[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4944436B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP4944436B2
JP4944436B2 JP2005353640A JP2005353640A JP4944436B2 JP 4944436 B2 JP4944436 B2 JP 4944436B2 JP 2005353640 A JP2005353640 A JP 2005353640A JP 2005353640 A JP2005353640 A JP 2005353640A JP 4944436 B2 JP4944436 B2 JP 4944436B2
Authority
JP
Japan
Prior art keywords
lens
zoom
lens group
zoom lens
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005353640A
Other languages
Japanese (ja)
Other versions
JP2007156251A5 (en
JP2007156251A (en
Inventor
隆弘 畠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005353640A priority Critical patent/JP4944436B2/en
Publication of JP2007156251A publication Critical patent/JP2007156251A/en
Publication of JP2007156251A5 publication Critical patent/JP2007156251A5/ja
Application granted granted Critical
Publication of JP4944436B2 publication Critical patent/JP4944436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged +-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関し、特に、デジタルカメラ、ビデオカメラ、フィルム用カメラ等の撮像装置に用いられるズームレンズに関するものである。   The present invention relates to a zoom lens and an image pickup apparatus having the same, and more particularly to a zoom lens used in an image pickup apparatus such as a digital camera, a video camera, and a film camera.

近年、デジタルカメラ等の撮像装置に用いられる固体撮像素子は年々高画素化と高精細化が進んでいる。現状の固体撮像素子の1画素(ピクセル)の大きさは、数μm程度である。   In recent years, a solid-state image sensor used in an imaging apparatus such as a digital camera has been increasing in the number of pixels and the definition thereof year by year. The size of one pixel (pixel) of the current solid-state imaging device is about several μm.

さらに、デジタルカメラは画像の拡大が容易で、ユーザーがピクセル等倍で画像を確認できる。このため、デジタルカメラ用の撮影レンズに要求される光学性能は非常に高い。とりわけ、白色光下での撮影においては、色のにじみによる画質の劣化を防ぐ必要がある。具体的には、倍率色収差を可視域全体の波長帯で非常に小さく補正されることが望まれている。   Furthermore, the digital camera can easily enlarge the image, and the user can confirm the image at the same pixel size. For this reason, the optical performance required for the taking lens for digital cameras is very high. In particular, when photographing under white light, it is necessary to prevent deterioration in image quality due to color bleeding. Specifically, it is desired that the lateral chromatic aberration is corrected to be very small in the entire visible wavelength range.

特に、ズームレンズは、単一焦点距離の撮影レンズに比べて倍率色収差等の色収差が多く発生しやすい。このためズームレンズには補正不足となりがちな二次スペクトルの改善が強く求められている。   In particular, a zoom lens is more likely to generate chromatic aberration such as lateral chromatic aberration than a photographic lens having a single focal length. For this reason, there is a strong demand for an improvement in the secondary spectrum that tends to be undercorrected in zoom lenses.

比較的、高ズーム比で望遠型のズームレンズとして、最も物体側のレンズ群を正の屈折力のレンズ群とした所謂ポジティブリード型のズームレンズがある。   As a telephoto type zoom lens having a relatively high zoom ratio, there is a so-called positive lead type zoom lens in which the most object side lens unit is a lens unit having a positive refractive power.

このタイプのズームレンズのうち、軸外主光線の入射高の高い第1レンズ群と、最終レンズ群中の正レンズに異常分散ガラスを用いて色収差を補正したズームレンズが知られている(例えば特許文献1〜3)。   Among these types of zoom lenses, there are known zoom lenses in which chromatic aberration is corrected by using anomalous dispersion glass for the first lens group having a high incident height of off-axis chief rays and the positive lens in the final lens group (for example, Patent Documents 1 to 3).

また、物体側から像側へ順に、正・負・正の屈折力のレンズ群の3群からなるポジティブリード型の3群ズームレンズが知られている。この3群ズームレンズにおいて負の屈折力の第2レンズ群中の負レンズに異常分散性を持つ硝材を使用し、ズーミングに際しての倍率色収差の変動を小さくしたズームレンズが知られている(特許文献4)。   Further, there is known a positive lead type three-group zoom lens including three groups of positive, negative, and positive refractive power lenses in order from the object side to the image side. In this three-group zoom lens, a zoom lens is known in which a glass material having anomalous dispersion is used for the negative lens in the second lens group having a negative refractive power, and the variation in lateral chromatic aberration during zooming is reduced (Patent Document). 4).

又、物体側から像面側へ順に正、負、正、負、正の屈折力のレンズ群より成る5群ズームレンズで、異常分散性を持つ材料を用いて色収差を良好に補正したズームレンズが知られている(特許文献5、6)。
特開平6−43363号公報 特開2002−62478号公報 特開平8−248317号公報 特開昭59−198416号公報 特開2001−350093号公報 特開2002−62474号公報
In addition, a zoom lens in which chromatic aberration is favorably corrected using a material having anomalous dispersion with a five-group zoom lens composed of lens groups having positive, negative, positive, negative, and positive refractive power in order from the object side to the image surface side Is known (Patent Documents 5 and 6).
JP-A-6-43363 Japanese Patent Laid-Open No. 2002-62478 JP-A-8-248317 JP 59-198416 JP 2001-350093 A JP 2002-62474 A

特許文献1,2,3は、固体撮像素子の高画素化が進み画素ピッチが小さくなったデジタルカメラ等の撮影光学系としては、倍率色収差の補正が必ずとも十分とはいえない。   In Patent Documents 1, 2, and 3, correction of chromatic aberration of magnification is not necessarily sufficient for a photographing optical system such as a digital camera in which the solid-state imaging device has been increased in pixels and the pixel pitch has been reduced.

また、特許文献4では、ズーミングに際して倍率色収差の変動は小さく抑えられているが、ズーム比が必ずしも十分でない。又、Fナンバーが8であり、明るさも十分でない。   Further, in Patent Document 4, the variation in chromatic aberration of magnification during zooming is kept small, but the zoom ratio is not always sufficient. The F number is 8, and the brightness is not sufficient.

引用文献4の構成において、ズーム比を大きくすると倍率色収差が大きくなってきて、これを補正するのが難しくなってくる。   In the configuration of the cited document 4, if the zoom ratio is increased, the chromatic aberration of magnification increases, and it becomes difficult to correct this.

本発明は、ズーミングに伴い変動する倍率色収差を良好に補正し、全ズーム範囲にわたり良好なる光学性能を有したズームレンズ及びそれを用いた撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens that satisfactorily corrects chromatic aberration of magnification that varies with zooming and has good optical performance over the entire zoom range, and an image pickup apparatus using the zoom lens.

本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、広角端から望遠端へのズーミングに際して、前記第1レンズ群と前記第2レンズ群との間隔が大きくなり、前記第2レンズ群と前記第3レンズ群との間隔が小さくなり、前記第3レンズ群と前記第4レンズ群との間隔が大きくなり、前記第4レンズ群と前記第5レンズ群との間隔が小さくなるズームレンズにおいて、前記第2レンズ群は、アッベ数をνd2、部分分散比をθ2とするとき、
−1.62×10-3・νd2+0.642<θ2
55≦νd2
なる条件を満足する材料で構成される負レンズを含む3枚以上の負レンズを有し、前記第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw、ftとするとき、
0.3<|f2/fw|<1.0
2.5≦ft/fw
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens having a negative refractive power. The fourth lens group is composed of a fifth lens group having a positive refractive power. During zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group becomes large , and the second lens Zoom in which the distance between the third lens group and the third lens group is reduced, the distance between the third lens group and the fourth lens group is increased, and the distance between the fourth lens group and the fifth lens group is reduced. In the lens, the second lens group has an Abbe number of νd2 and a partial dispersion ratio of θ2.
-1.62 × 10 -3 · νd2 + 0.642 <θ2
55 ≦ νd2
Having three or more negative lens with a material that satisfies the following condition including a negative lens constructed, the focal length of the second lens group f2, respectively the focal length of the entire system at the wide-angle end and the telephoto end fw, When ft ,
0.3 <| f2 / fw | <1.0
2.5 ≦ ft / fw
It is characterized by satisfying the following conditions.

本発明によれば、ズーミングに伴い変動する倍率色収差を良好に補正し、全ズーム範囲にわたり良好なる光学性能を実現したズームレンズ及びそれを用いた撮像装置を得ることができる。   According to the present invention, it is possible to obtain a zoom lens and an image pickup apparatus using the same that correct the magnification chromatic aberration that varies with zooming and realize excellent optical performance over the entire zoom range.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1は、実施例1のズームレンズの要部断面図、図2〜図4は実施例1のズームレンズの広角端(短焦点距離)、中間焦点距離、望遠端(長焦点距離)における収差図である。   FIG. 1 is a cross-sectional view of a principal part of the zoom lens of Example 1, and FIGS. 2 to 4 are aberrations at the wide angle end (short focal length), intermediate focal length, and telephoto end (long focal length) of the zoom lens of Example 1. FIG.

図5は、実施例2のズームレンズの要部断面図、図6〜図8は実施例2のズームレンズの広角端、中間焦点距離、望遠端における収差図である。   FIG. 5 is a cross-sectional view of a main part of the zoom lens of Example 2, and FIGS. 6 to 8 are aberration diagrams of the zoom lens of Example 2 at the wide angle end, the intermediate focal length, and the telephoto end.

図9は、実施例3のズームレンズの要部断面図、図10〜図12は実施例3のズームレンズの広角端、中間焦点距離、望遠端における収差図である。   FIG. 9 is a cross-sectional view of a main part of the zoom lens of Example 3, and FIGS. 10 to 12 are aberration diagrams of the zoom lens of Example 3 at the wide angle end, the intermediate focal length, and the telephoto end.

図13は、実施例4のズームレンズの要部断面図、図14〜図16は実施例4のズームレンズの広角端、中間焦点距離、望遠端における収差図である。   FIG. 13 is a cross-sectional view of a principal part of the zoom lens of Example 4. FIGS. 14 to 16 are aberration diagrams of the zoom lens of Example 4 at the wide angle end, the intermediate focal length, and the telephoto end.

図17はアッベ数νdと部分分散比θgFとの関係を示す説明図である。   FIG. 17 is an explanatory diagram showing the relationship between the Abbe number νd and the partial dispersion ratio θgF.

図18は、ズームレンズにおいて、倍率色収差を補正するときの補正原理の説明図である。図19は本発明の撮像装置の概略図である。   FIG. 18 is an explanatory diagram of a correction principle when correcting chromatic aberration of magnification in a zoom lens. FIG. 19 is a schematic view of the imaging apparatus of the present invention.

図1、図5、図9、図13に示した実施例1〜4のズームレンズのレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、LRは複数のレンズ群を有し、全体として正の屈折力の後続レンズ群である。   In the lens sectional views of the zoom lenses of Examples 1 to 4 shown in FIGS. 1, 5, 9, and 13, L1 is a first lens unit having a positive refractive power, and L2 is a second lens having a negative refractive power. The group LR has a plurality of lens groups, and is a subsequent lens group having a positive refractive power as a whole.

SPは開口絞りであり、後続レンズ群LRの前方に位置している。   SP is an aperture stop, which is positioned in front of the subsequent lens group LR.

後続レンズ群LRは、物体側から像側へ順に、正の屈折力の第3レンズ群L3、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5を有している。   The subsequent lens unit LR includes, in order from the object side to the image side, a third lens unit L3 having a positive refractive power, a fourth lens unit L4 having a negative refractive power, and a fifth lens unit L5 having a positive refractive power. Yes.

IPは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が位置している。又レンズ断面図において左方が物体側(前方)で右方が像側(後方)である。   IP is an image plane on which an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is located. In the lens sectional view, the left side is the object side (front) and the right side is the image side (rear).

各実施例では、広角端から望遠端へのズーミングに際して矢印のように各レンズ群を移動させている。   In each embodiment, each lens group is moved as indicated by an arrow during zooming from the wide-angle end to the telephoto end.

尚、広角端と望遠端とは変倍用のレンズ群が機構上、光軸方向に移動可能な範囲の両端に位置したときのズーム位置をいう。   Note that the wide-angle end and the telephoto end are zoom positions when the zooming lens groups are positioned at both ends of a range in which the lens group can be moved in the optical axis direction.

各実施例では、広角端から望遠端へのズーミングに際して、第1レンズ群L1と第2レンズ群L2の間隔が広がるように第1レンズ群L1を物体側へ移動させている。   In each embodiment, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 is moved to the object side so that the distance between the first lens unit L1 and the second lens unit L2 is widened.

第2レンズ群L2と絞りSPとの間隔が狭まるように第2レンズ群L2を像側へ移動させている。又、第2レンズ群L2と第3レンズ群L3との間隔が狭まるように第3レンズ群L3を物体側へ移動させている。   The second lens unit L2 is moved to the image side so that the distance between the second lens unit L2 and the stop SP is narrowed. The third lens unit L3 is moved to the object side so that the distance between the second lens unit L2 and the third lens unit L3 is narrowed.

数値実施例に示すように第3レンズ群L3と第4レンズ群L4の間隔が広がるように第4レンズ群L4は移動している。第4レンズ群L4と第5レンズ群L5をいずれも双方の間隔が狭まるように物体側へ移動させている。 As shown in the numerical examples, the fourth lens unit L4 moves so that the distance between the third lens unit L3 and the fourth lens unit L4 is increased. Both the fourth lens unit L4 and the fifth lens unit L5 are moved to the object side so that the distance between them is reduced.

各実施例では、第3レンズ群L3と第5レンズ群L5を一体的に移動させて機構の簡略化を図っているが、互いに独立に移動させても良い。   In each embodiment, the third lens unit L3 and the fifth lens unit L5 are integrally moved to simplify the mechanism, but may be moved independently of each other.

尚、絞りSPはズーミングの際に第3レンズ群L3と一体に移動させても、又別体にて移動させても良い。一体とすると移動するユニットの数が少なくなり、メカ構造を簡素化しやすくなる。   The aperture stop SP may be moved integrally with the third lens unit L3 during zooming or may be moved separately. When integrated, the number of moving units is reduced and the mechanical structure is easily simplified.

収差図において、d,gはd線,g線である。SCは正弦条件である。ΔM,ΔSはメリディオナル像面,サジタル像面、倍率色収差はg線によって表している。ωは半画角である。   In the aberration diagrams, d and g are d-line and g-line. SC is a sine condition. ΔM and ΔS are meridional image surfaces, sagittal image surfaces, and lateral chromatic aberration is represented by g-line. ω is a half angle of view.

次に各実施例の特徴について説明する。   Next, features of each embodiment will be described.

各実施例において第2レンズ群L2は、アッベ数をνd2、部分分散比をθ2とするとき、
−1.62×10-3・νd2+0.642<θ2 ‥‥‥(1)
55≦νd2 ‥‥‥(2)
なる条件を満足する材料で構成される負レンズを含む3枚以上の負レンズを有している。
In each embodiment, the second lens unit L2 has an Abbe number of νd2 and a partial dispersion ratio of θ2,
−1.62 × 10 −3 · νd2 + 0.642 <θ2 (1)
55 ≦ νd2 (2)
It has three or more negative lenses including a negative lens made of a material that satisfies the following conditions.

そして更に、第2レンズ群L2の焦点距離をf2、広角端における全系の焦点距離をfwとするとき、
0.3<|f2/fw|<1.0 ‥‥‥(3)
なる条件を満足している。
Furthermore, when the focal length of the second lens unit L2 is f2, and the focal length of the entire system at the wide angle end is fw,
0.3 <| f2 / fw | <1.0 (3)
Is satisfied.

ここで波長436nm(g線)、波長486nm(F線)、波長588nm(d線)、波長656nm(C線)のそれぞれに対する硝材の屈折率をそれぞれ、ng、nF、nd、nCとするとき、アッベ数νdと部分分散比θは次のとおりである。   Here, when the refractive indexes of the glass materials for the wavelength 436 nm (g line), the wavelength 486 nm (F line), the wavelength 588 nm (d line), and the wavelength 656 nm (C line) are ng, nF, nd, and nC, respectively. The Abbe number νd and the partial dispersion ratio θ are as follows.

νd=(nd−1)/(nF−nC)
θ =(ng−nF)/(nF−nC)
各実施例のズームレンズにおいて、例えば、第2レンズ群L2を2枚以下の負レンズで構成すると次のような問題が生じてくる。異常分散ガラスは一般的に屈折率が低いため所望の屈折力を得るためには曲率がきつく(曲率半径が小さく)なる。この結果、主として広角端での負の歪曲収差が増大し、これを補正するのが困難になる。
νd = (nd−1) / (nF−nC)
θ = (ng−nF) / (nF−nC)
In the zoom lens of each embodiment, for example, if the second lens unit L2 is composed of two or less negative lenses, the following problem occurs. Since anomalous dispersion glass generally has a low refractive index, the curvature is tight (the radius of curvature is small) in order to obtain a desired refractive power. As a result, negative distortion increases mainly at the wide-angle end, and it is difficult to correct this.

図17は光学材料のアッベ数νdと部分分散比θの関係を示したグラフである。図17において点Aは株式会社オハラ社製の製品名PBM2(νd=36.26、θ=0.5828)の値を示す。   FIG. 17 is a graph showing the relationship between the Abbe number νd of the optical material and the partial dispersion ratio θ. In FIG. 17, a point A indicates a value of a product name PBM2 (νd = 36.26, θ = 0.5828) manufactured by OHARA INC.

点Bは株式会社オハラ社製の製品名NSL7(νd=60.49、θ=0.5436)の値を示す。   Point B shows the value of the product name NSL7 (νd = 60.49, θ = 0.5436) manufactured by OHARA INC.

点A、点Bを結んだ線を基準線とする。アッベ数νdが35程度より小さい高分散ガラスは、基準線より上側に位置するものが多い。又、アッベ数νdが35から60程度までの低分散ガラスは、基準線より下側に位置するものが多い。   A line connecting points A and B is defined as a reference line. Many high-dispersion glasses having an Abbe number νd smaller than about 35 are located above the reference line. Moreover, many low dispersion glasses having an Abbe number νd of about 35 to 60 are located below the reference line.

一方、アッベ数νdが60以上で、基準線より上側に位置する異常分散ガラスも存在する。低分散ガラスに関しては、基準線より上側に位置するものを使用するのが二次スペクトルの補正に対し効果的であり基準線から離れるほど補正効果が高まる。   On the other hand, there is an anomalous dispersion glass having an Abbe number νd of 60 or more and positioned above the reference line. For the low dispersion glass, it is effective for correcting the secondary spectrum to use a glass positioned above the reference line, and the correction effect increases as the distance from the reference line increases.

条件式(1)は、使用するレンズ材料のg線とF線に対する異常分散性を、部分分散の基準線を基準として規定している。具体的には、条件式(1)の部分分散比θ2がg線とF線の使用レンズ材料の部分分散比を表しており、条件式(1)の右辺が基準ガラスの場合の部分分散比θ2を表している。   Conditional expression (1) defines the anomalous dispersion of the lens material used for the g-line and F-line with reference to the partial dispersion reference line. Specifically, the partial dispersion ratio θ2 in the conditional expression (1) represents the partial dispersion ratio of the lens material used for the g-line and the F-line, and the partial dispersion ratio in the case where the right side of the conditional expression (1) is the reference glass represents θ2.

つまり、条件式(1)を満足するレンズ材料とは、一般的に異常分散ガラスと呼ばれるものであり、部分分散比θ2が基準線より大きい場合とは、基準ガラスに比べて相対的にg線の屈折率が大きいことを表している。   That is, the lens material satisfying the conditional expression (1) is generally called anomalous dispersion glass, and the case where the partial dispersion ratio θ2 is larger than the reference line is relatively g line compared to the reference glass. This indicates that the refractive index of is large.

倍率色収差をズーム全域で少なくするためには、ズーム全域で全系の倍率色収差係数をゼロ近傍の値に制御する必要がある。   In order to reduce lateral chromatic aberration over the entire zoom range, it is necessary to control the lateral chromatic aberration coefficient of the entire system to a value close to zero throughout the entire zoom range.

ここで倍率色収差係数Tは、レンズの屈折力をφ、レンズ面に入射する軸上光線入射高をh、レンズ面に入射する軸外主光線入射高をhb、アッベ数をνdとしたとき、
T=Σ(h・hb・φ/νd)
で表される。
Here, the lateral chromatic aberration coefficient T is expressed as follows: when the refractive power of the lens is φ, the axial ray incident height incident on the lens surface is h, the off-axis principal ray incident height incident on the lens surface is hb, and the Abbe number is νd.
T = Σ (h · hb · φ / νd)
It is represented by

従って倍率色収差の変動は、軸外主光線入射高hbの変動が大きいレンズ群の影響が支配的である。次いで屈折力φの絶対値が大きいレンズ群、即ち各実施例では第2レンズ群L2の影響が大きくなってくる。   Accordingly, the variation in lateral chromatic aberration is dominated by the influence of the lens group having a large variation in the off-axis principal ray incident height hb. Next, the influence of the lens group having a large absolute value of the refractive power φ, that is, the second lens group L2 in each embodiment, becomes large.

図18(a),(b)は各実施例のズームレンズの広角端と望遠端での近軸屈折力配置の模式図である。   FIGS. 18A and 18B are schematic diagrams of paraxial refractive power arrangements at the wide-angle end and the telephoto end of the zoom lens according to each embodiment.

図18の近軸屈折力配置では、物体側より像側へ順に、正の屈折力の第1レンズ群L1と負の屈折力の第2レンズ群L2及び正の屈折力の後続レンズ群LRを有している。そして、全系の焦点距離が長くなるに従い第1レンズ群L1と第2レンズ群L2との距離が大きくなると共に第2レンズ群L2と後続レンズ群LRとの距離が小さくなる。   In the paraxial refractive power arrangement of FIG. 18, the first lens unit L1 having a positive refractive power, the second lens unit L2 having a negative refractive power, and the subsequent lens unit LR having a positive refractive power are sequentially arranged from the object side to the image side. Have. As the focal length of the entire system increases, the distance between the first lens unit L1 and the second lens unit L2 increases and the distance between the second lens unit L2 and the subsequent lens unit LR decreases.

このようなズームレンズにおいて、軸外の主光線について考察する。広角端では、図18(a)のように、望遠端では図18(b)のように主光線は各レンズ群を通過する。なる。なお、図18(a),(b)では絞りSPより像側の後続レンズ群LRでの屈折は省略している。   In such a zoom lens, an off-axis principal ray will be considered. At the wide-angle end, as shown in FIG. 18A, and at the telephoto end, as shown in FIG. 18B, the principal ray passes through each lens group. Become. In FIGS. 18A and 18B, refraction at the subsequent lens unit LR on the image side from the stop SP is omitted.

従来のズームレンズにおいて、g線とC線の倍率色収差を像面上で同一位置になるように補正したとする。この場合、その像面上での位置はd線に対して、広角端では光軸Laの外側にずれ、望遠端では光軸Laの内側にずれることになる。   In the conventional zoom lens, it is assumed that the lateral chromatic aberration of the g-line and the C-line is corrected so as to be at the same position on the image plane. In this case, the position on the image plane is shifted to the outside of the optical axis La at the wide-angle end and shifted to the inside of the optical axis La at the telephoto end with respect to the d-line.

このときg線の倍率色収差は以下のような原理によって補正される。負の屈折力を持つ第2レンズ群L2の負レンズの材料に異常分散ガラスを用いたとする。この場合、光軸Laの内側にg線を曲げる力が強くなる。   At this time, the lateral chromatic aberration of g-line is corrected according to the following principle. Assume that anomalous dispersion glass is used as the material of the negative lens of the second lens unit L2 having a negative refractive power. In this case, the force that bends the g-line inside the optical axis La increases.

これは異常分散ガラスのg線の屈折力が通常の硝材に対して相対的に高いからである。   This is because the refractive power of the g-line of the anomalous dispersion glass is relatively higher than that of a normal glass material.

ここで広角端と望遠端での軸外主光線の高さhbに注目すると、望遠端では高さhbが小さくなるため、第2レンズ群L2の影響が広角端に比べて小さくなる。   Here, when attention is paid to the height hb of the off-axis principal ray at the wide-angle end and the telephoto end, the height hb is small at the telephoto end, so that the influence of the second lens unit L2 is smaller than that at the wide-angle end.

そのため、条件式(1)を満たすことで望遠端の倍率色収差をさほど悪化させることなく望遠端の倍率色収差の二次スペクトルを大きく改善することができる。   Therefore, satisfying conditional expression (1) can greatly improve the secondary spectrum of lateral chromatic aberration at the telephoto end without greatly deteriorating lateral chromatic aberration at the telephoto end.

従って、条件式(1)の下限を超えて、第2レンズ群L2に使用するレンズの材料の異常分散性が小さくなると、倍率色収差を充分小さくすることが難しくなる。   Therefore, when the anomalous dispersion of the lens material used for the second lens unit L2 is reduced beyond the lower limit of conditional expression (1), it is difficult to sufficiently reduce the lateral chromatic aberration.

また、条件式(2)の下限を超えると、各レンズ群の色消しが不十分になり、倍率色収差及び軸上色収差のズーミングによる収差変動が大きくなってくるので良くない。   Further, if the lower limit of conditional expression (2) is exceeded, the achromaticity of each lens group becomes insufficient, and aberration fluctuation due to zooming of lateral chromatic aberration and axial chromatic aberration becomes large, which is not good.

また各実施例では条件式(3)を満足するようにしてズーミングにおける収差変動を少なくしている。   In each embodiment, aberration variation during zooming is reduced so as to satisfy the conditional expression (3).

条件式(3)は、変倍作用の大部分を受け持つ第2レンズ群L2の焦点距離の適正な範囲を規定している。第2レンズ群L2の屈折力が条件式(3)の下限を超えて大きくなったとする。この場合、ズーミングによる第2レンズ群L2の移動量は小さくなるがそれ以上に第2レンズ群L2で発生する諸収差が増大するため、ズーミングによる収差変動の補正が困難になる。   Conditional expression (3) defines an appropriate range of the focal length of the second lens unit L2 responsible for most of the zooming action. It is assumed that the refractive power of the second lens unit L2 increases beyond the lower limit of conditional expression (3). In this case, the amount of movement of the second lens unit L2 due to zooming is reduced, but various aberrations that occur in the second lens unit L2 increase further, making it difficult to correct aberration variations due to zooming.

また反対に、第2レンズ群L2の屈折力が条件式(3)の上限を超えて小さくなったとする。この場合、ズーミングによる第2レンズ群L2の移動量が大きくなり、光学系全体が大型化してしまう。   On the other hand, it is assumed that the refractive power of the second lens unit L2 becomes smaller than the upper limit of the conditional expression (3). In this case, the amount of movement of the second lens unit L2 due to zooming increases, and the entire optical system increases in size.

また、それに伴って第2レンズ群L2に使用する異常分散の材料より成るレンズ径が大きくなるため、重量が増えレンズ鏡筒構造が複雑になるので良くない。   In addition, the lens diameter made of the anomalous dispersion material used for the second lens unit L2 is increased accordingly, which increases the weight and complicates the lens barrel structure.

尚、更に好ましくは条件式(2),(3)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical ranges of conditional expressions (2) and (3) should be set as follows.

60≦νd2 ‥‥‥(2a)
0.4<|f2/fw|<0.9 ‥‥‥(3a)
以上説明したように各実施例のズームレンズでは、ズームレンズ全体の倍率色収差に大きく影響する第2レンズ群L2が、前述した所定の関係を満足する負レンズを備えている。これにより、高ズーム比でありながらズーム全域で諸収差を良好に補正し、高解像、高コントラストな光学性能を得ている。
60 ≦ νd2 (2a)
0.4 <| f2 / fw | <0.9 (3a)
As described above, in the zoom lens of each embodiment, the second lens unit L2 that greatly affects the chromatic aberration of magnification of the entire zoom lens includes the negative lens that satisfies the predetermined relationship described above. As a result, various aberrations are satisfactorily corrected over the entire zoom range while maintaining a high zoom ratio, and optical performance with high resolution and high contrast is obtained.

実施例では広角端と望遠端における全系の焦点距離を各々fw,ftとするとき
2.5≦ft/fw ‥‥‥(
なる条件を満足している。
In each embodiment, when the focal lengths of the entire system at the wide-angle end and the telephoto end are respectively fw and ft, 2.5 ≦ ft / fw ( 4 )
Is satisfied.

条件式()はズーム比に関する。各実施例では各レンズ群の屈折力と移動条件を適切に設定してズーム比2.5以上のズームレンズを得ている。 Conditional expression ( 4 ) relates to the zoom ratio. In each embodiment, a zoom lens having a zoom ratio of 2.5 or more is obtained by appropriately setting the refractive power and movement condition of each lens group.

ズーム比が2.5より小さくなると、一眼レフカメラの撮影レンズとしてズーム比が不十分となり、好ましくない。   When the zoom ratio is smaller than 2.5, the zoom ratio becomes insufficient as a photographing lens for a single-lens reflex camera, which is not preferable.

尚、更に好ましくは条件式()の数値を次の如く設定するのが良い。 More preferably, the numerical value of conditional expression ( 4 ) should be set as follows.

3.0≦ft/fw ‥‥‥(4a
各実施例では、第2レンズ群L2は、物体側から像側へ順に、負レンズ、負レンズ、そして複数のレンズを有するように構成している。
3.0 ≦ ft / fw ( 4a )
In each embodiment, the second lens unit L2 includes a negative lens, a negative lens, and a plurality of lenses in order from the object side to the image side.

これによってズーミングにおける収差変動が少なくなるようにしている。   This reduces aberration fluctuations during zooming.

各実施例はレンズ枚数を大幅に増やすことなく諸収差を良好に補正するために、いくつかのレンズ面を非球面形状としている。   In each embodiment, some lens surfaces are aspherical in order to satisfactorily correct various aberrations without significantly increasing the number of lenses.

各実施例のレンズ構成において、第2レンズ群L2或いは第5レンズ群L5の少なくとも1面を非球面形状とするのが良い。   In the lens configurations of the embodiments, it is preferable that at least one surface of the second lens unit L2 or the fifth lens unit L5 has an aspherical shape.

これによれば主として広角端の非点収差や歪曲収差を良好に補正することが容易となる。   According to this, it becomes easy to satisfactorily correct mainly astigmatism and distortion at the wide-angle end.

第2レンズ群L2よりも像側であって、後続レンズ群LR中または後続レンズ群の物体側に開口絞りSPを配置している。   An aperture stop SP is disposed on the image side of the second lens unit L2 and in the subsequent lens unit LR or on the object side of the subsequent lens unit.

これによって前玉有効径の増大を防止しつつ、レンズ系全体の小型化を図っている。   As a result, the entire lens system is reduced in size while preventing an increase in the effective diameter of the front lens.

以下に、実施例1〜4に各々対応する数値実施例1〜4を示す。各数値実施例において、iは物体側からの面の順番を示し、riは各面の曲率半径、diは第i面と第(i+1)面との間の間隔、ni,νiはそれぞれd線を基準とした屈折率,アッベ数を示す。非球面形状は、光軸からの高さhの位置での光軸方向の変位を、面頂点を基準にしてXとするとき、   The numerical examples 1 to 4 corresponding to the first to fourth examples are shown below. In each numerical example, i indicates the order of the surfaces from the object side, ri is the radius of curvature of each surface, di is the distance between the i-th surface and the (i + 1) -th surface, and ni and νi are d-lines, respectively. Refractive index and Abbe number based on. When the aspherical shape is X with the displacement in the optical axis direction at the position of the height h from the optical axis as X with respect to the surface vertex,

で表される。但し、Rは近軸曲率半径、Kは円錐定数、C4,C6,C8,C10,C12は非球面係数である。又「e−X」は[×10−X]を意味している。fは焦点距離、FnoはFナンバー、L1〜L5は第1〜第5レンズ群を示す。 It is represented by However, R is a paraxial radius of curvature, K is a conic constant, and C4, C6, C8, C10, and C12 are aspherical coefficients. “E −X ” means [× 10 −X ]. f denotes a focal length, Fno denotes an F number, and L1 to L5 denote first to fifth lens groups.

中心厚、間隔diの最終値は、レンズ面と像面との間隔である。   The final value of the center thickness and the distance di is the distance between the lens surface and the image surface.

又、前述の各条件式と数値実施例における諸数値との関係を<<表1>>に示す。   Further, << Table 1 >> shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.

次に実施例1〜4に示したズームレンズを撮像装置に適用した実施例を、図19を用いて説明する。   Next, an embodiment in which the zoom lens shown in Embodiments 1 to 4 is applied to an imaging apparatus will be described with reference to FIG.

図19は一眼レフカメラの要部概略図である。図19において、10は実施例1〜4のズームレンズ1を有する撮影レンズである。   FIG. 19 is a schematic view of the main part of a single-lens reflex camera. In FIG. 19, reference numeral 10 denotes a photographing lens having the zoom lens 1 according to the first to fourth embodiments.

ズームレンズ1は保持部材である鏡筒2に保持されている。   The zoom lens 1 is held by a lens barrel 2 that is a holding member.

20はカメラ本体である。カメラ本体20は、クイックリターンミラー3、焦点板4、ペンタダハプリズム5、接眼レンズ6等によって構成されている。クイックリターンミラー3は、撮影レンズ10からの光束を上方に反射する。焦点板4は、撮影レンズ10の像形成位置に配置されている。ペンタダハプリズム5は、焦点板4に形成された逆像を正立像に変換する。観察者は、その正立像を、接眼レンズ6を介して観察する
7は感光面であり、CCDセンサやCMOSセンサ等の像を受光する固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。
Reference numeral 20 denotes a camera body. The camera body 20 includes a quick return mirror 3, a focusing screen 4, a penta roof prism 5, an eyepiece lens 6, and the like. The quick return mirror 3 reflects the light beam from the photographing lens 10 upward. The focusing screen 4 is disposed at the image forming position of the taking lens 10. The penta roof prism 5 converts the reverse image formed on the focusing screen 4 into an erect image. An observer observes the erect image through the eyepiece 6, 7 is a photosensitive surface, and a solid-state imaging device (photoelectric conversion device) or a silver salt film for receiving an image of a CCD sensor or a CMOS sensor is arranged. The At the time of photographing, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the photographing lens 10.

実施例1〜4にて説明した利益は、本実施例に開示したような光学機器において効果的に享受される。   The benefits described in the first to fourth embodiments are effectively enjoyed in the optical apparatus disclosed in the present embodiment.

実施例1のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの広角端の収差図Aberration diagram at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの中間のズーム位置の収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 1 実施例1のズームレンズの望遠端の収差図Aberration diagram at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 2 実施例2のズームレンズの広角端の収差図Aberration diagram at the wide-angle end of the zoom lens of Example 2 実施例2のズームレンズの中間のズーム位置の収差図Aberration diagram at the middle zoom position of the zoom lens of Example 2 実施例2のズームレンズの望遠端の収差図Aberration diagram at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 3 実施例3のズームレンズの広角端の収差図Aberration diagram at the wide-angle end of the zoom lens in Example 3 実施例3のズームレンズの中間のズーム位置の収差図Aberration diagram at the middle zoom position of the zoom lens of Example 3 実施例3のズームレンズの望遠端の収差図Aberration diagram at the telephoto end of the zoom lens in Example 3 実施例4のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 4 実施例4のズームレンズの広角端の収差図Aberration diagram at wide-angle end of zoom lens in Example 4 実施例4のズームレンズの中間のズーム位置の収差図Aberration diagram at intermediate zoom position of zoom lens of Example 4 実施例4のズームレンズの望遠端の収差図Aberration diagram at the telephoto end of the zoom lens in Example 4 アッベ数νdと部分分散比θの関係を示す説明図Explanatory drawing showing the relationship between Abbe number νd and partial dispersion ratio θ 本発明のズームレンズにおける倍率色収差の補正原理を説明するための模式図Schematic diagram for explaining the correction principle of lateral chromatic aberration in the zoom lens of the present invention 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L5 第5レンズ群
LR 後続レンズ群
SP 開口絞り
IP 像面
d d線
g g線
S.C 正弦条件
ΔS サジタル像面
ΔM メリディオナル像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L5 5th lens group LR Subsequent lens group SP Aperture stop IP Image plane d d line g g line S.L. C Sine condition ΔS Sagittal image plane ΔM Meridional image plane

Claims (5)

