[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4960687B2 - Method for measuring characteristic value of shaft for golf club - Google Patents

Method for measuring characteristic value of shaft for golf club Download PDF

Info

Publication number
JP4960687B2
JP4960687B2 JP2006314399A JP2006314399A JP4960687B2 JP 4960687 B2 JP4960687 B2 JP 4960687B2 JP 2006314399 A JP2006314399 A JP 2006314399A JP 2006314399 A JP2006314399 A JP 2006314399A JP 4960687 B2 JP4960687 B2 JP 4960687B2
Authority
JP
Japan
Prior art keywords
shaft
golf club
support jig
distance
lower support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006314399A
Other languages
Japanese (ja)
Other versions
JP2007167631A (en
Inventor
崇 金子
努 伊吹
哲也 渥美
幸司 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MRC Composite Products Co Ltd
Original Assignee
MRC Composite Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MRC Composite Products Co Ltd filed Critical MRC Composite Products Co Ltd
Priority to JP2006314399A priority Critical patent/JP4960687B2/en
Publication of JP2007167631A publication Critical patent/JP2007167631A/en
Application granted granted Critical
Publication of JP4960687B2 publication Critical patent/JP4960687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Golf Clubs (AREA)

Description

本発明は、ゴルフクラブ用シャフトの特性値の測定方法に関する。 The present invention relates to a method of measuring characteristics values Shah shift for a golf club.

ゴルフクラブは、ゴルフクラブ用シャフト(以下シャフトという。)とこれに装着されたゴルフクラブ用ヘッド(以下ヘッドという。)とを具備している。ゴルフクラブのうち、慣性モーメントが大きい大型ヘッドを備えたものの場合、ゴルフボールをヘッドのスイートスポットの中心以外で打撃しても、ヘッドが水平面内で回転し難いので、打球の方向が安定するといわれている。
ところで、フェースが開いた状態でスイングし、スライスに悩むアベレージプレーヤーは、打球時にヘッドを返すことで打球の方向を制御している。しかし、大型のヘッドはその大きな慣性モーメントのためヘッドが返りにくいことから、相変わらず打球がスライスすることになる。
そこで、大型ヘッドと先調子シャフト(例えば、特許文献1〜5参照。)とを組み合わせ、ヘッドを返しやすくすれば、打球の方向が改善されると考えられる。
特開平9−141754号公報 特開平9−164600号公報 特開平11−99229号公報 特開平11−99230号公報 特開2004−290391号公報
The golf club includes a golf club shaft (hereinafter referred to as a shaft) and a golf club head (hereinafter referred to as a head) attached thereto. In the case of a golf club having a large head with a large moment of inertia, it is said that even if the golf ball is hit outside the center of the sweet spot of the head, the head is difficult to rotate in a horizontal plane, so the direction of the hit ball is said to be stable. ing.
By the way, the average player who swings with the face open and suffers from slicing controls the direction of the hit ball by returning the head at the time of hitting. However, since the large head is difficult to return due to its large moment of inertia, the hit ball is still sliced.
Therefore, it is considered that the direction of the hit ball can be improved by combining a large head and a pointed shaft (for example, see Patent Documents 1 to 5) so that the head can be easily returned.
JP-A-9-141754 JP-A-9-164600 JP-A-11-99229 JP-A-11-99230 JP 2004-290391 A

しかしながら、従来の先調子シャフトを質量も大きい大型のヘッドと組み合わせたのでは、打球時にトウダウンしやすく、フェース上の打球場所が安定せずバックスピンがかかり過ぎたり、または足りなかったりするため、結果として飛距離が不安定になる問題があった。   However, combining a conventional tip-to-steer shaft with a large head with a large mass makes it easy to toe down when hitting the ball, and the location of the ball hitting on the face is not stable, resulting in excessive backspin or insufficient results. As a problem, the flight distance becomes unstable.

本発明は上記事情に鑑みてなされたもので、打球時のトウダウンが抑えられるために、フェース上の打球場所が安定してバックスピンがかかりすぎることなく、ヘッドも返しやすく、よって、ヘッドの走り感、ボールのつかまり感が付与され、スライスに悩むプレーヤーに好適なシャフトを提供することを課題とする。また、ゴルフクラブの特性の指標となるようなシャフトの特性値を測定する好適な測定方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and since the toe-down at the time of hitting is suppressed, the hitting place on the face is stable, the backspin is not applied excessively, and the head is easy to return. It is an object of the present invention to provide a shaft suitable for a player who is given a feeling and a feeling of catching a ball and suffers from slicing. It is another object of the present invention to provide a suitable measurement method for measuring a characteristic value of a shaft that serves as an index of characteristics of a golf club.

本発明の要旨は、水平方向に所定間隔離して設置した上部支持ジグと下部支持ジグとで、シャフトの細径部における細径端部からの距離L(mm)の位置が下部支持ジグに接し、かつ、シャフトの軸が水平となるようにシャフトを挟持、固定してから、シャフトの太径部に所定質量の錘をかけ、シャフト上の所定位置の曲げ変位量δ(mm)を計測する計測工程と、シャフトが下部支持ジグに接する位置を太径側に所定の長さずつ移動させて、前記計測工程を繰り返す反復工程と、前記計測工程と前記反復工程とで得られた曲げ変位群(L,δ)を(x,y)とし、該(x,y)を100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、下記式(1)および(2)とに直線回帰する回帰工程とを有することを特徴とするシャフトの特性値の測定方法にある。
100≦x≦175において、y=−ax+b・・・(1)
225≦x≦300において、y=−ax+b・・・(2)
The gist of the present invention is that an upper support jig and a lower support jig installed at a predetermined distance in the horizontal direction are arranged such that the position of the distance L (mm) from the narrow end of the small diameter portion of the shaft is in contact with the lower support jig. And after pinching and fixing the shaft so that the shaft axis is horizontal, a weight of a predetermined mass is applied to the large diameter portion of the shaft, and a bending displacement δ L (mm) at a predetermined position on the shaft is measured. Measuring step to be performed, the position where the shaft contacts the lower support jig is moved to the large diameter side by a predetermined length, and the measuring step is repeated, and the bending displacement obtained in the measuring step and the repeating step The group (L, δ L ) is defined as (x, y), and the (x, y) is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300. By the least square method using x, y), the following formula (1) and In the measuring method for characteristic values of the shaft; and a regression process of linear regression in 2).
In 100 ≦ x ≦ 175, y = −a 1 x + b 1 (1)
In 225 ≦ x ≦ 300, y = −a 2 x + b 2 (2)

「曲げ変位δ(mm)の測定方法」
水平方向に50mm離して設置した上部支持ジグと下部支持ジグとでゴルフクラブ用シャフトの軸が水平となるようにシャフトを挟持、固定する。この際、シャフトが下部支持ジグに接する位置を距離L=100mmの位置とする。次に下部支持ジグからシャフトの軸に沿って615mm離れた位置に質量2kgの錘をかけ、下部支持ジグからシャフトの軸に沿って700mm離れた位置の曲げ変位量δ100(mm)を計測する。次にシャフトが下部支持ジグに接する位置を太径側に25mmずつ移動させて、その際の下部支持ジグからシャフトの軸に沿って700mm離れた位置の各曲げ変位量δ125,δ150,・・・,δ300(mm)を繰り返し計測し、曲げ変位群(L,δ)=(x,y)を得る。
“Measuring method of bending displacement δ L (mm)”
The shaft is sandwiched and fixed so that the shaft of the golf club shaft is horizontal between the upper support jig and the lower support jig installed 50 mm apart in the horizontal direction. At this time, a position where the shaft is in contact with the lower support jig is a position having a distance L = 100 mm. Next, a weight of 2 kg is applied to a position 615 mm away from the lower support jig along the shaft axis, and a bending displacement δ 100 (mm) at a position 700 mm away from the lower support jig along the shaft axis is measured. . Next, the position where the shaft comes into contact with the lower support jig is moved by 25 mm toward the large diameter side, and the bending displacement amounts δ 125 , δ 150 ,... At positions 700 mm away from the lower support jig along the shaft axis at that time. .., δ 300 (mm) is repeatedly measured to obtain a bending displacement group (L, δ L ) = (x, y).

本発明によれば、打球時のトウダウンが抑えられるために、フェース上の打球場所が安定してバックスピンがかかりすぎることなく、ヘッドも返しやすく、よって、ヘッドの走り感、ボールのつかまり感が付与され、スライスに悩むプレーヤーに好適なシャフトを提供できる。また、ゴルフクラブの特性の指標となるようなシャフトの特性値を測定する好適な測定方法を提供できる。   According to the present invention, since the toe down at the time of hitting is suppressed, the hitting place on the face is stable and the backspin is not applied excessively, and the head is easy to return. A shaft suitable for a player who is given and suffers from slicing can be provided. In addition, it is possible to provide a suitable measurement method for measuring a shaft characteristic value that serves as an index of the golf club characteristic.

以下、本発明を詳細に説明する。
[シャフト]
本発明のシャフトは、軸方向に垂直な面の外径が長さ方向の一端から他端に向かって大きくなるように形成されたものである。以下、外径が小さい側の端部を細径端部と言い、外径が大きい側の端部を太径端部という。また、シャフトの長さ方向の中心から、細径端部側を細径部、太径端部側を太径部という。
Hereinafter, the present invention will be described in detail.
[shaft]
The shaft of the present invention is formed such that the outer diameter of the surface perpendicular to the axial direction increases from one end to the other end in the length direction. Hereinafter, the end portion on the side having a smaller outer diameter is referred to as a small diameter end portion, and the end portion on the side having a larger outer diameter is referred to as a large diameter end portion. Further, from the center in the longitudinal direction of the shaft, the small diameter end portion side is referred to as a thin diameter portion, and the large diameter end portion side is referred to as a large diameter portion.

本発明のシャフトは、細径端部から25mmごとの距離L(mm)と、下記測定方法により計測された前記距離Lの位置における曲げ変位δ(mm)とからなる曲げ変位群(L,δ)を(x,y)とし、これを100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、下記式(1)および(2)に直線回帰した場合、下記式(1)の相関係数の二乗R と下記式(2)の相関係数の二乗R とがいずれも0.95以上であり、かつ、下記式(3)の関係を満足するものである。
100≦x≦175において、y=−ax+b・・・(1)
225≦x≦300において、y=−ax+b・・・(2)
/a≧0.8・・・(3)
The shaft of the present invention has a bending displacement group (L, L) consisting of a distance L (mm) every 25 mm from the narrow end and a bending displacement δ L (mm) at the position of the distance L measured by the following measuring method. δ L ) is (x, y), which is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300, and the minimum two using all (x, y) respectively. the multiplication, when the linear regression in the following equation (1) and (2), one is a square R 2 2 of the correlation coefficient of the square R 1 2 and formula of the correlation coefficient of the formula (1) (2) Is 0.95 or more and satisfies the relationship of the following formula (3).
In 100 ≦ x ≦ 175, y = −a 1 x + b 1 (1)
In 225 ≦ x ≦ 300, y = −a 2 x + b 2 (2)
a 1 / a 2 ≧ 0.8 (3)

式(1)の相関係数の二乗R が0.95以上であると、シャフトのヘッド取り付け位置近傍(100≦x≦175)における剛性分布が均一であり、斑がない。また、式(2)の相関係数の二乗R が0.95以上であると、シャフトの225≦x≦300の部分における剛性分布が均一であり、斑がない。よって、これらR とR とがともに0.95以上であると、式(3)の関係を満足する場合の後述の効果が十分に発揮される。 When the square R 1 2 of the correlation coefficient in Expression (1) is 0.95 or more, the rigidity distribution in the vicinity of the head mounting position of the shaft (100 ≦ x ≦ 175) is uniform, and there are no spots. Further, when the square R 2 2 of the correlation coefficient in Expression (2) is 0.95 or more, the rigidity distribution in the portion of the shaft where 225 ≦ x ≦ 300 is uniform, and there are no spots. Therefore, when both R 1 2 and R 2 2 are 0.95 or more, the effects described later when the relationship of the expression (3) is satisfied are sufficiently exhibited.

式(3)に示すように、aとaとの比(a/a)が0.8以上であると、打球時のトウダウンが抑えられ、ヘッドが返りやすく、スライスが起こりにくいシャフトとすることができる。このようなシャフトによれば、例えば体積が350mlを超えるような慣性モーメントが大きな大型のヘッドを装着した場合でも、打球時にスイートスポットをはずすことなく、フェースの真正面でゴルフボールを打球でき、ヘッドの走り感、ボールのつかまり感が付与されたゴルフクラブを得ることができる。 As shown in the formula (3), when the ratio of a 1 and a 2 (a 1 / a 2 ) is 0.8 or more, toe down at the time of hitting is suppressed, the head easily returns, and slicing hardly occurs. It can be a shaft. According to such a shaft, for example, even when a large head with a large moment of inertia having a volume exceeding 350 ml is mounted, a golf ball can be hit directly in front of the face without removing the sweet spot at the time of hitting. It is possible to obtain a golf club with a running feeling and a feeling of catching the ball.

また、a1、のそれぞれの好ましい範囲は、いずれも0.05〜0.3[mm/mm]であり、aとaとの比(a/a)の好ましい範囲は下記式(4)の範囲である。このような範囲であると、よりボールのつかまり感が向上する。
6≧a/a≧0.8・・・(4)
Further, each of the preferred ranges of a 1, a 2 are both 0.05~0.3 [mm / mm], the preferred range of the ratio of the a 1 and a 2 (a 1 / a 2 ) is It is the range of following formula (4). Within such a range, the feeling of catching the ball is further improved.
6 ≧ a 1 / a 2 ≧ 0.8 (4)

本発明においては、以上説明したように、曲げ変位群(L,δ)を100≦x≦175である群と225≦x≦300である群との2つの群に分けて、それぞれを最小二乗法により直線回帰している。これは、本発明者の検討により、175<x<225の部分を境にして、シャフトの剛さの傾向が変わることが本発明の効果を得るうえで重要であることが明らかとなったためである。よって、本発明では、曲げ変位群(L,δ)を100≦x≦175である群と225≦x≦300である群との2つの群に分けて、シャフトの剛さについて検討を実施した。
また、xが100mm未満の部分は、その30〜100%の部分が後にヘッドとの接着部分となるため、この部分の剛さはシャフトの特性への影響が非常に小さい。よって、本発明では、この部分の剛さ、曲げ変位については考慮していない。
In the present invention, as described above, the bending displacement group (L, δ L ) is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300. Linear regression is performed by the square method. This is because the study by the inventor has revealed that it is important to obtain the effect of the present invention that the tendency of the shaft stiffness changes at the boundary of 175 <x <225. is there. Therefore, in the present invention, the bending displacement group (L, δ L ) is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300, and the rigidity of the shaft is studied. did.
Further, in the portion where x is less than 100 mm, 30 to 100% of the portion later becomes a bonded portion with the head, and therefore the rigidity of this portion has a very small influence on the characteristics of the shaft. Therefore, the present invention does not consider the rigidity and bending displacement of this part.

次に、シャフト上の距離L(mm)における曲げ変位δ(mm)の測定方法について、図1を示して説明する。なお、図1中、上下方向が鉛直方向であり、左右方向が水平方向である。
まず、シャフト10を挟持するための一対の上部支持ジグ11と下部支持ジグ12とを用意し、これらを互いに水平方向に距離A=50mmだけ離して設置する。ついで、上部支持ジグ11と下部支持ジグ12とでシャフト10の軸が水平となるようにこれを挟持、固定する。この際、シャフト10の細径端部から100mmの位置、すなわち距離L=100mmの位置が下部支持ジグ12に接するようにする。ついで、下部支持ジグ12からシャフト10の軸に沿って距離B=615mmだけ離れた位置に質量2kgの錘13をかけ、下部支持ジグ12からシャフト10の軸に沿って距離C=700mmだけ離れた位置の変位量を測定器14で測定し、その値を距離L=100mmにおける曲げ変位量δ100(mm)とする(計測工程)。
そして、シャフト10を矢印方向に25mmずつ移動させることによって、シャフト10が下部支持ジグ12に接する位置を太径側に25mmずつ移動させ、すなわち、距離Lを25mmずつ増加させ、その際の下部支持ジグ12からシャフト10の軸に沿って700mm離れた位置のシャフトの各曲げ変位量δ125,δ150,・・・,δ300(mm)を計測器14によりそれぞれ同様に計測し、曲げ変位群(L,δ)=(x,y)=(100,δ100),(125,δ125),(150,δ150),・・・,(300,δ300)を得る(反復工程)。なお、この際、錘13をかける位置もシャフト10の移動にともなって同じく25mmずつ移動させ、距離Bは常に615mmとなるようにして測定する。
Next, a method for measuring the bending displacement δ L (mm) at the distance L (mm) on the shaft will be described with reference to FIG. In FIG. 1, the vertical direction is the vertical direction, and the horizontal direction is the horizontal direction.
First, a pair of upper support jig 11 and lower support jig 12 for sandwiching the shaft 10 is prepared, and these are installed with a distance A = 50 mm apart from each other in the horizontal direction. Next, the upper support jig 11 and the lower support jig 12 are sandwiched and fixed so that the axis of the shaft 10 is horizontal. At this time, the position of 100 mm from the small diameter end of the shaft 10, that is, the position of the distance L = 100 mm is brought into contact with the lower support jig 12. Next, a weight 13 having a mass of 2 kg is applied from the lower support jig 12 along the axis of the shaft 10 by a distance B = 615 mm, and is separated from the lower support jig 12 by a distance C = 700 mm along the axis of the shaft 10. The displacement amount of the position is measured by the measuring instrument 14, and the value is set as a bending displacement amount δ 100 (mm) at a distance L = 100 mm (measurement step).
Then, by moving the shaft 10 by 25 mm in the direction of the arrow, the position where the shaft 10 is in contact with the lower support jig 12 is moved 25 mm to the larger diameter side, that is, the distance L is increased by 25 mm, and the lower support at that time Each bending displacement amount δ 125 , δ 150 ,..., Δ 300 (mm) of the shaft at a position 700 mm away from the jig 12 along the axis of the shaft 10 is similarly measured by the measuring instrument 14, and a bending displacement group is obtained. (L, δ L ) = (x, y) = (100, δ 100 ), (125, δ 125 ), (150, δ 150 ),..., (300, δ 300 ) are obtained (iterative process). . At this time, the position at which the weight 13 is applied is also moved by 25 mm in accordance with the movement of the shaft 10 and the distance B is always measured to be 615 mm.

ついで、こうして計測工程と反復工程とで得られた曲げ変位群(L,δ)を2つの直線に直線回帰する。
具体的には、計測工程と反復工程とで得られた曲げ変位群(L,δ)を(x,y)とし、この曲げ変位群を100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、下記式(1)および(2)とに直線回帰する(回帰工程)。
100≦x≦175において、y=−ax+b・・・(1)
225≦x≦300において、y=−ax+b・・・(2)
Next, the bending displacement group (L, δ L ) thus obtained in the measurement step and the iteration step is linearly regressed on two straight lines.
Specifically, the bending displacement group (L, δ L ) obtained in the measurement step and the iteration step is set to (x, y), and this bending displacement group is defined as 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300. Are divided into two groups, respectively, and linear regression is performed to the following formulas (1) and (2) by the least square method using all (x, y) (regression step).
In 100 ≦ x ≦ 175, y = −a 1 x + b 1 (1)
In 225 ≦ x ≦ 300, y = −a 2 x + b 2 (2)

すなわち、n個のデータ、(X,Y)、(X,Y)、(X,Y)、・・・、(X,Y)がある場合、以下の式により、直線Y=aX+bにおけるaおよびbと、相関係数の二乗Rとが得られることが一般に知られている(最小二乗法)。よって、これに沿って、(L,δ)を(x,y)として、2つの直線(上記式(1)および(2))に回帰することによって、a、b1、、b、R 、R がそれぞれ得られる。 That is, when there are n data, (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y 3 ),..., (X n , Y n ), It is generally known that a and b in the straight line Y = aX + b and the square R 2 of the correlation coefficient are obtained (least square method). Therefore, by advancing to two straight lines (the above formulas (1) and (2)) with (L, δ L ) as (x, y) along this, a 1 , b 1, a 2 , b 2, R 1 2, R 2 2 is obtained, respectively.

Figure 0004960687
Figure 0004960687

以上説明したように、曲げ変位群を100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、式(1)および(2)に直線回帰した場合に、式(1)の相関係数の二乗R と式(2)の相関係数の二乗R とがいずれも0.95以上であり、かつ、式(3)の関係を満足するシャフトによれば、打球時のトウダウンが抑えられるために、フェース上の打球場所が安定してバックスピンがかかりすぎることなく、ヘッドも返しやすく、よって、ヘッドの走り感、ボールのつかまり感が付与され、スライスに悩むプレーヤーに好適なシャフトを提供できる。 As described above, the bending displacement group is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300, and the least square method using all (x, y) is used. When linear regression is performed on the equations (1) and (2), the square R 1 2 of the correlation coefficient of the equation (1) and the square R 2 2 of the correlation coefficient of the equation (2) are both 0.95 or more. In addition, according to the shaft satisfying the relationship of the formula (3), the toe down at the time of hitting is suppressed, so that the hitting place on the face is stable and the backspin is not applied excessively, and the head can be easily returned. Therefore, it is possible to provide a shaft suitable for a player who suffers from slicing by giving a feeling of running of the head and a feeling of catching the ball.

このような本発明のシャフトの材質には特に制限はなく、例えば、エポキシ樹脂などのマトリクス樹脂と炭素繊維などの強化繊維とからなる繊維強化樹脂製のものが挙げられる。
また、本発明のシャフトの製造方法としても特に制限はないが、繊維強化樹脂製のものの場合には、未硬化のマトリクス樹脂を強化繊維に含浸したシート状のプリプレグを用意し、このプリプレグを棒状の芯金(マンドレル)に巻回した後、硬化させ、芯金を抜き取る、いわゆるシートラップ法が挙げられる。
シートラップ法では、プリプレグとして、面積や含有する強化繊維の向きが異なる複数種のものを用意し、これらを1枚ずつ順次芯金に巻回し、多層構造のシャフトを製造することが一般的であるが、この際に、各プリプレグの面積、各プリプレグが含有する強化繊維の向き、各プリプレグを巻回する位置などを調整したり、プリプレグの層数を変更したりすることにより、本発明のシャフトを製造することができる。また、この際に、シャフトのテーパー度やシャフトの外径を適宜調整することも、本発明のシャフトを製造するうえで有効である。
また、本発明のシャフトは、部分的に異なる材質から形成されていてもよく、例えば、175<x<225の部分の材質をx≦175の部分やx≧225の部分とは異ならせることで、各部分を所望の剛さとなるようにしてもよい。
There is no restriction | limiting in particular in the material of such a shaft of this invention, For example, the thing made from fiber reinforced resin which consists of matrix resins, such as an epoxy resin, and reinforced fibers, such as carbon fiber, is mentioned.
Further, the shaft production method of the present invention is not particularly limited, but in the case of a fiber reinforced resin, a sheet-like prepreg in which an uncured matrix resin is impregnated in a reinforced fiber is prepared, and this prepreg is formed into a rod shape. There is a so-called sheet wrap method in which a core metal (mandrel) is wound and then cured to extract the core metal.
In the sea trap method, it is common to prepare a plurality of types of prepregs having different areas and orientations of the reinforcing fibers contained therein, and sequentially winding them one by one on a core bar to produce a multi-layered shaft. However, at this time, by adjusting the area of each prepreg, the direction of the reinforcing fiber contained in each prepreg, the position where each prepreg is wound, or by changing the number of layers of the prepreg, A shaft can be manufactured. At this time, adjusting the degree of taper of the shaft and the outer diameter of the shaft as appropriate is also effective in manufacturing the shaft of the present invention.
Further, the shaft of the present invention may be formed of a partially different material, for example, by making the material of the portion of 175 <x <225 different from the portion of x ≦ 175 or x ≧ 225. Each part may have a desired rigidity.

シャフトの長さ、質量などは適宜設定できるが、特に長さは990〜1219mmの範囲が好ましい。
また、こうして得られたシャフトは、必要に応じて細径端部側や太径端部側がカットされた後、細径側にはヘッドが、太径側にはグリップが装着され、ゴルフクラブとされる。ここで細径端部や太径端部をカットする際、細径端部のカット長さが50mm以下、太径端部のカット長さが229mm以下であれば、これらのカットがシャフトの特性に与える影響をほぼ無視することができる。
The length, mass and the like of the shaft can be appropriately set, but the length is particularly preferably in the range of 990 to 1219 mm.
In addition, the shaft obtained in this manner is cut at the small diameter end side and the large diameter end side as necessary, and then the head is mounted on the small diameter side and the grip is mounted on the large diameter side. Is done. Here, when cutting a small-diameter end or a large-diameter end, if the cut length of the small-diameter end is 50 mm or less and the cut length of the large-diameter end is 229 mm or less, these cuts are characteristics of the shaft. The influence on the can be almost ignored.

[シャフトの特性値の測定方法]
本発明のシャフトの特性値の測定方法は、図1のように、水平方向に所定間隔離して設置した上部支持ジグ11と下部支持ジグ12とで、シャフト10の細径部における細径端部からの距離L(mm)の位置が下部支持ジグ12に接し、かつ、シャフト10の軸が水平となるようにシャフト10を挟持、固定してから、シャフト10の太径部に所定質量の錘をかけ、シャフト上の所定位置の曲げ変位量δ(mm)を計測する計測工程と、シャフトが下部支持ジグに接する位置を太径側に所定の長さずつ移動させて距離Lを増加させて、計測工程を繰り返す反復工程と、計測工程と反復工程とで得られた曲げ変位群(L,δ)を(x,y)とし、100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、下記式(1)および(2)とに直線回帰する回帰工程とを有する。
100≦x≦175において、y=−ax+b・・・(1)
225≦x≦300において、y=−ax+b・・・(2)
[Measuring method of shaft characteristic value]
As shown in FIG. 1, the method for measuring the characteristic value of the shaft of the present invention includes an upper support jig 11 and a lower support jig 12 that are installed at a predetermined distance in the horizontal direction. After the shaft 10 is sandwiched and fixed so that the position of the distance L (mm) from the lower support jig 12 is in contact with the lower support jig 12 and the axis of the shaft 10 is horizontal, a weight having a predetermined mass is attached to the large-diameter portion of the shaft 10. And measuring the bending displacement amount δ L (mm) at a predetermined position on the shaft, and moving the position where the shaft contacts the lower support jig to the large diameter side by a predetermined length to increase the distance L. The bending displacement group (L, δ L ) obtained in the repetition process of repeating the measurement process and the measurement process and the repetition process is defined as (x, y), and 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300. Divided into two groups and each of them (X, y) by the least square method using, and a regression process of linear regression in the following equation (1) and (2).
In 100 ≦ x ≦ 175, y = −a 1 x + b 1 (1)
In 225 ≦ x ≦ 300, y = −a 2 x + b 2 (2)

具体的には、先に本発明のシャフト10について説明したとおりであり、上部支持ジグ11と下部支持ジグ12との間隔を例えばA=50mmとするとともに、シャフト10の細径部のうち例えば距離L=100mmの位置が下部支持ジグ12に接するようにシャフト10をまず固定する。ついで、シャフト10の太径部、例えば下部支持ジグ12からシャフト10の軸に沿って距離B=615mmだけ離れた位置に例えば質量2kgの錘をかけ、下部支持ジグ12からシャフト10の軸に沿って例えば距離C=700mmだけ離れた位置の変位量を計測器14にて計測し、その値を距離L=100mmにおける曲げ変位量δ100(mm)とする(計測工程)。
そして、シャフト10が下部支持ジグ12に接する位置を太径側に例えば25mmずつ移動させて、その際の下部支持ジグ12からシャフト10の軸に沿って700mm離れた位置のシャフトの各曲げ変位量δ125,δ150,・・・,δ300(mm)を計測し、曲げ変位群(L,δ)=(x,y)=(100,δ100),(125,δ125),(150,δ150),・・・,(300,δ300)を得る(反復工程)。
Specifically, as described for the shaft 10 of the present invention, the distance between the upper support jig 11 and the lower support jig 12 is set to, for example, A = 50 mm, and the distance between the small diameter portions of the shaft 10 is set, for example. First, the shaft 10 is fixed so that the position of L = 100 mm is in contact with the lower support jig 12. Next, a weight having a mass of 2 kg, for example, is placed at a position separated by a distance B = 615 mm along the axis of the shaft 10 from the large diameter portion of the shaft 10, for example, the lower support jig 12, and along the axis of the shaft 10 from the lower support jig 12. For example, a displacement amount at a position separated by a distance C = 700 mm is measured by the measuring instrument 14, and the value is set as a bending displacement amount δ 100 (mm) at a distance L = 100 mm (measurement step).
Then, the position where the shaft 10 is in contact with the lower support jig 12 is moved to the large diameter side, for example, by 25 mm, and each bending displacement amount of the shaft at a position 700 mm away from the lower support jig 12 along the axis of the shaft 10 at that time. δ 125 , δ 150 ,..., δ 300 (mm) are measured, and the bending displacement group (L, δ L ) = (x, y) = (100, δ 100 ), (125, δ 125 ), ( 150, δ 150 ),..., (300, δ 300 ) are obtained (iterative process).

ついで、計測工程と反復工程とで得られた曲げ変位群(L,δ)を(x,y)とし、これを100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、式(1)および(2)とに直線回帰する(回帰工程)。 Next, the bending displacement group (L, δ L ) obtained in the measurement process and the iterative process is set to (x, y), and this is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300. Dividing into groups, linear regression is performed to equations (1) and (2) by the least square method using all of (x, y) (regression process).

そして、得られたa、b1、、bの各値や、相関係数の二乗R 、R の値をシャフトの特性値とし、これを指標として、このシャフトから得られたゴルフクラブの特性を推測することができる。
具体的には、相関係数の二乗R とR とがともに0.95以上であり、aとaとの比(a/a)が0.8以上であると、打球時のトウダウンが抑えられ、ヘッドが返りやすく、スライスが起こりにくいシャフトとすることができる。
このようなシャフトによれば、例えば体積が350mlを超えるような慣性モーメントが大きな大型のヘッドを装着した場合でも、打球時にスイートスポットをはずすことなく、フェースの真正面でゴルフボールを打球でき、ヘッドの走り感、ボールのつかまり感が付与されたゴルフクラブを得ることができる。
Then, the obtained values of a 1 , b 1, a 2 , b 2 and the values of the squares of correlation coefficients R 1 2 , R 2 2 are used as shaft characteristic values, and this is used as an index from this shaft. The characteristics of the obtained golf club can be estimated.
Specifically, the squares R 1 2 and R 2 2 of the correlation coefficient are both 0.95 or more, and the ratio (a 1 / a 2 ) between a 1 and a 2 is 0.8 or more. The toe down at the time of hitting can be suppressed, the head can be easily returned, and the shaft can be hardly sliced.
According to such a shaft, for example, even when a large head with a large moment of inertia having a volume exceeding 350 ml is mounted, a golf ball can be hit directly in front of the face without removing the sweet spot at the time of hitting. It is possible to obtain a golf club with a running feeling and a feeling of catching the ball.

以下、実施例に基づき本発明を更に具体的に説明する。
(実施例1)
図2(a)に示す形状の芯金20(鉄製)を用意した。この芯金20における各部分の外径、長さ、テーパー度は以下のとおりである。
の外径=4.25mm、Pの外径=7.10mm、PおよびPの外径=13.00mm、P〜Pの距離(l)=150mm、P〜Pの距離(l)=100mm、P〜Pの距離(l)=960mm、P〜Pの距離(l)=1500mm、P〜Pのテーパー度=8.30/1000、P〜Pのテーパー度=8.30/1000
Hereinafter, the present invention will be described more specifically based on examples.
Example 1
A cored bar 20 (made of iron) having the shape shown in FIG. The outer diameter, length, and taper degree of each part in the cored bar 20 are as follows.
The outer diameter of P 1 = 4.25 mm, the outer diameter of the P 3 = 7.10mm, outer diameter = 13.00Mm of P 4 and P 5, the distance P 1 ~P 2 (l 1) = 150mm, P 2 ~ P 3 distance (l 2 ) = 100 mm, P 1 to P 4 distance (l 3 ) = 960 mm, P 1 to P 5 distance (l 4 ) = 1500 mm, P 1 to P 2 taper degree = 8. 30/1000, the degree of taper of P 3 to P 4 = 8.30 / 1000

ついで、この芯金20に、図3に示した形状に切断したプリプレグ(パターン1〜6)を順次巻きつけ、その上に20mm幅のポリプロピレン製収縮テープをピッチ2mmで巻きつけた。
なお、パターン2および3はいずれも、炭素繊維(CF)が芯金の軸方向に対して+45°に配向したプリプレグと−45°に配向したプリプレグとを2枚重ね合わせたものである。また、パターン2では、パターン2の図3中左側の端部において、2枚の巻き始め端部(プリプレグの図中上端)が9mmずれるように重ねられ、図3中右側の端部において、2枚の巻き始め端部が20mmずれるように重ねられている。また、図3中の各部分のサイズは以下のとおりである。
α=200mm、α=44mm、α=100mm、α=60mm、α=1190mm、α=67mm、α=149mm、α=600mm、α=22mm、α10=37mm、α11=1190mm、α12=45mm、α13=97mm、α14=1190mm、α15=48mm、α16=99mm、α17=110mm、α18=100mm、α19=500mm
また、芯金20におけるプリプレグを巻きつける位置は、細径端部から測って50mmから1240mmまでの部分とした。
Next, prepregs (patterns 1 to 6) cut into the shape shown in FIG. 3 were sequentially wound around the metal core 20, and a polypropylene shrink tape having a width of 20 mm was wound thereon at a pitch of 2 mm.
Each of the patterns 2 and 3 is obtained by superposing two prepregs in which carbon fibers (CF) are oriented at + 45 ° and −45 ° with respect to the axial direction of the cored bar. In the pattern 2, the two winding start ends (upper end in the figure of the prepreg) are overlapped so as to be shifted by 9 mm at the left end in FIG. 3 of the pattern 2, and at the right end in FIG. The winding start ends of the sheets are stacked so as to be displaced by 20 mm. Moreover, the size of each part in FIG. 3 is as follows.
α 1 = 200 mm, α 2 = 44 mm, α 3 = 100 mm, α 4 = 60 mm, α 5 = 1190 mm, α 6 = 67 mm, α 7 = 149 mm, α 8 = 600 mm, α 9 = 22 mm, α 10 = 37 mm, α 11 = 1190 mm, α 12 = 45 mm, α 13 = 97 mm, α 14 = 1190 mm, α 15 = 48 mm, α 16 = 99 mm, α 17 = 110 mm, α 18 = 100 mm, α 19 = 500 mm
In addition, the position where the prepreg is wound around the cored bar 20 is a portion from 50 mm to 1240 mm as measured from the narrow end.

ついで、これを135℃に加熱した加熱炉に2時間入れ、取り出したのち常温に冷めたところで、前記収縮テープを剥ぎ取り、表面を研磨し、シャフトを得た。使用した各プリプレグの詳細は、表1に示すとおりである。   Next, this was placed in a heating furnace heated to 135 ° C. for 2 hours, taken out and cooled to room temperature, and then the shrink tape was peeled off and the surface was polished to obtain a shaft. The details of each prepreg used are as shown in Table 1.

Figure 0004960687
Figure 0004960687

このシャフトについて、図1を示して説明した上述の「曲げ変位δ(mm)の測定方法」に沿って、曲げ変位群(L,δ)を求め、これを(x,y)とし、100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、式(1)および(2)に直線回帰した。なお、図1中、A=50mm、B=615mm、C=700mm、錘の質量2kgとし、シャフトは25mmずつ矢印方向に移動させて測定を行った。
得られたa、a、R 、R 、a/aの各値と、シャフトの長さ、質量、振動数、トルク、キックポイントを表2に示す。
また、Lとδとの関係、Lと外径との関係、LとEI値との関係をそれぞれ図4、図5、図6に示す。
With respect to this shaft, the bending displacement group (L, δ L ) is obtained in accordance with the above-described “measurement method of bending displacement δ L (mm)” described with reference to FIG. 1, and this is defined as (x, y). It is divided into two groups of 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300, and each of the equations (1) and (2) is linearized by the least square method using all (x, y). Regressed. In FIG. 1, A = 50 mm, B = 615 mm, C = 700 mm, the mass of the weight was 2 kg, and the shaft was moved by 25 mm in the direction of the arrow for measurement.
Table 2 shows the obtained values of a 1 , a 2 , R 1 2 , R 2 2 , a 1 / a 2 , the shaft length, mass, frequency, torque, and kick point.
The relationship between L and [delta] L, L and relationship between the outer diameter, L and EI, respectively showing the relationship between the values 4, 5, 6.

ついで、得られたシャフトを長さ44インチ(1118mm)にカットした後、細径側にヘッド(体積:400ml、ロフト:9度)、太径側に市販のグリップを装着し、長さ44.75インチ(1137mm)の試験用のドライバーゴルフクラブを製作した。この際、細径端部のカット長さは0mm、太径端部のカット長さは50mmとした。
このクラブを上級者ゴルファー3名に各5球ずつ打ってもらい、ブリヂストンスポーツ株式会社製「サイエンスアイ・フィールド」を用いてボールの回転、飛距離などを算出し、平均値を求めた。結果を表3に示す。
Next, the obtained shaft was cut to a length of 44 inches (1118 mm), and then a head (volume: 400 ml, loft: 9 degrees) on the small diameter side and a commercially available grip on the large diameter side were mounted. A 75 inch (1137 mm) test driver golf club was manufactured. At this time, the cut length of the small diameter end portion was 0 mm, and the cut length of the large diameter end portion was 50 mm.
Three senior golfers hit the club five times each and calculated the average value by calculating the ball rotation, flight distance, etc. using “Science Eye Field” manufactured by Bridgestone Sports Co., Ltd. The results are shown in Table 3.

(1)振動数
特開平10−225541号公報に記載されている方法により測定した。
すなわち、藤倉ゴム株式会社製ゴルフクラブタイミングハーモナイザーを用い、シャフトの先端(細径端部)にヘッドを模擬した質量196gの重りを取り付け、シャフトの太径端部から180mmを固定して、シャフトの固有振動数を求めた。
(2)キックポイント
特開平10−225541号公報に記載されている方法により求めた。
すなわち、株式会社フォーティーン製キックポイントゲージFG−105RMを用いて、決定したキックポイント位置(チップ端、すなわち細径端部からの長さ)をシャフト全長に対する比率で表した。
(3)トルク(シャフト全体の捩れ角)
特開平5−337223号公報に記載されているトルク(シャフト全体の捻れ角)の測定方法に従って測定した。
すなわち、細径端部と太径端部とをそれぞれチャックでクランプし、各チャックを介して、シャフトに対して互いに逆方向の捩れトルク(13.9kgcm)を加えて、捩れ角を測定した。
(4)EI分布
シャフトのEI値は、特開2001−120696公報に記載の方法で求めた。
すなわち、シャフトを支点間距離300mmで支持し、シャフトの細径端部からの距離L(mm)の位置に荷重20kgを加え、距離L(mm)における曲げたわみ量(mm)を求めた。そして、支点間距離をa(mm)、荷重をb(kg)、曲げたわみ量をc(mm)とし、これらの値から下記式により、距離L(mm)におけるEI値[kgf・mm]を求めた。
EI値=(1/48)×(b・a/c)
(5)外径の測定
シャフトの距離L=0〜350mmにおける外径は、マイクロメーターを使用し、25mm間隔で測定した。
(1) Frequency It measured by the method described in Unexamined-Japanese-Patent No. 10-225541.
That is, using a golf club timing harmonizer manufactured by Fujikura Rubber Co., Ltd., a weight of 196 g simulating the head was attached to the tip (small diameter end) of the shaft, and 180 mm from the large diameter end of the shaft was fixed. The natural frequency was obtained.
(2) Kick point The kick point was determined by the method described in JP-A-10-225541.
In other words, the determined kick point position (length from the tip end, that is, the length from the small diameter end) was expressed as a ratio to the total shaft length using a fourteen kick point gauge FG-105RM.
(3) Torque (twist angle of the entire shaft)
It was measured according to the torque (twist angle of the entire shaft) measuring method described in JP-A-5-337223.
That is, the small-diameter end portion and the large-diameter end portion were each clamped with a chuck, and twisting torques (13.9 kgcm) in opposite directions were applied to the shaft via each chuck to measure the twist angle.
(4) EI distribution The EI value of the shaft was determined by the method described in JP-A-2001-120696.
That is, the shaft was supported at a distance of 300 mm between the fulcrums, a load of 20 kg was applied to the position of the distance L (mm) from the small diameter end of the shaft, and the bending deflection (mm) at the distance L (mm) was obtained. Then, the distance between the fulcrums is a (mm), the load is b (kg), the amount of bending deflection is c (mm), and from these values, the EI value [kgf · mm 2 ] at the distance L (mm) is calculated by the following formula. Asked.
EI value = (1/48) × (b · a 3 / c)
(5) Measurement of outer diameter The outer diameter at a shaft distance L = 0 to 350 mm was measured at intervals of 25 mm using a micrometer.

(比較例1)
図7に示した形状に切断したプリプレグ(パターン1〜6)に替えたほかは実施例1と同様に処理して、シャフトを得て、実施例1と同様の処理を行った。
なお、パターン2は、炭素繊維が芯金の軸方向に対して+45°に配向したプリプレグと−45°に配向したプリプレグとを2枚重ね合わせたものであり、パターン2の図7中左側の端部において、2枚の巻き始め端部が9mmずれるように重ねられ、図7中右側の端部において、2枚の巻き始め端部が20mmずれるように重ねられている。また、図7中の各部分のサイズは以下のとおりである。
α20=200mm、α21=63mm、α22=100mm、α23=84mm、α24=1190mm、α25=67mm、α26=149mm、α27=300mm、α28=22mm、α29=220mm、α30=29mm、α31=1190mm、α32=46mm、α33=97mm、α34=1190mm、α35=48mm、α36=99mm、α37=110mm、α38=100mm
(Comparative Example 1)
A shaft was obtained in the same manner as in Example 1 except that the prepreg (patterns 1 to 6) cut into the shape shown in FIG. 7 was used, and the same processing as in Example 1 was performed.
Pattern 2 is obtained by superposing two prepregs in which carbon fibers are oriented at + 45 ° with respect to the axial direction of the core metal and prepregs oriented at −45 °. At the end, the two winding start ends are overlapped so as to be shifted by 9 mm, and at the end on the right side in FIG. 7, the two winding start ends are overlapped so as to be shifted by 20 mm. Moreover, the size of each part in FIG. 7 is as follows.
α 20 = 200 mm, α 21 = 63 mm, α 22 = 100 mm, α 23 = 84 mm, α 24 = 1190 mm, α 25 = 67 mm, α 26 = 149 mm, α 27 = 300 mm, α 28 = 22 mm, α 29 = 220 mm, α 30 = 29 mm, α 31 = 1190 mm, α 32 = 46 mm, α 33 = 97 mm, α 34 = 1190 mm, α 35 = 48 mm, α 36 = 99 mm, α 37 = 110 mm, α 38 = 100 mm

得られたa、a、R 、R 、a/aの各値と、シャフトの長さ、質量、振動数、トルク、キックポイントを表2に示す。
また、Lとδとの関係、Lと外径との関係、LとEI値との関係をそれぞれ図9、図10、図11に示す。
そして、このシャフトから実施例1と同様にして試験用のドライバーゴルフクラブを製作し、ボールの回転、飛距離などを算出し、平均値を求めた。結果を表3に示す。
Table 2 shows the obtained values of a 1 , a 2 , R 1 2 , R 2 2 , a 1 / a 2 , the shaft length, mass, frequency, torque, and kick point.
The relationship between L and [delta] L, L and relationship between the outer diameter, L and EI, respectively showing the relationship between the values 9, 10, shown in FIG. 11.
Then, a test driver golf club was produced from this shaft in the same manner as in Example 1, the ball rotation, flight distance, etc. were calculated, and the average value was obtained. The results are shown in Table 3.

Figure 0004960687
Figure 0004960687

Figure 0004960687
なお、サイドスピンは、正がスライス回転、負がフック回転である。
Figure 0004960687
The side spin is positive for slice rotation and negative for hook rotation.

(実施例2)
図2(b)に示す形状の芯金(鉄製)30を用意した。この芯金30における各部分の外径、長さ、テーパー度は以下のとおりである。
の外径=4.10mm、Pの外径=7.05mm、PおよびPの外径=13.00mm、P〜Pの距離(l)=170mm、P〜Pの距離(l)=90mm、 P〜Pの距離(l)=960mm、P〜Pの距離(l)=1500mm、P〜Pのテーパー度=8.50/1000、P〜Pのテーパー度=8.50/1000
(Example 2)
A cored bar (made of iron) 30 having the shape shown in FIG. The outer diameter, length, and taper degree of each portion of the core metal 30 are as follows.
The outer diameter of P 1 = 4.10 mm, the outer diameter of P 3 = 7.05 mm, the outer diameter of P 4 and P 5 = 13.00 mm, the distance (l 1 ) of P 1 to P 2 = 170 mm, P 2 to P 3 distance (l 2 ) = 90 mm, P 1 to P 4 distance (l 3 ) = 960 mm, P 1 to P 5 distance (l 4 ) = 1500 mm, P 1 to P 2 taper degree = 8. 50/1000, P 3 ~P 4 taper degree = 8.50 / 1000

ついで、この芯金30に、図8に示した形状に切断したプリプレグ(パターン1〜6)を巻きつけ、その上に20mm幅のポリプロピレン製収縮テープをピッチ2mmで巻きつけた。
なお、パターン2は、炭素繊維が芯金の軸方向に対して+45°に配向したプリプレグと−45°に配向したプリプレグとを2枚重ね合わせたものであり、パターン2の図8中左側の端部において、2枚の巻き始め端部が9mmずれるように重ねられ、図8中右側の端部において、2枚の巻き始め端部が20mmずれるように重ねられている。また、図8中の各部分のサイズは以下のとおりである。
α40=210mm、α41=45mm、α42=120mm、α43=62mm、α44=1190mm、α45=63mm、α46=143mm、α47=300mm、α48=21mm、α49=220mm、α50=29mm、α51=1190mm、α52=42mm、α53=97mm、α54=1190mm、α55=46mm、α56=99mm、α57=140mm、α58=130mm
また、芯金30におけるプリプレグを巻きつける位置は、細径端部から測って50mmから1240mmまでの部分とした。
Next, a prepreg (patterns 1 to 6) cut into the shape shown in FIG. 8 was wound around the core 30 and a polypropylene shrink tape having a width of 20 mm was wound on the prepreg at a pitch of 2 mm.
Pattern 2 is obtained by superposing two prepregs in which carbon fibers are oriented at + 45 ° with respect to the axial direction of the core metal and prepregs oriented at −45 °. At the end, the two winding start ends are overlapped so as to be displaced by 9 mm, and at the right end in FIG. 8, the two winding start ends are overlapped so as to be shifted by 20 mm. Moreover, the size of each part in FIG. 8 is as follows.
α 40 = 210 mm, α 41 = 45 mm, α 42 = 120 mm, α 43 = 62 mm, α 44 = 1190 mm, α 45 = 63 mm, α 46 = 143 mm, α 47 = 300 mm, α 48 = 21 mm, α 49 = 220 mm, α 50 = 29 mm, α 51 = 1190 mm, α 52 = 42 mm, α 53 = 97 mm, α 54 = 1190 mm, α 55 = 46 mm, α 56 = 99 mm, α 57 = 140 mm, α 58 = 130 mm
In addition, the position where the prepreg is wound around the core metal 30 was a portion from 50 mm to 1240 mm as measured from the end of the small diameter.

