[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4955877B2 - Polyaminofluorene derivative - Google Patents

Polyaminofluorene derivative Download PDF

Info

Publication number
JP4955877B2
JP4955877B2 JP2001301076A JP2001301076A JP4955877B2 JP 4955877 B2 JP4955877 B2 JP 4955877B2 JP 2001301076 A JP2001301076 A JP 2001301076A JP 2001301076 A JP2001301076 A JP 2001301076A JP 4955877 B2 JP4955877 B2 JP 4955877B2
Authority
JP
Japan
Prior art keywords
carbon atoms
group
formula
compound
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001301076A
Other languages
Japanese (ja)
Other versions
JP2002179630A (en
Inventor
鉄藏 三木
俊秀 木村
直子 中西
志保子 小松
重 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2001301076A priority Critical patent/JP4955877B2/en
Publication of JP2002179630A publication Critical patent/JP2002179630A/en
Application granted granted Critical
Publication of JP4955877B2 publication Critical patent/JP4955877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蒸着プロセス耐熱性に優れた化合物、およびその化合物を用いた電荷輸送材料、有機電界発光素子に関するものである。
【0002】
【従来の技術】
電子製品の材料化合物、特に有機電界発光素子の電荷輸送材料として、分子中にトリフェニルアミンの4量体の構造を部分的に含む多様な構造の化合物が提案されている。(特開平7-126226号公報、特開平7-126615号公報)
【0003】
またフルオレンの部分構造を有するトリフェニルアミンの二量体が、有機電界発光素子の材料として提案されている。(特許第3079909号)
【0004】
【発明が解決しようとする課題】
有機電界発光素子の応用分野が拡大してきたことに伴い、製品の素子性能として100℃を越える耐熱性が求められるようになってきたが(有機LED素子の残された重要課題と実用化技術、p4、有機エレクトロニクス材料研究会、1999)、100℃を越える耐熱性を満足させるためにはおおむね140℃を越えるガラス転移点を有する化合物が必要とされる。
【0005】
また有機電界発光素子の製造に際しては、蒸着温度を上げることによって蒸着時間を短縮することが可能なので、蒸着プロセス時の耐熱性が高いことが材料化合物に求められている。化合物が分解する温度付近で蒸着プロセスを行うと、化学的に均一な機能性膜が作製できず、有機電界発光素子の特性は大きく低下する。
【0006】
本発明はガラス転移点が高く、しかも蒸着プロセス時の耐熱性が高い化合物を耐熱性電荷輸送材料として提供すること、またその材料の使用によって優れた特性を有する耐熱性有機電界発光素子を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明者らは前記した二つの要件を同時に満足する化合物を探索した結果、一般式[1]で表される化合物が150℃を越える高いガラス転移点を有し、しかも熱的に安定であることを見出して本発明を完成するに至った。すなわち本発明は、一般式[1]で表されるポリアミノフルオレン誘導体である。
【0008】
【化3】

Figure 0004955877
【0009】
〔式中、Ar、Arはそれぞれ独立に置換もしくは無置換の炭素環式芳香族環基(炭素数6以上)、置換もしくは無置換の複素環式芳香族環基または置換もしくは無置換の炭素環式脂肪族環基(環を構成する炭素数5以上)を表す。R、R、Rはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rは水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)、アミノ基、モノアルキル(炭素数1〜4)アミノ基、モノアリール(炭素数6〜18)アミノ基、ジアルキル(炭素数1〜4)アミノ基またはジアリール(炭素数6〜18)アミノ基を表し、Rは水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)、無置換の炭素環式芳香族環基またはジアルキル(炭素数1〜4)アミノ基もしくはジアリール(炭素数6〜18)アミノ基で置換された炭素環式芳香族環基を表す。〕
【0010】
また、本発明は一般式[1]で表される構造を有することを特徴とする耐熱性電荷輸送材料であり、さらに、その耐熱性電荷輸送材料を用いたことを特徴とする耐熱性有機電界発光素子である。
【0011】
本発明の一般式[1]で表されるポリアミノフルオレン誘導体中、Ar、Arで表される基としては次のような基が挙げられる。置換もしくは無置換の炭素環式芳香族環基としては、フェニル基、ビフェニリル基、トリフェニリル基、テトラフェニリル基、クロロフェニル基、ニトロフェニル基、シアノフェニル基、メトキシフェニル基、トリル基、キシリル基、クメニル基、メシチル基、ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、アセナフチレニル基、フェナレニル基、フルオレニル基、アントリル基、アントラキノニル基、メチルアントリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、ピセニル基、ペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基等がある。
【0012】
次に、置換もしくは無置換の複素環式芳香族環基としては、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、キノリル基、イソキノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アクリジニル基、フェナジニル基、フルフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチエニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンゾイミダゾリル基、メチルピリジル基、シアノピリジル基等がある。
【0013】
また、置換もしくは無置換の炭素環式脂肪族環基としては、シクロペンチル基、シクロヘキシル基、ノルボレニル基、アダマンチル基等がある。
【0014】
本発明のポリアミノフルオレン誘導体の一般式[1]中、Ar、Arで表される基のうちの少なくとも一方が無置換の炭素環式芳香族環基(炭素数6〜10)である場合には、R、R、Rのうちの少なくとも一つがアルキル基(炭素数1〜8)またはアルコキシ基(炭素数1〜8)であることが好ましく、またRおよびRのうちの少なくとも一方がジアリール(炭素数6〜18)アミノ基であることが好ましい。
【0015】
また、より好ましいものは一般式[1]中のArおよびArのうちの少なくとも一方が、置換もしくは無置換の炭素環式芳香族環基(炭素数11〜18)である場合である。
【0016】
本発明の一般式[1]で表される誘導体の具体的化合物である、[化2]式で表される無置換のトリフェニルアミンの4量体は、
【0017】
【化4】
Figure 0004955877
【0018】
分解耐熱性が470℃という高い温度を有しながら、161℃という高いガラス転移点を示す。[化2]式は特開平7−126226号公報に例示されているが、合成方法や物性値、さらには分解耐熱性やガラス転移点についての記載は無い。この高いガラス転移点については、[化3]式で表されるフルオレン部分構造を含むトリフェニルアミンの2量体の化合物、
【0019】
【化5】
Figure 0004955877
【0020】
のガラス転移点文献値(IEEE TRANSACTIONS ON ELECTRON DEVICES,1302-1306,VOL.44,NO.8,AUGUST 1997)である111℃や、フルオレン構造を含まない[化4]式で表される単純なトリフェニルアミンの4量体化合物、
【0021】
【化6】
Figure 0004955877
【0022】
のガラス転移点142℃や、同じく5量体の145℃よりも高く勝っている。
【0023】
さらに本発明においては、[化2]式で表される化合物のフェニル基を、置換フェニル基、炭素数の多い炭素環式芳香族環基または複素環式芳香族環基に換えることによって、ガラス転移点をさらに上げることができる。
【0024】
例えば[化2]式の化合物のフェニル基4個をナフチル基に換えた、本発明の[化5]式で表される化合物のガラス転移点は171℃であり、[化2]式の化合物よりさらに高いガラス転移点を示した。
【0025】
【化7】
Figure 0004955877
【0026】
本発明の化合物はウルマン反応をおこなうことで合成できる。さらに晶析や吸着、カラムクロマトグラフィーを行うことによって精製でき、高純度品を得ることができる。
【0027】
本発明の一般式[1]で表されるポリアミノフルオレン誘導体の具体的化合物を[表1]〜[表3]に示した。
ただし、化合物[化2]、[化5]、[化8]〜[化13]、[化15]〜[化18]、[化20]〜[化33]、[化35]〜[化37]、[化40]を参考例とする。
【0028】
【表1】
Figure 0004955877
【0029】
【表2】
Figure 0004955877
【0030】
【表3】
Figure 0004955877
【0031】
本発明のポリアミノフルオレン誘導体の仕事関数は5.1〜5.6eVであり、電荷輸送材料として使用するのに十分な特性を有している。
【0032】
本発明のポリアミノフルオレン誘導体が、単純なトリフェニルアミンの4量体を顕著に上回る高いガラス転移点を示す理由、また本発明の化合物がヘテロな骨格構造を有する化合物の中では顕著に熱的に安定である理由は、本発明の化合物がフルオレン構造を有しているためと考えられる。その結果、蒸着プロセス時の高温に耐えることができ、容易に有機電界発光素子を作製することができる。 またガラス転移点が高いために、電荷輸送材料として形成された機能膜は安定である。さらに有機電界発光素子や電子写真用感光体に使用された場合は、高温環境下や発熱環境下において優れた安定性を発揮することが可能になる。
【0033】
【発明の実施の形態】
以下本発明のポリアミノフルオレン誘導体の製造方法および物性について、実施例により具体的に説明する。
なお、実施例1、2および7は、それぞれ、参考例1、2および7と読替えるものとする。
【0034】
【実施例】
〔実施例1〕
4,4’−(9−フルオレニリデン)ビス(N−(4'''−フェニルアミノ−4”−ビフェニリル)アニリン)8.4g(10mmol)、ヨードベンゼン10.2g(50mmol)、無水炭酸カリウム8.3g(60mmol)、銅粉0.64g(10mmol)、トリデカン100mlを混合し、窒素雰囲気下で還流して10時間反応させた。反応生成物をトルエン120mlで抽出し、不溶分を濾別した。濾液を濃縮乾固して粗製物を得て、シリカゲルを用いたカラムクロマトグラフィーによって精製した。精製によって得られた白色粉体は5.4gで、収率は47%、融点は186〜220℃であった。
【0035】
得られた白色粉体について、NMRで化学構造を同定した。測定結果は[図1]13C−NMRの通りであった。
【0036】
[図1]の13C−NMRにおいて、化合物を構成する84個の芳香族炭素に相当する26ピークのうち、24個の芳香族炭素ピーク(120.03,122.71、123.20,123.97,124.13,124.21,124.41,125.20,126.14,127.16,127.29,127.51,128.12,128.83,128.92,129.13,134.62,139.77,139.94,145.91,146.45,146.58,147.58,151.40ppm)と、フルオレンの9位の脂肪族炭素ピーク(64.56ppm)を検出した。
【0037】
さらに、得られた白色粉体について元素分析を実施した結果は次の通りであった。
理論値(炭素89.6%)(水素5.5%)(窒素4.9%)
実測値(炭素89.5%)(水素5.6%)(窒素4.4%)
以上の13C−NMRおよび元素分析の結果を総合して、[化2]式の構造を同定した。
【0038】
〔実施例2〕
実施例1と同様な方法で、4,4’−(9−フルオレニリデン)ビス(N−(4'''−フェニルアミノ−4”−ビフェニリル)アニリン)に1−ヨードナフタレンを反応させ、融点184〜215℃の淡黄白色の粉体として、[化5]式で表される化合物を得た。
【0039】
この化合物の赤外線吸収スペクトル(KBr錠剤法)測定結果を[図2]に示す。
【0040】
〔比較例1〕
特許第3079909号公報の実施例1に記載された[化3]式の化合物を、実施例1と同様な方法で4,4’−(9−フルオレニリデン)ジアニリンにヨードトルエンを反応させて得た。得られた白色粉体について、マススペクトル(島津製作所)で分子量を測定した。CI−MS測定の結果は[図3]の通りであった。
【0041】
[図3]のCI−MS測定により、分子量709に相当する親ピ−クを検出して得られた白色紛体が[化3]式の構造であると同定した。
【0042】
〔比較例2〕
特開平7−126226号公報の実施例1の化合物を、その実施例に記載された方法で合成し、融点240〜244℃の淡黄白色の粉体として、[化4]式の化合物を得た。
【0043】
〔比較例3〕
特開平7−126226号公報の実施例3の化合物を、その実施例に記載された方法で合成して、融点160〜183℃の白色粉体として[化6]式の化合物を得た。
【0044】
【化8】
Figure 0004955877
【0045】
〔実施例3〕
本発明のポリアミノフルオレン誘導体と、比較例で合成したトリフェニルアミン4量体構造を有する類似の電荷輸送材料化合物について、DSC(示差走査熱量計、マックサイエンス製)によってガラス転移点を測定し、比較した。[化2]式の化合物の測定結果を[図4]に、[化5]式の化合物の測定結果を[図5]に、[化3]式の化合物の測定結果を[図6]に示した。
【0046】
[図6]に示したように、比較例1で合成した、特許第3079909号公報実施例1記載の化合物は、融解後の冷却時に結晶化を起こしてガラス転移を示さなかった。他の化合物については、DSCの測定結果よりガラス転移点を求めた。ガラス転移点測定結果は次の通りである。
【0047】
[化2]式の本発明実施例1の化合物 ガラス転移点 : 161℃
[化5]式の本発明実施例2の化合物 ガラス転移点 : 171℃
[化4]式の比較例2の化合物 ガラス転移点 : 142℃
[化6]式の比較例3の化合物 ガラス転移点 : 138℃
【0048】
以上の結果から本発明のポリアミノフルオレン誘導体が、比較例で合成した類似のトリフェニルアミン4量体群に比べて、高いガラス転移点を有することが明白である。
【0049】
[実施例4]
本発明のポリアミノフルオレン誘導体について窒素気流シリンダ−と電気炉、液体クロマトグラフィ−を用いて、分解耐熱性を測定した。比較のために非共役型の分子構造を有する類似の電荷輸送材料についても測定を行った。分解耐熱性は、30分間に化合物の1%が分解する最低温度で示した。
[化2]式の本発明実施例1の化合物 分解耐熱性 : 470℃
[化6]式の比較例3の化合物 分解耐熱性 : 279℃
【0050】
以上の結果から本発明のフルオレン構造を含む化合物が、特開平7−126226号公報実施例3記載の類似のヘテロな骨格構造を有する化合物と比べて、研著に高い分解耐熱性を有することが明白である。
【0051】
[実施例5]
本発明のポリアミノフルオレン誘導体について、表面分析計AC1(理研計器製)で仕事関数を測定し、一般的な正孔輸送材料と比較した。測定結果を次に示す。
[化2]式の本発明実施例1の化合物 仕事関数 : 5.4eV
[化4]式の比較例2の化合物 仕事関数 : 5.3eV
[化6]式の比較例3の化合物 仕事関数 : 5.4eV
この結果から、本発明の化合物は従来の正孔輸送材料と同程度の仕事関数を有しており、正孔輸送材料として適性であるといえる。
【0052】
〔実施例6〕
実施例1と同様な方法で、4,4’−(9−フルオレニリデン)ビス(N−(4'''−フェニルアミノ−4”−ビフェニリル)トルイジン)にヨードベンゼンを反応させて[化7]式の化合物を得た。
【0053】
【化9】
Figure 0004955877
【0054】
〔実施例7〕
実施例1と同様な方法で、4,4’−(9−フルオレニリデン)ビス(N−(4'''−フェニルアミノ−4”−ビフェニリル)アニリン)に1−ヨ−ドピレンを反応させ融点300℃以上の黄色粉体として、[化8]式の化合物を得た。
【0055】
【化10】
Figure 0004955877
【0056】
この化合物の赤外線吸収スペクトル(KBr錠剤法)を[図7]に示す。
【0057】
【発明の効果】
本発明のポリアミノフルオレン誘導体は分解耐熱性が高いため蒸着プロセスが行いやすく、有機電界発光素子用の材料として適している。またガラス転移点が従来の電荷輸送材料化合物より高いので、作製した機能膜が電気的・化学的に安定である。したがって、本発明の耐熱性電荷輸送材料を使用した耐熱性有機電界発光素子は、優れた環境安定性を発揮する。
【図面の簡単な説明】
【図1】[化2]式の実施例1の化合物を測定した13C−NMR図である。
【図2】[化5]式の実施例2の化合物を測定した赤外線吸収スペクトル図である。
【図3】[化3]式の比較例1の化合物を測定したCI−MS図である。
【図4】[化2]式の実施例1の化合物を測定したDSC図である。
【図5】[化5]式の実施例2の化合物を測定したDSC図である。
【図6】[化3]式の比較例1の化合物を測定したDSC図である。
【図7】[化8]式の実施例7の化合物を測定した赤外線吸収スペクトル図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compound excellent in heat resistance of a vapor deposition process, a charge transport material using the compound, and an organic electroluminescent element.
[0002]
[Prior art]
As compounds for electronic products, in particular, as charge transport materials for organic electroluminescent devices, compounds having various structures in which a molecule partially includes a triphenylamine tetramer structure have been proposed. (Japanese Patent Laid-Open Nos. 7-126226 and 7-26615)
[0003]
Further, a diphenylamine having a partial structure of fluorene has been proposed as a material for an organic electroluminescence device. (Patent No. 3079909)
[0004]
[Problems to be solved by the invention]
With the expansion of the application field of organic electroluminescent devices, heat resistance exceeding 100 ° C. has been required as the device performance of products (remaining important issues and practical technologies of organic LED devices, p4, Organic Electronics Materials Research Group, 1999), a compound having a glass transition point exceeding 140 ° C. is generally required to satisfy heat resistance exceeding 100 ° C.
[0005]
In the production of an organic electroluminescent element, since the deposition time can be shortened by raising the deposition temperature, the material compound is required to have high heat resistance during the deposition process. When the vapor deposition process is performed near the temperature at which the compound decomposes, a chemically uniform functional film cannot be produced, and the characteristics of the organic electroluminescent device are greatly deteriorated.
[0006]
The present invention provides a compound having a high glass transition point and high heat resistance during the vapor deposition process as a heat-resistant charge transport material, and also provides a heat-resistant organic electroluminescent device having excellent characteristics by using the material. The purpose is that.
[0007]
[Means for Solving the Problems]
As a result of searching for a compound that simultaneously satisfies the above two requirements, the present inventors have found that the compound represented by the general formula [1] has a high glass transition point exceeding 150 ° C. and is thermally stable. As a result, the present invention has been completed. That is, the present invention is a polyaminofluorene derivative represented by the general formula [1].
[0008]
[Chemical 3]
Figure 0004955877
[0009]
[Wherein Ar 1 and Ar 2 are each independently a substituted or unsubstituted carbocyclic aromatic ring group (having 6 or more carbon atoms), a substituted or unsubstituted heterocyclic aromatic ring group, or a substituted or unsubstituted group. A carbocyclic aliphatic ring group (5 or more carbon atoms constituting the ring) is represented. R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group (1 to 8 carbon atoms), an alkoxy group (1 to 8 carbon atoms), R 4 represents a hydrogen atom, a halogen atom, Alkyl group (1 to 8 carbon atoms), alkoxy group (1 to 8 carbon atoms), amino group, monoalkyl (1 to 4 carbon atoms) amino group, monoaryl (6 to 18 carbon atoms) amino group, dialkyl (carbon) C1-4) amino group or a diaryl (represents the number 6-18) amino group carbons, R 5 is a hydrogen atom, a halogen atom, an alkyl group (1-8 carbon atoms), an alkoxy group (1-8 carbon atoms), It represents an unsubstituted carbocyclic aromatic ring group or a carbocyclic aromatic ring group substituted with a dialkyl (C1-4) amino group or diaryl (C6-18) amino group. ]
[0010]
The present invention also relates to a heat-resistant charge transport material having a structure represented by the general formula [1], and further using the heat-resistant charge transport material. It is a light emitting element.
[0011]
In the polyaminofluorene derivative represented by the general formula [1] of the present invention, groups represented by Ar 1 and Ar 2 include the following groups. As the substituted or unsubstituted carbocyclic aromatic ring group, phenyl group, biphenylyl group, triphenylyl group, tetraphenylyl group, chlorophenyl group, nitrophenyl group, cyanophenyl group, methoxyphenyl group, tolyl group, xylyl group, Cumenyl group, mesityl group, pentalenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, acenaphthylenyl group, phenalenyl group, fluorenyl group, anthryl group, anthraquinonyl group, methylanthryl group, phenanthryl group, triphenylenyl group, pyrenyl group, Examples include a chrycenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a pentacenyl group, a tetraphenylenyl group, a hexaphenyl group, a hexacenyl group, a rubicenyl group, and a coronenyl group.
[0012]
Next, as the substituted or unsubstituted heterocyclic aromatic ring group, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, thiazolyl group, imidazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group , Pyridazinyl group, indolyl group, quinolyl group, isoquinolyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, carbazolyl group, acridinyl group, phenazinyl group, furfuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, phenoxazinyl group, benzothienyl group, Examples include a benzothiazolyl group, a benzoxazolyl group, a benzimidazolyl group, a methylpyridyl group, and a cyanopyridyl group.
[0013]
Examples of the substituted or unsubstituted carbocyclic aliphatic ring group include a cyclopentyl group, a cyclohexyl group, a norborenyl group, and an adamantyl group.
[0014]
In the general formula [1] of the polyaminofluorene derivative of the present invention, when at least one of the groups represented by Ar 1 and Ar 2 is an unsubstituted carbocyclic aromatic ring group (having 6 to 10 carbon atoms) It is preferable that at least one of R 1 , R 2 and R 3 is an alkyl group (1 to 8 carbon atoms) or an alkoxy group (1 to 8 carbon atoms), and among R 4 and R 5 It is preferable that at least one of is a diaryl (C6-C18) amino group.
[0015]
More preferred is a case where at least one of Ar 1 and Ar 2 in the general formula [1] is a substituted or unsubstituted carbocyclic aromatic ring group (having 11 to 18 carbon atoms).
[0016]
The tetramer of unsubstituted triphenylamine represented by the formula [Chemical Formula 2], which is a specific compound of the derivative represented by the general formula [1] of the present invention,
[0017]
[Formula 4]
Figure 0004955877
[0018]
Decomposition heat resistance has a high glass transition point of 161 ° C. while having a high temperature of 470 ° C. The formula [Chemical Formula 2] is exemplified in JP-A-7-126226, but there is no description about the synthesis method, physical properties, further decomposition heat resistance or glass transition point. About this high glass transition point, a diphenyl compound of triphenylamine containing a fluorene partial structure represented by the formula [3]
[0019]
[Chemical formula 5]
Figure 0004955877
[0020]
The glass transition point literature value (IEEE TRANSACTIONS ON ELECTRON DEVICES, 1302-1306, VOL.44, NO.8, AUGUST 1997) is a simple expression represented by the formula [4] that does not include the fluorene structure. A tetrameric compound of triphenylamine,
[0021]
[Chemical 6]
Figure 0004955877
[0022]
The glass transition point is 142 ° C., which is higher than the 145 ° C. of the pentamer.
[0023]
Furthermore, in the present invention, by replacing the phenyl group of the compound represented by the formula [Chemical Formula 2] with a substituted phenyl group, a carbocyclic aromatic ring group having a large number of carbon atoms, or a heterocyclic aromatic ring group, The transition point can be further increased.
[0024]
For example, the compound represented by [Chemical Formula 5] of the present invention, in which four phenyl groups of the compound represented by [Chemical Formula 2] are replaced with naphthyl groups, has a glass transition point of 171 ° C. An even higher glass transition point was exhibited.
[0025]
[Chemical 7]
Figure 0004955877
[0026]
The compound of the present invention can be synthesized by performing an Ullmann reaction. Furthermore, it can refine | purify by performing crystallization, adsorption | suction, and column chromatography, and can obtain a highly purified product.
[0027]
Specific compounds of the polyaminofluorene derivative represented by the general formula [1] of the present invention are shown in [Table 1] to [Table 3].
However, the compounds [Chemical Formula 2], [Chemical Formula 5], [Chemical Formula 8] to [Chemical Formula 13], [Chemical Formula 15] to [Chemical Formula 18], [Chemical Formula 20] to [Chemical Formula 33], and [Chemical Formula 35] to [Chemical Formula]. 37] and [Chemical 40] are taken as reference examples.
[0028]
[Table 1]
Figure 0004955877
[0029]
[Table 2]
Figure 0004955877
[0030]
[Table 3]
Figure 0004955877
[0031]
The work function of the polyaminofluorene derivative of the present invention is 5.1 to 5.6 eV, and has sufficient characteristics to be used as a charge transport material.
[0032]
The reason why the polyaminofluorene derivative of the present invention exhibits a high glass transition point that is significantly higher than that of a simple triphenylamine tetramer, and the compound of the present invention is significantly more thermally among the compounds having a hetero skeleton structure. The reason why it is stable is considered that the compound of the present invention has a fluorene structure. As a result, it can withstand high temperatures during the vapor deposition process, and an organic electroluminescent device can be easily produced. Moreover, since the glass transition point is high, the functional film formed as a charge transport material is stable. Further, when used in an organic electroluminescent device or an electrophotographic photosensitive member, it is possible to exhibit excellent stability in a high temperature environment or a heat generation environment.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
The production method and physical properties of the polyaminofluorene derivative of the present invention will be specifically described below with reference to examples.
In addition, Examples 1, 2, and 7 shall be read as Reference Examples 1, 2, and 7, respectively.
[0034]
【Example】
[Example 1]
8.4 g (10 mmol) of 4,4 ′-(9-fluorenylidene) bis (N- (4 ′ ″-phenylamino-4 ″ -biphenylyl) aniline), 10.2 g (50 mmol) of iodobenzene, anhydrous potassium carbonate 8 .3 g (60 mmol), copper powder 0.64 g (10 mmol), and tridecane 100 ml were mixed and refluxed under a nitrogen atmosphere for 10 hours, the reaction product was extracted with 120 ml of toluene, and the insoluble matter was filtered off. The filtrate was concentrated to dryness to obtain a crude product, which was purified by column chromatography using silica gel.The white powder obtained by the purification was 5.4 g, the yield was 47%, and the melting point was 186-220. ° C.
[0035]
About the obtained white powder, the chemical structure was identified by NMR. The measurement results were as shown in [FIG. 1] 13C-NMR.
[0036]
In 13C-NMR of [FIG. 1], 24 aromatic carbon peaks (120.03, 122.71, 123.20, 123.123) out of 26 peaks corresponding to 84 aromatic carbons constituting the compound. 97, 124.13, 124.21, 124.41, 125.20, 126.14, 127.16, 127.29, 127.51, 128.12, 128.83, 128.92, 129.13, 134.62, 139.77, 139.94, 145.91, 146.45, 146.58, 147.58, 151.40 ppm) and the 9th position aliphatic carbon peak (64.56 ppm) of fluorene was detected. did.
[0037]
Further, the results of elemental analysis of the obtained white powder were as follows.
Theoretical value (carbon 89.6%) (hydrogen 5.5%) (nitrogen 4.9%)
Measured value (carbon 89.5%) (hydrogen 5.6%) (nitrogen 4.4%)
By combining the above 13C-NMR and elemental analysis results, the structure of the formula [2] was identified.
[0038]
[Example 2]
In the same manner as in Example 1, 4,4 ′-(9-fluorenylidene) bis (N- (4 ′ ″-phenylamino-4 ″ -biphenylyl) aniline) was reacted with 1-iodonaphthalene to obtain a melting point of 184. A compound represented by the formula [5] was obtained as a pale yellowish white powder at 215 ° C.
[0039]
The infrared absorption spectrum (KBr tablet method) measurement result of this compound is shown in FIG.
[0040]
[Comparative Example 1]
The compound of the formula [Chemical Formula 3] described in Example 1 of Japanese Patent No. 3079909 was obtained by reacting 4,4 ′-(9-fluorenylidene) dianiline with iodotoluene in the same manner as in Example 1. . About the obtained white powder, the molecular weight was measured by mass spectrum (Shimadzu Corporation). The result of CI-MS measurement was as shown in FIG.
[0041]
By the CI-MS measurement of [FIG. 3], the white powder obtained by detecting the parent peak corresponding to the molecular weight 709 was identified as having the structure of [Chemical Formula 3].
[0042]
[Comparative Example 2]
The compound of Example 1 of JP-A-7-126226 was synthesized by the method described in that Example to obtain a compound of the formula [Chemical Formula 4] as a pale yellowish white powder having a melting point of 240 to 244 ° C. It was.
[0043]
[Comparative Example 3]
The compound of Example 3 of JP-A-7-126226 was synthesized by the method described in the Example to obtain a compound of the formula [6] as a white powder having a melting point of 160 to 183 ° C.
[0044]
[Chemical 8]
Figure 0004955877
[0045]
Example 3
For the polyaminofluorene derivative of the present invention and a similar charge transport material compound having a triphenylamine tetramer structure synthesized in Comparative Example, the glass transition point was measured by DSC (differential scanning calorimeter, manufactured by Mac Science), and compared. did. The measurement result of the compound of formula [2] is shown in [FIG. 4], the measurement result of the compound of formula [5] is shown in [FIG. 5], and the measurement result of the compound of formula [3] is shown in [FIG. 6]. Indicated.
[0046]
As shown in FIG. 6, the compound described in Example 1 of Japanese Patent No. 3079909 synthesized in Comparative Example 1 did not show glass transition due to crystallization upon cooling after melting. About other compounds, the glass transition point was calculated | required from the measurement result of DSC. The glass transition point measurement results are as follows.
[0047]
[Chemical Formula 2] Compound of the Example 1 of the present invention Glass transition point: 161 ° C.
[Chemical Formula 5] Compound of the present invention Example 2 having the formula Glass transition point: 171 ° C.
[Chemical Formula 4] Compound of Comparative Example 2 in Formula: Glass Transition Point: 142 ° C.
[Chemical Formula 6] Compound of Comparative Example 3 in Formula: Glass Transition Point: 138 ° C.
[0048]
From the above results, it is clear that the polyaminofluorene derivative of the present invention has a higher glass transition point than the similar triphenylamine tetramer group synthesized in the comparative example.
[0049]
[Example 4]
The decomposition heat resistance of the polyaminofluorene derivative of the present invention was measured using a nitrogen stream cylinder, an electric furnace, and liquid chromatography. For comparison, a similar charge transport material having a non-conjugated molecular structure was also measured. The decomposition heat resistance was shown at the lowest temperature at which 1% of the compound decomposes in 30 minutes.
[Chemical Formula 2] Compound of the present invention Example 1 Decomposition heat resistance: 470 ° C.
[Chemical Formula 6] Compound of Comparative Example 3 of formula Decomposition heat resistance: 279 ° C
[0050]
From the above results, the compound containing the fluorene structure of the present invention has significantly higher decomposition heat resistance than the compound having a similar hetero skeleton structure described in Example 3 of JP-A-7-126226. It is obvious.
[0051]
[Example 5]
The work function of the polyaminofluorene derivative of the present invention was measured with a surface analyzer AC1 (manufactured by Riken Keiki Co., Ltd.) and compared with a general hole transport material. The measurement results are shown below.
Compound of the formula of the present invention represented by the formula [Formula 2] Work function: 5.4 eV
[Chemical Formula 4] Compound of Comparative Example 2 of Formula Work Function: 5.3 eV
[Chemical Formula 6] Compound of Comparative Example 3 in Formula: Work Function: 5.4 eV
From this result, it can be said that the compound of the present invention has a work function comparable to that of a conventional hole transport material and is suitable as a hole transport material.
[0052]
Example 6
In the same manner as in Example 1, iodobenzene was reacted with 4,4 ′-(9-fluorenylidene) bis (N- (4 ′ ″-phenylamino-4 ″ -biphenylyl) toluidine). The compound of formula was obtained.
[0053]
[Chemical 9]
Figure 0004955877
[0054]
Example 7
In the same manner as in Example 1, 4,4 ′-(9-fluorenylidene) bis (N- (4 ′ ″-phenylamino-4 ″ -biphenylyl) aniline) was reacted with 1-iodopyrene, melting point 300 A compound of the formula [8] was obtained as a yellow powder having a temperature of 0 ° C. or higher.
[0055]
[Chemical Formula 10]
Figure 0004955877
[0056]
The infrared absorption spectrum (KBr tablet method) of this compound is shown in FIG.
[0057]
【Effect of the invention】
Since the polyaminofluorene derivative of the present invention has high decomposition heat resistance, it is easy to perform a vapor deposition process and is suitable as a material for an organic electroluminescence device. In addition, since the glass transition point is higher than that of the conventional charge transport material compound, the prepared functional film is electrically and chemically stable. Therefore, the heat-resistant organic electroluminescent element using the heat-resistant charge transport material of the present invention exhibits excellent environmental stability.
[Brief description of the drawings]
FIG. 1 is a 13C-NMR diagram obtained by measuring the compound of Example 1 of the formula [Chemical Formula 2].
FIG. 2 is an infrared absorption spectrum obtained by measuring the compound of Example 2 of the formula [Chemical Formula 5].
FIG. 3 is a CI-MS diagram obtained by measuring the compound of Comparative Example 1 of the formula [Chemical Formula 3].
FIG. 4 is a DSC diagram obtained by measuring the compound of Example 1 of the formula [Chemical Formula 2].
FIG. 5 is a DSC diagram obtained by measuring the compound of Example 2 of the formula [Chemical Formula 5].
FIG. 6 is a DSC diagram obtained by measuring the compound of Comparative Example 1 of the formula [Chemical Formula 3].
7 is an infrared absorption spectrum obtained by measuring the compound of Example 7 of the formula [Chemical Formula 8]. FIG.

Claims (7)

一般式[1]で表されるポリアミノフルオレン誘導体。
Figure 0004955877
〔式中、Ar、Arはそれぞれ独立に炭素環式芳香族環基(炭素数6以上)、複素環式芳香族環基または炭素環式脂肪族環基(環を構成する炭素数5以上)を表す。R、Rはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rはそれぞれ独立に、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rは水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rは水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)、無置換の炭素環式芳香族環基を表す。〕
A polyaminofluorene derivative represented by the general formula [1].
Figure 0004955877
[In the formula, Ar 1, Ar 2 are each independently carbon heterocyclic aromatic Hajime Tamaki (6 or more carbon atoms), multi-containing cyclic aromatic ring groups or carbon-containing cyclic aliphatic Hajime Tamaki (constituting a ring To represent 5 or more carbon atoms). R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, an alkyl group (1 to 8 carbon atoms) or an alkoxy group (1 to 8 carbon atoms), and R 3 each independently represents a halogen atom or an alkyl group. (1-8 carbon atoms), an alkoxy group (having 1 to 8 carbon atoms), R 4 is a hydrogen atom, a halogen atom, an alkyl group (1-8 carbon atoms), an alkoxy group (having 1 to 8 carbon atoms) , R 5 represents a hydrogen atom, a halogen atom, an alkyl group (1 to 8 carbon atoms), an alkoxy group (1 to 8 carbon atoms), or an unsubstituted carbocyclic aromatic ring group. ]
前記した一般式[1]中ArおよびArのうちの少なくとも一方が無置換の炭素環式芳香族環基(炭素数6〜10)であって、Rがアルキル基(炭素数1〜8)またはアルコキシ基(炭素数1〜8)である、請求項1記載のポリアミノフルオレン誘導体。In General Formula [1], at least one of Ar 1 and Ar 2 is an unsubstituted carbocyclic aromatic ring group (6 to 10 carbon atoms), and R 3 is an alkyl group (1 to 1 carbon atoms). The polyaminofluorene derivative according to claim 1, which is 8) or an alkoxy group (having 1 to 8 carbon atoms). 前記した一般式[1]中のArおよびArのうちの少なくとも一方が、炭素環式芳香族環基(炭素数11〜18)である請求項1〜請求項2のいずれかに記載のポリアミノフルオレン誘導体。At least one of Ar 1 and Ar 2 in the general formula [1] in that the can according to any one of claims 1 to 2 is a charcoal heterocyclic aromatic Hajime Tamaki (11 to 18 carbon atoms) Polyaminofluorene derivatives of 一般式[1]で表される構造を有することを特徴とする耐熱性電荷輸送材料。
Figure 0004955877
〔式中、Ar、Arはそれぞれ独立に炭素環式芳香族環基(炭素数6以上)、複素環式芳香族環基または炭素環式脂肪族環基(環を構成する炭素数5以上)を表す。R、Rはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rはそれぞれ独立に、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rは水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)を表し、Rは水素原子、ハロゲン原子、アルキル基(炭素数1〜8)、アルコキシ基(炭素数1〜8)、無置換の炭素環式芳香族環基を表す。〕
A heat-resistant charge transport material having a structure represented by the general formula [1].
Figure 0004955877
[In the formula, Ar 1, Ar 2 are each independently carbon heterocyclic aromatic Hajime Tamaki (6 or more carbon atoms), multi-containing cyclic aromatic ring groups or carbon-containing cyclic aliphatic Hajime Tamaki (constituting a ring To represent 5 or more carbon atoms). R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, an alkyl group (1 to 8 carbon atoms) or an alkoxy group (1 to 8 carbon atoms), and R 3 each independently represents a halogen atom or an alkyl group. (1-8 carbon atoms), an alkoxy group (having 1 to 8 carbon atoms), R 4 is a hydrogen atom, a halogen atom, an alkyl group (1-8 carbon atoms), an alkoxy group (having 1 to 8 carbon atoms) , R 5 represents a hydrogen atom, a halogen atom, an alkyl group (1 to 8 carbon atoms), an alkoxy group (1 to 8 carbon atoms), or an unsubstituted carbocyclic aromatic ring group. ]
前記した一般式[1]中ArおよびArのうちの少なくとも一方が無置換の炭素環式芳香族環基(炭素数6〜10)であって、Rがアルキル基(炭素数1〜8)またはアルコキシ基(炭素数1〜8)である、請求項4記載の耐熱性電荷輸送材料。In General Formula [1], at least one of Ar 1 and Ar 2 is an unsubstituted carbocyclic aromatic ring group (6 to 10 carbon atoms), and R 3 is an alkyl group (1 to 1 carbon atoms). The heat-resistant charge transport material according to claim 4, which is 8) or an alkoxy group (having 1 to 8 carbon atoms). 前記した一般式[1]中のArおよびArのうちの少なくとも一方が、置換もしくは無置換の炭素環式芳香族環基(炭素数11〜18)である請求項4〜請求項5のいずれかに記載の耐熱性電荷輸送材料。6. At least one of Ar 1 and Ar 2 in the general formula [1] is a substituted or unsubstituted carbocyclic aromatic ring group (having 11 to 18 carbon atoms) . The heat resistant charge transport material according to any one of the above. 請求項4〜6のいずれか一項に記載の耐熱性電荷輸送材料を用いたことを特徴とする耐熱性有機電界発光素子。A heat-resistant organic electroluminescent device using the heat-resistant charge transport material according to any one of claims 4 to 6.
JP2001301076A 2000-09-28 2001-09-28 Polyaminofluorene derivative Expired - Fee Related JP4955877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301076A JP4955877B2 (en) 2000-09-28 2001-09-28 Polyaminofluorene derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-296908 2000-09-28
JP2000296908 2000-09-28
JP2000296908 2000-09-28
JP2001301076A JP4955877B2 (en) 2000-09-28 2001-09-28 Polyaminofluorene derivative

Publications (2)

Publication Number Publication Date
JP2002179630A JP2002179630A (en) 2002-06-26
JP4955877B2 true JP4955877B2 (en) 2012-06-20

Family

ID=26600986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301076A Expired - Fee Related JP4955877B2 (en) 2000-09-28 2001-09-28 Polyaminofluorene derivative

Country Status (1)

Country Link
JP (1) JP4955877B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078961B2 (en) * 2002-11-21 2008-04-23 三菱化学株式会社 Bisaminophenylmethane compounds and charge transport materials, organic electroluminescent device materials and organic electroluminescent devices using the same
JP4905445B2 (en) * 2003-05-27 2012-03-28 株式会社デンソー Tertiary amine compound, organic EL device material and organic EL device
TW200517469A (en) * 2003-10-30 2005-06-01 Nissan Chemical Ind Ltd Charge-transporting compound, charge-transporting material, charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
US7807274B2 (en) * 2003-12-26 2010-10-05 Hodogaya Chemical Co., Ltd. Tetramine compound and organic EL device
US7365230B2 (en) 2004-02-20 2008-04-29 E.I. Du Pont De Nemours And Company Cross-linkable polymers and electronic devices made with such polymers
WO2005099312A2 (en) 2004-03-31 2005-10-20 E. I. Du Pont De Nemours And Company Triarylamine compounds for use as charge transport materials
JP5103727B2 (en) * 2005-11-16 2012-12-19 東ソー株式会社 Fluorene compound and organic EL device using the same
JP4765589B2 (en) * 2005-12-02 2011-09-07 東洋インキScホールディングス株式会社 Fluorene compound having carbazolyl group and use thereof
EP2299509B1 (en) 2008-05-16 2016-06-29 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
WO2010137601A1 (en) 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US8642190B2 (en) * 2009-10-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
TWI557113B (en) 2010-08-27 2016-11-11 半導體能源研究所股份有限公司 Fluorene derivative, organic compound, and light-emitting element, light-emitting device, and electronic device using the compound
WO2016052252A1 (en) * 2014-09-29 2016-04-07 日産化学工業株式会社 Charge-transporting varnish
JP7325731B2 (en) 2018-08-23 2023-08-15 国立大学法人九州大学 organic electroluminescence element
CN114751832B (en) * 2022-06-14 2022-10-04 吉林奥来德光电材料股份有限公司 Organic electroluminescent compound, preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220950B2 (en) * 1993-11-01 2001-10-22 保土谷化学工業株式会社 Benzidine compound
JP3194657B2 (en) * 1993-11-01 2001-07-30 松下電器産業株式会社 EL device
JPH07331238A (en) * 1994-06-15 1995-12-19 Matsushita Electric Ind Co Ltd Electroluminescent element
JPH083122A (en) * 1994-06-15 1996-01-09 Hodogaya Chem Co Ltd Hexaamine compound
JPH08292586A (en) * 1995-04-21 1996-11-05 Hodogaya Chem Co Ltd Electrophotographic photoreceptor
WO2001056091A2 (en) * 2000-01-28 2001-08-02 Siemens Aktiengesellschaft Charge transport material having an increased glass transition temperature and the use of said material

Also Published As

Publication number Publication date
JP2002179630A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP4955877B2 (en) Polyaminofluorene derivative
JP6855083B2 (en) Intermediates of deuterated aromatic compounds and methods for preparing deuterated aromatic compounds using them
JP6393657B2 (en) Organic electroluminescent element material, organic electroluminescent element, display device, and illumination device
KR20140000693A (en) Novel spirobifluorene compounds
KR20210065947A (en) Novel compounds and organic electroluminescent devices
KR101622821B1 (en) Organic compounds and organic electro luminescence device comprising the same
CA1171431A (en) Process for preparing arylamines
CN112079730B (en) Nitrogen-containing compound, and electronic element and electronic device using same
KR20150047858A (en) Organic compounds and organic electro luminescence device comprising the same
WO2020075769A1 (en) Organic electroluminescent element and electronic device using same
KR101561338B1 (en) Organic compounds and organic electro luminescence device comprising the same
JP4188587B2 (en) Bisphenylcyclohexane derivative
KR20170058579A (en) Organic compounds and organic electro luminescence device comprising the same
CN112940023A (en) Organic compound, application thereof and organic electroluminescent device adopting organic compound
KR101577121B1 (en) Organic compounds and organic electro luminescence device comprising the same
JP2020525497A (en) Organic compound and organic electroluminescent device containing the same
KR20170074649A (en) Organic compounds and organic electro luminescence device comprising the same
CN111303113B (en) Organic compound, electronic device, and electronic apparatus
US12063854B2 (en) Organic electroluminescence device and electronic apparatus using the same
WO2020027323A1 (en) Organic electroluminescent element and electronic device
KR101585303B1 (en) Organic lightingemitting compound and organic electroluminescent device using the same
JPWO2022118910A5 (en)
JP2002167365A (en) Bisphenylcyclohexane derivative
JPWO2022039106A5 (en)
JP2002053533A (en) Arylamine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Ref document number: 4955877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees