[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4954596B2 - Method for producing silicon carbide single crystal ingot - Google Patents

Method for producing silicon carbide single crystal ingot Download PDF

Info

Publication number
JP4954596B2
JP4954596B2 JP2006117646A JP2006117646A JP4954596B2 JP 4954596 B2 JP4954596 B2 JP 4954596B2 JP 2006117646 A JP2006117646 A JP 2006117646A JP 2006117646 A JP2006117646 A JP 2006117646A JP 4954596 B2 JP4954596 B2 JP 4954596B2
Authority
JP
Japan
Prior art keywords
silicon carbide
temperature
single crystal
crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006117646A
Other languages
Japanese (ja)
Other versions
JP2007290880A (en
Inventor
弘志 柘植
昇 大谷
正和 勝野
辰雄 藤本
正史 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006117646A priority Critical patent/JP4954596B2/en
Publication of JP2007290880A publication Critical patent/JP2007290880A/en
Application granted granted Critical
Publication of JP4954596B2 publication Critical patent/JP4954596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、電子材料の基板に利用される炭化珪素単結晶基板を作製するのに最適な炭化珪素単結晶インゴット及びその製造方法に関する。   The present invention relates to a silicon carbide single crystal ingot that is optimal for producing a silicon carbide single crystal substrate used for a substrate of an electronic material, and a method for manufacturing the same.

高熱伝導率を持ち、バンドギャップの大きい炭化珪素単結晶は、高温で用いられる電子材料や、高耐圧の求められる電子材料の基板として有用な材料である。炭化珪素単結晶の作製法の一つに昇華再結晶法(レーリー法)がある(非特許文献1)。昇華再結晶法では、原料部分の温度を炭化珪素が昇華する温度以上に加熱し、一方で、結晶成長を行う部分では昇華ガスが再結晶をする程度に原料部分よりも低温にして、結晶表面で再結晶を起こしながら単結晶の成長を行う。一般に、原料と結晶の温度差を適切に保つことで、炭化珪素結晶の成長が行われている。得られた炭化珪素単結晶は基板としての規格の形状にするために、研削、切断、研磨と言った加工が施され、電子材料の基板として利用される。   A silicon carbide single crystal having high thermal conductivity and a large band gap is a useful material as a substrate for electronic materials used at high temperatures and electronic materials that require high breakdown voltage. One method for producing a silicon carbide single crystal is a sublimation recrystallization method (Rayleigh method) (Non-patent Document 1). In the sublimation recrystallization method, the temperature of the raw material part is heated to a temperature higher than the temperature at which silicon carbide sublimates. A single crystal is grown while recrystallizing. In general, silicon carbide crystals are grown by appropriately maintaining the temperature difference between the raw material and the crystal. The obtained silicon carbide single crystal is subjected to processing such as grinding, cutting and polishing in order to obtain a standard shape as a substrate, and is used as a substrate for electronic materials.

結晶成長を行う際には、成長面が適度な凸形状となるようにすると単一のポリタイプからなる結晶が得られ易いと言う知見が得られている(非特許文献2)。昇華再結晶法を用いた結晶成長では、成長面の形状は近似的に、等温面で与えられる。つまり、もし、成長面上に温度が低い領域がある場合には、その部分で再結晶化が促進され、成長面上の温度が一定となるように成長面の形状が変化する。結晶成長面の中心部の温度を外周部に比べて低くすることで、中心部の成長を外周部に比べて促進し、中央部が盛り上がった凸形状の成長面とすることができる。   When performing crystal growth, it has been found that if a growth surface has an appropriate convex shape, a crystal composed of a single polytype can be easily obtained (Non-patent Document 2). In crystal growth using the sublimation recrystallization method, the shape of the growth surface is approximately given by an isothermal surface. That is, if there is a low temperature region on the growth surface, recrystallization is promoted at that portion, and the shape of the growth surface changes so that the temperature on the growth surface becomes constant. By making the temperature of the center part of the crystal growth surface lower than that of the outer peripheral part, the growth of the central part is promoted compared to the outer peripheral part, and a convex growth surface with a raised central part can be obtained.

成長面が凸形状となるようにするために中心部の温度を外周部に比べて低くして作製した円筒状の炭化珪素単結晶インゴットが均一な温度になった場合には、外周部には引張残留応力が発生し、中心部には圧縮残留応力が発生する。外周部に残留した引張応力のために、結晶成長後にインゴットの外周部から中心部に向かって割れが発生したり、成長後に割れが無かったとしても、インゴットを基板に加工する際に結晶の外周部に外部から力を加えると外周部に残留した引張応力と加工応力が加算的に働き、インゴットの外周部から中心部に向かって割れが発生したりすることがある。結晶に割れがある場合には、基板として利用することができないと言う問題がある。
Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) 146. Z. G. Herro, B. M. Epelbaum, M. Bickermann, P. Masri, A. Winnacker, J. Cry. Growth, 262 (2004) 105. I. Yonenaga, Physica B, 308-310 (2001) 1150. A. V. Samant, P. Pirouz, International Journal of Refractory Metals & Hard Materials, 16 (1998) 277.
When the cylindrical silicon carbide single crystal ingot produced with the temperature of the central part lower than that of the outer peripheral part so that the growth surface has a convex shape has a uniform temperature, Tensile residual stress is generated, and compressive residual stress is generated at the center. Even if cracks occur from the outer periphery of the ingot to the center after the crystal growth due to the tensile stress remaining on the outer periphery, or when there is no crack after the growth, the outer periphery of the crystal When a force is applied to the part from the outside, the tensile stress and the working stress remaining on the outer peripheral part work in an additive manner, and a crack may occur from the outer peripheral part to the central part of the ingot. When there is a crack in the crystal, there is a problem that it cannot be used as a substrate.
Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, 52 (1981) 146. ZG Herro, BM Epelbaum, M. Bickermann, P. Masri, A. Winnacker, J. Cry. Growth, 262 (2004) 105. I. Yonenaga, Physica B, 308-310 (2001) 1150. AV Samant, P. Pirouz, International Journal of Refractory Metals & Hard Materials, 16 (1998) 277.

本発明では、種結晶を用いた改良型レーリー法を用いて成長した、割れが発生し難い炭化珪素単結晶インゴットとその製造方法を提供することを目的とする。   An object of the present invention is to provide a silicon carbide single crystal ingot which is grown by using an improved Rayleigh method using a seed crystal and hardly generates cracks, and a method for producing the same.

本発明は、前記課題を解決するために、インゴット外周部分の周方向への残留応力が-3.5MPa以上35MPa以下の圧縮応力である炭化珪素単結晶インゴットとすることにより、成長後に昇華再結晶温度から常温まで冷却した後に割れが発生し難い炭化珪素単結晶インゴットを得る。また、このように、インゴット外周部分の残留応力を制御した炭化珪素単結晶インゴットを用いることにより、インゴットを基板に加工する際に、インゴットの外周部にかかる加工応力と残留応力を加え合わせた応力の値を破壊応力に比べて小さくすることで、割れが発生し難い炭化珪素単結晶インゴットとなる。   In order to solve the above problems, the present invention provides a silicon carbide single crystal ingot having a compressive stress of −3.5 MPa or more and 35 MPa or less of the residual stress in the circumferential direction of the outer periphery of the ingot. A silicon carbide single crystal ingot that hardly generates cracks after cooling to room temperature is obtained. In addition, by using a silicon carbide single crystal ingot in which the residual stress at the outer periphery of the ingot is controlled as described above, when the ingot is processed into a substrate, the stress obtained by adding the processing stress applied to the outer periphery of the ingot and the residual stress. By making this value smaller than the fracture stress, a silicon carbide single crystal ingot that is less prone to cracking is obtained.

また、前記圧縮応力が0MPa超35MPa以下である炭化珪素単結晶インゴットとすることがより好ましい。
また、前記炭化珪素単結晶インゴットの口径が40〜310mmであることが好ましい。
上記インゴットを切断、研磨することで割れの無い炭化珪素単結晶基板が得られる。
More preferably, the silicon carbide single crystal ingot has a compressive stress of more than 0 MPa and not more than 35 MPa.
The diameter of the silicon carbide single crystal ingot is preferably 40 to 310 mm.
By cutting and polishing the ingot, a silicon carbide single crystal substrate having no cracks can be obtained.

また、上記のようなインゴットを得るためには、坩堝内に炭化珪素原料と炭化珪素種結晶を装填して炭化珪素原料を加熱する昇華再結晶法により炭化珪素単結晶インゴットを製造する方法であって、炭化珪素単結晶の成長が終了してからの冷却過程において、得られたインゴットの外周部が1100℃のときに、インゴットの中心軸に垂直な面上にある中心部の温度T C と同一面の外周上にある外周部の温度T E との温度差ΔT=T E −T C が-50℃以上5℃以下の範囲になるようにすることを特徴とする炭化珪素単結晶インゴットの製造方法とする。 Further, in order to obtain the ingot as described above, a silicon carbide single crystal ingot is manufactured by a sublimation recrystallization method in which a silicon carbide raw material and a silicon carbide seed crystal are charged in a crucible and the silicon carbide raw material is heated. In the cooling process after the growth of the silicon carbide single crystal is completed, when the outer periphery of the obtained ingot is 1100 ° C., the temperature T C of the central portion on the plane perpendicular to the central axis of the ingot is The temperature difference ΔT = T E −T C with the temperature T E of the outer peripheral portion on the outer periphery of the same surface is made to be in the range of −50 ° C. to 5 ° C. Let it be a manufacturing method.

そして、前記冷却過程におけるインゴット外周部の温度が昇華再結晶温度から転位移動可能温度までの温度域、具体的には、2400〜1100℃の温度域となるようにするのが好ましい。なお、本発明において単結晶成長後の冷却過程とは、結晶成長を行うために加熱を行っている誘導加熱電流を減少させ始めた後から、単結晶が常温に冷却されるまでの間のいずれかを指すものとする。   And it is preferable that the temperature of the outer periphery of the ingot in the cooling process is in the temperature range from the sublimation recrystallization temperature to the dislocation transferable temperature, specifically in the temperature range of 2400 to 1100 ° C. In the present invention, the cooling process after single crystal growth refers to any of the period from the start of reducing the induction heating current for heating for crystal growth until the single crystal is cooled to room temperature. It shall be pointed to.

さらに、前記中心部の温度は外周部に比べて0℃超50℃以下高いことがより好ましい。
また、前記インゴットの冷却速度を6〜20℃/分とすることで、インゴットの中心部と外周部の温度差を設けることが好ましい。
Furthermore, it is more preferable that the temperature of the central portion is higher than 0 ° C. and 50 ° C. or lower as compared with the outer peripheral portion.
Moreover, it is preferable to provide a temperature difference between the central portion and the outer peripheral portion of the ingot by setting the cooling rate of the ingot to 6 to 20 ° C./min.

この発明によれば、種結晶を用いた改良型レーリー法を用いて、ポリタイプの安定した成長を行うと同時に、炭化珪素単結晶の外周部分の周方向に残留する応力を制御し、好ましくは圧縮応力とすることで、単結晶インゴットが割れることを防ぐことができ、特に大口径のインゴットの製造歩留まり及びこのインゴットから得られる炭化珪素単結晶基板の製造歩留まりを大幅に改善することができる。   According to the present invention, the improved Rayleigh method using the seed crystal is used to perform stable growth of the polytype and at the same time control the stress remaining in the circumferential direction of the outer peripheral portion of the silicon carbide single crystal, preferably By setting the compressive stress, it is possible to prevent the single crystal ingot from cracking, and in particular, the production yield of a large-diameter ingot and the production yield of a silicon carbide single crystal substrate obtained from the ingot can be greatly improved.

昇華再結晶法は、2000℃を超える高温において炭化珪素粉末を昇華させ、その昇華ガスを低温部に再結晶化させることにより、炭化珪素結晶を製造する方法である。炭化珪素単結晶からなる種結晶を用いて、炭化珪素単結晶を製造する方法は、特に改良レーリー法と呼ばれ(非特許文献1)、バルク状の炭化珪素単結晶の製造に利用されている。改良レーリー法では、種結晶を用いているため結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を10Paから15kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。   The sublimation recrystallization method is a method for producing a silicon carbide crystal by sublimating silicon carbide powder at a high temperature exceeding 2000 ° C. and recrystallizing the sublimation gas to a low temperature part. A method of manufacturing a silicon carbide single crystal using a seed crystal composed of a silicon carbide single crystal is called an improved Rayleigh method (Non-Patent Document 1), and is used for manufacturing a bulk silicon carbide single crystal. . The modified Rayleigh method uses a seed crystal to control the nucleation process of the crystal, and the atmosphere pressure is controlled from about 10 Pa to 15 kPa with an inert gas to control the crystal growth rate with good reproducibility. it can.

改良レーリー法の原理を図1を用いて説明する。種結晶となる炭化珪素単結晶と原料となる炭化珪素結晶粉末(通常、アチソン(Acheson)法で作製された研磨材を洗浄・前処理したものが使用される)は、坩堝(通常黒鉛)の中に収納され、アルゴン等の不活性ガス雰囲気中(13.3Pa〜13.3kPa)で、原料を昇華させるために2000℃以上に加熱される。この際、原料粉末に比べ、種結晶がやや低温になるように温度勾配が設定される。原料は、昇華後、濃度勾配(温度勾配により形成される)により種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。   The principle of the improved Rayleigh method will be described with reference to FIG. The silicon carbide single crystal used as a seed crystal and the silicon carbide crystal powder used as a raw material (usually used after cleaning and pretreatment of an abrasive prepared by the Acheson method) are used for crucibles (usually graphite). It is stored in and heated to 2000 ° C. or higher in order to sublimate the raw material in an inert gas atmosphere such as argon (13.3 Pa to 13.3 kPa). At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal.

炭化珪素単結晶の成長は2000℃を越す高温で行われており、成長中や成長後の結晶内部の温度を直接測ることが難しいために、数値計算を用いて結晶内部の温度分布を調べた。具体的には、高周波誘導加熱装置を利用して黒鉛坩堝を加熱した際の黒鉛坩堝内部の温度分布を有限要素法を用いて数値計算した。誘導加熱のための周波数は7kHzとし、適切な一定の加熱電力を用いた場合のジュール熱による発熱を計算し、この発熱量を基に熱伝導方程式から黒鉛坩堝内部の温度分布を計算した。計算を行った系を図2に示す。   Since the growth of silicon carbide single crystals is performed at a high temperature exceeding 2000 ° C., it is difficult to directly measure the temperature inside the crystal during or after growth. Therefore, the temperature distribution inside the crystal was investigated using numerical calculation. . Specifically, the temperature distribution inside the graphite crucible when the graphite crucible was heated using a high frequency induction heating apparatus was numerically calculated using a finite element method. The frequency for induction heating was set to 7 kHz, and the heat generation due to Joule heat when an appropriate constant heating power was used was calculated. Based on this heat generation amount, the temperature distribution inside the graphite crucible was calculated from the heat conduction equation. Figure 2 shows the calculated system.

この計算では、次の仮定をして計算の簡単化を図った。(1)昇華再結晶過程については考慮していない。つまり、原料の炭化珪素粉末が昇華する際の吸熱、炭化珪素単結晶上で再結晶する際の発熱は無視した。(2)計算に用いた物性値は軸対称性を仮定しており、結晶の異方性は考慮していない。(3)結晶成長に伴う物性値の変化を無視した。つまり、成長中に原料の炭化珪素が炭化したり、断熱材が劣化したりすることに伴う、熱伝導率等の物性値の変化を考慮していない。(4)成長した炭化珪素単結晶の形状を円柱とした。つまり、実際の成長で生じる、成長面の凹凸は無視した。   In this calculation, the following assumptions were made to simplify the calculation. (1) The sublimation recrystallization process is not considered. That is, heat absorption when the raw material silicon carbide powder sublimated and heat generation when recrystallizing on a silicon carbide single crystal were ignored. (2) The physical properties used in the calculations are assumed to be axially symmetric and do not take account of crystal anisotropy. (3) Ignored the change of physical properties with crystal growth. That is, changes in physical properties such as thermal conductivity due to the carbonization of the raw material silicon carbide or the deterioration of the heat insulating material during growth are not taken into consideration. (4) The shape of the grown silicon carbide single crystal was a cylinder. In other words, the unevenness of the growth surface that occurred during actual growth was ignored.

今回の計算では、炭化珪素単結晶内部の温度分布の変化の傾向を調べることが目的であるため、これらの仮定をおいても本発明に関する十分な考察が行える。計算に用いた物性値を表1に示す。   Since the purpose of this calculation is to examine the tendency of the temperature distribution inside the silicon carbide single crystal, the present invention can be sufficiently considered even with these assumptions. Table 1 shows the physical property values used for the calculation.



Figure 0004954596
Figure 0004954596

結晶成長終了時の黒鉛坩堝内部の温度分布を求めるために、高周波加熱電流をI(A)として、坩堝の中に高さ35mmの円筒状の結晶がある場合の定常状態の温度分布を計算した。次に、結晶成長終了時以降の冷却中の温度分布を調べるために、この定常状態から、高周波加熱電流を時間に比例して減少させた場合の黒鉛坩堝内部の温度分布の変化の様子を計算した。ここでは、高周波加熱電流をI(A)から0(A)まで減少させる時間を0、1、4、8時間とした場合について計算した。   In order to determine the temperature distribution inside the graphite crucible at the end of crystal growth, the high-frequency heating current was set to I (A), and the steady-state temperature distribution was calculated when there was a cylindrical crystal with a height of 35 mm in the crucible. . Next, in order to investigate the temperature distribution during cooling after the end of crystal growth, the state of the temperature distribution inside the graphite crucible when the high-frequency heating current is decreased in proportion to time from this steady state is calculated. did. Here, the calculation was performed for the cases where the time for reducing the high-frequency heating current from I (A) to 0 (A) was 0, 1, 4, and 8 hours.

計算結果の例として、黒鉛坩堝内部の温度の等高線図を図2に示す。図2では、軸対称性を利用して、中心軸から片側部分の坩堝内部の等温線図を示した。   As an example of the calculation results, a contour map of the temperature inside the graphite crucible is shown in FIG. FIG. 2 shows an isotherm diagram inside the crucible at one side from the central axis by utilizing axial symmetry.

結晶成長を行う際には成長結晶表面の中心部の温度を低くし、成長面が凸形状を持つようにすると単一のポリタイプからなる結晶が得られ易いと言う知見がある(非特許文献2)。結晶の中心部が低温で、外周部分が高温の結晶が均一な温度に冷却された場合、外周部分が中心部分に比べて収縮し、外周部分の周方向に残留引張応力が発現する。この引張応力に起因して、単結晶が成長後に割れたり、結晶を基板に加工する際に、結晶の外周部から中心部に向かって割れが発生したりすることがあると言う問題がある。   When crystal growth is performed, there is a finding that a crystal composed of a single polytype can be easily obtained by lowering the temperature at the center of the surface of the grown crystal so that the growth surface has a convex shape (non-patent document). 2). When a crystal having a low temperature in the center portion and a high temperature in the outer peripheral portion is cooled to a uniform temperature, the outer peripheral portion contracts compared to the central portion, and a residual tensile stress appears in the circumferential direction of the outer peripheral portion. Due to this tensile stress, there is a problem that the single crystal may be cracked after growth, or when the crystal is processed into a substrate, cracks may occur from the outer peripheral portion to the central portion of the crystal.

本発明では、結晶の中心部と外周部の温度差をΔT(温度差)= TE(外周部)−TC(中心部)として、冷却中にΔTが正の場合には冷却後に外周部分の周方向に引張応力が、冷却中にΔTが負の場合には冷却後に外周部の周方向に圧縮応力が、ΔTの大きさに比例して発生すると考え、ΔTを外周部分の周方向に残留する応力を見積もる指標とした。また、負の圧縮応力は引張応力に対応し、0の圧縮応力は無応力の状態である。 In the present invention, the outer peripheral portion of the temperature difference between the center portion and the peripheral portion of the crystal as a [Delta] T (temperature difference) = T E (outer peripheral portion) -T C (center), after cooling in the case [Delta] T is positive during cooling When the tensile stress is in the circumferential direction and ΔT is negative during cooling, it is considered that the compressive stress is generated in the circumferential direction of the outer periphery after cooling in proportion to the magnitude of ΔT. It was used as an index for estimating the residual stress. Negative compressive stress corresponds to tensile stress, and zero compressive stress is no stress.

図2から分かるように、結晶内部の温度は場所により異なるが、本発明では、C点とE点の温度を中心部と外周部の代表的な温度と考え、計算から得られたそれぞれの温度を用いてΔTを計算した。C点は、結晶の中心軸上にあり、成長した炭化珪素単結晶の高さの中点である。E点は、結晶の外周上にあり、成長した炭化珪素単結晶の高さの中点である。   As can be seen from FIG. 2, the temperature inside the crystal varies depending on the location, but in the present invention, the temperatures at the points C and E are considered as typical temperatures at the center and the outer periphery, and the respective temperatures obtained from the calculation are calculated. Was used to calculate ΔT. Point C is on the central axis of the crystal and is the midpoint of the height of the grown silicon carbide single crystal. Point E is on the outer periphery of the crystal and is the midpoint of the height of the grown silicon carbide single crystal.

炭化珪素の塑性変形が可能な温度は1100℃以上と見積もられている(非特許文献3)。温度が高い方が、塑性変形を引き起こす転位の移動は起こり易い。このことから、結晶の温度が高い状態でΔTを負とすることが、熱歪分布を変化させ、常温に冷却後の残留応力分布を変化させるためには有効である。   The temperature at which plastic deformation of silicon carbide is possible is estimated to be 1100 ° C. or higher (Non-patent Document 3). The higher the temperature, the easier the movement of dislocations that causes plastic deformation. For this reason, it is effective to make ΔT negative when the temperature of the crystal is high in order to change the thermal strain distribution and change the residual stress distribution after cooling to room temperature.

炭化珪素の破壊応力は、結晶系や温度、引張り速度による違いはあるものの、1100℃で100〜150MPaと見積もられており、その値は温度が低くなるにつれて大きくなる(非特許文献4)。このことから、結晶成長終了後の高温から冷却してくるプロセスにおいて、残留引張応力が100〜150MPaより大きいと冷却中に割れが発生すると考えられる。   The fracture stress of silicon carbide is estimated to be 100 to 150 MPa at 1100 ° C., although there are differences depending on the crystal system, temperature, and tensile speed, and the value increases as the temperature decreases (Non-patent Document 4). From this, in the process of cooling from a high temperature after completion of crystal growth, it is considered that cracking occurs during cooling when the residual tensile stress is larger than 100 to 150 MPa.

一般に、温度差があるときに無応力の等方的な円筒が、均一な温度になった場合に生じる円筒最外周部の円周方向の圧縮応力は、中心と外周の温度差がΔTでその変化が動径方向に線形である場合には、下記式(1)のように書ける。
圧縮応力= -α×E×ΔT/3 (α:熱線膨張係数、E:縦弾性係数) ・・・(1)
最外周から内側に入るに従って、円周方向の圧縮応力は線形に減少し、半径の半分の位置で0となる。さらに半径の半分の内側に入るに従って、円周方向の引張応力が線形に増加し、中心部において引張応力の絶対値は最大となる。その絶対値は最外周部分での圧縮応力の絶対値と等しくなる。
In general, the compressive stress in the circumferential direction at the outermost circumference of a cylinder that occurs when an isotropic cylinder with no stress is at a uniform temperature when there is a temperature difference is the difference in temperature between the center and the outer circumference of ΔT. When the change is linear in the radial direction, it can be written as the following equation (1).
Compressive stress = -α x E x ΔT / 3 (α: Thermal expansion coefficient, E: Longitudinal elastic modulus) (1)
As it goes inward from the outermost periphery, the circumferential compressive stress decreases linearly and becomes zero at half the radius. Further, as the inner half of the radius is entered, the tensile stress in the circumferential direction increases linearly, and the absolute value of the tensile stress becomes maximum at the center. Its absolute value is equal to the absolute value of the compressive stress at the outermost periphery.

本発明では、インゴットの中心部と最外周部分の温度を基に温度差を計算し、最外周部分での応力を求めている。また、中心部と外周部の温度差が線形に変化していることを仮定しているが、実際の坩堝の中においてもそれから大きくずれることはない。本発明では、成長したインゴットの加工に通常必要となる外周部分である、中心から半径の80%より外側の領域をインゴットの外周部分とし、その領域での応力の様子を表す指標として、最外周部分の応力の値を用いた。   In the present invention, the temperature difference is calculated based on the temperatures of the center portion and the outermost peripheral portion of the ingot, and the stress at the outermost peripheral portion is obtained. In addition, although it is assumed that the temperature difference between the central part and the outer peripheral part changes linearly, it does not deviate greatly in the actual crucible. In the present invention, the outer peripheral portion that is usually required for processing of the grown ingot, the region outside 80% of the radius from the center is the outer peripheral portion of the ingot, and an index representing the state of stress in that region is used as the outermost peripheral portion. The stress value of the part was used.

以下、数値計算から得られた坩堝内部の温度分布を基に作成した図3、図4の説明を行いながら、本発明の詳細について述べる。
図3では、横軸をTC(結晶中心部の温度)、縦軸をΔTとして、誘導加熱電流を0(A)にするまでの時間を変化させた場合の、TCとΔTをグラフに描いた。結晶成長終了後に加熱電流を下げると、TCが低下する。つまり、横軸の負の方向に向かってTCが低下する。図3(a)は誘導加熱コイルに流す電流を0(A)にするまでの時間が0時間、図3(b)は1時間、図3(c)は4時間、図3(d)は8時間とした場合である。
Hereinafter, the details of the present invention will be described with reference to FIG. 3 and FIG. 4 created based on the temperature distribution inside the crucible obtained from the numerical calculation.
In Figure 3, the horizontal axis T C (temperature of the crystal center), the vertical axis [Delta] T, in the case where the induction heating current is varied the time to the 0 (A), the T C and [Delta] T in the graph Painted. When the heating current is lowered after the completion of crystal growth, T C decreases. That is, TC decreases toward the negative direction of the horizontal axis. Fig. 3 (a) shows the time until the current flowing through the induction heating coil is 0 (A) is 0 hour, Fig. 3 (b) is 1 hour, Fig. 3 (c) is 4 hours, Fig. 3 (d) is This is the case for 8 hours.

図3(c)の場合には、TCが1250℃程度に低下するまではΔTが正であり、Tcが1250℃より低い温度ではΔTが負となりながらTCが低下していく。加熱電流が0(A)となるときにはTCは550℃程度で、ΔTが負の方向に最も大きくなる。その後、結晶は自然冷却され、ΔTは0℃に近づいていく。図3から、誘導加熱コイルに流す電流を0(A)にするまでの時間を短くした方が、冷却中のΔTの大きさが負の方向に大きくなることが分かる。 In the case of FIG. 3 (c), is positive ΔT is until T C is reduced to about 1250 ° C., Tc is lowered is T C while becoming ΔT is negative at temperatures below 1250 ° C.. When the heating current is 0 (A), T C is about 550 ° C., and ΔT is greatest in the negative direction. Thereafter, the crystals are naturally cooled and ΔT approaches 0 ° C. From FIG. 3, it can be seen that if the time until the current flowing through the induction heating coil is reduced to 0 (A) is shortened, the magnitude of ΔT during cooling increases in the negative direction.

図3(a)〜(d)にあるように、結晶成長終了時にはΔTが正である。これは、成長面を凸形状とするために、黒鉛坩堝の周囲を誘導加熱により加熱すると同時に黒鉛坩堝の上部に断熱材の無い領域を形成して、黒鉛坩堝の上部から放熱することで、成長を行う単結晶の中心部分の温度が外周に比べて低くするような温度分布としているためである。   As shown in FIGS. 3 (a) to (d), ΔT is positive at the end of crystal growth. In order to make the growth surface convex, the periphery of the graphite crucible is heated by induction heating, and at the same time, a region without a heat insulating material is formed at the top of the graphite crucible, and heat is released from the top of the graphite crucible. This is because the temperature distribution is such that the temperature of the central portion of the single crystal to be lowered is lower than that of the outer periphery.

図3の結果から、冷却時間を短くした場合には、誘導加熱による黒鉛坩堝での発熱量が急速に小さくなり、黒鉛坩堝が坩堝内部の単結晶に比べて先に冷却されるため、単結晶外周部の温度が下がり、ΔTが負の方向に変化すると考えられる。図3から、冷却方法を変えることで、冷却時のΔTを変えることができることが分かる。   From the results shown in FIG. 3, when the cooling time is shortened, the amount of heat generated in the graphite crucible by induction heating is rapidly reduced, and the graphite crucible is cooled earlier than the single crystal inside the crucible. It is considered that the temperature at the outer peripheral portion decreases and ΔT changes in the negative direction. FIG. 3 shows that ΔT during cooling can be changed by changing the cooling method.

炭化珪素単結晶を等方的な材料と仮定し、中心から外周に向かって温度が線形に変化していると仮定して、図3(b)の結果から、ΔTを-20℃と見積もった場合、結晶が等温になった場合に、外周部にかかる圧縮応力の値を前述の式(1)に基づいて見積もると、14MPaとなる。この計算では、炭化珪素の縦弾性係数を450GPa、熱線膨張係数を4.6×10-6/℃とした。結晶内部全体では応力が釣り合っているため、結晶の中心部では同じ大きさ(14MPa)の引張応力が発生しているが、この値は破壊応力である100MPa程度(非特許文献4)に比べて小さく、このΔTにより結晶が割れることは無い。 Assuming that the silicon carbide single crystal is an isotropic material and assuming that the temperature changes linearly from the center to the outer periphery, ΔT was estimated to be -20 ° C from the results in Fig. 3 (b). In this case, when the crystal becomes isothermal, the value of the compressive stress applied to the outer peripheral portion is estimated based on the above-described equation (1), and is 14 MPa. In this calculation, the longitudinal elastic modulus of silicon carbide was 450 GPa and the thermal expansion coefficient was 4.6 × 10 −6 / ° C. Since the stress is balanced throughout the crystal, tensile stress of the same magnitude (14 MPa) is generated at the center of the crystal, but this value is about 100 MPa (non-patent document 4), which is the fracture stress. The crystal is not broken by this ΔT.

以上の結果から、結晶成長時はΔTを正とし、冷却時には転位が移動可能な温度領域において、ΔTを正の小さい値もしくは負の状態として、常温まで結晶を低下させる方法の一つとして、冷却速度を制御する方法を見出した。   From the above results, as a method of lowering the crystal to room temperature, ΔT is positive during crystal growth and ΔT is a small positive value or negative state in the temperature range where dislocations can move during cooling. We found a way to control the speed.

本発明では、この方法により、インゴット外周部に残留する応力を制御し、冷却後に割れが発生し難いものとし、また、インゴット外周部分の残留応力を制御した炭化珪素単結晶インゴットを用いることにより、インゴットを基板に加工する際に、インゴットの外周部にかかる引張成分を持つ実質的な応力である、加工応力と残留応力を加え合わせた応力を破壊応力に比べて小さくし、割れが発生し難いものとする結晶の作製方法とした。   In the present invention, by this method, the stress remaining in the outer periphery of the ingot is controlled, cracking is less likely to occur after cooling, and by using the silicon carbide single crystal ingot in which the residual stress in the outer periphery of the ingot is controlled, When processing an ingot into a substrate, the stress combined with the processing stress and residual stress, which is a substantial stress with a tensile component on the outer periphery of the ingot, is reduced compared to the fracture stress, and cracking is unlikely to occur. It was set as the manufacturing method of the crystal to be made.

本発明者は、数値計算と様々な冷却条件で実験を行った結果から、単結晶成長後の冷却時のΔTが-50℃未満になると結晶が割れ易くなることを、また、ΔTが5℃より大きいと、外周部に残留する応力と、加工時に加える引張成分を持つ加工応力と加算的な効果を示し、結晶に割れが発生し易いことを見出した。これらのことから、ΔTの好適値は-50℃≦ΔT≦5℃であることを見出した。   The present inventor, from the results of numerical calculations and experiments conducted under various cooling conditions, shows that when ΔT during cooling after single crystal growth is less than −50 ° C., the crystal is easily broken, and ΔT is 5 ° C. If it is larger, it shows an additive effect with the stress remaining in the outer peripheral portion and the processing stress having a tensile component applied at the time of processing, and it has been found that cracks are likely to occur in the crystal. From these, it was found that a preferable value of ΔT is −50 ° C. ≦ ΔT ≦ 5 ° C.

以上から、ΔTに基づき外周部に残留する応力を見積もったところ、周方向への残留応力が-3.5MPa以上35MPa以下の圧縮応力であることが好適であることを見出した。
ヤング(Young)率を基に、この35MPaの圧縮応力を格子歪として見積もると、格子間距離をd、圧縮応力による格子間距離の変化量をΔdとして(Δd)/dが7.8×10-5程度の変化に対応しており、この格子歪はX線回折等の解析技術を用いて測定できる。
From the above, when the residual stress in the outer peripheral portion was estimated based on ΔT, it was found that the residual stress in the circumferential direction is preferably a compressive stress of −3.5 MPa to 35 MPa.
Based on the Young's modulus, this 35 MPa compressive stress is estimated as the lattice strain, and when the interstitial distance is d and the change in the interstitial distance due to the compressive stress is Δd, (Δd) / d is 7.8 × 10 −5 This lattice strain can be measured using analytical techniques such as X-ray diffraction.

中心から側面にかけて温度が線形に変化していると仮定した場合には、ΔTが-50℃のときに中心部に働く引張応力は、前述の式(1)に基づき35MPaと見積もることができる。この引張応力は破壊応力に比べると小さく、このΔTが結晶に割れを引き起こすことはない。   Assuming that the temperature changes linearly from the center to the side, the tensile stress acting on the center when ΔT is −50 ° C. can be estimated as 35 MPa based on the above equation (1). This tensile stress is small compared to the fracture stress, and this ΔT does not cause cracks in the crystal.

同様にして、中心から側面にかけて温度が線形に変化していると仮定した場合には、ΔTが5℃のときに外周部に働く引張応力は、前述の式(1)に基づき3.5MPaと見積もることができる。この引張応力は破壊応力に比べると小さく、このΔTが結晶に割れを引き起こすことはない。   Similarly, when it is assumed that the temperature changes linearly from the center to the side, the tensile stress acting on the outer periphery when ΔT is 5 ° C. is estimated to be 3.5 MPa based on the above formula (1). be able to. This tensile stress is small compared to the fracture stress, and this ΔT does not cause cracks in the crystal.

図3から加熱電流を0にするまでに1時間以上かけた場合(図3(b))、ΔTは-50℃以上となるが、これ以上急速に加熱電流を減少させた場合(図3(a))、冷却中のΔTが-50℃未満となり、結晶に割れが発生し易くなる。このことから、加熱電流を0にするまでに1時間以上かけることが好ましい。   When it takes 1 hour or more to set the heating current to 0 from Fig. 3 (Fig. 3 (b)), ΔT is -50 ° C or more, but when the heating current is decreased more rapidly (Fig. 3 ( a)) ΔT during cooling is less than −50 ° C., and the crystal is liable to crack. For this reason, it is preferable to take one hour or more to bring the heating current to zero.

図3から、誘導加熱電流を8時間かけて0にした場合(図3(d))には、転位が移動し易い1100℃以上の高温の領域でΔTが5℃より大きく、結晶外周部に引張残留応力が発生し、インゴットの状態、もしくは、インゴットを基板に加工する際に割れが発生し易いが、4時間の場合(図3(c))には、転位が移動し易い1100℃以上の高温の領域でΔTを上記の好適な範囲である5℃以下にして冷却できる。このことから、本発明の効果を得るためには、4時間以下で加熱電流を0にすることが好ましい。   From FIG. 3, when the induction heating current is reduced to 0 over 8 hours (FIG. 3 (d)), ΔT is larger than 5 ° C. in a high temperature region of 1100 ° C. or higher where dislocations easily move, Tensile residual stress is generated, and cracking is likely to occur when processing the ingot or the ingot into a substrate, but in the case of 4 hours (Fig. 3 (c)), dislocations easily move over 1100 ° C In the high temperature region, ΔT can be cooled to 5 ° C. or less which is the above preferred range. For this reason, in order to obtain the effect of the present invention, it is preferable to set the heating current to 0 within 4 hours or less.

以上のことから、結晶成長終了後、誘導加熱電流を0にするまでの時間は、1時間以上4時間以下とすることが好ましい。   From the above, it is preferable that the time until the induction heating current is reduced to 0 after the completion of crystal growth is 1 hour or more and 4 hours or less.

図4では、誘導加熱コイルに流す電流を0(A)にするまでの時間を変化させた場合のインゴット中心部の温度(Tc)の変化の様子を示した。図4(a)は誘導加熱コイルに流す電流を0(A)にするまでの時間が0時間、図4(b)は1時間、図4(c)は4時間、図4(d)は8時間とした場合である。このグラフの傾きが冷却速度であり、このグラフの中では、8時間かけて冷却した場合に冷却速度は最も小さくなる。なお、グラフの横軸は結晶成長を終了させてからの時間(冷却時間)を表す。   FIG. 4 shows the change in the temperature (Tc) at the center of the ingot when the time until the current flowing through the induction heating coil is changed to 0 (A) is changed. Fig. 4 (a) shows the time until the current flowing through the induction heating coil is 0 (A) is 0 hour, Fig. 4 (b) is 1 hour, Fig. 4 (c) is 4 hours, Fig. 4 (d) is This is the case for 8 hours. The slope of this graph is the cooling rate. In this graph, the cooling rate becomes the smallest when cooling is performed for 8 hours. Note that the horizontal axis of the graph represents the time (cooling time) after the end of crystal growth.

図4から、加熱電流を1時間かけて0にする場合には、冷却速度は約20℃/分であり、加熱電流を4時間かけて0(A)にする場合には冷却速度は約6℃/分であることが分かる。上述したように、誘導加熱電流を0(A)にするまでの時間は1時間以上4時間以下が好ましく、冷却速度としては、6〜20℃/分が好ましい。   From FIG. 4, when the heating current is set to 0 over 1 hour, the cooling rate is about 20 ° C./min, and when the heating current is set to 0 (A) over 4 hours, the cooling rate is about 6 It turns out that it is ° C / min. As described above, the time until the induction heating current is set to 0 (A) is preferably 1 hour or more and 4 hours or less, and the cooling rate is preferably 6 to 20 ° C./min.

結晶成長時に成長面を凸形状にするために、動径方向の温度勾配を一定にした条件で、単結晶インゴットの口径を40mmから310mmへと増大すると、外周部と中心部の温度差は大きくなる。これに伴い、成長終了時の温度分布に基づく、単結晶外周部の引張応力は増大するが、本発明を用いれば、結晶成長終了後の冷却過程において、結晶外周部が中心部に比べて低温となるような温度分布を形成できる。この効果により、口径の大きい単結晶外周部においても、好ましい圧縮応力を有するインゴットを作製できる。   If the diameter of the single crystal ingot is increased from 40 mm to 310 mm under the condition of a constant temperature gradient in the radial direction in order to make the growth surface convex during crystal growth, the temperature difference between the outer periphery and the center increases. Become. Along with this, the tensile stress at the outer periphery of the single crystal increases based on the temperature distribution at the end of growth, but if the present invention is used, the outer periphery of the crystal is lower in temperature than the center in the cooling process after the end of crystal growth. A temperature distribution can be formed. This effect makes it possible to produce an ingot having a preferable compressive stress even in the outer periphery of a single crystal having a large diameter.

本発明は、常温まで冷却した後に再度、高温にして、外周部が中心部に比べて低温となるような温度分布を形成し、残留応力の分布を変化させるような再熱処理を含むが、常温まで冷却する際に、適切な冷却速度を用いない場合には、外周部に残留する引張応力に起因して、再熱処理を施す前に得られた単結晶に割れが発生することがある。本発明は、成長後に常温までに冷却する過程で、結晶内部の温度分布を変えることで、歪分布を変化させ、割れのない状態で常温まで単結晶を冷却できることも特徴の1つである。   The present invention includes a reheat treatment that changes the residual stress distribution by forming a temperature distribution in which the outer peripheral portion is lowered to a higher temperature after being cooled to a normal temperature, and the outer peripheral portion has a lower temperature than the central portion. When an appropriate cooling rate is not used when cooling to a temperature, cracks may occur in the single crystal obtained before re-heat treatment due to the tensile stress remaining in the outer periphery. One feature of the present invention is that the single crystal can be cooled to room temperature without changing cracks by changing the temperature distribution inside the crystal in the process of cooling to room temperature after growth.

以下に、本発明の実施例について述べる。
まず、実施例で用いる単結晶成長装置について、図5を用いて簡単に説明する。結晶成長は、炭化珪素結晶粉末2を昇華させ、種結晶として用いた炭化珪素単結晶1上で再結晶化させることにより行われる。種結晶の炭化珪素単結晶1は、高純度黒鉛製坩堝3の蓋4の内面に取り付けられる。原料の炭化珪素結晶粉末2は、高純度黒鉛製坩堝3の内部に充填されている。このような黒鉛製坩堝3は、二重石英管5の内部に、黒鉛の支持棒6により設置される。黒鉛製坩堝3の周囲には、熱シールドのための黒鉛製フェルト7が設置されている。二重石英管5は、真空排気装置11により高真空排気(10-3Pa以下)することができ、かつ高純度Arガス配管9と高純度Arガス用マスフローコントローラ10を用いて内部雰囲気をArガスにより圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒鉛製坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩堝温度の計測は、坩堝上下部を覆うフェルトの中央部に直径2〜4mmの光路を設け、坩堝上部及び下部からの光を取り出し、二色温度計を用いて行う。坩堝下部の温度を原料温度、坩堝上部の温度を種温度とする。
Examples of the present invention will be described below.
First, a single crystal growth apparatus used in the examples will be briefly described with reference to FIG. Crystal growth is performed by sublimating the silicon carbide crystal powder 2 and recrystallizing it on the silicon carbide single crystal 1 used as a seed crystal. The seed silicon carbide single crystal 1 is attached to the inner surface of the lid 4 of the high-purity graphite crucible 3. The raw material silicon carbide crystal powder 2 is filled in a high-purity graphite crucible 3. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a graphite support rod 6. Around the graphite crucible 3, a graphite felt 7 for heat shielding is installed. The double quartz tube 5 can be evacuated to high vacuum (10 -3 Pa or less) by the vacuum evacuation device 11, and the internal atmosphere is Ar using a high purity Ar gas pipe 9 and a mass flow controller 10 for high purity Ar gas. The pressure can be controlled by gas. A work coil 8 is provided on the outer periphery of the double quartz tube 5, and the graphite crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured using a two-color thermometer by providing an optical path with a diameter of 2 to 4 mm at the center of the felt covering the upper and lower parts of the crucible, taking out light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed temperature.

(実施例1)
次に、この結晶成長装置を用いた炭化珪素単結晶の製造について実施例を説明する。まず、種結晶1として、口径102mmの(0001)面を有した4Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、この種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、CVD法により得られた高純度炭化珪素結晶粉末2を充填した。次いで、原料を充填した黒鉛製坩堝3を、蓋4で閉じて黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには30分かけて減圧し、その後、結晶成長を開始した。
(Example 1)
Next, an example of manufacturing a silicon carbide single crystal using this crystal growth apparatus will be described. First, a 4H polytype silicon carbide single crystal wafer having a (0001) plane with a diameter of 102 mm was prepared as seed crystal 1. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with high-purity silicon carbide crystal powder 2 obtained by the CVD method. Next, the graphite crucible 3 filled with the raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over 30 minutes, and then crystal growth was started.

結晶成長中に蓋4の外側の温度を測定した。結晶成長終了時の温度は1600℃であり、対応する数値計算の結果から、中心部と外周部の温度差(ΔT)は16℃と見積もられた。結晶成長を始めてから45時間後に、石英管内の圧力を30分かけて約80kPaになるように与圧して、結晶成長を終了させた。その後、ワークコイルに流す電流を4時間かけて線形に0(A)まで減少させた。対応する計算から、得られたインゴットが結晶成長終了時から1100℃まで冷却される間に、中心部と外周部の温度差(ΔT)は最小で1℃まで下がり、この値を基に考えると、外周部には0.7MPa程度の引張応力(-0.7MPa程度の圧縮応力)が働いていた。中心部と外周部の温度差が1℃であった時間には、中心部と外周部の温度はほぼ等しいと考えられ、中心部、外周部ともに1100℃以上の転位移動可能温度域にあった。また、この引張応力の値は、X線を用いた格子定数の変化量の測定結果から得られる応力の値と良い一致を示した。   The temperature outside the lid 4 was measured during crystal growth. The temperature at the end of crystal growth was 1600 ° C., and the temperature difference (ΔT) between the central portion and the outer peripheral portion was estimated to be 16 ° C. from the results of the corresponding numerical calculation. 45 hours after the start of crystal growth, the pressure in the quartz tube was increased to about 80 kPa over 30 minutes to complete the crystal growth. Thereafter, the current flowing through the work coil was linearly reduced to 0 (A) over 4 hours. From the corresponding calculation, while the obtained ingot is cooled to 1100 ° C from the end of crystal growth, the temperature difference (ΔT) between the central part and the outer peripheral part decreases to 1 ° C as a minimum. In addition, a tensile stress of about 0.7 MPa (compressive stress of about -0.7 MPa) was applied to the outer peripheral portion. During the time when the temperature difference between the central part and the outer peripheral part was 1 ° C, the temperature of the central part and the outer peripheral part was considered to be almost equal, and both the central part and the outer peripheral part were in the temperature range where dislocations could be moved above 1100 ° C . This tensile stress value was in good agreement with the stress value obtained from the measurement result of the change in lattice constant using X-rays.

得られた結晶の口径は104mm程度で、高さは40mm程度であった。成長速度は約0.9mm/時であった。こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、4Hの単一のポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶インゴットが成長したことを確認できた。この炭化珪素単結晶インゴットを研削、切断、研磨して炭化珪素単結晶基板を作製したところ、加工中に結晶が割れことは発生せずに、4Hの単一ポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶の基板が作製できた。炭化珪素単結晶基板上に電子デバイスを作製する場合、基板に存在する欠陥が電子デバイスの特性に影響を与えるため、本発明により得られた欠陥の少ない高品質の炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。   The diameter of the obtained crystal was about 104 mm and the height was about 40 mm. The growth rate was about 0.9 mm / hour. When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a high-quality silicon carbide single crystal ingot consisting of a single 4H polytype and having few defects was grown. When this silicon carbide single crystal ingot was ground, cut and polished to produce a silicon carbide single crystal substrate, the crystal did not crack during processing, and it was high quality with few defects consisting of a single polytype of 4H Thus, a silicon carbide single crystal substrate was prepared. When producing an electronic device on a silicon carbide single crystal substrate, defects existing in the substrate affect the characteristics of the electronic device. Therefore, the high-quality silicon carbide single crystal substrate obtained by the present invention has few defects. It is useful as a substrate for manufacturing a device.

(実施例2)
実施例1と同様にして、まず、種結晶1として、口径77mmの(0001)面を有した6Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、この種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、アチソン法により作製された炭化珪素結晶原料粉末2を充填した。次いで、原料を充填した黒鉛製坩堝3を、蓋4で閉じて黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには30分かけて減圧し、その後、結晶成長を開始した。
(Example 2)
In the same manner as in Example 1, first, as a seed crystal 1, a 6H polytype silicon carbide single crystal wafer having a (0001) plane with a diameter of 77 mm was prepared. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with silicon carbide crystal raw material powder 2 produced by the Atchison method. Next, the graphite crucible 3 filled with the raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over 30 minutes, and then crystal growth was started.

結晶成長中に蓋4の外側の温度を測定した。結晶成長終了時の温度は1650℃であり、対応する数値計算の結果から、中心部と外周部の温度差(ΔT)は12℃と見積もられた。結晶成長を始めてから40時間後に、石英管内の圧力を30分かけて約80kPaになるように与圧して、結晶成長を終了させた。その後、ワークコイルに流す電流を1時間かけて線形に0(A)まで減少させた。対応する計算から、得られたインゴットが結晶成長終了時から1100℃まで冷却される間に、中心部と外周部の温度差(ΔT)は最小で-20℃まで下がり、この値を基に考えると、外周部には14MPa程度の圧縮応力が働いていた。冷却中のΔTの変化は図3と同様の挙動をしており、ΔTが-20℃の際の中心部、外周部の温度は1100℃以上の転位が移動可能な温度であった。また、この圧縮応力の値は、X線を用いた格子定数の変化量の測定結果から得られる応力の値と良い一致を示した。   The temperature outside the lid 4 was measured during crystal growth. The temperature at the end of crystal growth was 1650 ° C., and the temperature difference (ΔT) between the central portion and the outer peripheral portion was estimated to be 12 ° C. from the corresponding numerical calculation results. Forty hours after the start of crystal growth, the pressure in the quartz tube was increased to about 80 kPa over 30 minutes to complete the crystal growth. Thereafter, the current flowing through the work coil was linearly reduced to 0 (A) over 1 hour. From the corresponding calculation, while the obtained ingot is cooled to 1100 ° C from the end of crystal growth, the temperature difference (ΔT) between the center and the outer periphery decreases to -20 ° C at the minimum, and this value is considered A compressive stress of about 14 MPa was applied to the outer periphery. The change in ΔT during cooling behaved in the same manner as in FIG. 3, and the temperature at the center and the outer periphery when ΔT was −20 ° C. was a temperature at which dislocations of 1100 ° C. or higher could move. This compressive stress value was in good agreement with the stress value obtained from the measurement result of the change in lattice constant using X-rays.

得られた結晶の口径は78mm程度で、高さは35mm程度であった。成長速度は約0.9mm/時であった。こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、6Hの単一のポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶インゴットが成長したことを確認できた。この炭化珪素単結晶インゴットを研削、切断、研磨して炭化珪素単結晶基板を作製したところ、加工中に結晶が割れことは発生せずに、6Hの単一ポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶の基板が作製できた。炭化珪素単結晶基板上に電子デバイスを作製する場合、基板に存在する欠陥が電子デバイスの特性に影響を与えるため、本発明により得られた欠陥の少ない高品質の炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。   The diameter of the obtained crystal was about 78 mm, and the height was about 35 mm. The growth rate was about 0.9 mm / hour. When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a high-quality silicon carbide single crystal ingot composed of a single 6H polytype with few defects was grown. When this silicon carbide single crystal ingot was ground, cut and polished to produce a silicon carbide single crystal substrate, the crystal did not crack during processing, and it was high quality with few defects consisting of a single polytype of 6H Thus, a silicon carbide single crystal substrate was prepared. When producing an electronic device on a silicon carbide single crystal substrate, defects existing in the substrate affect the characteristics of the electronic device. Therefore, the high-quality silicon carbide single crystal substrate obtained by the present invention has few defects. It is useful as a substrate for manufacturing a device.

(比較例1)
実施例1と同様にして、まず、種結晶1として、口径102mmの(0001)面を有した4Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、この種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、CVD法により得られた高純度炭化珪素結晶粉末2を充填した。次いで、原料を充填した黒鉛製坩堝3を、蓋4で閉じて黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには30分かけて減圧し、その後、結晶成長を開始した。
(Comparative Example 1)
In the same manner as in Example 1, first, a 4H polytype silicon carbide single crystal wafer having a (0001) face with a diameter of 102 mm was prepared as seed crystal 1. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with high-purity silicon carbide crystal powder 2 obtained by the CVD method. Next, the graphite crucible 3 filled with the raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, a current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over 30 minutes, and then crystal growth was started.

結晶成長中には蓋4の外側の温度を成長装置の外側から2色温度計で測定した。結晶成長終了時の温度は1600℃であり、対応する数値計算の結果から、中心部と外周部の温度差(ΔT)は16℃と見積もられた。結晶成長を始めてから45時間後に、石英管内の圧力を30分かけて約80kPaになるように与圧して、結晶成長を終了させた。その後、ワークコイルに流す電流を8時間かけて線形に0(A)まで減少させた。このとき、対応する数値計算からは、得られたインゴットが結晶成長終了時から1100℃まで冷却される間で、中心部と外周部の温度差(ΔT)は少なくとも5℃より大きく、外周部には4MPa以上の引張応力(-4MPa以上の圧縮応力)が残留していた。また、この引張応力の値は、X線を用いた格子定数の変化量の測定結果から得られる応力の値と良い一致を示した。   During crystal growth, the temperature outside the lid 4 was measured from the outside of the growth apparatus with a two-color thermometer. The temperature at the end of crystal growth was 1600 ° C., and the temperature difference (ΔT) between the central portion and the outer peripheral portion was estimated to be 16 ° C. from the results of the corresponding numerical calculation. 45 hours after the start of crystal growth, the pressure in the quartz tube was increased to about 80 kPa over 30 minutes to complete the crystal growth. Thereafter, the current flowing through the work coil was linearly reduced to 0 (A) over 8 hours. At this time, from the corresponding numerical calculation, while the obtained ingot is cooled to 1100 ° C from the end of crystal growth, the temperature difference (ΔT) between the central portion and the outer peripheral portion is at least larger than 5 ° C, There remained a tensile stress of 4MPa or more (-4MPa or more compressive stress). This tensile stress value was in good agreement with the stress value obtained from the measurement result of the change in lattice constant using X-rays.

得られた結晶の口径は104mm程度で、高さは40mm程度であったが、成長速度は約0.9mm/時であった。こうして得られた結晶をラマン散乱により分析したところ、4Hの単一のポリタイプからなる炭化珪素であった。この炭化珪素単結晶インゴットを研削、切断、研磨して、炭化珪素単結晶基板を作製しようとしたところ、インゴットの外周部に残留した引張応力に起因して、加工中に結晶に割れが発生して、電子デバイス作製用の基板に加工することができなかった。   The diameter of the obtained crystal was about 104 mm and the height was about 40 mm, but the growth rate was about 0.9 mm / hour. When the crystal thus obtained was analyzed by Raman scattering, it was silicon carbide composed of a single polytype of 4H. When this silicon carbide single crystal ingot was ground, cut and polished to produce a silicon carbide single crystal substrate, cracks occurred in the crystal during processing due to the tensile stress remaining on the outer periphery of the ingot. Therefore, it could not be processed into a substrate for manufacturing an electronic device.

(比較例2)
実施例2と同様にして、まず、種結晶1として、口径77mmの(0001)面を有した6Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、この種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、アチソン法により得られた高純度炭化珪素結晶粉末2を充填した。次いで、原料を充填した黒鉛製坩堝3を、蓋4で閉じて黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには30分かけて減圧し、その後、結晶成長を開始した。結晶成長を始めてから40時間後に、石英管内の圧力を30分かけて約80kPaになるように与圧して、結晶成長を終了させた。
(Comparative Example 2)
In the same manner as in Example 2, a 6H polytype silicon carbide single crystal wafer having a (0001) plane having a diameter of 77 mm was prepared as seed crystal 1. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with high-purity silicon carbide crystal powder 2 obtained by the Atchison method. Next, the graphite crucible 3 filled with the raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over 30 minutes, and then crystal growth was started. Forty hours after the start of crystal growth, the pressure in the quartz tube was increased to about 80 kPa over 30 minutes to complete the crystal growth.

その後、ワークコイルに流す電流を即座に0(A)まで減少させて冷却した。対応する計算から、得られたインゴットが結晶成長終了時から1100℃まで冷却される間に、中心部と外周部の温度差(ΔT)は最小で-70℃まで下がり、インゴット中心部で50MPa程度の引張応力(-50MPa程度の圧縮応力)が残留していた。この引張応力の値は、X線を用いて測定した格子定数の変化量から得られる応力の値に比べると大きかった。これは、結晶に割れが発生したために応力の緩和が起こり、結晶に残留する引張応力の値が小さくなったためと考えられ、割れが発生する前の冷却過程においては、計算から推定される大きな引張応力が発生していたと考えられる。   Thereafter, the current flowing through the work coil was immediately reduced to 0 (A) and cooled. From the corresponding calculation, while the obtained ingot is cooled to 1100 ° C from the end of crystal growth, the temperature difference (ΔT) between the center and the outer periphery decreases to -70 ° C at the minimum, and about 50 MPa at the center of the ingot Tensile stress (compressive stress of about -50 MPa) remained. The value of the tensile stress was larger than the value of the stress obtained from the amount of change in the lattice constant measured using X-rays. This is thought to be due to the relaxation of stress due to the occurrence of cracks in the crystal and the decrease in the value of the tensile stress remaining in the crystal. It is thought that stress was generated.

得られた結晶の口径は78mm程度で、高さは35mm程度であったが、前述のように大きな引張応力に起因して、結晶には割れが発生していた。成長速度は約0.9mm/時であった。こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、6Hの単一のポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶インゴットが成長したことを確認できた。結晶に割れがあるために、電子材料用の基板として利用することはできなかった。   The diameter of the obtained crystal was about 78 mm and the height was about 35 mm. However, as described above, the crystal was cracked due to a large tensile stress. The growth rate was about 0.9 mm / hour. When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a high-quality silicon carbide single crystal ingot composed of a single 6H polytype with few defects was grown. Due to the cracks in the crystal, it could not be used as a substrate for electronic materials.

改良レーリー法の原理を説明する図Diagram explaining the principle of the improved Rayleigh method 有限要素法を用いて数値的に求めた坩堝内部の温度の等高線を示す図(図中の数字は温度(℃))Diagram showing temperature contours inside crucible obtained numerically using finite element method (numbers in the figure are temperature (° C)) 加熱電流を0Aとするまでの時間を変化させた場合の中心部と外周部の温度差の変化の様子Change in temperature difference between the center and outer periphery when changing the time until the heating current reaches 0A 加熱電流を0Aとするまでの時間を変化させた場合の中心部の温度の時間変化の様子Time-dependent change in temperature at the center when changing the time until the heating current reaches 0A 本実施例の単結晶成長装置を説明する図The figure explaining the single-crystal growth apparatus of a present Example

符号の説明Explanation of symbols

1 種結晶(炭化珪素単結晶)
2 炭化珪素結晶粉末原料
3 黒鉛製坩堝
4 黒鉛製坩堝蓋
5 二重石英管
6 支持棒
7 黒鉛製フェルト(断熱材)
8 ワークコイル
9 高純度Arガス配管
10 高純度Arガス用マスフローコントローラ
11 真空排気装置
1 seed crystal (silicon carbide single crystal)
2 Silicon carbide crystal powder raw material
3 Graphite crucible
4 Graphite crucible lid
5 Double quartz tube
6 Support rod
7 Graphite felt (insulation)
8 Work coil
9 High purity Ar gas piping
10 Mass flow controller for high purity Ar gas
11 Vacuum exhaust system

Claims (5)

坩堝内に炭化珪素原料と炭化珪素種結晶を装填して炭化珪素原料を加熱する昇華再結晶法により炭化珪素単結晶インゴットを製造する方法であって、炭化珪素単結晶の成長が終了してからの冷却過程において、得られたインゴットの外周部が1100℃のときに、インゴットの中心軸に垂直な面上にある中心部の温度TA method of manufacturing a silicon carbide single crystal ingot by a sublimation recrystallization method in which a silicon carbide raw material and a silicon carbide seed crystal are charged in a crucible and the silicon carbide raw material is heated, and after the growth of the silicon carbide single crystal is completed In the cooling process, when the outer periphery of the obtained ingot is 1100 ° C, the temperature T at the center on the plane perpendicular to the center axis of the ingot CC と同一面の外周上にある外周部の温度TTemperature T of the outer circumference on the same circumference EE との温度差ΔT=TDifference in temperature ΔT = T EE −T−T CC が-50℃以上5℃以下の範囲になるようにすることを特徴とする炭化珪素単結晶インゴットの製造方法。A method for producing a silicon carbide single crystal ingot, wherein the temperature is in the range of -50 ° C to 5 ° C. 前記温度差ΔTを-50℃以上0℃未満になるようにする請求項1に記載の炭化珪素単結晶インゴットの製造方法。2. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the temperature difference ΔT is set to be −50 ° C. or higher and lower than 0 ° C. 坩堝を誘導加熱して炭化珪素原料を昇華させて炭化珪素単結晶を成長させた後、誘導加熱の加熱電流を減少させて冷却速度6〜20℃/分で冷却して前記温度差ΔTを-50℃以上5℃以下の範囲になるようにする請求項1又は2に記載の炭化珪素単結晶インゴットの製造方法。After the silicon carbide raw material is sublimated by induction heating of the crucible to grow a silicon carbide single crystal, the heating current of induction heating is decreased and the cooling is performed at a cooling rate of 6 to 20 ° C./min. 3. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the temperature is in the range of 50 ° C. or more and 5 ° C. or less. 前記温度差ΔTは、有限要素法を用いた数値計算から求めたものである請求項1〜3のいずれかに記載の炭化珪素単結晶インゴットの製造方法。4. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the temperature difference ΔT is obtained by numerical calculation using a finite element method. 下記式(1)で求められる圧縮応力が-3.5MPa以上35MPa以下の範囲になるように、外周部の周方向に残留応力を有した炭化珪素単結晶インゴットが得られる請求項1〜4のいずれかに記載の炭化珪素単結晶インゴットの製造方法。The silicon carbide single crystal ingot having a residual stress in the circumferential direction of the outer peripheral portion is obtained such that the compressive stress obtained by the following formula (1) is in a range of -3.5 MPa to 35 MPa. A method for producing a silicon carbide single crystal ingot according to claim 1.
圧縮応力= -α×E×ΔT/3 ・・・(1)Compressive stress = -α x E x ΔT / 3 (1)
(但し、αは炭化珪素の熱線膨張係数であり、Eは炭化珪素の縦弾性係数である。)(Where α is the thermal linear expansion coefficient of silicon carbide, and E is the longitudinal elastic modulus of silicon carbide.)
JP2006117646A 2006-04-21 2006-04-21 Method for producing silicon carbide single crystal ingot Active JP4954596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117646A JP4954596B2 (en) 2006-04-21 2006-04-21 Method for producing silicon carbide single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117646A JP4954596B2 (en) 2006-04-21 2006-04-21 Method for producing silicon carbide single crystal ingot

Publications (2)

Publication Number Publication Date
JP2007290880A JP2007290880A (en) 2007-11-08
JP4954596B2 true JP4954596B2 (en) 2012-06-20

Family

ID=38761890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117646A Active JP4954596B2 (en) 2006-04-21 2006-04-21 Method for producing silicon carbide single crystal ingot

Country Status (1)

Country Link
JP (1) JP4954596B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171134B1 (en) * 2007-06-27 2016-10-19 II-VI Incorporated Fabrication of sic substrates with low warp and bow
KR101003075B1 (en) 2008-04-15 2010-12-21 네오세미테크 주식회사 Method and Apparatus for growth of silicon carbide single crystal
JP5304712B2 (en) * 2010-04-07 2013-10-02 新日鐵住金株式会社 Silicon carbide single crystal wafer
JP5746013B2 (en) * 2011-12-28 2015-07-08 株式会社豊田中央研究所 Single crystal manufacturing apparatus and single crystal manufacturing method
JP6034091B2 (en) * 2012-08-10 2016-11-30 株式会社豊田中央研究所 Method for producing sublimable single crystal
KR102195325B1 (en) * 2020-06-16 2020-12-24 에스케이씨 주식회사 Silicon carbide ingot, wafer and manufacturing method of the same
JP7268784B1 (en) 2022-05-31 2023-05-08 株式会社レゾナック SiC substrate and SiC epitaxial wafer
KR20230169018A (en) 2022-05-31 2023-12-15 가부시끼가이샤 레조낙 SiC EPITAXIAL WAFER
JP7132454B1 (en) * 2022-05-31 2022-09-06 昭和電工株式会社 SiC substrate and SiC epitaxial wafer
JP7216244B1 (en) 2022-05-31 2023-01-31 昭和電工株式会社 Semiconductor device manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
JP4450118B2 (en) * 1999-10-15 2010-04-14 株式会社デンソー Method for producing silicon carbide single crystal
JP4563609B2 (en) * 2000-04-07 2010-10-13 Hoya株式会社 Method for producing silicon carbide
US7601441B2 (en) * 2002-06-24 2009-10-13 Cree, Inc. One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
JP4054243B2 (en) * 2002-10-10 2008-02-27 新日本製鐵株式会社 Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer
JP4374986B2 (en) * 2003-10-31 2009-12-02 住友電気工業株式会社 Method for manufacturing silicon carbide substrate

Also Published As

Publication number Publication date
JP2007290880A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4954596B2 (en) Method for producing silicon carbide single crystal ingot
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
WO2017057742A1 (en) Sic single crystal ingot
KR102160863B1 (en) Silicon carbide single crystal wafer
JP5402798B2 (en) Method for producing silicon carbide single crystal ingot
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP6861555B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
CN108130594A (en) A kind of method of the SiC crystal growth interface temperature of real-time monitoring stage by stage and temperature gradient
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP3818311B1 (en) Crystal growth crucible
US20140299048A1 (en) Method of manufacturing silicon carbide single crystal
CN110863247A (en) Secondary annealing method for silicon carbide crystals
JP4833780B2 (en) Lid graphite crucible and silicon carbide single crystal growth apparatus
TWI767309B (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP2017065969A (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP6869077B2 (en) Method for manufacturing silicon carbide single crystal ingot
JP2010275190A (en) Method for producing silicon carbide single crystal
TW202138635A (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP6070328B2 (en) Ingot, ingot manufacturing method
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
US20160083865A1 (en) Method for manufacturing silicon carbide single crystal
JP6387895B2 (en) Method for producing silicon carbide single crystal
EP3243935A1 (en) Sic single crystal and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R151 Written notification of patent or utility model registration

Ref document number: 4954596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350