ついで、これを135℃に加熱した加熱炉に2時間入れ、取り出したのち常温に冷めたところで、前記収縮テープを剥ぎ取り、表面を研磨し、シャフトを得た。また、使用したプリプレグの詳細は、表2に示すとおりである。   Next, this was placed in a heating furnace heated to 135 ° C. for 2 hours, taken out and cooled to room temperature, and then the shrink tape was peeled off and the surface was polished to obtain a shaft. The details of the prepreg used are as shown in Table 2.

このシャフトについて、実施例1と同様にして、a、a、R 、R 、a/aの各値を得た。これらの値と、シャフトの長さ、質量、振動数、トルク、キックポイントを表4に示す。
また、Lとδとの関係、Lと外径との関係、LとEI値との関係をそれぞれ図9、図10、図11に示す。
This shaft, in the same manner as in Example 1 to obtain the values of a 1, a 2, R 1 2, R 2 2, a 1 / a 2. Table 4 shows these values, shaft length, mass, frequency, torque, and kick point.
The relationship between L and [delta] L, L and relationship between the outer diameter, L and EI, respectively showing the relationship between the values 9, 10, shown in FIG. 11.

ついで、得られたシャフトを長さ44インチ(1118mm)にカットした後、細径側にヘッド(体積:460ml、ロフト:10度)、太径側に市販のグリップを装着し、長さ45インチ(1143mm)の試験用のドライバーゴルフクラブを製作した。この際、細径端部のカット長さは0mm、太径端部のカット長さは50mmとした。
このクラブを株式会社ミヤマエ製ゴルフ試打テストロボット「SHOTROBO IV」を使用し、各10球ずつ打ち、AccuSport社製「AccuVector」を用いてボールの回転、飛距離などを算出し、平均値を求めた。結果を表5に示す。
Next, the obtained shaft was cut to a length of 44 inches (1118 mm), a head (volume: 460 ml, loft: 10 degrees) on the small diameter side, and a commercially available grip on the large diameter side, and a length of 45 inches. A driver golf club for a test of (1143 mm) was manufactured. At this time, the cut length of the small diameter end portion was 0 mm, and the cut length of the large diameter end portion was 50 mm.
This club was hit with 10 balls each using a golf trial hitting robot “SHOTROBO IV” manufactured by Miyamae Co., Ltd., and the average value was obtained by calculating the rotation, flight distance, etc. of the balls using “AccuVector” manufactured by AccuSport. . The results are shown in Table 5.

(実施例3および比較例2)
実施例3では図12に示した形状に切断したプリプレグ(パターン1〜6)に替え、比較例2では図13に示した形状に切断したプリプレグ(パターン1〜6)に替えたほかは実施例2と同様に処理して、シャフトを得て、それぞれ実施例2と同様の処理を行った。
なお、図12のパターン2は、炭素繊維が芯金の軸方向に対して+45°に配向したプリプレグと−45°に配向したプリプレグとを2枚重ね合わせたものであり、パターン2の図12中左側の端部において、2枚の巻き始め端部が9mmずれるように重ねられ、図12中右側の端部において、2枚の巻き始め端部が20mmずれるように重ねられている。また、図12中の各部分のサイズは以下のとおりである。
α60=210mm、α61=29mm、α62=120mm、α63=40mm、α64=1190mm、α65=63mm、α66=143mm、α67=300mm、α68=21mm、α69=220、α70=29mm、α71=1190mm、α72=42mm、α73=97mm、α74=1190mm、α75=46mm、α76=99mm、α77=150mm、α78=135mm
(Example 3 and Comparative Example 2)
In Example 3, the prepreg (patterns 1 to 6) cut into the shape shown in FIG. 12 was used. In Comparative Example 2, the prepreg (patterns 1 to 6) cut into the shape shown in FIG. 13 was used. The shaft was obtained in the same manner as in No. 2, and the same treatment as in Example 2 was performed.
Note that pattern 2 in FIG. 12 is obtained by superposing two prepregs in which carbon fibers are oriented at + 45 ° and −45 ° with respect to the axial direction of the cored bar. In the middle left end, the two winding start ends are overlapped so as to be shifted by 9 mm, and in the right end in FIG. 12, the two winding start ends are overlapped so as to be shifted by 20 mm. Moreover, the size of each part in FIG. 12 is as follows.
α 60 = 210 mm, α 61 = 29 mm, α 62 = 120 mm, α 63 = 40 mm, α 64 = 1190 mm, α 65 = 63 mm, α 66 = 143 mm, α 67 = 300 mm, α 68 = 21 mm, α 69 = 220, α 70 = 29 mm, α 71 = 1190 mm, α 72 = 42 mm, α 73 = 97 mm, α 74 = 1190 mm, α 75 = 46 mm, α 76 = 99 mm, α 77 = 150 mm, α 78 = 135 mm

図13のパターン2は、炭素繊維が芯金の軸方向に対して+45°に配向したプリプレグと−45°に配向したプリプレグとを2枚重ね合わせたものであり、パターン2の図13中左側の端部において、2枚の巻き始め端部が9mmずれるように重ねられ、図13中右側の端部において、2枚の巻き始め端部が20mmずれるように重ねられている。また、図13中の各部分のサイズは以下のとおりである。
α80=210mm、α81=45mm、α82=120mm、α83=62mm、α84=1190mm、α85=63mm、α86=143mm、α87=300mm、α88=21mm、α89=220mm、α90=29mm、α91=1190mm、α92=42mm、α93=97mm、α94=1190mm、α95=46mm、α96=99mm、α97=140mm、α98=130mm
Pattern 2 in FIG. 13 is obtained by superposing two prepregs in which carbon fibers are oriented at + 45 ° with respect to the axial direction of the core metal and prepregs oriented at −45 °. The two winding start ends are overlapped so as to be shifted by 9 mm, and the two winding start ends are overlapped so as to be shifted by 20 mm in FIG. Moreover, the size of each part in FIG. 13 is as follows.
α 80 = 210 mm, α 81 = 45 mm, α 82 = 120 mm, α 83 = 62 mm, α 84 = 1190 mm, α 85 = 63 mm, α 86 = 143 mm, α 87 = 300 mm, α 88 = 21 mm, α 89 = 220 mm, α 90 = 29 mm, α 91 = 1190 mm, α 92 = 42 mm, α 93 = 97 mm, α 94 = 1190 mm, α 95 = 46 mm, α 96 = 99 mm, α 97 = 140 mm, α 98 = 130 mm

得られたa、a、R 、R 、a/aの各値と、シャフトの長さ、質量、振動数、トルク、キックポイントを表4に示す。
また、Lとδとの関係、Lと外径との関係、LとEI値との関係をそれぞれ図9、図10、図11に示す。
そして、このシャフトから実施例2と同様にして試験用のドライバーゴルフクラブを製作し、ボールの回転、飛距離などを算出し、平均値を求めた。結果を表5に示す。
Table 4 shows the obtained values of a 1 , a 2 , R 1 2 , R 2 2 , a 1 / a 2 , the shaft length, mass, frequency, torque, and kick point.
The relationship between L and [delta] L, L and relationship between the outer diameter, L and EI, respectively showing the relationship between the values 9, 10, shown in FIG. 11.
Then, a test driver golf club was produced from this shaft in the same manner as in Example 2, and the rotation, flight distance, and the like of the ball were calculated, and the average value was obtained. The results are shown in Table 5.

Figure 0004960687
Figure 0004960687

Figure 0004960687
なお、サイドスピンは、正がスライス回転、負がフック回転である。
Figure 0004960687
The side spin is positive for slice rotation and negative for hook rotation.

表2〜5の結果から明らかなように、各実施例のシャフトから得られたゴルフクラブによれば、良好なヘッドスピード、ボールスピード、飛距離が得られるとともに、バックスピンの程度が適度で、かつ、サイドスピンも抑制され、スライスに悩むプレーヤーに好適なシャフトを提供することができた。
また、得られたa/aの各値や、相関係数の二乗R 、R の値を指標として、このシャフトを備えたゴルフクラブの特性を推測できることが示された。
As is clear from the results of Tables 2 to 5, according to the golf clubs obtained from the shafts of the examples, good head speed, ball speed, and flight distance are obtained, and the degree of backspin is moderate. In addition, the side spin is suppressed, and a shaft suitable for a player who suffers from slicing can be provided.
It was also shown that the characteristics of the golf club provided with this shaft can be estimated using the obtained values of a 1 / a 2 and the squares of correlation coefficients R 1 2 and R 2 2 as indices.

本発明での曲げ変位δ(mm)の測定方法を示す概略図である。It is the schematic which shows the measuring method of bending displacement (delta) L (mm) in this invention. 実施例で用いた芯金の形状を示す平面図である。It is a top view which shows the shape of the metal core used in the Example. プリプレグの形状を示すパターン図である(実施例1)。It is a pattern figure which shows the shape of a prepreg (Example 1). Lとδとの関係を示すグラフである(実施例1、比較例1)。It is a graph which shows the relationship between L and (delta) L (Example 1, comparative example 1). Lと外径との関係を表すグラフである(実施例1、比較例1)。It is a graph showing the relationship between L and an outer diameter (Example 1, comparative example 1). LとEI値との関係を表すグラフである(実施例1、比較例1)。It is a graph showing the relationship between L and EI value (Example 1, comparative example 1). プリプレグの形状を示すパターン図である(比較例1)。It is a pattern figure which shows the shape of a prepreg (comparative example 1). プリプレグの形状を示すパターン図である(実施例2)。It is a pattern figure which shows the shape of a prepreg (Example 2). Lとδとの関係を表すグラフである(実施例2、実施例3、比較例2)。It is a graph showing the relationship between L and (delta) L (Example 2, Example 3, comparative example 2). Lと外径との関係を表すグラフである(実施例2、実施例3、比較例2)。It is a graph showing the relationship between L and an outer diameter (Example 2, Example 3, comparative example 2). LとEI値との関係を表すグラフである(実施例2、実施例3、比較例2)。It is a graph showing the relationship between L and EI value (Example 2, Example 3, comparative example 2). プリプレグの形状を示すパターン図である(実施例3)。(Example 3) which is a pattern figure which shows the shape of a prepreg. プリプレグの形状を示すパターン図である(比較例2)。It is a pattern figure which shows the shape of a prepreg (comparative example 2).

符号の説明Explanation of symbols

10 シャフト
11 上部支持ジグ
12 下部支持ジグ
13 錘
10 Shaft 11 Upper support jig 12 Lower support jig 13 Weight

Claims (1)

水平方向に所定間隔離して設置した上部支持ジグと下部支持ジグとで、ゴルフクラブ用シャフトの細径部における細径端部からの距離L(mm)の位置が下部支持ジグに接し、かつ、ゴルフクラブ用シャフトの軸が水平となるようにゴルフクラブ用シャフトを挟持、固定してから、ゴルフクラブ用シャフトの太径部に所定質量の錘をかけ、ゴルフクラブ用シャフト上の所定位置の曲げ変位量δ(mm)を計測する計測工程と、
ゴルフクラブ用シャフトが下部支持ジグに接する位置を太径側に所定の長さずつ移動させて、前記計測工程を繰り返す反復工程と、
前記計測工程と前記反復工程とで得られた曲げ変位群(L,δ)を(x,y)とし、該(x,y)を100≦x≦175の群と225≦x≦300の群との2つの群に分けて、それぞれすべての(x,y)を使った最小二乗法により、下記式(1)および(2)とに直線回帰する回帰工程とを有することを特徴とするゴルフクラブ用シャフトの特性値の測定方法。
100≦x≦175において、y=−ax+b・・・(1)
225≦x≦300において、y=−ax+b・・・(2)
The upper support jig and the lower support jig installed in the horizontal direction separated by a predetermined distance, the position of the distance L (mm) from the narrow end of the narrow diameter portion of the golf club shaft is in contact with the lower support jig, and The golf club shaft is clamped and fixed so that the axis of the golf club shaft is horizontal, and then a weight of a predetermined mass is applied to the large diameter portion of the golf club shaft, and the golf club shaft is bent at a predetermined position on the golf club shaft. A measuring step for measuring the displacement δ L (mm);
A step of repeating the measurement step by moving the position where the golf club shaft is in contact with the lower support jig to the large diameter side by a predetermined length; and
The bending displacement group (L, δ L ) obtained in the measurement step and the repetition step is defined as (x, y), and the (x, y) is defined as 100 ≦ x ≦ 175 and 225 ≦ x ≦ 300. Divided into two groups, each having a regression step in which linear regression is performed to the following formulas (1) and (2) by the least square method using all (x, y) Measuring method of characteristic value of shaft for golf club.
In 100 ≦ x ≦ 175, y = −a 1 x + b 1 (1)
In 225 ≦ x ≦ 300, y = −a 2 x + b 2 (2)
JP2006314399A 2005-11-22 2006-11-21 Method for measuring characteristic value of shaft for golf club Active JP4960687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314399A JP4960687B2 (en) 2005-11-22 2006-11-21 Method for measuring characteristic value of shaft for golf club

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005336902 2005-11-22
JP2005336902 2005-11-22
JP2006314399A JP4960687B2 (en) 2005-11-22 2006-11-21 Method for measuring characteristic value of shaft for golf club

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012020329A Division JP2012081350A (en) 2005-11-22 2012-02-01 Golf club shaft

Publications (2)

Publication Number Publication Date
JP2007167631A JP2007167631A (en) 2007-07-05
JP4960687B2 true JP4960687B2 (en) 2012-06-27

Family

ID=38294931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314399A Active JP4960687B2 (en) 2005-11-22 2006-11-21 Method for measuring characteristic value of shaft for golf club

Country Status (1)

Country Link
JP (1) JP4960687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015105021A1 (en) * 2014-01-08 2017-03-23 三菱レイヨン株式会社 Golf club shaft and golf club

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133109B2 (en) * 2008-03-28 2013-01-30 グローブライド株式会社 Golf club shaft
JP5244528B2 (en) * 2008-10-09 2013-07-24 ダンロップスポーツ株式会社 Golf club shaft and golf club
JP5978768B2 (en) * 2012-05-30 2016-08-24 ヤマハ株式会社 Measuring system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792446B2 (en) * 1994-10-20 1998-09-03 龍也 徳永 Golf club
JPH1199229A (en) * 1997-09-29 1999-04-13 Mizuno Corp Shaft for golf club
JP2000051413A (en) * 1998-08-07 2000-02-22 Tsuruya Kk Golf club

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015105021A1 (en) * 2014-01-08 2017-03-23 三菱レイヨン株式会社 Golf club shaft and golf club

Also Published As

Publication number Publication date
JP2007167631A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7736245B2 (en) Golf club shaft and golf club
JP4960687B2 (en) Method for measuring characteristic value of shaft for golf club
US20050197204A1 (en) Shaft for use in golf clubs and other shaft-based instruments and method of making the same
JP5868683B2 (en) Golf club shaft
JPS6133595B2 (en)
KR20190006433A (en) Golf club
US9757625B2 (en) Golf club
JP3617797B2 (en) Golf club shaft
JP3673325B2 (en) Golf club shaft
JP2006149965A (en) Golf club
Cheong et al. Evaluation of the mechanical performance of golf shafts
US9463362B2 (en) Golf club and shaft
JP2013103009A (en) Golf club
JP2019013615A (en) Golf club
US6692377B2 (en) Graphite shaft with foil modified torsion
JP2012081350A (en) Golf club shaft
JP6798321B2 (en) Golf club shaft
US20180214751A1 (en) Golf club
JP2005034550A (en) Shaft for golf club
JP7581767B2 (en) Golf Club Shafts
JP4102487B2 (en) Golf club shaft made of fiber reinforced plastic
JP2002224256A (en) Golf shaft and golf club incorporated with golf shaft
JPH11206933A (en) Golf club shaft
WO2016056624A1 (en) Golf club shaft
JP3643492B2 (en) Golf club set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4960687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250