by the method according to any one of claims 1 to 5. 炭化水素燃料が、LPG、都市ガス、天然ガス、ナフサ、灯油、軽油あるいはエタン、エチレン、プロパン、プロピレン、ブタン及びブテンの中から選ばれる少なくとも一種の炭化水素化合物である請求項6記載の硫黄化合物除去用吸着剤。   7. The sulfur compound according to claim 6, wherein the hydrocarbon fuel is at least one hydrocarbon compound selected from LPG, city gas, natural gas, naphtha, kerosene, light oil or ethane, ethylene, propane, propylene, butane and butene. Removal adsorbent. 請求項6又は7に記載の硫黄化合物除去用吸着剤を用いて、炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物を脱硫処理した後、この脱硫処理燃料を部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする水素の製造方法。   A sulfur compound removal adsorbent according to claim 6 or 7 is used to desulfurize a sulfur compound in a hydrocarbon fuel or dimethyl ether fuel, and the desulfurized fuel is used as a partial oxidation reforming catalyst or an autothermal reforming catalyst. Or the manufacturing method of hydrogen characterized by making it contact with a steam reforming catalyst. 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系又はニッケル系触媒である請求項8に記載の水素の製造方法。   The method for producing hydrogen according to claim 8, wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst.
JP2004225410A 2004-08-02 2004-08-02 Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite Expired - Fee Related JP4961102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225410A JP4961102B2 (en) 2004-08-02 2004-08-02 Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225410A JP4961102B2 (en) 2004-08-02 2004-08-02 Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite

Publications (2)

Publication Number Publication Date
JP2006044965A JP2006044965A (en) 2006-02-16
JP4961102B2 true JP4961102B2 (en) 2012-06-27

Family

ID=36023978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225410A Expired - Fee Related JP4961102B2 (en) 2004-08-02 2004-08-02 Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite

Country Status (1)

Country Link
JP (1) JP4961102B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634535B1 (en) * 2005-01-24 2006-10-13 삼성에스디아이 주식회사 Zeolite adsorbent for desulfurization and manufacturing method thereof
KR101332047B1 (en) * 2006-07-11 2013-11-22 에스케이이노베이션 주식회사 Sulphur-detecting indicators for determining life time of adsorbents, sulfur-removal canister and system composed of the same
WO2015098733A1 (en) * 2013-12-25 2015-07-02 出光興産株式会社 Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method
JP2015218312A (en) * 2014-05-20 2015-12-07 Jx日鉱日石エネルギー株式会社 Desulfurization method of hydrocarbon mixture containing olefin
CN113634223A (en) * 2020-05-11 2021-11-12 上海久古新材料有限公司 Silver zeolite molecular sieve adsorbent with high silver loading and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765950B2 (en) * 1989-05-16 1998-06-18 大阪瓦斯株式会社 Fuel cell power generation system
JP4342622B2 (en) * 1998-12-22 2009-10-14 株式会社キャタラー Exhaust gas purification catalyst
JP3742284B2 (en) * 2000-02-01 2006-02-01 東京瓦斯株式会社 Adsorbent for sulfur compounds in fuel gas and method for removing the same
JP3483827B2 (en) * 2000-04-25 2004-01-06 東京瓦斯株式会社 Lifetime determination method for sulfur compound adsorbent in fuel gas
JP4216548B2 (en) * 2002-09-05 2009-01-28 出光興産株式会社 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell
JP2004149361A (en) * 2002-10-31 2004-05-27 Catalysts & Chem Ind Co Ltd Method of manufacturing ion-exchange zeolite
JP4676690B2 (en) * 2002-11-05 2011-04-27 出光興産株式会社 METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE

Also Published As

Publication number Publication date
JP2006044965A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
WO2006120981A1 (en) Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP4745557B2 (en) Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent
JP4339134B2 (en) Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method
JP4912706B2 (en) Carbon monoxide methanation method
JP2009046626A (en) Desulfurization agent for liquid fuel and desulfurization method of liquid fuel
JP4822692B2 (en) Desulfurization method, and operation method of fuel cell system and hydrogen production system
JP4953584B2 (en) Fuel cell system
JP2006265480A (en) Method for desulfurizing hydrocarbon-containing gas and fuel battery system
JP2006277980A (en) Desulfurization method of fuel for fuel cell
JP2006316154A (en) Liquefied petroleum gas for lp gas fuel cell, its desulfurization method and fuel cell system
WO2012090836A1 (en) Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, and desulfurization method for hydrocarbon fuel
JP2006290941A (en) Liquefied petroleum gas for lp gas fuel cell
JP2006290987A (en) Liquefied petroleum gas for lp gas fuel cell
JP2006299088A (en) Liquefied petroleum gas for lp-gas type fuel cell and manufacturing method of hydrogen for fuel cell using it
JP2006274206A (en) Liquefied petroleum gas for lp gas fuel cell
JP2006294578A (en) Liquefied petroleum gas for lp gas fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4961102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees