[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4959398B2 - Liquid core for fuel cell - Google Patents

Liquid core for fuel cell Download PDF

Info

Publication number
JP4959398B2
JP4959398B2 JP2007085656A JP2007085656A JP4959398B2 JP 4959398 B2 JP4959398 B2 JP 4959398B2 JP 2007085656 A JP2007085656 A JP 2007085656A JP 2007085656 A JP2007085656 A JP 2007085656A JP 4959398 B2 JP4959398 B2 JP 4959398B2
Authority
JP
Japan
Prior art keywords
liquid
liquid absorption
partial
fuel cell
absorbent core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007085656A
Other languages
Japanese (ja)
Other versions
JP2008239445A (en
Inventor
宏康 籾蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007085656A priority Critical patent/JP4959398B2/en
Publication of JP2008239445A publication Critical patent/JP2008239445A/en
Application granted granted Critical
Publication of JP4959398B2 publication Critical patent/JP4959398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、燃料電池において複数の液体を吸液するための燃料電池用吸液芯に関するものである。 The present invention relates to a liquid absorbent core for a fuel cell for absorbing a plurality of liquids in the fuel cell .

燃料電池における液体燃料や水、あるいは、芳香剤、殺虫剤などの薬物蒸散器における2液反応性の液体など、表面張力や比重が互いに異なる複数の液体を吸液するための吸液芯として、連通気孔をその内部に有する多孔質体が知られている。   As a liquid absorbent core for absorbing a plurality of liquids having different surface tension and specific gravity, such as liquid fuel and water in a fuel cell, or a two-liquid reactive liquid in a drug evaporator such as a fragrance or insecticide, A porous body having a continuous air hole therein is known.

例えば、特許文献1の燃料電池には、液体燃料としてのメタノールと水との混合液を、メタノール電池の燃料極に供給するためのNi多孔質体が記載されている。この燃料電池において混合液は、多孔質体の内部にある連通気孔の中を毛細管現象によって移動する。
特開平6−188008号公報
For example, the fuel cell of Patent Document 1 describes a Ni porous body for supplying a mixed liquid of methanol and water as a liquid fuel to a fuel electrode of a methanol cell. In this fuel cell, the mixed liquid moves by capillary action in the continuous air hole inside the porous body.
JP-A-6-188008

しかしながら特許文献1に記載された燃料電池のNi多孔質体では、予めアルコールと水を反応させて水素ガスを取り出す(以下、改質という)が、このときにアルコールと水の濃度バランスがあわないとアルコールの一部が不完全な反応をおこして炭素を発生し、それが残渣となり多孔質体の内部を詰まらせる場合があった。   However, in the Ni porous body of the fuel cell described in Patent Document 1, alcohol and water are reacted in advance to extract hydrogen gas (hereinafter referred to as reforming), but at this time, there is no balance between the concentration of alcohol and water. Some of the alcohol and the alcohol incompletely react to generate carbon, which becomes a residue and clogs the inside of the porous body.

このような、燃料電池におけるアルコールと水の場合に限らず、芳香剤、殺虫剤に使用される一部の薬物蒸散器などでは、2液反応性の液体を吸液して反応させる場合、蒸散前に経路内部で反応してしまうと残渣が溜まるなどの不都合があり、混合液をひとつの経路でしか通過させることができない吸液芯では用途に限界があった。   Not only in the case of alcohol and water in such fuel cells, but in some drug evaporators used for fragrances and insecticides, when two liquid reactive liquids are absorbed and reacted, transpiration If there is a reaction such as accumulation of residues before the reaction inside the passage, there is a limit to the use of the liquid absorbent core which can pass the mixed liquid through only one passage.

本発明の燃料電池用吸液芯は、一方面とそれに対向する他方面とを有し、多孔質セラミックスからなる吸液部と、該吸液部を一方面から他方面へかけて区画する緻密質材料からなる隔壁部とを有し、該隔壁部によって区画された部分吸液部の少なくとも一つと他の部分吸液部との平均気孔率が異なり、該平均気孔率が異なる一組の前記部分吸液部において、一方の前記部分吸液部はアルコールを吸液し、他方の前記部分吸液部は水を吸液することを特徴とする。 The liquid absorbent core for a fuel cell of the present invention has one surface and the other surface opposite to the liquid absorbent core, and is a dense liquid-absorbing portion made of porous ceramics and partitioning the liquid-absorbing portion from one surface to the other surface. and a partition wall made of quality material, Ri average Do porosity different with at least one other portion liquid-absorbing portion of the partial liquid absorbing portions partitioned by the partition wall portion, the average porosity of a different set of In the partial liquid absorption part, one partial liquid absorption part absorbs alcohol, and the other partial liquid absorption part absorbs water .

さらに、前記部分吸液部の平均気孔率が20〜60%であることを特徴とする。   Furthermore, the average porosity of the said partial liquid absorption part is 20 to 60%, It is characterized by the above-mentioned.

さらに、前記隔壁部の一方面または他方面に平行な断面形状が、放射状または同心円状であることを特徴とする。   Furthermore, the cross-sectional shape parallel to the one surface or the other surface of the partition wall is radial or concentric.

さらに、前記吸液部の熱伝導率が3W/(m・K)以上であることを特徴とする。   Furthermore, the thermal conductivity of the liquid absorption part is 3 W / (m · K) or more.

さらに、前記多孔質セラミックスが炭化珪素を主成分とすることを特徴とする。   Furthermore, the porous ceramic is characterized by containing silicon carbide as a main component.

さらに、前記隔壁部が金属を主成分とすることを特徴とする。   Furthermore, the partition wall is characterized by containing a metal as a main component.

本発明によれば、表面張力や比重が異なる複数種類の液体について、吸液量をそれぞれ所定の範囲にコントロールして個別に吸液できる燃料電池用吸液芯とすることができる ADVANTAGE OF THE INVENTION According to this invention, about several types of liquid from which surface tension and specific gravity differ, it can be set as the liquid absorption core for fuel cells which can absorb liquid individually by controlling the liquid absorption amount to a predetermined range, respectively .

燃料電池では、アルコールと水の吸液量をそれぞれ所定の範囲にコントロールして個別に必要な分だけを吸液できるので、未反応の液体が残渣となって気孔率が減少するおそれを無くすことができる。 In the fuel cell , the amount of alcohol and water absorbed can be controlled within the specified ranges, and only the required amount can be absorbed individually, eliminating the possibility of unreacted liquid becoming a residue and decreasing the porosity. Can do.

また、吸液芯の熱伝導性が高まり吸液芯全体をより均一に加熱することができるので、改質に伴う吸液部の平均気孔率の低下を特に防止することができる。   Moreover, since the thermal conductivity of the liquid absorbent core is increased and the entire liquid absorbent core can be heated more uniformly, it is possible to particularly prevent a decrease in the average porosity of the liquid absorbent part due to the modification.

また、隔壁部の耐熱衝撃性を高めることができるので吸液芯を加熱、冷却にしても隔壁部が割れることを低減できる。   Moreover, since the thermal shock resistance of the partition wall can be increased, cracking of the partition wall can be reduced even when the absorbent core is heated and cooled.

以下、本発明の吸液芯の実施形態について説明する。   Hereinafter, embodiments of the liquid absorbent core of the present invention will be described.

図1(a)は本発明の吸液芯を示す斜視図、(b)は(a)のA−A’線における断面図である。図2(a)は本発明の吸液芯を示す斜視図、(b)は(a)のB−B’線における断面図である。図3(a)は本発明の吸液芯を示す斜視図、(b)は(a)のC−C’線における断面図である。図4(a)は本発明の吸液芯を示す斜視図、(b)は(a)のD−D’線における断面図である。   FIG. 1A is a perspective view showing a liquid absorbent core of the present invention, and FIG. 1B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 2A is a perspective view showing the liquid absorbent core of the present invention, and FIG. 2B is a cross-sectional view taken along line B-B ′ of FIG. FIG. 3A is a perspective view showing the liquid absorbent core of the present invention, and FIG. 3B is a cross-sectional view taken along line C-C ′ of FIG. FIG. 4A is a perspective view showing the liquid absorbent core of the present invention, and FIG. 4B is a cross-sectional view taken along the line D-D ′ in FIG.

本発明の吸液芯1は、多孔質セラミックスからなる第1、第2の部分吸液部2a,2b(第1、第2の部分吸液部2a,2bをあわせて吸液部2とする。)を有する吸液芯において、吸液部2は緻密質の隔壁部3により区画されており、吸液部2の区画された各部分吸液部の平均気孔率が異なる吸液芯2とすることによって、例えばアルコールからなる液体(不図示)の燃料と水(不図示)の吸液量をそれぞれ所定の範囲にコントロールし、各部分吸液部2a,2bからそれぞれ同時に吸液できる吸液芯1とすることができる。   The liquid absorbent core 1 according to the present invention includes first and second partial liquid absorbent parts 2a and 2b made of porous ceramics (the first and second partial liquid absorbent parts 2a and 2b are combined to form a liquid absorbent part 2. )), The liquid absorption part 2 is partitioned by a dense partition wall part 3, and the liquid absorption core 2 in which the average porosity of each of the partial liquid absorption parts of the liquid absorption part 2 is different. By doing so, for example, the liquid absorption amount of the liquid (not shown) made of alcohol and the liquid absorption amount of water (not shown) are controlled within a predetermined range, respectively, and the liquid absorption that can be simultaneously absorbed from the respective partial liquid absorption portions 2a and 2b The core 1 can be obtained.

アルコールは第2の部分吸液部2bの一方面5a側から吸液され、第2の部分吸液部2b内にある連通気孔を通って他方面5b側へ移動できる構造となっている。水は第1の部分吸液部2aの一方面6a側から吸液され、第1の部分吸液部2a内にある連通気孔を通って他方面6b側へ移動できる構造となっている。また、図1−4には図示していないが、第1の部分吸液部2aの側面7には、水が蒸散しないように緻密な壁が設けられている。   Alcohol is absorbed from the one surface 5a side of the second partial liquid absorption portion 2b, and can move to the other surface 5b side through the continuous air hole in the second partial liquid absorption portion 2b. Water is absorbed from the one surface 6a side of the first partial liquid absorption part 2a, and has a structure that can move to the other surface 6b side through the continuous air vent in the first partial liquid absorption part 2a. Although not shown in FIGS. 1-4, the side wall 7 of the first partial liquid absorption part 2a is provided with a dense wall so that water does not evaporate.

他端5b,6bに移動したアルコールと水は、加熱されて気化し、改質される。例えばアルコールとしてメタノールを用いた場合、改質反応は、CHOH+HO→3H+COで表される。メタノールと水を同じモル数で吸液、気化させれば、触媒を用いて水素ガスと二酸化炭素を生成させることが可能である。ここで、メタノールが過剰であると、反応していないメタノールから発生する炭素の残渣が多孔質内に付着して気孔率を低下させてしまう。よって、極力メタノールと水が同じモル比になるよう、第1、第2の部分吸液部2a,2bから吸液し、気化させることができるように、それぞれの平均気孔率を設定する。 The alcohol and water moved to the other ends 5b and 6b are heated and vaporized to be reformed. For example, when methanol is used as the alcohol, the reforming reaction is represented by CH 3 OH + H 2 O → 3H 2 + CO 2 . If methanol and water are absorbed and vaporized in the same number of moles, hydrogen gas and carbon dioxide can be generated using a catalyst. Here, if the methanol is excessive, the carbon residue generated from the unreacted methanol adheres to the inside of the porous body, thereby reducing the porosity. Therefore, the average porosity is set so that liquid can be absorbed from the first and second partial liquid absorbing parts 2a and 2b and vaporized so that the molar ratio of methanol and water is as much as possible.

ここで、隔壁3の長手方向に垂直な方向の第1、第2の部分吸液部2a,2bの断面積によっても、吸液量が変化するため、第1、第2の部分吸液部2a,2bのそれぞれの平均気孔率、および第1、第2の部分吸液部2a,2bの断面積を所定の範囲とすることで、アルコールと水のそれぞれの吸液量を同じモル数またはこれに近くすることができる。   Here, since the amount of liquid absorption also changes depending on the cross-sectional areas of the first and second partial liquid absorption parts 2a and 2b in the direction perpendicular to the longitudinal direction of the partition wall 3, the first and second partial liquid absorption parts By setting the average porosity of each of 2a and 2b and the cross-sectional areas of the first and second partial liquid-absorbing parts 2a and 2b within a predetermined range, the respective liquid-absorbing amounts of alcohol and water can be equal to You can be close to this.

またここで、緻密質とは連通気孔がなく、毛細管現象が発生しない程度の状態をいう。   Here, the term “dense” refers to a state where there is no continuous ventilation hole and capillary action does not occur.

吸液芯1においては、第1、第2の部分吸液部2a,2bの平均気孔率が異なることが重要である。この理由は、第1、第2の部分吸液部2a,2bの断面積(隔壁に垂直な方向の断面積)を所定の値にするだけでは、一方面5a,6aから吸液され、他方面5b,6b側で気化させるアルコールと水の時間当たりの移動量をコントロールすることが困難だからである。困難である理由は、アルコールと水において、それぞれ、沸点が異なること、毛細管力が異なること、熱伝導性が異なることに起因すると考えられる。   In the liquid absorbent core 1, it is important that the average porosity of the first and second partial liquid absorbent parts 2a and 2b is different. The reason for this is that if the cross-sectional area (the cross-sectional area in the direction perpendicular to the partition wall) of the first and second partial liquid-absorbing parts 2a and 2b is set to a predetermined value, the liquid is absorbed from one surface 5a and 6a. This is because it is difficult to control the amount of movement of alcohol and water vaporized on the side of the direction 5b, 6b per hour. The reason why it is difficult is considered that alcohol and water have different boiling points, different capillary forces, and different thermal conductivities.

さらに、吸液部2の平均気孔率は20〜60%である吸液芯1であることが好ましい。これによって、吸液部2に十分な量の連通気孔を形成させると共に毛細管力を利用して液体を十分に吸液することができるので、アルコールからなる液体の燃料と水の吸液量をそれぞれ所定の範囲にコントロールすることがさらに容易な吸液芯とすることができる。ここでいう平均気孔率の単位は体積%を意味する。平均気孔率が20%より多ければ、第1、第2の部分吸液部2a,2bに十分な量の連通気孔を形成させることができ、アルコールと水を吸液することが容易となる。平均気孔率が60%未満であれば、毛細管力が強くなってアルコールと水を吸液することが容易となる。特に、十分な量の連通気孔を有し、毛細管力を高めて液体を吸液するためには、第1、第2の部分吸液部2a,2bの平均気孔率は30〜50%の範囲であることが好ましい。   Furthermore, it is preferable that it is the liquid absorption core 1 whose average porosity of the liquid absorption part 2 is 20 to 60%. As a result, a sufficient amount of continuous air holes can be formed in the liquid absorption part 2 and the liquid can be sufficiently absorbed by utilizing the capillary force. It is possible to make the liquid absorption core easier to control within a predetermined range. The unit of the average porosity here means volume%. If the average porosity is higher than 20%, a sufficient amount of continuous air holes can be formed in the first and second partial liquid absorbing portions 2a and 2b, and it becomes easy to absorb alcohol and water. If the average porosity is less than 60%, the capillary force becomes strong and it becomes easy to absorb alcohol and water. Particularly, in order to have a sufficient amount of continuous air holes and to absorb the liquid by increasing the capillary force, the average porosity of the first and second partial liquid absorbing portions 2a and 2b is in the range of 30 to 50%. It is preferable that

吸液芯1の構造は、図1〜4に示す構造に限定されるものではないが、前記隔壁部3の一方面または他方面に平行な断面形状が、図1に示すように同心円状、または図3に示すように放射状であることが好ましい。これによって、吸液芯1の一方面5a,6aから例えばアルコールと水を吸液し他方面5b,6bからアルコールと水を気化させて、気化したアルコールを改質する目的で吸液芯1を加熱する際に、隔壁3で区画されたそれぞれの部分吸液部2a,2bが均一に加熱されるので、アルコールと水をほぼ完全に気化することができる。このため改質の際にアルコールが炭素成分となりにくく、吸液部2の連通気孔が閉塞されにくいので、部分吸液部2a,2bの気孔率が低下するおそれを無くすことができる。   The structure of the liquid absorbent core 1 is not limited to the structure shown in FIGS. 1 to 4, but the cross-sectional shape parallel to one surface or the other surface of the partition wall 3 is concentric as shown in FIG. Or it is preferable that it is radial as shown in FIG. Accordingly, for example, alcohol and water are absorbed from one surface 5a, 6a of the liquid absorbent core 1 and alcohol and water are vaporized from the other surface 5b, 6b, so that the liquid absorbent core 1 is modified for the purpose of modifying the vaporized alcohol. Since each partial liquid absorption part 2a, 2b divided by the partition 3 is heated uniformly when heating, alcohol and water can be vaporized almost completely. For this reason, at the time of reforming, alcohol hardly becomes a carbon component, and the continuous vent hole of the liquid absorbing part 2 is not easily blocked, so that the possibility that the porosity of the partial liquid absorbing parts 2a and 2b is lowered can be eliminated.

ここで隔壁部3を設けるのは吸液部2が不均一な温度分布のときに、気化が面方向で安定しなくなるため、隔壁部3で隔離することにより、他の部分吸液部2a,2bへの熱力学的影響を防止している。   The partition wall 3 is provided here because when the liquid absorption part 2 has a non-uniform temperature distribution, vaporization becomes unstable in the surface direction. Therefore, by separating the partition part 3, the other partial liquid absorption parts 2 a, Prevents thermodynamic effects on 2b.

上記吸液部の熱伝導率が3W/(m・K)以上である吸液芯とすることによって、吸液芯の熱伝導性が高まり吸液芯全体をより均一に加熱することができるので、改質に伴う吸液部の平均気孔率の低下を特に防止することができる。   By using a liquid absorbent core having a thermal conductivity of 3 W / (m · K) or more, the liquid absorbent core has a higher thermal conductivity and can heat the entire liquid absorbent core more uniformly. In particular, it is possible to prevent a decrease in the average porosity of the liquid absorption part due to the modification.

吸液部2は、アルミナ、ムライト、ジルコニア、窒化珪素、炭化珪素のいずれかを主成分とする多孔質セラミックスからなることが好ましい。特に吸液部2は炭化珪素を主成分とする吸液芯1とすることが好ましい。吸液部2を炭化珪素を主成分とすることによって、燃料を改質した際に炭素の残渣が付着しにくい吸液芯1とすることができるので、改質に伴い平均気孔率が変化しにくい吸液芯1とすることができる。   The liquid absorbing part 2 is preferably made of porous ceramics mainly composed of any of alumina, mullite, zirconia, silicon nitride, and silicon carbide. In particular, the liquid absorption part 2 is preferably a liquid absorption core 1 mainly composed of silicon carbide. By using silicon carbide as the main component of the liquid absorption part 2, it is possible to make the liquid absorption core 1 in which carbon residue hardly adheres when the fuel is reformed, so that the average porosity changes with the reformation. It can be set as the difficult liquid absorption core 1. FIG.

隔壁部3が金属にて形成された吸液芯1とすることによって、隔壁部3の耐熱衝撃性を高めることができるので、吸液芯1を加熱、冷却にしても隔壁部3が割れることを低減できる。   Since the partition wall 3 is made of the liquid-absorbing core 1 formed of metal, the thermal shock resistance of the partition wall 3 can be improved, so that the partition wall 3 is cracked even when the liquid-absorbing core 1 is heated and cooled. Can be reduced.

上記の実施形態では、第2の部分吸液部2bから例えばアルコールを、第1の部分吸液部2aから水を吸液する場合を例にして説明したが、吸液芯1は、第1の部分吸液部2bから水を、第2の部分吸液部2aからアルコールを吸液するものであっても良い。側面7側から吸液芯1を加熱する場合は、図1,2においては、第2の部分吸液部2bから例えばアルコールを、第1の部分吸液部2aから水を吸液した方が温度分布が好ましい。   In the above embodiment, the case where alcohol is absorbed from the second partial liquid absorption part 2b and water is absorbed from the first partial liquid absorption part 2a has been described as an example. The partial liquid absorption part 2b may absorb water and the second partial liquid absorption part 2a may absorb alcohol. In the case where the liquid absorbent core 1 is heated from the side surface 7 side, in FIGS. A temperature distribution is preferred.

第1、第2の部分吸液部2a,2bの平均気孔率は、例えば、ファインセラミックスの焼結体密度・開気孔率の測定方法(JIS R1634)に準拠して求めることができる。   The average porosity of the first and second partial liquid-absorbing parts 2a and 2b can be determined in accordance with, for example, a measurement method (JIS R1634) of sintered ceramic density / open porosity of fine ceramics.

第1、第2の部分吸液部2a,2bの熱伝導率は、ファインセラミックスのレーザフラッシュ法による熱拡散率・比熱容量・熱伝導率試験方法(JIS R1611)に準拠して求めることができる。   The thermal conductivity of the first and second partial liquid-absorbing parts 2a, 2b can be determined in accordance with the thermal diffusivity / specific heat capacity / thermal conductivity test method (JIS R1611) of fine ceramics by the laser flash method. .

多孔質セラミックスからなる第1、第2の部分吸液部2a,2bの主成分は、例えば、各部分吸液部2a,2bの結晶相をX線回折法により測定し、回折ピーク強度が最も大きな結晶相を主成分と判定することができる。また、ICP発光分光分析法による定量分析の結果も主成分を判定するために参酌することができる。   The main components of the first and second partial liquid absorption parts 2a, 2b made of porous ceramics are, for example, the crystal phase of each partial liquid absorption part 2a, 2b is measured by X-ray diffraction, and the diffraction peak intensity is the highest. A large crystal phase can be determined as the main component. The result of quantitative analysis by ICP emission spectroscopy can also be taken into account for determining the main component.

次に、本発明の吸液芯1の製造方法について例説する。   Next, the manufacturing method of the liquid absorption core 1 of this invention is illustrated.

吸液芯1を構成する第1、第2の部分吸液部2a,2bは、例えば、アルミナ、ムライト、シリカ、ジルコニア、窒化珪素、炭化珪素のうちいずれかを主成分とする多孔質セラミックスからなる。   The first and second partial liquid-absorbing parts 2a and 2b constituting the liquid-absorbing core 1 are made of, for example, porous ceramics mainly composed of any one of alumina, mullite, silica, zirconia, silicon nitride, and silicon carbide. Become.

第1、第2の部分吸液部2a,2bがアルミナを主成分とする場合の吸液芯1の製造方法について、図2(a),(b)の形状の吸液芯1を例にして説明する。   With respect to the manufacturing method of the liquid absorbent core 1 when the first and second partial liquid absorbent parts 2a and 2b are mainly composed of alumina, the liquid absorbent core 1 having the shape shown in FIGS. 2 (a) and 2 (b) is taken as an example. I will explain.

粒径50〜200μmの範囲内のアルミナ粒子からなるアルミナ粉末と、粒径10μm以下のアルミナ粒子からなるアルミナ粉末を準備する。50−200μmの範囲内のアルミナ粉末に有機バインダーを混ぜて造粒し、流動性の良い造粒粉Aを作製する。粒径10μm以下のアルミナ粉末に有機バインダーを混ぜて造粒し、流動性の良い造粒粉Aを作製する。金型を用いた粉末プレス成形法により、造粒粉Aを四角枠状、造粒粉Aを四角板状の形状にそれぞれ成形する。四角枠状、四角板状の成形体をそれぞれ焼成して四角枠状、四角板状の多孔質セラミックスを作製する。ここで、四角枠状、四角板状の成形体の焼成温度は、得られる2種の多孔質セラミックスの平均気孔率が20〜60%となるように設定する。そのため、焼成温度は1300−1600℃とすることが好ましい。 An alumina powder made of alumina particles having a particle size of 50 to 200 μm and an alumina powder made of alumina particles having a particle size of 10 μm or less are prepared. An alumina binder in a range of 50 to 200 μm is mixed with an organic binder and granulated to produce granulated powder A 1 having good fluidity. An alumina binder having a particle size of 10 μm or less is mixed with an organic binder and granulated to produce granulated powder A 2 having good fluidity. The powder press molding method using a mold, for molding each granulated powder A 1 square frame shape, the granulated powder A 2 in a rectangular plate shape. Square-frame and square-plate shaped compacts are fired to produce square-frame and square-plate porous ceramics, respectively. Here, the firing temperature of the quadrangular frame-shaped or quadrangular plate-shaped compacts is set so that the average porosity of the two types of porous ceramics obtained is 20 to 60%. Therefore, the firing temperature is preferably 1300-1600 ° C.

得られた四角枠状の多孔質セラミックスの外周面、四角板状の多孔質セラミックスの外周面を研磨し、図2(a),(b)に示す形状の第1、第2の部分吸液部2a,2bを作製する。第1、第2の部分吸液部2a,2bの間に次のようにして隔壁部3を形成する。   The outer peripheral surface of the obtained rectangular frame-shaped porous ceramic and the outer peripheral surface of the rectangular plate-shaped porous ceramic are polished, and the first and second partial liquid absorptions having the shapes shown in FIGS. 2 (a) and 2 (b) are obtained. The parts 2a and 2b are produced. The partition wall portion 3 is formed between the first and second partial liquid absorption portions 2a and 2b as follows.

隔壁部3が金属の場合は、金属製の枠の内側に第2の部分吸液部2bの外周側(第1の部分吸液部2a側)を圧入し、さらに金属製の枠の外側に第1の部分吸液部2aを圧入する。隔壁部3がガラスの場合は、第2の部分吸液部2bの外周側(第1の部分吸液部2a側)全面と第1の部分吸液部2aの内周側全面にガラスペーストを塗布し、第1、第2の部分吸液部2a,2bを隙間無く嵌合した後、熱処理してガラスペーストを溶融、固化させる。隔壁部3が樹脂の場合は、第2の部分吸液部2bの外周側(第1の部分吸液部2a側)全面と第1の部分吸液部2aの内周側全面に接着剤からなる樹脂を塗布し、第1、第2の部分吸液部2a,2bを隙間無く嵌合した後、樹脂を固化させ吸液芯を作製する。   When the partition wall 3 is made of metal, the outer peripheral side of the second partial liquid absorption part 2b (the first partial liquid absorption part 2a side) is press-fitted inside the metal frame, and further, the metal frame is placed outside the metal frame. The first partial liquid absorption part 2a is press-fitted. When the partition wall 3 is glass, glass paste is applied to the entire outer peripheral side (the first partial liquid absorbing part 2a side) of the second partial liquid absorbing part 2b and the entire inner peripheral side of the first partial liquid absorbing part 2a. After applying and fitting the first and second partial liquid-absorbing parts 2a and 2b without gaps, the glass paste is melted and solidified by heat treatment. When the partition wall portion 3 is made of resin, adhesive is applied to the entire outer peripheral side (the first partial liquid absorbing portion 2a side) of the second partial liquid absorbing portion 2b and the entire inner peripheral side of the first partial liquid absorbing portion 2a. After the resin is applied and the first and second partial liquid absorbing portions 2a and 2b are fitted without a gap, the resin is solidified to produce a liquid absorbing core.

第1、第2の部分吸液部2a,2bの主成分がアルミナ以外の場合は、次のように吸液部2を作製した後、同様に隔壁部3を形成できる。例えば第1、第2の部分吸液部2a,2bが炭化珪素の場合は、平均粒径10〜200μmの粗粒の炭化珪素粉末と平均粒径20μmの微粒の炭化珪素粉末を準備し、粗粒の炭化珪素粉末を用いて四角枠状の第1の部分吸液部2a、微粒の炭化珪素粉末を用いて四角板状の第2の部分吸液部2bを作製する。焼成温度は1300〜2000℃とすることが好ましい。   When the main component of the first and second partial liquid absorption parts 2a and 2b is other than alumina, the partition part 3 can be formed in the same manner after the liquid absorption part 2 is produced as follows. For example, when the first and second partial liquid-absorbing parts 2a and 2b are silicon carbide, a coarse silicon carbide powder having an average particle diameter of 10 to 200 μm and a fine silicon carbide powder having an average particle diameter of 20 μm are prepared. A rectangular frame-shaped first partial liquid-absorbing part 2a is produced using a granular silicon carbide powder, and a square-plate-shaped second partial liquid-absorbing part 2b is produced using a fine silicon carbide powder. The firing temperature is preferably 1300 to 2000 ° C.

第1、第2の部分吸液部2a,2bの主成分がジルコニアの場合は、平均粒径10〜200μmの粗粒のイットリア固溶ジルコニア粉末と平均粒径20μmの微粒のイットリア固溶ジルコニア粉末を準備し、粗粒の粉末を用いて四角枠状の第1の部分吸液部2a、微粒の粉末を用いて四角板状の第2の部分吸液部2bを作製する。焼成温度は1200〜1700℃とすることが好ましい。   When the main component of the first and second partial liquid-absorbing parts 2a and 2b is zirconia, coarse yttria solid-solution zirconia powder having an average particle diameter of 10 to 200 μm and fine yttria solid-solution zirconia powder having an average particle diameter of 20 μm And a square frame-shaped first partial liquid-absorbing part 2a using a coarse-grained powder, and a square-plate-shaped second partial liquid-absorbing part 2b using a fine-grained powder. The firing temperature is preferably 1200 to 1700 ° C.

第1、第2の部分吸液部2a,2bの主成分がアルミナ、炭化珪素、ジルコニア以外の場合も、同様にして、粗粒と微粒を用いて、第1、第2の部分吸液部2a,2bの気孔率を異ならせることができる。また、適宜焼結助剤を添加して多孔質セラミックスを作製しても良い。   Similarly, when the main components of the first and second partial liquid absorption portions 2a and 2b are other than alumina, silicon carbide, and zirconia, the first and second partial liquid absorption portions are similarly formed using coarse particles and fine particles. The porosity of 2a, 2b can be varied. Further, a porous ceramic may be produced by appropriately adding a sintering aid.

第1、第2の部分吸液部2a,2bの主成分は互いに異なるものであっても良い。   The main components of the first and second partial liquid-absorbing parts 2a and 2b may be different from each other.

第1、第2の部分吸液部2a,2bを構成する多孔質セラミックスの平均気孔率は、焼成温度を変更することで変化させることができる。   The average porosity of the porous ceramics constituting the first and second partial liquid absorbing parts 2a and 2b can be changed by changing the firing temperature.

なお本発明によれば、このような燃料電池に限らず、表面張力が異なる複数種類の液体について、吸液量をそれぞれ所定の範囲にコントロールして個別に吸液できる吸液芯に適用することが可能であり、芳香剤、殺虫剤などの薬物蒸散器などにも適用可能なものである。ここで液体とは水溶液や有機溶媒、液体燃料、電解液、液化ガスなど様々なものに応用でき、例えば2液反応性の液体同士を吸液して反応させることなども含まれる。   In addition, according to the present invention, not only in such a fuel cell, but also for a plurality of types of liquids having different surface tensions, the liquid absorption amount can be individually controlled by controlling the liquid absorption amount to a predetermined range. It can also be applied to drug vaporizers such as fragrances and insecticides. Here, the liquid can be applied to various solutions such as an aqueous solution, an organic solvent, a liquid fuel, an electrolytic solution, and a liquefied gas, and includes, for example, absorbing and reacting two liquid reactive liquids.

次の吸液芯を作製した。   The following liquid absorbent core was prepared.

(吸液芯の大きさ)
図1の吸液芯:多孔質セラミックスからなる第1の部分吸液部2a(外径20mm、内径10mm、長さ30mm)、多孔質セラミックスからなる第2の部分吸液部2b(外径10mm、長さ30mm)。
(Liquid absorption core size)
Liquid absorption core in FIG. 1: first partial liquid absorption part 2a made of porous ceramics (outer diameter 20 mm, internal diameter 10 mm, length 30 mm), second partial liquid absorption part 2b made of porous ceramics (outer diameter 10 mm) , Length 30 mm).

図2の吸液芯:多孔質セラミックスからなる第1の部分吸液部2a(外辺15×15mm、内辺7×7mm、厚み2mmの四角枠状体)、多孔質セラミックスからなる第2の部分吸液部2b(外辺5×5mmの四角板状体)。   Liquid absorption core in FIG. 2: first partial liquid absorption part 2a made of porous ceramics (outer side 15 × 15 mm, inner side 7 × 7 mm, square frame having a thickness of 2 mm), second made of porous ceramics Partial liquid absorption part 2b (outer side 5 × 5 mm square plate-like body).

図3の吸液芯:外辺20×20mmで、4つに区画されている多孔質体セラミックスからなる第1、第2の部分吸液部2a,2bの大きさは全て9mm×9mm×厚み5mm。   Liquid absorption core in FIG. 3: The size of the first and second partial liquid absorption parts 2a and 2b made of porous ceramics having an outer side of 20 × 20 mm and divided into four is 9 mm × 9 mm × thickness. 5 mm.

(隔壁部)
上述したようにして吸液芯2に隔壁部3を形成させた。なお、隔壁部3が金属の場合は、材質がステンレスの金属を圧入し、多孔質セラミックス2a,2bの金属との寸法の取り合いは、それぞれH7公差(JIS B0401)とした。隔壁部3がガラスの場合は、組成が硼珪酸ガラスペーストを用い800℃で熱処理した。隔壁部3が樹脂の場合は、エポキシ樹脂を用いた。
(Partition wall)
The partition wall 3 was formed on the liquid absorbent core 2 as described above. In addition, when the partition part 3 was a metal, the metal of the material was press-fitted, and the dimensional relationship with the metal of the porous ceramics 2a and 2b was H7 tolerance (JIS B0401), respectively. When the partition part 3 was glass, it heat-processed at 800 degreeC using the composition borosilicate glass paste. When the partition wall 3 is a resin, an epoxy resin is used.

(第1、第2の部分吸液部2a,2b)
アルミナ、炭化珪素(SiC)、ジルコニアのいずれかを主成分とする多孔質セラミックスを上述した方法で作製した。
(1st, 2nd partial liquid absorption part 2a, 2b)
A porous ceramic mainly composed of alumina, silicon carbide (SiC), or zirconia was produced by the method described above.

多孔質セラミックスの平均気孔率、熱伝導率は上述した方法を用い、試料から多孔質セラミックスを切り出して測定した。   The average porosity and thermal conductivity of the porous ceramic were measured by cutting the porous ceramic from the sample using the method described above.

側面7と金属製の円筒の内側とは耐熱性の樹脂を介して封止した。   The side surface 7 and the inside of the metal cylinder were sealed with a heat-resistant resin.

次に得られた吸液芯2の第2の部分吸液部2bの一方面5a(下側)にメタノール、第1の部分吸液部2aの一方面6a(下側)に純水を浸漬し、他方面5b(上側)と他方面6b(上側)側にメタノールと純水を吸液し、他方面5b,6b側が約110℃になるようにしてメタノールと水を連続的に気化させて、6時間改質する実験を行った。その際、側面7側の上部を加熱した。改質により発生したガスの成分をガスクロマトグラフィーで分析した。   Next, methanol is immersed in one surface 5a (lower side) of the second partial liquid absorbing part 2b of the obtained liquid absorbing core 2, and pure water is immersed in one surface 6a (lower side) of the first partial liquid absorbing part 2a. Then, methanol and pure water are absorbed on the other side 5b (upper side) and the other side 6b (upper side), and methanol and water are continuously vaporized so that the other side 5b and 6b side is about 110 ° C. An experiment for reforming for 6 hours was conducted. At that time, the upper part on the side surface 7 side was heated. The gas components generated by the reforming were analyzed by gas chromatography.

改質実験後、第2の部分吸液部2bの平均気孔率を測定した。また、第2の部分吸液部2bの炭素の残渣の量をオージェ電子分光分析装置を用いて測定した。   After the modification experiment, the average porosity of the second partial liquid absorption part 2b was measured. The amount of carbon residue in the second partial liquid absorption part 2b was measured using an Auger electron spectroscopic analyzer.

また、第1、第2の部分吸液部2a,2bより吸液された水、メタノールの全量を測定し、(メタノール/水)のモル比に換算し、これを吸液モル比とした。   Further, the total amount of water and methanol absorbed from the first and second partial liquid absorbing portions 2a and 2b was measured and converted into a (methanol / water) molar ratio, which was defined as the liquid absorbing molar ratio.

その結果、本発明の試料を用いて改質したガスの成分は、大部分が水素ガスと二酸化炭素からなり、0.2〜0.3%程度の一酸化炭素を含んでいた。この結果、吸液芯2を用いて吸液、気化した後、十分に改質できることがわかった。   As a result, the gas component reformed using the sample of the present invention was mostly composed of hydrogen gas and carbon dioxide, and contained about 0.2 to 0.3% carbon monoxide. As a result, it was found that the liquid absorption core 2 can be sufficiently modified after liquid absorption and vaporization.

その結果を表1に示す。

Figure 0004959398
The results are shown in Table 1.
Figure 0004959398

表1からわかるように、本発明の試料No.1〜15は、改質前後の平均気孔率が10%以下と小さかった。特に、部分吸液部2bが炭化珪素(SiC)を主成分とする試料No.1〜11,14,15は、改質前後での平均気孔率の変化が5%以内と小さかった。部分吸液部2bがアルミナ、ジルコニアからなる試料No.12,13は、改質前後での平均気孔率の変化がそれぞれ7%、10%以内となり、部分吸液部2bが炭化珪素からなる試料に比べて大きかった。   As can be seen from Table 1, the sample no. 1-15, the average porosity before and after modification was as small as 10% or less. Particularly, the sample No. 2 in which the partial liquid absorption part 2b is mainly composed of silicon carbide (SiC). 1 to 11, 14 and 15, the change in average porosity before and after the modification was as small as 5% or less. Sample No. 2 in which the partial liquid absorption part 2b is made of alumina or zirconia. In Nos. 12 and 13, the change in average porosity before and after the modification was within 7% and 10%, respectively, which was larger than that of the sample in which the partial liquid absorption part 2b was made of silicon carbide.

本発明の試料は改質後の炭素の残渣が0.07質量%以下と少なく、これらのうち部分吸液部2bが炭化珪素を主成分とする試料No.1〜11,14,15の炭素の残渣量は0.02質量%以下と特に少なかった。吸液部2がアルミナ、ジルコニアからなる試料No.12,13は、炭素の残渣がそれぞれ0.06質量%、0.07質量%となり、部分吸液部2bが炭化珪素からなる試料に比べて多かった。   In the sample of the present invention, the carbon residue after the modification is as small as 0.07% by mass or less, and among these, the partial liquid absorption part 2b is Sample No. whose main component is silicon carbide. The amount of carbon residues 1 to 11, 14 and 15 was particularly small, 0.02% by mass or less. Sample No. 2 in which the liquid absorption part 2 is made of alumina or zirconia. Nos. 12 and 13 had carbon residues of 0.06% by mass and 0.07% by mass, respectively, and were more than the sample in which the partial liquid absorption part 2b was made of silicon carbide.

吸液モル比は、試料No.1、3,4,7,8,10,11,14,15が1、試料No.2,9,12,13が1.1,試料No.5,6が0.9であった。吸液モル比が1.1の試料の炭素の残渣が0.02〜0.07質量%となったのは、メタノールが過剰の状態で改質されたため、残渣として残る炭素が増加したと考えられる。また、吸液モル比が0.9の試料No.5,6の炭素の残渣が0.01質量%となったのは、改質の際に水が過剰であったために、水の気化熱によって、部分吸液部2bの他方面5b側の改質温度が局部的に低下したため、しだいに水が気化し難くなり供給不足となるためと推測される。   The liquid absorption molar ratio is the sample No. 1, 3, 4, 7, 8, 10, 11, 14, 15 are 1, sample No. 2, 9, 12, 13 is 1.1, sample No. 5 and 6 were 0.9. The reason why the carbon residue of the sample having a liquid absorption molar ratio of 1.1 was 0.02 to 0.07% by mass was that the carbon remaining as the residue increased because the methanol was reformed in an excessive state. It is done. Sample No. with a liquid absorption molar ratio of 0.9 was used. The reason why the carbon residue of 5 and 6 was 0.01% by mass was that water was excessive at the time of reforming. Therefore, the reforming of the other surface 5b side of the partial liquid absorption part 2b was caused by the heat of vaporization of water. It is presumed that due to the local drop in the quality temperature, water becomes less likely to vaporize and supply becomes insufficient.

また、表1に示す試料No.1,14,15の吸液芯2を160℃に加熱した状態で、25℃の純水に投入し、急冷試験を行った。その結果、隔壁部3が金属からなる試料No.1は吸液部に問題となるクラックは確認されなかったが、隔壁部3がガラスからなる試料No.14、エポキシ樹脂からなる試料No.15は隔壁部3に微細なクラックが発生した。   Sample No. shown in Table 1 In the state which heated the liquid absorption core 2 of 1,14,15 to 160 degreeC, it poured into the pure water of 25 degreeC, and the rapid cooling test was done. As a result, the sample No. 3 in which the partition wall 3 is made of metal. No cracks that caused problems in the liquid absorption part were observed in Sample No. 1 in which the partition wall part 3 was made of glass. 14, Sample No. made of epoxy resin. No. 15 had a fine crack in the partition 3.

しかしながら、加熱の温度を160℃から110℃に変更して同様の急冷試験を行った結果、試料No.1,14,15のいずれにも問題となるクラックは確認されなかった。   However, as a result of performing the same rapid cooling test by changing the heating temperature from 160 ° C. to 110 ° C., sample No. No problem cracks were found in any of 1, 14, and 15.

次に比較例として、本発明の範囲外の試料を、次に示す以外は実施例と同様にして作製し、実施例と同様に評価した。   Next, as a comparative example, a sample outside the scope of the present invention was prepared in the same manner as in the example except for the following and evaluated in the same manner as in the example.

試料No.16は、試料No.1において全体を隔壁部3のないアルミナからなる多孔質セラミックスを形成させた試料である。試料No.17は、試料No.1の隔壁部3の代わりに平均気孔率20%の多孔質アルミナを用いた試料である。試料No.18は外径20mm、長さ30mmの多孔質アルミナからなる試料である。試料No.19は図5の構造の吸液芯で、多孔質セラミックスからなる吸液部2(部分吸液部12a,12bをあわせたもの)の平均気孔率を共に40%とした吸液芯11である。図5(a)は斜視図、(b)は(a)のE−E’線における断面図である。吸液部12a,12bは隔壁部13で区画されている。   Sample No. 16 is Sample No. 1 is a sample in which a porous ceramic made of alumina without partition walls 3 is formed as a whole. Sample No. 17 is a sample no. 1 is a sample using porous alumina having an average porosity of 20% in place of the partition wall 3. Sample No. 18 is a sample made of porous alumina having an outer diameter of 20 mm and a length of 30 mm. Sample No. Reference numeral 19 denotes a liquid absorbent core 11 having the structure shown in FIG. 5, and the liquid absorbent core 11 having an average porosity of 40% for the liquid absorbent part 2 made of porous ceramics (a combination of the partial liquid absorbent parts 12 a and 12 b). . 5A is a perspective view, and FIG. 5B is a cross-sectional view taken along line E-E ′ of FIG. The liquid absorption parts 12 a and 12 b are partitioned by a partition wall part 13.

比較例の結果を表2に示す。

Figure 0004959398
The results of the comparative example are shown in Table 2.
Figure 0004959398

表2で内側は吸液芯の内側、外側は吸液芯の外側の吸液部を意味する。表2から明らかなようにいずれの試料も改質後に平均気孔率が大きく低下していた。また、炭素量も0.5〜1質量%と多かった。吸液モル比も1.3〜3と大きかった。   In Table 2, the inner side means the inner side of the liquid absorption core, and the outer side means the liquid absorption part outside the liquid absorption core. As is clear from Table 2, the average porosity of all the samples was greatly reduced after the modification. Also, the carbon content was as large as 0.5 to 1% by mass. The liquid absorption molar ratio was also as large as 1.3 to 3.

本発明に係る吸液芯の一実施形態を示す図であり、(a)は斜視図、(b)は断面図をそれぞれ示すものである。It is a figure which shows one Embodiment of the liquid absorption core which concerns on this invention, (a) is a perspective view, (b) shows sectional drawing, respectively. 本発明に係る吸液芯の一実施形態を示す図であり、(a)は斜視図、(b)は断面図をそれぞれ示すものである。It is a figure which shows one Embodiment of the liquid absorption core which concerns on this invention, (a) is a perspective view, (b) shows sectional drawing, respectively. 本発明に係る吸液芯の一実施形態を示す図であり、(a)は斜視図、(b)は断面図をそれぞれ示すものである。It is a figure which shows one Embodiment of the liquid absorption core which concerns on this invention, (a) is a perspective view, (b) shows sectional drawing, respectively. 本発明に係る吸液芯の一実施形態を示す図であり、(a)は斜視図、(b)は断面図をそれぞれ示すものである。It is a figure which shows one Embodiment of the liquid absorption core which concerns on this invention, (a) is a perspective view, (b) shows sectional drawing, respectively. (a)は比較例としての吸液芯の斜視図、(b)は(a)の断面図である。(A) is a perspective view of the liquid absorption core as a comparative example, (b) is sectional drawing of (a).

符号の説明Explanation of symbols

1,11:吸液芯
2:吸液部
2a,2b,12a,12b:部分吸液部
3,13:隔壁部
5a,6a:一方面
5b、6b:他方面
7:側面
DESCRIPTION OF SYMBOLS 1,11: Liquid absorption core 2: Liquid absorption part 2a, 2b, 12a, 12b: Partial liquid absorption part 3, 13: Partition part 5a, 6a: One side 5b, 6b: The other side 7: Side

Claims (6)

一方面とそれに対向する他方面とを有し、多孔質セラミックスからなる吸液部と、
該吸液部を一方面から他方面へかけて区画する緻密質材料からなる隔壁部とを有し、
該隔壁部によって区画された部分吸液部の少なくとも一つと他の部分吸液部との平均気孔率が異なり、
該平均気孔率が異なる一組の前記部分吸液部において、一方の前記部分吸液部はアルコールを吸液し、他方の前記部分吸液部は水を吸液する
ことを特徴とする燃料電池用吸液芯。
A liquid-absorbing portion having a first surface and the other surface facing the first surface, and made of porous ceramics;
A partition portion made of a dense material that partitions the liquid absorption portion from one surface to the other surface;
Ri Do different average porosity of at least one other portion liquid-absorbing portion of the partial liquid absorbing portions partitioned by the partition wall portion,
In a set of the partial liquid absorption parts having different average porosity, one partial liquid absorption part absorbs alcohol, and the other partial liquid absorption part absorbs water. A liquid absorbent core for a fuel cell .
前記部分吸液部の平均気孔率が20〜60%である
ことを特徴とする請求項1に記載の燃料電池用吸液芯。
2. The liquid absorbent core for a fuel cell according to claim 1, wherein an average porosity of the partial liquid absorbent is 20 to 60%.
前記隔壁部の一方面または他方面に平行な断面形状が、放射状または同心円状である
ことを特徴とする請求項1または請求項2に記載の燃料電池用吸液芯。
The liquid absorbent core for a fuel cell according to claim 1 or 2, wherein a cross-sectional shape parallel to one surface or the other surface of the partition wall is radial or concentric.
前記吸液部の熱伝導率が3W/(m・K)以上である
ことを特徴とする請求項1乃至請求項3の何れかに記載の燃料電池用吸液芯。
The liquid absorption core for a fuel cell according to any one of claims 1 to 3, wherein a thermal conductivity of the liquid absorption part is 3 W / (m · K) or more.
前記多孔質セラミックスが炭化珪素を主成分とする
ことを特徴とする請求項1乃至請求項4の何れかに記載の燃料電池用吸液芯。
The liquid absorbent core for a fuel cell according to any one of claims 1 to 4, wherein the porous ceramic contains silicon carbide as a main component.
前記隔壁部が金属を主成分とする
ことを特徴とする請求項1乃至請求項5の何れかに記載の燃料電池用吸液芯。
The liquid-absorbent core for a fuel cell according to any one of claims 1 to 5, wherein the partition wall contains a metal as a main component.
JP2007085656A 2007-03-28 2007-03-28 Liquid core for fuel cell Active JP4959398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085656A JP4959398B2 (en) 2007-03-28 2007-03-28 Liquid core for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085656A JP4959398B2 (en) 2007-03-28 2007-03-28 Liquid core for fuel cell

Publications (2)

Publication Number Publication Date
JP2008239445A JP2008239445A (en) 2008-10-09
JP4959398B2 true JP4959398B2 (en) 2012-06-20

Family

ID=39911223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085656A Active JP4959398B2 (en) 2007-03-28 2007-03-28 Liquid core for fuel cell

Country Status (1)

Country Link
JP (1) JP4959398B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966066A (en) * 1982-10-06 1984-04-14 Hitachi Ltd Liquid fuel cell
JP2004049157A (en) * 2002-07-23 2004-02-19 Dainippon Jochugiku Co Ltd Porous ceramic liquid-absorbing wick
CN100563438C (en) * 2004-12-21 2009-12-02 西班牙佐贝尔股份公司 Two-phase evaporator device
JP4659642B2 (en) * 2006-02-27 2011-03-30 京セラ株式会社 Ceramic member for liquid absorption

Also Published As

Publication number Publication date
JP2008239445A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
WO2009049397A1 (en) Heat management device using inorganic foam
US20040265225A1 (en) Steam reforming methods and catalysts
EA014582B1 (en) High heat-conductivity composite material and method for producing thereof
JP2005522325A5 (en)
JP4051569B2 (en) Method for producing intermetallic compound porous material
Dutto et al. 3D printing of hierarchical porous ceramics for thermal insulation and evaporative cooling
JP2002033113A (en) Fuel gas generating device for fuel cell and composite material for hydrogen separation
Yan et al. Thermal debinding mass transfer mechanism and dynamics of copper green parts fabricated by an innovative 3D printing method
KR20100019520A (en) Glass microfluidic devices and methods of manufacture thereof
US8569202B2 (en) Steam reforming methods and catalysts
EP3225676B1 (en) Heat storage member
JP4959398B2 (en) Liquid core for fuel cell
US9936608B2 (en) Composite heat absorption device and method for obtaining same
JPWO2006011616A1 (en) Reactor
WO2010121365A1 (en) Heat transfer device having metallic open cell porous wicking structure
JP5888301B2 (en) Control method for internal combustion engine
Yi et al. Fabrication of a porous Ni-based metal with a multi-pore structure by a screen printing process
JP7202560B2 (en) Thermal storage reactor
JP4304276B2 (en) Efficient heat insulation method and apparatus for high pressure apparatus
Wang et al. Preparation and sintering of macroporous ceramic membrane support from titania sol‐coated alumina powder
WO2015101408A1 (en) Device and method for directly converting thermal energy into electrical energy
CN108025977B (en) Material, use thereof and method for producing said material
US20200399185A1 (en) Method for producing honeycomb structure
JP2018165580A (en) Thermal storage device
Ali et al. Development and Characterization of Sintered Zeolite and Zeolite-Kaolin Wick Structure for Thermosiphon Heat-Pipe Application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150