[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4959465B2 - Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics - Google Patents

Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics Download PDF

Info

Publication number
JP4959465B2
JP4959465B2 JP2007206620A JP2007206620A JP4959465B2 JP 4959465 B2 JP4959465 B2 JP 4959465B2 JP 2007206620 A JP2007206620 A JP 2007206620A JP 2007206620 A JP2007206620 A JP 2007206620A JP 4959465 B2 JP4959465 B2 JP 4959465B2
Authority
JP
Japan
Prior art keywords
lithium secondary
lithium
battery
secondary battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007206620A
Other languages
Japanese (ja)
Other versions
JP2008218384A (en
Inventor
キム、ボ、ヒュン
チェ、ジョン、ヒュク
ヨ、クワンホ
ユ、ジサン
シン、ヨンジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2008218384A publication Critical patent/JP2008218384A/en
Application granted granted Critical
Publication of JP4959465B2 publication Critical patent/JP4959465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高温保存特性に優れたリチウム二次電池用非水系電解質に関するもので、一層詳しくは、リチウム塩、有機溶媒及び高温保存特性向上のための添加剤として特定のイミダゾリウム塩を含む非水系電解液に関するものである。特に、本発明に係る非水系電解液は、電気自動車、ハイブリッド電気自動車などの高温で作動すべき車両用二次電池において、優れた高温保存特性を発揮することができる。   The present invention relates to a non-aqueous electrolyte for lithium secondary batteries having excellent high-temperature storage characteristics. More specifically, the present invention relates to a lithium salt, an organic solvent, and a non-ionic electrolyte containing a specific imidazolium salt as an additive for improving high-temperature storage characteristics. The present invention relates to an aqueous electrolyte. In particular, the non-aqueous electrolyte solution according to the present invention can exhibit excellent high-temperature storage characteristics in secondary batteries for vehicles that should be operated at high temperatures, such as electric vehicles and hybrid electric vehicles.

モバイル機器に対する技術開発と需要が増加するにつれて、エネルギー源としての二次電池の需要が急激に増加しており、二次電池のうち、高いエネルギー密度と放電電圧を示すリチウム二次電池が広く用いられている。   As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources has increased rapidly. Among secondary batteries, lithium secondary batteries showing high energy density and discharge voltage are widely used. It has been.

リチウム二次電池は、集電体上に活物質がそれぞれ塗布された正極と負極との間に多孔性の分離膜が介在され、この多孔性の分離膜が介在された電極組立体に、リチウム塩を含む非水系電解質が含浸されて構成される。主に、正極活物質は、リチウムコバルト系酸化物、リチウムマンガン系酸化物、リチウムニッケル系酸化物、リチウム複合酸化物などからなり、負極酸化物は、炭素系物質からなる。   A lithium secondary battery has a porous separation membrane interposed between a positive electrode and a negative electrode, each of which is coated with an active material on a current collector. It is constituted by impregnating a non-aqueous electrolyte containing a salt. Mainly, the positive electrode active material is made of lithium cobalt-based oxide, lithium manganese-based oxide, lithium nickel-based oxide, lithium composite oxide, or the like, and the negative electrode oxide is made of carbon-based material.

しかしながら、リチウム二次電池においては、正極活物質であるリチウム移金属酸化物と電解液の反応が高温で促進され、正極の抵抗を増加させる副産物を生成することで、高温での保存寿命が急激に低下するという問題点がある。 However, in a lithium secondary battery, of lithium transition metal oxide and the electrolyte as a cathode active material is accelerated at high temperatures, to produce a by-product of increasing the resistance of the positive electrode, the shelf life at high temperatures There is a problem that it drops rapidly.

最近、二次電池は、化石燃料を用いる既存のガソリン車両、ディーゼル車両などによる大気汚染などを解決するために提示された電気自動車(EV)、ハイブリッド電気自動車(HEV)などの動力源としても注目を受けており、その使用量が一層増加すると予想されるので、高温保存特性に対する問題点が大きく浮き彫りになっている。   Recently, secondary batteries are also attracting attention as a power source for electric vehicles (EV) and hybrid electric vehicles (HEV), which have been proposed to solve air pollution caused by existing gasoline vehicles and diesel vehicles using fossil fuels. Therefore, the amount of use is expected to increase further, so that the problems with respect to high-temperature storage characteristics are greatly highlighted.

したがって、電気自動車、ハイブリッド電気自動車などの次世代の動力源として適切に用いられるように、高温保存時にも優れたサイクル特性を示し、性能低下のないリチウムイオン電池の開発が切実に要求されている。   Therefore, there is an urgent need to develop a lithium-ion battery that exhibits excellent cycle characteristics even during high-temperature storage and has no performance degradation so that it can be used appropriately as a next-generation power source for electric vehicles, hybrid electric vehicles, and the like. .

これと関連して、本発明では、後述するように、高温保存特性向上のための添加剤として特定のイミダゾリウム系無機塩を含む非水系電解液を提示している。   In connection with this, as described later, the present invention presents a non-aqueous electrolytic solution containing a specific imidazolium-based inorganic salt as an additive for improving high-temperature storage characteristics.

イミダゾリウム系化合物を電解液に用いる技術は、その一部が既に知られている。例えば、日本特許出願公開第2003−229333号は、主に電解コンデンサや電気二重層コンデンサ用電解液に、主要な陽イオン供給源としてのイミダゾール化合物を用いる技術を開示している。また、日本特許出願公開第2002−260966号は、電気二重層キャパシタ用電解液として、プロピレンカーボネート、スルホランなどの有機溶媒に、主要な陽イオン供給源としての1,3―ジメチル―2―フルオロイミダゾリウムテトラフルオロボレートなどの含フッ素イミダゾリウム塩を用いる技術を開示している。   A part of the technique using an imidazolium-based compound as an electrolyte is already known. For example, Japanese Patent Application Publication No. 2003-229333 discloses a technique using an imidazole compound as a main cation supply source mainly in an electrolytic capacitor or an electrolytic solution for an electric double layer capacitor. Japanese Patent Application Publication No. 2002-260966 discloses an electrolytic solution for an electric double layer capacitor, an organic solvent such as propylene carbonate and sulfolane, and 1,3-dimethyl-2-fluoroimidazo as a main cation source. A technique using a fluorine-containing imidazolium salt such as lithium tetrafluoroborate is disclosed.

しかしながら、上記の出願は、一般的にリチウム二次電池と異なる構成の電解コンデンサ、電気二重層キャパシタなどに用いられる電解液に関するもので、電解液の主要な陽イオン供給源としてイミダゾリウム塩を用いるので、高温保存特性の向上を目的とし、特定のイミダゾリウム系無機塩を添加剤として用いる本発明とは異なった概念を有する。   However, the above application relates to an electrolytic solution generally used for an electrolytic capacitor, an electric double layer capacitor, or the like having a configuration different from that of a lithium secondary battery, and an imidazolium salt is used as a main cation supply source of the electrolytic solution. Therefore, it has a concept different from the present invention in which a specific imidazolium-based inorganic salt is used as an additive for the purpose of improving high-temperature storage characteristics.

一方、日本特許出願公開第2002−110231号は、リチウム塩を含む二次電池用非水系電解液に、安全性向上及び充分なレベルの電池性能確保のためにイミダゾリウム塩を添加する技術を開示している。上記の出願は、イミダゾリウム塩の陽イオン成分として、1,3―ジメチルイミダゾリウムイオン、1―エチル―3―メチルイミダゾリウムイオン、1―メチル―3―エチルイミダゾリウムイオン、1―ブチル―3―メチルイミダゾリウムイオンなどのジアルキルイミダゾリウムイオンと、1,2,3―トリメチルイミダゾリウムイオン、1,2―ジメチル―3―エチルイミダゾリウムイオン、1,2―ジメチル―3―プロピルイミダゾリウムイオン、1―ブチル―2,3―ジメチルイミダゾリウムイオンなどのトリアルキルイミダゾリウムイオンなどを例示しており、陰イオン成分として、BF、PF、ClO、CFSO、N(CFSO、N(CSO、N(CFSO)(CSO)、C(CFSO、C(CSOなどを例示している。すなわち、上記の出願は、リチウム二次電池用非水系電解液に、物性向上のための添加剤としてイミダゾリウム塩を用いることを提示している。 On the other hand, Japanese Patent Application Publication No. 2002-110231 discloses a technique for adding an imidazolium salt to a non-aqueous electrolyte for a secondary battery containing a lithium salt in order to improve safety and ensure a sufficient level of battery performance. is doing. In the above application, 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-butyl-3 are used as the cation component of the imidazolium salt. -Dialkylimidazolium ions such as methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, Examples include trialkylimidazolium ions such as 1-butyl-2,3-dimethylimidazolium ion, and the anion components include BF 4 , PF 6 , ClO 4 , CF 3 SO 3 , and N (CF 3 SO 2) 2, N (C 2 F 5 SO 2) 2, N (CF 3 SO 2) (C 4 F 9 SO 2), C (CF 3 SO 2) 3, C (C 2 F 5 SO 2) and 3 and the like are exemplified. That is, the above application suggests that an imidazolium salt is used as an additive for improving physical properties in a non-aqueous electrolyte for a lithium secondary battery.

しかしながら、上記の出願は、多様なイミダゾリウム塩の使用可能性のみを例示しており、これら無機塩の特性を述べていない。すなわち、上記の出願の詳細な説明には、上述した多様な種類の物質を例示しているが、その実施例には、1―エチル―3―メチルイミダゾリウムテトラフルオロボレートのみの実験結果を示している。   However, the above application only illustrates the possibility of using various imidazolium salts and does not describe the properties of these inorganic salts. That is, the detailed description of the above application exemplifies various kinds of substances described above, but the examples show experimental results of 1-ethyl-3-methylimidazolium tetrafluoroborate only. ing.

本出願の発明者たちは、深度ある研究と多様な実験を繰り広げた結果、数多くのイミダゾリウム塩のうち、下記の化学式1で定義する特定のアルキル置換基構造の陽イオンを含むイミダゾリウム塩を電解液に添加する場合、その他のイミダゾリウム塩を添加した場合よりも遥かに優れた高温保存特性を示すことを確認し、本発明を完成するに至った。   As a result of extensive research and various experiments, the inventors of the present application have found an imidazolium salt containing a cation having a specific alkyl substituent structure defined by the following chemical formula 1 among many imidazolium salts. When added to the electrolytic solution, it was confirmed that the high temperature storage characteristics were much better than when other imidazolium salts were added, and the present invention was completed.

本発明に係るリチウム二次電池用非水系電解液は、リチウム塩及び有機溶媒を含む高温保存特性に優れたリチウム二次電池用非水系電解液であり、下記の化学式1で表示される1―エチル―2,3―ジメチルイミダゾリウムイオンを陽イオンとして含む塩(イミダゾリウム塩)が含有されることを特徴とする。

Figure 0004959465
上記の式で、Xは、ハロゲン、ClO、B10Cl10、PF、CFSO、CFCO、AsF、SbF、AlCl、CHSO、CFSO、CSO、(CFSO)(CSO)、CFSO及び低級脂肪族カルボン酸からなる群から選択される。 A non-aqueous electrolyte solution for a lithium secondary battery according to the present invention is a non-aqueous electrolyte solution for a lithium secondary battery excellent in high-temperature storage characteristics containing a lithium salt and an organic solvent, and is represented by the following chemical formula 1. A salt (imidazolium salt) containing ethyl-2,3-dimethylimidazolium ion as a cation is contained.
Figure 0004959465
In the above formula, X is halogen, ClO 4 , B 10 Cl 10 , PF 6 , CF 3 SO 3 , CF 3 CO 2 , AsF 6 , SbF 6 , AlCl 4 , CH 3 SO 3 , CF 3 SO 3 , It is selected from the group consisting of C 2 F 5 SO 2 , (CF 3 SO 2 ) (C 4 F 9 SO 2 ), CF 3 SO 2 and lower aliphatic carboxylic acids.

したがって、本発明に係る電解液は、陽イオン成分として特定の置換基のトリアルキルイミダゾリウムイオンを含むイミダゾリウム塩を電解液に添加することで、著しく向上した高温保存特性を示す。   Therefore, the electrolytic solution according to the present invention exhibits remarkably improved high-temperature storage characteristics by adding an imidazolium salt containing a trialkylimidazolium ion of a specific substituent as a cation component to the electrolytic solution.

前記化学式1のイミダゾリウム塩は、電解液で解離がよく起こり、解離された陽イオンと陰イオンは、それぞれリチウム二次電池の正極と負極で反応する。前記イミダゾリウム陽イオンにおいて、イミダゾール環構造の特定位置に置換された2個のメチル基及び1個のエチル基は、電子供与体として作用し、電極表面に対する保護膜の形成を助けて電解液の分解を抑制するものと推測される。すなわち、本発明に係るイミダゾリウム塩は、初期の充放電条件で電極活物質に対して保護機能を提供するSEI(Solid Electrolyte Interphase)膜の堅固な形成を助けるものと推測される。したがって、高温でSEI膜の部分的破壊による電解液の分解反応で誘発される電池の内部抵抗増加及び発熱現象を防止することで、電池の高温保存特性を大いに向上させる。   The imidazolium salt of Chemical Formula 1 is often dissociated in the electrolyte, and the dissociated cations and anions react with the positive electrode and the negative electrode of the lithium secondary battery, respectively. In the imidazolium cation, two methyl groups and one ethyl group substituted at specific positions of the imidazole ring structure act as electron donors, helping to form a protective film on the electrode surface, Presumed to suppress decomposition. That is, it is presumed that the imidazolium salt according to the present invention assists the firm formation of a SEI (Solid Electrolyte Interface) film that provides a protective function for the electrode active material under the initial charge / discharge conditions. Accordingly, the high temperature storage characteristics of the battery are greatly improved by preventing the increase in internal resistance of the battery and the heat generation phenomenon induced by the decomposition reaction of the electrolyte due to the partial destruction of the SEI film at a high temperature.

本出願の発明者たちの実験によると、上記のような高温保存特性の顕しい向上は、前記化学式に示すように、特定位置に所定の低級アルキル基が置換されたイミダゾリウム陽イオンを含む塩によって得られると確認された。すなわち、以後の実験例からも確認されるように、置換基のうち一つまたは二つのみがアルキル基に置換されたイミダゾリウム塩に比べて、高温保存特性が15%以上向上するので、一般的に予想可能な効果以上の顕しい効果上昇を得られる。   According to the experiments by the inventors of the present application, the remarkable improvement in the high-temperature storage characteristics as described above is a salt containing an imidazolium cation having a predetermined lower alkyl group substituted at a specific position, as shown in the chemical formula. It was confirmed that That is, as confirmed from the following experimental examples, the high-temperature storage characteristics are improved by 15% or more compared to imidazolium salts in which only one or two of the substituents are substituted with alkyl groups. A significant increase in effect can be obtained that is more than expected.

陰イオン成分として、前記Xには、上述した日本特許出願公開第2002−110231号の実施例で特定されたBFが除かれている。本出願の発明者たちの実験によると、陰イオン成分としてBFを含むイミダゾリウム塩を含有した電解液は、所望の程度の高温保存特性を発揮することができない。 As an anion component, BF 4 specified in the example of Japanese Patent Application Publication No. 2002-110231 described above is excluded from X. According to experiments by the inventors of the present application, an electrolytic solution containing an imidazolium salt containing BF 4 as an anion component cannot exhibit a desired degree of high-temperature storage characteristics.

特に、前記Xの好ましい例としては、ヘキサフルオロホスフェート(PF)が挙げられる。 In particular, a preferred example of X is hexafluorophosphate (PF 6 ).

前記化学式1のイミダゾリウム塩は、電解液の全体質量を基準にして0.5〜5質量%含有されることが好ましい。すなわち、イミダゾリウム塩の添加量が過度に少ない場合、添加による効果を得ることが難しく、その反対に、イミダゾリウム塩の添加量が過度に多い場合、電解液の粘度上昇などの問題点を誘発するので好ましくない。 Imidazolium salts of Formula 1, are preferably 0.5 to 5 wt% based on the total mass of the electrolytic solution. In other words, if the amount of imidazolium salt added is too small, it is difficult to obtain the effect of the addition. Conversely, if the amount of imidazolium salt added is too large, problems such as increase in the viscosity of the electrolyte are induced. This is not preferable.

本発明の非水系電解液を構成する前記リチウム塩は、有機溶媒によく溶解される物質であり、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、CFSOLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、4フェニルホウ酸リチウム、イミドなどを用いるが、これらのうち、LiPFを用いることが好ましい。 The lithium salt constituting the non-aqueous electrolyte of the present invention is a substance that is well dissolved in an organic solvent. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, chloroborane lithium, lower aliphatic lithium carboxylate, lithium 4-phenylborate, imide, etc. are used. Of these, LiPF 6 is preferably used.

電解液を構成する主要成分である有機溶媒は、例えば、N―メチル―2―ピロリジノン、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ガンマ―ブチロラクトン、1,2―ジメトキシエタン、テトラヒドロキシフラン、2―メチルテトラハイドロフラン、ジメチルスルホキシド、1,3―ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ホルム酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3―ジメチル―2―イミダゾリジノン、プロピレンカーボネート誘導体、テトラハイドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒を用いるが、これらに限定されることはない。   Examples of the organic solvent that is a main component constituting the electrolytic solution include N-methyl-2-pyrrolidinone, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate ( DEC), ethyl methyl carbonate (EMC), gamma-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, Nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propiyl Emissions carbonate derivatives, tetrahydrofuran derivatives, ether, methyl propionate, but an aprotic organic solvent such as ethyl propionate, but is not limited thereto.

前記有機溶媒としては、リチウム塩の解離度が高いポリプロピレンカーボネート(PC)、またはPCと線状カーボネートとの混合溶媒が用いられる。   As the organic solvent, polypropylene carbonate (PC) having a high degree of dissociation of lithium salt or a mixed solvent of PC and linear carbonate is used.

本発明の非水系電解液には、電解液分解による負極の老化及び/または劣化を一層防止するために、分子構造が環状で、環内にC=C不飽和結合を有するエステル化合物(例えば、ビニレンカーボネート)を少量だけ添加することができる。   In the non-aqueous electrolyte solution of the present invention, in order to further prevent aging and / or deterioration of the negative electrode due to decomposition of the electrolyte solution, an ester compound having a cyclic molecular structure and a C═C unsaturated bond in the ring (for example, A small amount of vinylene carbonate) can be added.

また、電解液には、充放電特性及び難燃性などを改善するために、例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n―グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N―置換オキサゾリジノン、N,N―置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2―メトキシエタノール、三塩化アルミニウムなどが添加される。場合によっては、不燃性を与えるために四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒がさらに含まれ、高温保存特性を向上させるために二酸化炭酸ガスがさらに含まれる。   In addition, in order to improve the charge / discharge characteristics and flame retardancy, the electrolyte includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene. Derivatives, sulfur, quinoneimine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, aluminum trichloride and the like are added. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride is further included to impart incombustibility, and carbon dioxide gas is further included to improve high-temperature storage characteristics.

本発明は、正極、負極及び分離膜の電極組立体に前記非水系電解液が添加されたリチウム二次電池を提供する。   The present invention provides a lithium secondary battery in which the non-aqueous electrolyte is added to an electrode assembly of a positive electrode, a negative electrode, and a separation membrane.

前記正極は、例えば、正極集電体上に正極活物質、導電材及びバインダーの混合物を塗布した後、乾燥して製造されるが、必要によっては、前記混合物に充填剤をさらに添加することもある。   The positive electrode is manufactured, for example, by applying a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector and then drying, and if necessary, a filler may be further added to the mixture. is there.

一般的に、前記正極集電体は、3〜500μmの厚さで製造される。この正極集電体は、当該電池に化学的変化を誘発せずに高い導電性を有するものであれば、特別に制限されることなく、例えば、ステンレススチール、アルミニウム、ニッケル、チタン、塑性炭素、または、アルミニウムやステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したものが用いられる。また、集電体は、その表面に微細な凹凸を形成して正極活物質の結合力を高めることもでき、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体などの多様な形態が可能である。   Generally, the positive electrode current collector is manufactured to a thickness of 3 to 500 μm. The positive electrode current collector is not particularly limited as long as it has high conductivity without inducing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, plastic carbon, Alternatively, an aluminum or stainless steel surface treated with carbon, nickel, titanium, silver or the like is used. In addition, the current collector can also form fine irregularities on its surface to enhance the binding force of the positive electrode active material, and can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics. Forms are possible.

前記正極活物質は、主に、リチウムコバルト酸化物(LiCoO)、リチウムマンガン系酸化物、リチウムニッケル酸化物(LiNiO)などの層状化合物や、1またはそれ以上の移金属に置換された化合物と;リチウム銅酸化物(LiCuO)と;LiV、LiFe、V、Cuなどのバナジウム酸化物と;化学式LiNi1−x(ここで、M=Co、Mn、Al、Cu、Fe、Mg、BまたはGaで、x=0.01〜0.3である)で表現されるNiサイト型リチウムニッケル酸化物と;化学式LiMn2−x(ここで、M=Co、Ni、Fe、Cr、ZnまたはTaで、x=0.01〜0.1である)などからなる。 The positive active material is mainly lithium cobalt oxide (LiCoO 2), lithium manganese oxide, or layered compounds such as lithium nickel oxide (LiNiO 2), substituted in one or more of the transition metal Compounds; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 ; chemical formula LiNi 1-x M x A Ni-site type lithium nickel oxide represented by O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, and x = 0.01 to 0.3); Chemical formula LiMn 2−x M x O 2 (where M = Co, Ni, Fe, Cr, Zn or Ta, and x = 0.01 to 0.1).

一つの好ましい例で、前記正極活物質としては、リチウムコバルト系酸化物やリチウムニッケル系酸化物より優れた安全性及び低廉な価格を有するリチウムマンガン系金属酸化物を主成分として用いることができる。   In one preferred example, as the positive electrode active material, a lithium manganese-based metal oxide having safety and lower price than lithium cobalt-based oxide or lithium nickel-based oxide can be used as a main component.

前記リチウムマンガン系金属酸化物の好ましい例としては、化学式Li1+xMn2−x(ここで、xは、0〜0.33である)、LiMnO、LiMn、LiMnOなどのリチウムマンガン酸化物と;化学式LiMn2−x (ここで、M=Co、Ni、Fe、Cr、ZnまたはTaで、x=0.01〜0.1である)またはLiMnMO(ここで、M=Fe、Co、Ni、CuまたはZnである)で表現されるリチウムマンガン複合酸化物と;化学式においてLiの一部がアルカリ土金属イオンに置換されたLiMnなどが挙げられる。 Preferred examples of the lithium manganese metal oxide include chemical formula Li 1 + x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like. lithium manganese oxide; (where, M = Co, Ni, Fe , Cr, with Zn or Ta, is x = 0.01 to 0.1) formula LiMn 2-x M x O 4 or Li 2 Mn 3 MO 8 (where M = Fe, Co, Ni, Cu or Zn); and LiMn 2 O in which a part of Li is substituted with an alkaline earth metal ion in the chemical formula 4 etc. are mentioned.

通常、前記導電材は、正極活物質を含む混合物の全体量を基準にして1〜50量%添加される。この導電材は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特別に制限されることなく、例えば、天然黒鉛や人造黒鉛などの黒鉛と;カーボンブラック、アセチレンブラック、ケッチェンブラック、チャネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックと;炭素繊維や金属繊維などの導電性繊維と;フッ化カーボン、アルミニウム、ニッケル粉末などの金属粉末と;酸化亜鉛、チタン酸カリウムなどの導電性ウイスカーと;酸化チタンなどの導電性金属酸化物と;ポリフェニレン誘導体などの導電性素材などが用いられる。 Usually, the conductive material is added based on the total mass of a mixture containing a positive electrode active material 50 mass%. The conductive material is not particularly limited as long as it has conductivity without inducing a chemical change in the battery. For example, graphite such as natural graphite or artificial graphite; carbon black, acetylene black Carbon black such as ketjen black, channel black, furnace black, lamp black and thermal black; conductive fibers such as carbon fiber and metal fiber; metal powder such as carbon fluoride, aluminum and nickel powder; zinc oxide And conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; and conductive materials such as polyphenylene derivatives.

前記バインダーは、活物質と導電材などの結合と、集電体に対する結合を助ける成分であり、通常、正極活物質を含む混合物の全体質量を基準にして1〜50質量%添加される。このバインダーの例としては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルローズ(CMC)、澱粉、ヒドロキシプロピルセルローズ、再生セルローズ、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン―プロピレン―ジエン三元重合体(EPDM)、スルホン化EPDM、スチレンブチレンゴム、フッ素ゴム、多様な共重合体などが挙げられる。 The binder is a component that assists the binding between the active material and the conductive material and the binding to the current collector, and is usually added in an amount of 1 to 50% by mass based on the total mass of the mixture including the positive electrode active material. Examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer. (EPDM), sulfonated EPDM, styrene butylene rubber, fluororubber, and various copolymers.

前記充填剤は、正極の膨脹を抑制する成分として選択的に用いられるもので、当該電池に化学的変化を誘発しない繊維状材料であれば、特別に制限されることなく、例えば、ポリエチレン、ポリプロピレンなどのオリフィン系重合体と、ガラス繊維及び炭素繊維などの繊維状物質が用いられる。   The filler is selectively used as a component that suppresses the expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material that does not induce a chemical change in the battery. For example, polyethylene, polypropylene And a fibrous substance such as glass fiber and carbon fiber.

負極は、負極集電体上に負極材料を塗布、乾燥して製作されるが、必要によっては、上述した成分がさらに含まれる。   The negative electrode is manufactured by applying a negative electrode material on a negative electrode current collector and drying it, and further includes the above-described components as necessary.

一般的に、前記負極集電体は、3〜500μmの厚さで製造される。この負極集電体は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特別に制限されることなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、塑性炭素、または、銅やステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの、アルミニウム―カドミウム合金などが用いられる。また、負極集電体は、正極集電体と同様に、表面に微細な凹凸を形成して負極活物質の結合力を強化させることもでき、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体などの多様な形態で用いられる。   Generally, the negative electrode current collector is manufactured with a thickness of 3 to 500 μm. The negative electrode current collector is not particularly limited as long as it has conductivity without inducing a chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, plastic carbon Alternatively, a copper or stainless steel surface treated with carbon, nickel, titanium, silver, or the like, or an aluminum-cadmium alloy is used. In addition, the negative electrode current collector, like the positive electrode current collector, can also form fine irregularities on the surface to enhance the binding force of the negative electrode active material, film, sheet, foil, net, porous body, It is used in various forms such as foam and nonwoven fabric.

前記負極活物質としては、例えば、難黒鉛化炭素、黒鉛系炭素などの炭素と;LiFe(0≦x≦1)、LiWO(0≦x≦1)、SnMe1−xMe’(Me:Mn、Fe、Pb、Ge;Me’:Al、B、P、Si、周期律表の1族、2族、3族元素、ハロゲン;0<x≦1;1≦y≦3;1≦z≦8)などの金属複合酸化物と;リチウム金属と;リチウム合金と;ケイ素系合金と;錫系合金と;SnO、SnO、PbO、PbO、Pb、Pb、Sb、Sb、Sb、GeO、GeO、Bi、Bi、Biなどの金属酸化物と;ポリアセチレンなどの導電性高分子と;Li−Co−Ni系材料などが用いられる。 Examples of the negative electrode active material include carbon such as non-graphitizable carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1-x Me ′ y O z (Me: Mn, Fe, Pb, Ge; Me ′: Al, B, P, Si, Group 1, Group 2, Group 3 element of the periodic table, halogen; 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8), etc .; lithium metal; lithium alloy; silicon alloy; tin alloy; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5, etc. And; conductive polymers such as polyacetylene; and Li—Co—Ni-based materials.

一つの好ましい例で、前記負極活物質として難黒鉛化炭素などの非黒鉛系炭素材料が主成分として用いられる。したがって、黒鉛系炭素材料が50%未満で混合された負極活物質を用いることで、電解質溶媒として高誘電率を有しながらも、低温で相対的に粘度の低いプロピレンカーボネート(PC)の使用を可能にする。   In one preferred example, a non-graphitic carbon material such as non-graphitizable carbon is used as a main component as the negative electrode active material. Therefore, by using a negative electrode active material in which a graphite-based carbon material is mixed at less than 50%, it is possible to use propylene carbonate (PC) having a relatively low viscosity at a low temperature while having a high dielectric constant as an electrolyte solvent. enable.

前記分離膜は、正極と負極との間に介在されるもので、高いイオン透過度及び機械的強度を有する絶縁性の薄い薄膜が用いられる。一般的に、分離膜の気孔直径は0.01〜10μmで、厚さは5〜300μである。この分離膜としては、例えば、耐化学性及び疎水性を有するポリプロピレンなどのオレフィン系ポリマーと、ガラス繊維またはポリエチレンなどからなるシートや不織布などが用いられる。電解質としてポリマーなどの固体電解質が用いられる場合、固体電解質が分離膜を兼ねることもある。   The separation membrane is interposed between the positive electrode and the negative electrode, and an insulating thin film having high ion permeability and mechanical strength is used. Generally, the pore diameter of the separation membrane is 0.01 to 10 μm and the thickness is 5 to 300 μm. As the separation membrane, for example, a sheet or a nonwoven fabric made of an olefin polymer such as polypropylene having chemical resistance and hydrophobicity and glass fiber or polyethylene is used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separation membrane.

本発明に係る二次電池は、多様な形態で製造される。例えば、電極組立体は、ジェリー―ロール型、スタック型などで製作され、電池の形態は、円筒形缶、角形缶または金属層と樹脂層を含むラミネートシートの電池ケースなどに内蔵された形態である。これは、当業界で広く知られたものであるので、これに対する詳細な説明は省略する。   The secondary battery according to the present invention is manufactured in various forms. For example, the electrode assembly is manufactured in a jelly-roll type, a stack type, etc., and the battery is in the form of a cylindrical can, a rectangular can, or a battery case of a laminate sheet including a metal layer and a resin layer. is there. Since this is widely known in the art, a detailed description thereof will be omitted.

本発明に係るリチウム二次電池は、高出力・大容量の電池または電池パック用単位電池として用いることが好ましく、特に、優れた高温保存特性が要求される電気自動車、ハイブリッド電気自動車などの車両用動力源として用いることが好ましい。   The lithium secondary battery according to the present invention is preferably used as a high-power, large-capacity battery or a battery pack unit battery, and particularly for vehicles such as electric vehicles and hybrid electric vehicles that require excellent high-temperature storage characteristics. It is preferable to use it as a power source.

本発明に係るリチウム二次電池用非水系電解液は、特定のイミダゾリウム塩を含むことで、高温保存特性を大いに向上できるので、電気自動車及びハイブリッド電気自動車などの高温で作動すべき二次電池に広くかつ効果的に適用される。   The non-aqueous electrolyte for a lithium secondary battery according to the present invention includes a specific imidazolium salt, so that the high-temperature storage characteristics can be greatly improved. Therefore, a secondary battery that should operate at a high temperature such as an electric vehicle and a hybrid electric vehicle. Widely and effectively applied to.

以下、本発明を実施例に基づいて詳しく説明するが、この実施例によって本発明の範疇が限定されることはない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, the category of this invention is not limited by this Example.

[実施例1]
エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びジエチルカーボネート(DEC)を4:3:3の量比で混合した非水系電解液溶媒に、リチウム塩1M―LiPFを溶解させ、全体量を基準にして1.5量%のビニレンカーボネート(VC)と3量%の1―エチル―2,3―ジメチルイミダゾリウムヘキサフルオロホスフェートを添加して電解液を製造した。活物質としてリチウムマンガン酸化物を含む正極と、活物質としてハードカーボンを含む負極とを分離膜と一緒に積層し、前記電解液を付加してラミネート型リチウムイオン電池を構成した。
[Example 1]
Ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) 4: 3: in the non-aqueous electrolyte solvent were mixed in mass ratio of 3, a lithium salt is dissolved 1M-LiPF 6, overall quality amounts to produce a 1.5 mass% of vinylene carbonate (VC) and 3 mass% of 1-ethyl-2,3-dimethyl-imidazolium hexafluorophosphate was added electrolyte on the basis. A positive electrode containing lithium manganese oxide as an active material and a negative electrode containing hard carbon as an active material were laminated together with a separation membrane, and the electrolyte solution was added to form a laminate type lithium ion battery.

[比較例1]
1―エチル―2,3―ジメチルイミダゾリウムヘキサフルオロホスフェートを添加しない点を除けば、上記の実施例1と同一の方法で電解液を製造して電池を構成した。
[Comparative Example 1]
A battery was constructed by producing an electrolytic solution by the same method as in Example 1 except that 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate was not added.

[比較例2]
1―エチル―2,3―ジメチルイミダゾリウムヘキサフルオロホスフェートの代りに、1―エチル―3―メチルイミダゾリウムヘキサフルオロホスフェートを添加した点を除けば、上記の実施例1と同一の方法で電解液を製造して電池を構成した。
[Comparative Example 2]
Electrolytic solution in the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium hexafluorophosphate was added instead of 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate To produce a battery.

[比較例3]
1―エチル―2,3―ジメチルイミダゾリウムヘキサフルオロホスフェートの代りに、1―エチル―2,3―ジメチルイミダゾリウムテトラフルオロボレートを添加した点を除けば、上記の実施例1と同一の方法で電解液を製造して電池を構成した。
[Comparative Example 3]
In the same manner as in Example 1 except that 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate was added instead of 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate. An electrolyte solution was manufactured to constitute a battery.

[比較例4]
1―エチル―2,3―ジメチルイミダゾリウムヘキサフルオロホスフェートの代りに、1,2,3―トリメチルイミダゾリウムテトラフルオロボレートを添加した。
[Comparative Example 4]
Instead of 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate, 1,2,3-trimethylimidazolium tetrafluoroborate was added.

[実験例1]
上記の実施例1及び比較例1〜4で製造された各電池に対し、高温特性実験を行った。高温特性実験は、電池を65℃で5週間保管した後、常温で抵抗増加を測定し、その測定結果に対するデータを図1に示した。図1に示すように、保存して2週後の抵抗増加率を比較すると、実施例1の電池は、電解液にイミダゾリウム塩を添加しない比較例1の電池に比べて抵抗が約60%以上大きく減少し、その他のイミダゾリウム塩を添加した比較例2〜4の電池に比べて70%以上大きく減少した。このように減少した抵抗増加率は、従来のイミダゾリウム塩の添加によって予想可能な範囲を脱した顕しい数値に該当する。さらに、本発明に係る実施例1の電池の抵抗増加率は、保存して12週まで増加して約7%の増加率を示した後、それ以上増加せずに安定化しており、長期間の高温保存時にも安定的な特性を示す。
[Experimental Example 1]
High temperature characteristic experiments were performed on the batteries manufactured in Example 1 and Comparative Examples 1 to 4 described above. In the high temperature characteristic experiment, after the battery was stored at 65 ° C. for 5 weeks, the increase in resistance was measured at room temperature, and the data for the measurement result is shown in FIG. As shown in FIG. 1, when the resistance increase rate after 2 weeks of storage is compared, the battery of Example 1 has a resistance of about 60% as compared with the battery of Comparative Example 1 in which no imidazolium salt is added to the electrolyte. Compared to the batteries of Comparative Examples 2 to 4 to which other imidazolium salts were added, it was greatly reduced by 70% or more. The resistance increase rate thus reduced corresponds to an apparent value that deviates from the range that can be predicted by the addition of a conventional imidazolium salt. Furthermore, the resistance increase rate of the battery of Example 1 according to the present invention increased to 12 weeks after storage and showed an increase rate of about 7%, and then stabilized without increasing any longer. It exhibits stable characteristics even when stored at high temperatures.

したがって、上記の実験例の結果を通して、本発明に係るイミダゾリウム系化合物を添加したリチウム二次電池用電解液を用いたとき、高温保存特性を大いに改善できることが分かる。   Therefore, it can be seen from the results of the above experimental examples that the high-temperature storage characteristics can be greatly improved when the electrolytic solution for a lithium secondary battery to which the imidazolium compound according to the present invention is added is used.

本発明の属する技術分野で通常の知識を有する者であれば、上記の内容に基づいて本発明の範疇内で多様に応用及び変形可能であろう。   Those having ordinary knowledge in the technical field to which the present invention pertains can be applied and modified in various ways within the scope of the present invention based on the above contents.

実験例1の高温保存特性実験による実施例1と比較例1〜4の電池に対する抵抗増加率を示すグラフである。It is a graph which shows the resistance increase rate with respect to the battery of Example 1 and Comparative Examples 1-4 by the high temperature storage characteristic experiment of Experimental example 1. FIG.

Claims (9)

リチウム塩及び有機溶媒を含むリチウム二次電池用非水系電解液であって、
下記の化学式(1)で表示される1―エチル―2,3―ジメチルイミダゾリウムイオンを陽イオンとして含む塩を含有してなることを特徴とする、電解液。
Figure 0004959465
[上記式中、Xは、ヘキサフルオロホスフェート(PF である。]
A non-aqueous electrolyte for a lithium secondary battery containing a lithium salt and an organic solvent,
An electrolytic solution comprising a salt containing 1-ethyl-2,3-dimethylimidazolium ion represented by the following chemical formula (1) as a cation.
Figure 0004959465
[In the above formula, X is hexafluorophosphate (PF 6 ) . ]
前記化学式1のイミダゾリウム塩が、前記電解液の全体質量を基準にして0.5〜5質量%含有されることを特徴とする、請求項1に記載の電解液。 The imidazolium salts of formula 1, wherein the total mass of the electrolytic solution on the basis, characterized in that it is 0.5 to 5 mass%, the electrolytic solution according to claim 1. 前記電解液が、溶媒としてロピレンカーボネート(PC)、またはPCと線状カーボネートとの混合溶媒を用いることを特徴とする、請求項1に記載の電解液。 The electrolyte solution, characterized by using a mixed solvent of profiles propylene carbonate (PC), or PC and a linear carbonate as a solvent, the electrolytic solution of claim 1. 正極、分離膜及び負極構造の電極組立体に、請求項1〜3の何れか一項に記載の非水系電解液を含んで構成された、リチウム二次電池。   The lithium secondary battery comprised by including the non-aqueous electrolyte solution as described in any one of Claims 1-3 in the electrode assembly of a positive electrode, a separation membrane, and a negative electrode structure. 前記電池が、正極活物質としてリチウムマンガン系金属酸化物を含むことを特徴とする、請求項4に記載のリチウム二次電池。   The lithium secondary battery according to claim 4, wherein the battery includes a lithium manganese metal oxide as a positive electrode active material. 前記リチウムマンガン系金属酸化物が、化学式Li1+XMn2−X(式中、Xは、0〜0.33である)、LiMnO、LiMn、LiMnOであるリチウムマンガン酸化物、
化学式LiMn2−X (式中、MがCo、Ni、Fe、Cr、ZnまたはTaであり、Xが0.01〜0.1である)またはLiMnMO(式中、MがFe、Co、Ni、CuまたはZnである)で表現されるリチウムマンガン複合酸化物、或いは、
化学式においてLiの一部がアルカリ土金属イオンに置換されたLiMnであることを特徴とする、請求項5に記載のリチウム二次電池。
Lithium manganese oxide in which the lithium manganese-based metal oxide has the chemical formula Li 1 + X Mn 2 -X O 4 (wherein X is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ,
Chemical formula LiMn 2 -X M X O 4 (wherein M is Co, Ni, Fe, Cr, Zn or Ta and X is 0.01 to 0.1) or Li 2 Mn 3 MO 8 (formula Wherein M is Fe, Co, Ni, Cu or Zn), or
The lithium secondary battery according to claim 5, wherein LiMn 2 O 4 in which a part of Li in the chemical formula is substituted with an alkaline earth metal ion.
前記電池が、負極活物質として非黒鉛系炭素材料を含むことを特徴とする、請求項4に記載のリチウム二次電池。     The lithium secondary battery according to claim 4, wherein the battery includes a non-graphite carbon material as a negative electrode active material. 前記電池が、高出力・大容量の電池または電池パック用単位電池として用いられることを特徴とする、請求項4に記載のリチウム二次電池。     The lithium secondary battery according to claim 4, wherein the battery is used as a high-power / high-capacity battery or a battery pack unit battery. 前記電池が、電気自動車またはハイブリッド電気自動車の動力源として用いられることを特徴とする、請求項4に記載のリチウム二次電池。     The lithium secondary battery according to claim 4, wherein the battery is used as a power source of an electric vehicle or a hybrid electric vehicle.
JP2007206620A 2007-03-06 2007-08-08 Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics Active JP4959465B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070022191A KR101098213B1 (en) 2007-03-06 2007-03-06 Nonaqueous Electrolyte for Lithium Secondary Battery of Excellent High-Temperature Storage Properties
KR10-2007-0022191 2007-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011097461A Division JP5724116B2 (en) 2007-03-06 2011-04-25 Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics

Publications (2)

Publication Number Publication Date
JP2008218384A JP2008218384A (en) 2008-09-18
JP4959465B2 true JP4959465B2 (en) 2012-06-20

Family

ID=39838164

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007206620A Active JP4959465B2 (en) 2007-03-06 2007-08-08 Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics
JP2011097461A Active JP5724116B2 (en) 2007-03-06 2011-04-25 Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011097461A Active JP5724116B2 (en) 2007-03-06 2011-04-25 Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics

Country Status (2)

Country Link
JP (2) JP4959465B2 (en)
KR (1) KR101098213B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074088A1 (en) 2009-12-16 2011-06-23 トヨタ自動車株式会社 Room-temperature molten salt, electrode, battery, charge-up prevention agent, and method for observing a sample
KR101413004B1 (en) * 2012-02-02 2014-06-27 주식회사 엘지화학 Electrolyte Having Novel Structure and Magnesium Secondary Battery Comprising the Same
KR20130131565A (en) * 2012-05-24 2013-12-04 에스케이케미칼주식회사 Electrolyte solution for secondary battery and additive therefor
CN104157908A (en) * 2014-08-20 2014-11-19 厦门大学 Lithium salt electrolyte, preparation method and application thereof
JP6309635B2 (en) * 2014-08-28 2018-04-18 日本軽金属株式会社 Ionic solution for electrodeposition of aluminum and electrodeposition reactor
CN111224163B (en) 2018-11-27 2022-02-22 财团法人工业技术研究院 Electrolyte composition and metal ion battery comprising same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9726008D0 (en) * 1997-12-10 1998-02-04 Secr Defence Eletrolyte
JP3968772B2 (en) * 2001-11-29 2007-08-29 株式会社ジーエス・ユアサコーポレーション Non-aqueous electrolyte battery
JP4951855B2 (en) * 2002-11-29 2012-06-13 株式会社Gsユアサ Non-aqueous electrolyte battery
JP2005032551A (en) * 2003-07-11 2005-02-03 Toshiba Corp Nonaqueous electrolyte secondary battery
US20060088763A1 (en) * 2004-05-17 2006-04-27 Wen Li Additives for increasing ion conductivity of molten salt type electrolyte in battery
DE602005019188D1 (en) 2004-08-20 2010-03-18 Lg Chemical Ltd SECONDARY BATTERY WITH CONSTANT VOLTAGE
JP4746392B2 (en) * 2005-09-26 2011-08-10 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
KR100988183B1 (en) * 2005-09-29 2010-10-18 파나소닉 주식회사 Electrolyte solution for electrochemical device and electrochemical device using same
JP4421570B2 (en) 2006-03-30 2010-02-24 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP5125029B2 (en) * 2006-08-23 2013-01-23 ソニー株式会社 battery

Also Published As

Publication number Publication date
KR20080081749A (en) 2008-09-10
KR101098213B1 (en) 2011-12-27
JP2011171310A (en) 2011-09-01
JP2008218384A (en) 2008-09-18
JP5724116B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
US11380932B2 (en) Electrolyte for lithium secondary batteries with improved low temperature performance and lithium secondary battery including the same
US9954254B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US10122011B2 (en) Multi layered electrode and method of manufacturing the same
KR101603079B1 (en) Lithium Secondary Battery of Improved Rate Capability
US9472830B2 (en) Lithium secondary battery having improved lifespan characteristics
KR101793270B1 (en) The Electrodes and the Secondary Battery Comprising the Same
KR101502832B1 (en) Lithium Battery Having Higher Performance
EP3490050A1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery containing same
JP5357517B2 (en) Lithium ion secondary battery
JP5724116B2 (en) Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics
KR20130116028A (en) The method for preparing electrodes and the electrodes prepared by using the same
KR101564131B1 (en) Cathode active material for lithium secondary battery and manufacturing method thereof
US9508993B2 (en) Electrode for secondary battery and secondary battery including the same
US9825293B2 (en) Lithium battery having higher performance
KR20070082927A (en) Non-aqueous electrolyte lithium secondary battery with excellent high-temperature storage properties and low-temperature output properties
KR101451193B1 (en) Lithium Battery Having Higher Performance
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5410441B2 (en) Lithium secondary battery containing additives for improving high temperature characteristics
US9246189B2 (en) Secondary battery including electrolyte additive
KR101495314B1 (en) Electrodes for Secondary Battery and Lithium Secondary Battery Containing The Same
KR101423595B1 (en) Secondary Battery Pack with Battery Cell Having Improved Low Temperature Property
KR101501439B1 (en) The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
KR20160039986A (en) A lithium secondary battery with enhanced property

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110325

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250