物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、広角端から望遠端へのズーミングに際して、前記第1レンズ群と前記第2レンズ群との間隔が大きくなり、前記第2レンズ群と前記第3レンズ群との間隔が小さくなり、前記第3レンズ群と前記第4レンズ群との間隔が大きくなり、前記第4レンズ群と前記第5レンズ群との間隔が小さくなるズームレンズにおいて、前記第2レンズ群は、アッベ数をνd2、部分分散比をθ2とするとき、
−1.62×10-3・νd2+0.642<θ2
55≦νd2
なる条件を満足する材料で構成される負レンズを含む3枚以上の負レンズを有し、前記第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw、ftとするとき、
0.3<|f2/fw|<1.0
2.5≦ft/fw
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive lens The zoom lens is composed of a fifth lens unit having a refractive power. During zooming from the wide-angle end to the telephoto end, the distance between the first lens unit and the second lens unit increases , and the second lens unit and the third lens unit In the zoom lens in which the distance between the third lens group and the fourth lens group is increased, and the distance between the fourth lens group and the fifth lens group is decreased. When the group has an Abbe number of νd2 and a partial dispersion ratio of θ2,
-1.62 × 10 -3 · νd2 + 0.642 <θ2
55 ≦ νd2
Having three or more negative lens with a material that satisfies the following condition including a negative lens constructed, the focal length of the second lens group f2, respectively the focal length of the entire system at the wide-angle end and the telephoto end fw, When ft ,
0.3 <| f2 / fw | <1.0
2.5 ≦ ft / fw
A zoom lens characterized by satisfying the following conditions:
前記第2レンズ群は、物体側から像側へ順に、負レンズ、負レンズ、複数のレンズを有することを特徴とする請求項に記載のズームレンズ。 The zoom lens according to claim 1 , wherein the second lens group includes a negative lens, a negative lens , and a plurality of lenses in order from the object side to the image side. 前記第2レンズ群像側に開口絞りが配置されていることを特徴とする請求項1または2に記載のズームレンズ。 The zoom lens according to claim 1 or 2, characterized in that the aperture stop is disposed on the image side of the second lens group. 固体撮像素子に像を形成することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 3, characterized in that to form an image on the solid-state imaging device. 請求項1乃至4のいずれか1項に記載のズームレンズと、前記ズームレンズによって形成された像を受光する固体撮像素子とを有することを特徴とする撮像装置。 5. An imaging apparatus comprising: the zoom lens according to claim 1 ; and a solid-state imaging device that receives an image formed by the zoom lens.
JP2005353640A 2005-12-07 2005-12-07 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4944436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353640A JP4944436B2 (en) 2005-12-07 2005-12-07 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353640A JP4944436B2 (en) 2005-12-07 2005-12-07 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2007156251A JP2007156251A (en) 2007-06-21
JP2007156251A5 JP2007156251A5 (en) 2009-01-29
JP4944436B2 true JP4944436B2 (en) 2012-05-30

Family

ID=38240680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353640A Expired - Fee Related JP4944436B2 (en) 2005-12-07 2005-12-07 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4944436B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294051B2 (en) * 2008-03-25 2013-09-18 株式会社リコー Zoom lens, imaging device
JP5115718B2 (en) * 2008-03-31 2013-01-09 株式会社ニコン Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
US7974012B2 (en) 2008-03-31 2011-07-05 Nikon Corporation Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
JP5181776B2 (en) * 2008-03-31 2013-04-10 株式会社ニコン Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
US8736968B2 (en) 2008-07-28 2014-05-27 Nikon Corporation Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JP5641680B2 (en) * 2008-07-28 2014-12-17 株式会社ニコン Zoom lens and optical apparatus having the same
JP5303310B2 (en) * 2009-02-26 2013-10-02 株式会社タムロン Zoom lens
EP2244117B1 (en) * 2009-04-24 2017-05-31 Ricoh Company, Ltd. Zoom lens unit
CN102645734B (en) * 2009-04-24 2014-10-15 株式会社理光 Zoom lens unit, imaging apparatus and portable information terminal apparatus
JP5958018B2 (en) * 2012-03-30 2016-07-27 株式会社ニコン Zoom lens, imaging device
JP5885166B2 (en) * 2012-06-08 2016-03-15 株式会社タムロン Zoom lens
CN107407793A (en) 2015-03-27 2017-11-28 奥林巴斯株式会社 Zoom lens and the camera device with the zoom lens
CN107615130B (en) 2015-05-29 2021-01-01 株式会社尼康 Variable magnification optical system and optical apparatus
JP7115963B2 (en) 2018-11-27 2022-08-09 富士フイルム株式会社 Zoom lens and imaging device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077146B2 (en) * 1985-05-27 1995-01-30 株式会社ニコン Telephoto zoom lens
JPH08136805A (en) * 1994-11-14 1996-05-31 Nikon Corp Zoom lens
JP3598971B2 (en) * 2000-04-07 2004-12-08 ミノルタ株式会社 Imaging lens device
JP2002062478A (en) * 2000-08-22 2002-02-28 Olympus Optical Co Ltd Zoom lens
JP2003066334A (en) * 2001-08-29 2003-03-05 Pentax Corp High variable power zoom lens system
JP4266617B2 (en) * 2001-12-28 2009-05-20 オリンパス株式会社 Wide-angle high-magnification zoom lens and photographing apparatus using the same
JP4512359B2 (en) * 2003-12-26 2010-07-28 オリンパス株式会社 Camera with zoom lens

Also Published As

Publication number Publication date
JP2007156251A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US9134512B2 (en) Zoom lens and image pickup apparatus having the same
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
US9329372B2 (en) Zoom lens and image pickup apparatus having the same
US20190265447A1 (en) Zoom lens and image pickup apparatus
US20150146085A1 (en) Optical system and image pickup apparatus including the same
US11668899B2 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
US9482852B2 (en) Zoom lens and image pickup apparatus having the same
JP6566991B2 (en) Zoom lens and imaging apparatus having the same
JP2011081062A (en) Zoom lens and imaging apparatus having the same
JP5936439B2 (en) Zoom lens and imaging apparatus having the same
JP5893509B2 (en) Zoom lens and imaging apparatus having the same
JP5661490B2 (en) Zoom lens and imaging apparatus having the same
US8873155B2 (en) Zoom lens and image pickup apparatus having the same
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
JP5006637B2 (en) Zoom lens and image projection apparatus having the same
JP4405747B2 (en) Zoom lens and imaging apparatus having the same
JP5303310B2 (en) Zoom lens
JP2010122536A (en) Zoom lens
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP4817551B2 (en) Zoom lens
JP5058634B2 (en) Zoom lens and imaging apparatus having the same
JP4898361B2 (en) Teleconverter lens and imaging apparatus having the same
JP2013054191A (en) Zoom lens
JP5535023B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R151 Written notification of patent or utility model registration

Ref document number: 4944436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees