[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4942352B2 - Chlorine-containing thermoplastic resin composition - Google Patents

Chlorine-containing thermoplastic resin composition Download PDF

Info

Publication number
JP4942352B2
JP4942352B2 JP2006024467A JP2006024467A JP4942352B2 JP 4942352 B2 JP4942352 B2 JP 4942352B2 JP 2006024467 A JP2006024467 A JP 2006024467A JP 2006024467 A JP2006024467 A JP 2006024467A JP 4942352 B2 JP4942352 B2 JP 4942352B2
Authority
JP
Japan
Prior art keywords
rubber
mass
particles
chlorine
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006024467A
Other languages
Japanese (ja)
Other versions
JP2007204587A (en
Inventor
敬治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006024467A priority Critical patent/JP4942352B2/en
Publication of JP2007204587A publication Critical patent/JP2007204587A/en
Application granted granted Critical
Publication of JP4942352B2 publication Critical patent/JP4942352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、低温衝撃強度及び高温機械特性を保持し、良好な加工特性、成形物表面外観及び発色性を有する塩素含有熱可塑性樹脂組成物に関する。   The present invention relates to a chlorine-containing thermoplastic resin composition that retains low-temperature impact strength and high-temperature mechanical properties and has good processing characteristics, a molded product surface appearance, and color developability.

塩化ビニル系樹脂は汎用性の高い樹脂であるが、耐衝撃性に劣るという欠点がある。特に、衝撃強度や他の機械特性と加工性の両立は本樹脂の大きな課題である。そこで耐衝撃性を改良するために多くの方法が提案されている。
一方、塩素化塩化ビニル系樹脂の成形物は塩化ビニル系樹脂の成形物よりも熱変形温度が20〜40℃も高いという特徴を有する。この特徴により、塩素化塩化ビニル系樹脂は、従来の塩化ビニル系樹脂の成形物では加熱変形するために使用できないような比較的高温での用途、例えば熱水用パイプ、熱のかかる家電用のシート等に用いられている。反面、低温での耐衝撃性が劣るという弱点がある。
これを改善するために、塩素化塩化ビニル系樹脂にABS樹脂やMBS樹脂等の耐衝撃改良剤を配合することが知られている。これらの耐衝撃改良剤は低温での耐衝撃性を向上するもののその効果は十分ではなく、しかも成形加工時の溶融特性が悪く、加工性に難点があった。この問題を解決するために種々の提案がなされており、以下に示す特許文献1〜3には、塩素化塩化ビニル樹脂にMBS樹脂、更にはシリコーン含有グラフト共重合体を添加する技術が提案されている。
Vinyl chloride resin is a highly versatile resin, but has the disadvantage of poor impact resistance. In particular, compatibility between impact strength and other mechanical properties and processability is a major problem of this resin. Therefore, many methods have been proposed to improve the impact resistance.
On the other hand, the molded product of chlorinated vinyl chloride resin has a feature that the heat distortion temperature is 20 to 40 ° C. higher than that of the molded product of vinyl chloride resin. Due to this feature, chlorinated vinyl chloride resins can be used for relatively high temperatures, such as hot water pipes and hot household appliances, which cannot be used because they are deformed by heating with conventional vinyl chloride resin moldings. Used for sheets and the like. On the other hand, there is a weak point that the impact resistance at low temperature is inferior.
In order to improve this, it is known to add an impact resistance improver such as ABS resin or MBS resin to chlorinated vinyl chloride resin. Although these impact resistance improvers improve impact resistance at low temperatures, their effects are not sufficient, and the melting characteristics during molding are poor, resulting in difficulties in workability. Various proposals have been made to solve this problem. Patent Documents 1 to 3 listed below propose a technique for adding an MBS resin and further a silicone-containing graft copolymer to a chlorinated vinyl chloride resin. ing.

耐衝撃改良剤としてのシリコーン/アクリル複合ゴム系グラフト共重合体に関しては、低温衝撃強度等を改良する目的で、その粒子径を制御した提案がなされている(特許文献4)。
以上のように、塩素含有樹脂について種々の改良が検討されているが、低温衝撃強度及び高温機械特性を保持し、良好な加工特性、成形物表面外観及び発色性を満足するものは得られていない。
特開平7−145287号公報 特開平9−316269号公報 特開2001−139746号公報 特開2004−331726号公報
With respect to the silicone / acrylic composite rubber-based graft copolymer as an impact resistance improver, a proposal has been made in which the particle diameter is controlled for the purpose of improving low temperature impact strength and the like (Patent Document 4).
As described above, various improvements have been investigated for chlorine-containing resins, but those that retain low-temperature impact strength and high-temperature mechanical properties and satisfy good processing characteristics, molded product surface appearance, and color developability have been obtained. Absent.
JP 7-145287 A JP 9-316269 A JP 2001-139746 A JP 2004-331726 A

本発明の目的は、低温衝撃強度及び高温機械特性を保持し、良好な加工特性、成形物表面外観及び発色性を有する塩素含有熱可塑性樹脂組成物を提供することにある。   An object of the present invention is to provide a chlorine-containing thermoplastic resin composition that retains low-temperature impact strength and high-temperature mechanical properties and has good processing characteristics, a molded product surface appearance, and color development.

本発明は、塩化ビニル系樹脂、塩素化度が50〜70質量%である塩素化塩化ビニル系樹脂及び塩素化ポリエチレンから選ばれる少なくとも1種の塩素含有樹脂(A)100質量部並びにポリオルガノシロキサンゴム及びポリアルキル(メタ)アクリレートゴムを含む複合ゴムに一種以上のビニル系単量体単位がグラフト結合され、数平均粒子径が300〜2000nmで、且つ全粒子中に占める粒子径300nm以下の粒子の割合が20体積%以下であるシリコーン/アクリル複合ゴム系グラフト共重合体粒子(B)0.1〜30質量部を含有する塩素含有熱可塑性樹脂組成物にある。   The present invention relates to a vinyl chloride resin, 100 parts by mass of at least one chlorine-containing resin (A) selected from chlorinated vinyl chloride resin having a chlorination degree of 50 to 70% by mass and chlorinated polyethylene, and polyorganosiloxane. Particles in which one or more vinyl monomer units are grafted to a composite rubber including rubber and polyalkyl (meth) acrylate rubber, the number average particle diameter is 300 to 2000 nm, and the total particle diameter is 300 nm or less Is a chlorine-containing thermoplastic resin composition containing 0.1 to 30 parts by mass of silicone / acrylic composite rubber-based graft copolymer particles (B) having a ratio of 20% by volume or less.

本発明の塩素含有熱可塑性樹脂組成物は低温衝撃強度及び高温機械特性を保持し、良好な加工特性、成形物表面外観及び発色性を有しており、各種工業材料として種々の成形品に利用可能である。   The chlorine-containing thermoplastic resin composition of the present invention retains low-temperature impact strength and high-temperature mechanical properties, has good processing characteristics, molded product surface appearance, and color developability, and is used in various molded products as various industrial materials. Is possible.

本発明で用いられる塩素含有樹脂(A)は、塩化ビニル系樹脂、塩素化度が50〜70質量%である塩素化塩化ビニル系樹脂及び塩素化ポリエチレンから選ばれる少なくとも1種である。   The chlorine-containing resin (A) used in the present invention is at least one selected from vinyl chloride resins, chlorinated vinyl chloride resins having a chlorination degree of 50 to 70% by mass, and chlorinated polyethylene.

塩化ビニル系樹脂は、平均重合度が好ましくは600〜1500,更に好ましくは600〜1300である。平均重合度が600以上で十分な機械的強度が得られ、平均重合度が1500以下で樹脂組成物の加工が容易である。尚、塩化ビニル系樹脂としては、塩化ビニルの単独重合体及び塩化ビニルと他の共重合可能な単量体(例えば、エチレン、プロピレン、酢酸ビニル、塩化アリル、アリルグリシジルエーテル、アクリル酸エステル、ビニルエーテル等)との共重合体のいずれでもよい。   The vinyl chloride resin preferably has an average degree of polymerization of 600 to 1500, more preferably 600 to 1300. When the average degree of polymerization is 600 or more, sufficient mechanical strength is obtained, and when the average degree of polymerization is 1500 or less, processing of the resin composition is easy. Vinyl chloride resins include vinyl chloride homopolymers and other copolymerizable monomers with vinyl chloride (for example, ethylene, propylene, vinyl acetate, allyl chloride, allyl glycidyl ether, acrylic ester, vinyl ether). Etc.) may be used.

塩素化塩化ビニル系樹脂は、その塩素化度は50〜70質量%であり、好ましくは60〜70質量%、より好ましくは65〜70質量%である。塩素化度が50質量%以上で十分な耐熱性を有する組成物が得られ、塩素化度が70質量%以下で加工に必要な溶融粘度が維持できる。塩素化塩化ビニル系樹脂の原料である塩化ビニル系樹脂としては前記のものを用いることが好ましい。
塩素化ポリエチレンの具体例としては、ポリエチレン粉末を水性懸濁液中で塩素化したもの又は有機溶媒にポリエチレンを溶解して塩素化したもの等が挙げられる。特に、ポリエチレン粉末を水性懸濁液中で塩素化したものが好ましい。
塩素化ポリエチレンの原料となるポリエチレンは、例えば、エチレンの単独重合体又はエチレンと40質量%以下(好ましくは20質量%以下)の炭素数が12個以下(好ましくは3〜8個)のα−オレフィンとを共重合することによって得られる共重合体が挙げられる。α−オレフィンの具体例としては、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン等が挙げられる。上記ポリエチレンのうち、特にエチレンの単独重合体が好ましい。
塩素化ポリオレフィンの塩素含有量は30〜40質量%が好適に用いられる。
The chlorinated vinyl chloride resin has a chlorination degree of 50 to 70% by mass, preferably 60 to 70% by mass, and more preferably 65 to 70% by mass. A composition having sufficient heat resistance can be obtained when the chlorination degree is 50% by mass or more, and the melt viscosity necessary for processing can be maintained when the chlorination degree is 70% by mass or less. As the vinyl chloride resin which is a raw material of the chlorinated vinyl chloride resin, the above-mentioned ones are preferably used.
Specific examples of chlorinated polyethylene include chlorinated polyethylene powder in an aqueous suspension or chlorinated polyethylene dissolved in an organic solvent. In particular, chlorinated polyethylene powder in an aqueous suspension is preferable.
The polyethylene used as the raw material for the chlorinated polyethylene is, for example, an ethylene homopolymer or ethylene and α- having 40% by mass or less (preferably 20% by mass or less) and 12 or less (preferably 3 to 8) carbon atoms. Examples include copolymers obtained by copolymerizing with olefins. Specific examples of the α-olefin include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and the like. Of the above polyethylene, an ethylene homopolymer is particularly preferred.
The chlorine content of the chlorinated polyolefin is preferably 30 to 40% by mass.

本発明におけるシリコーン/アクリル複合ゴム系グラフト共重合体粒子(B)は、ポリオルガノシロキサンゴム(以下「Sゴム」という)及びポリアルキル(メタ)アクリレートゴム(以下「Aゴム」という)を含む複合ゴムに一種以上のビニル系単量体単位がグラフト結合され、数平均粒子径が300〜2000nmで、且つ全粒子中に占める粒子径300nm以下の粒子の割合が20体積%以下である。
上記数平均粒子径は好ましくは400nm以上、更に好ましくは600nm以上である。また、数平均粒子径は好ましくは1500nm以下であり、更に好ましくは1300nm以下である。
数平均粒子径が300nm以上で特に低温での衝撃強度発現性の点で好ましい。また、2000nm以下で、絶対的な粒子数が確保され、衝撃強度を維持する上で好ましい。
尚、以下の説明において、「シリコーン/アクリル複合ゴム」を「複合ゴム」と略し、「シリコーン/アクリル複合ゴム系グラフト共重合体粒子(B)」を「グラフト共重合体粒子(B)」と略す。
The silicone / acrylic composite rubber-based graft copolymer particles (B) in the present invention include a composite containing a polyorganosiloxane rubber (hereinafter referred to as “S rubber”) and a polyalkyl (meth) acrylate rubber (hereinafter referred to as “A rubber”). One or more vinyl monomer units are grafted to the rubber, the number average particle size is 300 to 2000 nm, and the proportion of particles having a particle size of 300 nm or less in all particles is 20% by volume or less.
The number average particle diameter is preferably 400 nm or more, more preferably 600 nm or more. Further, the number average particle diameter is preferably 1500 nm or less, and more preferably 1300 nm or less.
The number average particle diameter is 300 nm or more, which is preferable from the viewpoint of impact strength development at a low temperature. Moreover, the absolute particle number is ensured at 2000 nm or less, which is preferable for maintaining the impact strength.
In the following description, “silicone / acrylic composite rubber” is abbreviated as “composite rubber”, and “silicone / acrylic composite rubber-based graft copolymer particles (B)” is referred to as “graft copolymer particles (B)”. Abbreviated.

Sゴムとしては、好ましくは、オルガノシロキサン単位及びビニル重合性官能基含有オルガノシロキサン単位を有するものが使用される。
オルガノシロキサン単位の原料としては3員環以上のジメチルシロキサン系環状体等のジメチルシロキサンが挙げられ、3〜7員環のものが好ましい。具体的にはヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等が挙げられ、単独で又は二種以上混合して用いられる。粒子径分布制御のし易さの点で、主成分として4員環であるオクタメチルシクロテトラシロキサンを用いることが好ましい。
As the S rubber, those having an organosiloxane unit and a vinyl polymerizable functional group-containing organosiloxane unit are preferably used.
Examples of the raw material for the organosiloxane unit include dimethylsiloxanes such as dimethylsiloxane-based cyclics having 3 or more members, and those having 3 to 7 members are preferable. Specific examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and the like. These may be used alone or in combination of two or more. From the viewpoint of easy control of particle size distribution, it is preferable to use octamethylcyclotetrasiloxane, which is a 4-membered ring, as the main component.

また、ビニル重合性官能基含有オルガノシロキサン単位の原料としては、上記ジメチルシロキサンとの反応性を考慮すると、ビニル重合性官能基を含有する各種アルコキシシラン化合物を用いることが好ましい。具体的には、β−メタクリロイルオキシエチルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルメトキシジメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルエトキシジエチルシラン、γ−メタクリロイルオキシプロピルエトキシジエトキシメチルシラン及びδ−メタクリロイルオキシブチルジエトキシメチルシラン等のメタクリロイルオキシシラン;テトラメチルテトラビニルシクロテトラシロキサン等のビニルシロキサン;p−ビニルフェニルジメトキシメチルシラン等のビニルフェニルシラン;γ−メルカプトプロピルジメトキシメチルシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプトシロキサン等が挙げられる。尚、これらビニル重合性官能基含有シロキサンは単独で又は二種以上の混合物として用いることができる。   In addition, as a raw material for the vinyl polymerizable functional group-containing organosiloxane unit, it is preferable to use various alkoxysilane compounds containing a vinyl polymerizable functional group in consideration of the reactivity with dimethylsiloxane. Specifically, β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropylmethoxydimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylethoxydiethylsilane, methacryloyloxysilane such as γ-methacryloyloxypropylethoxydiethoxymethylsilane and δ-methacryloyloxybutyldiethoxymethylsilane; vinylsiloxane such as tetramethyltetravinylcyclotetrasiloxane; vinylphenylsilane such as p-vinylphenyldimethoxymethylsilane ; Mercaptosy such as γ-mercaptopropyldimethoxymethylsilane and γ-mercaptopropyltrimethoxysilane; Hexane, and the like. In addition, these vinyl polymerizable functional group containing siloxane can be used individually or in mixture of 2 or more types.

また、Sゴムの構成単位として、上記単量体単位以外に、必要に応じて架橋剤単位を導入することができる。この原料としてシロキサン系架橋剤が挙げられる。
シロキサン系架橋剤としては、3官能性又は4官能性のもの、例えばトリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン等が挙げられる。
In addition to the monomer unit, a crosslinker unit can be introduced as necessary as a constituent unit of the S rubber. Examples of this raw material include a siloxane-based crosslinking agent.
Examples of the siloxane-based crosslinking agent include trifunctional or tetrafunctional ones such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane.

Sゴムの製法としては、ジメチルシロキサンとビニル重合性官能基含有オルガノシロキサンからなる混合物、更に必要に応じてシロキサン系架橋剤を含む混合物を乳化剤と水によって乳化させたラテックスを、高速回転による剪断力で微粒子化するホモミキサーや、高圧発生機による噴出力で微粒子化するホモジナイザー等を使用して微粒子化した後、酸触媒を用いて高温下で重合させ、次いでアルカリ性物質により酸を中和する方法が挙げられる。上記微粒子化の際には、粒子径の分布が狭くなる点でホモジナイザーを使用するのが好ましい。   As a method for producing S rubber, a mixture of dimethylsiloxane and a vinyl polymerizable functional group-containing organosiloxane, and a latex obtained by emulsifying a mixture containing a siloxane-based cross-linking agent with an emulsifier and water as necessary, are subjected to shearing force by high-speed rotation. After homogenization using a homomixer that produces fine particles with a high pressure generator or a homogenizer that produces fine particles with a jet output from a high-pressure generator, polymerize at high temperature using an acid catalyst, and then neutralize the acid with an alkaline substance. Is mentioned. In making the fine particles, it is preferable to use a homogenizer in that the particle size distribution becomes narrow.

乳化剤としてはアニオン系乳化剤が好ましく、アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルジフェニルエーテルスルフォン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム、アルキルスルフォ琥珀酸ナトリウム等の中から選ばれた乳化剤が使用される。特にアルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム等が好ましい。   As an emulsifier, an anionic emulsifier is preferable, and an emulsifier selected from sodium alkylbenzene sulfonate, sodium lauryl sulfate, sodium alkyldiphenyl ether sulfonate, sodium polyoxyethylene alkyl ether sulfate, sodium alkyl sulfonate is used. The In particular, sodium alkylbenzene sulfonate and sodium lauryl sulfate are preferred.

酸触媒としては、脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸等のスルホン酸類及び硫酸、塩酸、硝酸等の鉱酸類等が挙げられる。これらの酸触媒は単独で又は二種以上を組み合わせて用いられる。また、これらの中では、ミセル形成能のない硫酸、塩酸、硝酸等の鉱酸を使用すると、Sゴムラテックスの粒子径分布を狭くすることができ、Sゴムラテックスの乳化剤成分に起因する樹脂組成物の外観不良を低減させることができるという点で好ましい。   Examples of the acid catalyst include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzene sulfonic acid, and aliphatic substituted naphthalene sulfonic acid, and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. These acid catalysts are used alone or in combination of two or more. Of these, the use of mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid having no micelle forming ability can narrow the particle size distribution of the S rubber latex, and the resin composition resulting from the emulsifier component of the S rubber latex. This is preferable in that the appearance defect of the object can be reduced.

尚、酸触媒の混合方法としては、(1)単量体混合物、乳化剤及び水を一緒に混合する方法、(2)上記単量体混合物の微粒子化ラテックスを高温の酸水溶液中に一定速度で滴下する方法及び(3)予め単量体混合物、乳化剤及び水を混合、乳化したものに、酸触媒の水溶液を一括、又は短時間のうちに滴下する方法等が挙げられるが、ポリオルガノシロキサンの粒子径制御のし易さを考慮すると(3)の方法が好ましい。   In addition, the mixing method of the acid catalyst includes (1) a method of mixing the monomer mixture, the emulsifier and water together, and (2) the finely divided latex of the monomer mixture in a high-temperature acid aqueous solution at a constant rate. The method of dripping and (3) The method of dripping the aqueous solution of an acid catalyst all at once or in a short time can be cited as a mixture obtained by previously mixing and emulsifying a monomer mixture, an emulsifier and water. Considering the ease of particle size control, the method (3) is preferable.

重合温度は50℃以上が好ましく、70℃以上がより好ましい。また、重合時間は、酸触媒を単量体混合物、乳化剤及び水とともに混合、微粒子化させて重合する場合は2時間以上、より好ましくは5時間以上である。
重合の停止は、反応液を冷却、更にラテックスを苛性ソーダ、苛性カリ、炭酸ナトリウム等のアルカリ性物質で中和することによって行うことができる。
The polymerization temperature is preferably 50 ° C. or higher, more preferably 70 ° C. or higher. The polymerization time is 2 hours or more, more preferably 5 hours or more when the acid catalyst is mixed with a monomer mixture, an emulsifier and water to form a fine particle for polymerization.
The polymerization can be stopped by cooling the reaction solution and further neutralizing the latex with an alkaline substance such as caustic soda, caustic potash or sodium carbonate.

本発明における特定粒子径のグラフト共重合体粒子(B)を得るためには、Sゴムとして、10nm以上250nm未満の粒子を0〜15体積%、250nm以上2000nm未満の粒子を85〜100体積%含有するSゴムを用いるのが好ましい。また、Sゴムとして、粒子径分布(質量平均粒子径dw/数平均粒子径dn)が1.0〜1.2のものを用いることが更に好ましい。   In order to obtain graft copolymer particles (B) having a specific particle diameter in the present invention, as S rubber, 0 to 15% by volume of particles of 10 to 250 nm and 85 to 100% by volume of particles of 250 to 2000 nm. It is preferable to use the contained S rubber. Further, it is more preferable to use a rubber having a particle size distribution (mass average particle size dw / number average particle size dn) of 1.0 to 1.2.

本発明において、Aゴムとしては、アルキル(メタ)アクリレート単位と多官能性アルキル(メタ)アクリレート単位の共重合物が挙げられる。   In the present invention, the A rubber includes a copolymer of an alkyl (meth) acrylate unit and a polyfunctional alkyl (meth) acrylate unit.

アルキル(メタ)アクリレート単位の原料としては、例えばメチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、2−エチルヘキシルアクリレート等のアルキルアクリレート及びヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−ラウリルメタクリレート等のアルキルメタクリレートが挙げられ、これらを単独で又は二種以上を併用して用いることができる。また、本発明の塩素含有熱可塑性樹脂組成物の耐衝撃性及び成形光沢を考慮すると、特にn−ブチルアクリレートの使用が好ましい。   Examples of raw materials for the alkyl (meth) acrylate unit include alkyl acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, and n-lauryl methacrylate. These may be used alone or in combination of two or more. In view of the impact resistance and molding gloss of the chlorine-containing thermoplastic resin composition of the present invention, it is particularly preferable to use n-butyl acrylate.

また、多官能性アルキル(メタ)アクリレート単位の原料としては、例えばアリルメタクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,4−ブチレングリコールジメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられ、これらを単独で又は二種以上を併用して用いることができる。   Examples of the raw material for the polyfunctional alkyl (meth) acrylate unit include allyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and triaryl. Examples include lucyanurate and triallyl isocyanurate, and these can be used alone or in combination of two or more.

本発明において、Aゴムの製造は、以下に示すように、Sゴムのラテックス中にAゴム用単量体混合物を添加し、Sゴム中に含浸させた後に重合させる方法が好ましい。   In the present invention, the production of A rubber is preferably carried out by adding a monomer mixture for A rubber into the latex of S rubber and impregnating it in S rubber, followed by polymerization.

本発明において、複合ゴムはSゴム1〜99質量%とAゴム99〜1質量%とが分離できないように相互に絡み合った構造を有するものであることが好ましい。
複合ゴムの製造方法としては、例えば、Sゴムのラテックス中にAゴム用単量体混合物を添加し、Sゴム中に含浸させた後に重合させることにより複合化させる方法が好ましい。
Aゴム用単量体混合物をSゴムに添加する方法としては、Sゴムのラテックスと一括で混合する方法と、Sゴムのラテックス中に一定速度で滴下する方法が挙げられる。また、重合に用いるラジカル重合開始剤としては、過酸化物系開始剤、アゾ系開始剤又は酸化剤・還元剤を組み合わせたレドックス系開始剤が用いられる。この中で、レドックス系開始剤が好ましく、特に硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ロンガリット・ハイドロパーオキサイドを組み合わせた系が好ましい。
In the present invention, the composite rubber preferably has a structure in which 1 to 99% by mass of S rubber and 99 to 1% by mass of A rubber are intertwined with each other so that they cannot be separated.
As a method for producing the composite rubber, for example, a method of adding a monomer mixture for A rubber to the latex of S rubber, impregnating the rubber into S rubber, and then polymerizing it is preferable.
Examples of the method of adding the monomer mixture for A rubber to the S rubber include a method of batch-mixing with the S rubber latex and a method of dropping at a constant rate into the S rubber latex. Moreover, as a radical polymerization initiator used for superposition | polymerization, the redox initiator which combined the peroxide type initiator, the azo type initiator, or the oxidizing agent and the reducing agent is used. Among these, a redox initiator is preferable, and a system in which ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, longalite, and hydroperoxide are combined is particularly preferable.

本発明においては、グラフト共重合体粒子(B)は、複合ゴムに一種以上のビニル系単量体単位がグラフト結合されたものである。   In the present invention, the graft copolymer particles (B) are obtained by grafting one or more vinyl monomer units to a composite rubber.

グラフト共重合体粒子(B)中のSゴムの含有量は5〜70質量%が好ましく、10〜40質量がより好ましい。Sゴムの含有量が5質量%以上で十分な耐衝撃性が得られる。また、Sゴムの含有量が70質量%以下で本発明の塩素含有熱可塑性樹脂組成物における他の優れた特性が維持できる。   The content of S rubber in the graft copolymer particles (B) is preferably 5 to 70% by mass, and more preferably 10 to 40% by mass. Sufficient impact resistance can be obtained when the S rubber content is 5 mass% or more. Further, when the content of the S rubber is 70% by mass or less, other excellent characteristics in the chlorine-containing thermoplastic resin composition of the present invention can be maintained.

グラフト共重合体粒子(B)中の複合ゴムの含有量は40〜90質量%が好ましく、60〜85質量%がより好ましい。複合ゴムの含有量が40質量%以上で耐衝撃性が良好となる。また、複合ゴムの含有量が90質量%以下で本発明の塩素含有熱可塑性樹脂組成物における他の優れた特性が維持できる。   The content of the composite rubber in the graft copolymer particles (B) is preferably 40 to 90% by mass, and more preferably 60 to 85% by mass. When the content of the composite rubber is 40% by mass or more, the impact resistance becomes good. Further, when the content of the composite rubber is 90% by mass or less, other excellent characteristics in the chlorine-containing thermoplastic resin composition of the present invention can be maintained.

ビニル系単量体としては、例えばスチレン、α−メチルスチレン、ビニルトルエン等の芳香族アルケニル化合物、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物である。これらを単独又は二種以上を併用して用いることができる。   Examples of vinyl monomers include aromatic alkenyl compounds such as styrene, α-methylstyrene, vinyltoluene, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. And vinyl cyanide compounds such as (meth) acrylic acid esters, acrylonitrile, methacrylonitrile and the like. These can be used alone or in combination of two or more.

複合ゴムに対する一種以上のビニル系単量体単位のグラフト結合は、複合ゴムにビニル系単量体をグラフト重合することにより行われる。
グラフト重合は、複合ゴムのラテックスにビニル系単量体を加え、ラジカル重合法により一段で又は多段で行うことができる。また、重合に用いるラジカル重合開始剤としては、過酸化物、アゾ系開始剤、又は酸化剤・還元剤を組み合わせたレドックス系開始剤が用いられる。この中で、レドックス系開始剤が好ましく、特に硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ロンガリット・ハイドロパーオキサイドを組み合わせた系が好ましい。
The graft bonding of one or more vinyl monomer units to the composite rubber is performed by graft polymerization of the vinyl monomer on the composite rubber.
Graft polymerization can be performed in one step or in multiple steps by adding a vinyl monomer to the latex of the composite rubber and using a radical polymerization method. Moreover, as a radical polymerization initiator used for superposition | polymerization, the redox initiator which combined the peroxide, the azo initiator, or the oxidizing agent and the reducing agent is used. Among these, a redox initiator is preferable, and a system in which ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, longalite, and hydroperoxide are combined is particularly preferable.

また、グラフト重合において用いるビニル系単量体中にはグラフトポリマーの分子量やグラフト率を調整するために各種連鎖移動剤やグラフト交叉剤を添加することができる。
また、グラフト重合の際には、重合ラテックスを安定化させ、更にグラフト共重合体粒子(B)の平均粒子径を制御するために乳化剤を添加することができる。
乳化剤としては、カチオン系乳化剤、アニオン系乳化剤及びノニオン系乳化剤が挙げられ、好ましい例としてはスルホン酸塩乳化剤、硫酸塩乳化剤又はカルボン酸塩乳化剤が挙げられる。
Various chain transfer agents and graft crossing agents can be added to the vinyl monomer used in the graft polymerization in order to adjust the molecular weight and graft ratio of the graft polymer.
In the graft polymerization, an emulsifier can be added to stabilize the polymerization latex and to control the average particle size of the graft copolymer particles (B).
Examples of the emulsifier include a cationic emulsifier, an anionic emulsifier, and a nonionic emulsifier, and preferable examples include a sulfonate emulsifier, a sulfate emulsifier, and a carboxylate emulsifier.

グラフト重合終了後に、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩を溶解した熱水中にラテックスを投入し、塩析、固化することによりグラフト共重合体粒子(B)を分離、乾燥し、粉末状で回収することができる。   After completion of the graft polymerization, the latex is poured into hot water in which a metal salt such as calcium chloride, calcium acetate, aluminum sulfate is dissolved, salted out and solidified to separate and dry the graft copolymer particles (B). It can be recovered in powder form.

グラフト共重合体粒子(B)は、本発明の塩素含有熱可塑性樹脂組成物中に、塩素含有樹脂(A)100質量部に対して0.1〜30質量部含有される。グラフト共重合体粒子(B)が0.1質量部以上で衝撃強度の改質効果が十分に発揮され、また、30質量部以下で、熱可塑性樹脂本来の性質を損なわず、また耐衝撃性及び外観も良好である。   The graft copolymer particles (B) are contained in the chlorine-containing thermoplastic resin composition of the present invention in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the chlorine-containing resin (A). When the graft copolymer particles (B) are 0.1 parts by mass or more, the effect of modifying the impact strength is sufficiently exhibited, and when they are 30 parts by mass or less, the original properties of the thermoplastic resin are not impaired, and the impact resistance And the appearance is also good.

本発明の塩素含有熱可塑性樹脂組成物には、本発明の目的を損なわない範囲で、顔料や染料、ガラス繊維、金属繊維、金属フレーク、炭素繊維等の補強剤や充填剤、2,6−ジ−ブチル−4−メチルフェノール、4,4´−ブチリデン−ビス(3−メチル−6−t−ブチルフェノール)等のフェノール系酸化防止剤、トリス(ミックスド、モノ及びジニルフェニル)ホスファイト、ジフェニル・イソデシルホスファイト等のホスファイト系酸化防止剤、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジアステリアルチオジプロピオネート等の硫黄系酸化防止剤、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤、ビス(2,2,6,6)−テトラメチル−4−ピペリジニル)等の光安定剤、ヒドロキシルアルキルアミン、スルホン酸塩等の帯電防止剤、エチレンビスステアリルアミド、金属石鹸等の滑剤、及びテトラブロムフェノールA、デカブロモフェノールオキサイド、四臭化ビスフェノールAエポキシオリゴマー、四臭化ビスフェノールAポリカーボネートオリゴマー、三酸化アンチモン、トリフェニルフォスフェート、リン酸エステル、水酸化マグネシウム、ハイドロタルサイト、酸化アンチモン化合物、モリブデン化合物等の難燃剤等の各種添加剤を適宜配合することができる。   In the chlorine-containing thermoplastic resin composition of the present invention, reinforcing agents and fillers such as pigments and dyes, glass fibers, metal fibers, metal flakes, and carbon fibers, as long as the object of the present invention is not impaired, 2,6- Phenolic antioxidants such as di-butyl-4-methylphenol, 4,4'-butylidene-bis (3-methyl-6-t-butylphenol), tris (mixed, mono and dinylphenyl) phosphite, diphenyl Phosphite-based antioxidants such as isodecyl phosphite, sulfur-based antioxidants such as dilauryl thiodipropionate, dimyristyl thiodipropionate, diasterial thiodipropionate, 2-hydroxy-4-octoxybenzophenone Benzotriazole-based UV absorbers such as 2- (2-hydroxy-5-methylphenyl) benzotriazole Agents, light stabilizers such as bis (2,2,6,6) -tetramethyl-4-piperidinyl), antistatic agents such as hydroxylalkylamines and sulfonates, lubricants such as ethylenebisstearylamide, metal soaps, And tetrabromophenol A, decabromophenol oxide, tetrabromide bisphenol A epoxy oligomer, tetrabromide bisphenol A polycarbonate oligomer, antimony trioxide, triphenyl phosphate, phosphate ester, magnesium hydroxide, hydrotalcite, antimony oxide Various additives such as flame retardants such as compounds and molybdenum compounds can be appropriately blended.

また、本発明の塩素含有熱可塑性樹脂組成物は、上述した必須成分及び所望により任意成分の各成分を所定量配合し、ロール、バンバリーミキサー、単軸押出機、2軸押出機等の通常の混練機で回分的又は連続的に混練することにより製造される。通常、ペレット状にするのが好ましい。また、必要に応じて少量の溶剤を使用しても良い。   In addition, the chlorine-containing thermoplastic resin composition of the present invention contains a predetermined amount of each of the above-described essential components and optional components as desired, and is a normal one such as a roll, a Banbury mixer, a single screw extruder, a twin screw extruder, or the like. It is produced by kneading batchwise or continuously with a kneader. Usually, it is preferable to use pellets. Moreover, you may use a small amount of solvent as needed.

以下、実施例により、本発明を更に具体的に説明する。尚、「部」及び「%」は特に断らない限り、それぞれ「質量部」、「質量%」を表すものとする。   Hereinafter, the present invention will be described more specifically with reference to examples. “Part” and “%” represent “part by mass” and “% by mass”, respectively, unless otherwise specified.

製造例においてラテックス中のSゴム、複合ゴム、グラフト共重合体の粒子径は以下の方法で測定した。
ラテックスを蒸留水で希釈し、濃度約3%の希釈ラテックス0.1mlを試料とし、米国MATEC社製CHDF2000型粒度分布計を用い、流速1.4ml/min、圧力約2.76MPa(約4000psi)、温度35℃の条件下で測定した。測定には粒子分離用キャピラリー式カートリッジ及びキャリア液を用い、液性はほぼ中性にした。尚、測定前には、米国DUKE社製の粒子径既知の単分散ポリスチレンを標準粒子径物質とし、0.02〜0.8μmの合計12点の粒子径を測定して、検量線を作成した。
In the production examples, the particle sizes of S rubber, composite rubber, and graft copolymer in the latex were measured by the following method.
The latex was diluted with distilled water, 0.1 ml of diluted latex having a concentration of about 3% was used as a sample, a CHDF2000 type particle size distribution meter manufactured by MATEC, USA, flow rate of 1.4 ml / min, pressure of about 2.76 MPa (about 4000 psi) , And measured at a temperature of 35 ° C. For the measurement, a capillary cartridge for particle separation and a carrier liquid were used, and the liquidity was made almost neutral. Before the measurement, a standard curve was prepared by measuring a total of 12 particle diameters of 0.02 to 0.8 μm using monodisperse polystyrene with a known particle diameter manufactured by DUKE Co., USA as a standard particle size substance. .

また、平均粒子径については、上記粒子径測定結果の質量分布及び数分布それぞれにおける解析値を平均粒子径とした。
更に、グラフト共重合体粒子(B)の300nm以下の粒子径の体積%は、質量分布における粒子径測定結果の、(300nm以下の積算値)/(全粒子径の積算値)×100の値で示した。また、Sゴムの10nm以上250nm未満の粒子の体積%、250nm以上2000nm未満の粒子の体積%も同様にして求めた。
Moreover, about the average particle diameter, the analysis value in each of mass distribution and number distribution of the said particle diameter measurement result was made into the average particle diameter.
Further, the volume% of the particle diameter of 300 nm or less of the graft copolymer particles (B) is a value of (integrated value of 300 nm or less) / (integrated value of all particle diameters) × 100 of the particle diameter measurement result in mass distribution. It showed in. The volume% of particles of S rubber of 10 nm or more and less than 250 nm and the volume% of particles of 250 nm or more and less than 2000 nm were also determined in the same manner.

(製造例1)Sゴムラテックス(L−1)の製造
テトラエトキシシラン2部、γ−メタクリロイルオキシプロピルジメトキシメチルシラン0.5部及びオクタメチルシクロテトラシロキサン97.5部を混合して、シロキサン系混合物100部を得た。これにアルキルベンゼンスルホン酸ナトリウム1.00部を溶解した水溶液150部を添加し、ホモミキサ−にて10000rpmで5分間攪拌した後、ホモジナイザーに20MPaの圧力で2回通し、安定な予備混合オルガノシロキサンラテックスを得た。
(Production Example 1) Production of S rubber latex (L-1) 2 parts of tetraethoxysilane, 0.5 part of γ-methacryloyloxypropyldimethoxymethylsilane and 97.5 parts of octamethylcyclotetrasiloxane were mixed to prepare a siloxane system. 100 parts of a mixture were obtained. To this, 150 parts of an aqueous solution in which 1.00 part of sodium alkylbenzene sulfonate was dissolved was added, stirred for 5 minutes at 10,000 rpm with a homomixer, and then passed twice through a homogenizer at a pressure of 20 MPa to give a stable premixed organosiloxane latex. Obtained.

冷却コンデンサーを備えたセパラブルフラスコに、上記ラテックスを入れ、硫酸0.20部と蒸留水49.8部との混合物を3分間にわたり投入した。この水溶液を80℃で7時間加熱した後、冷却した。次いで室温で6時間保持した後、苛性ソ−ダ水溶液で中和した。
このラテックスを180℃で30分間乾燥して固形分を求めたところ、29.8質量%であった。また、このラテックス中のSゴムの数平均粒子径(dn)は384nm、質量平均粒子径(dw)は403nm、10nm以上250nm未満の粒子の割合は0体積%、250nm以上2000nm未満の粒子の割合は100体積%であった。
The latex was put into a separable flask equipped with a cooling condenser, and a mixture of 0.20 parts of sulfuric acid and 49.8 parts of distilled water was added over 3 minutes. The aqueous solution was heated at 80 ° C. for 7 hours and then cooled. Next, after holding at room temperature for 6 hours, the mixture was neutralized with an aqueous caustic soda solution.
The latex was dried at 180 ° C. for 30 minutes and the solid content was determined to be 29.8% by mass. The number average particle diameter (dn) of the S rubber in this latex is 384 nm, the mass average particle diameter (dw) is 403 nm, the ratio of particles of 10 nm or more and less than 250 nm is 0% by volume, and the ratio of particles of 250 nm or more and less than 2000 nm Was 100% by volume.

(製造例2)Sゴムラテックス(L−2)の製造
製造例1と同様のシロキサン系混合物100部にアルキルベンゼンスルホン酸ナトリウム0.7部及びアルキルベンゼンスルホン酸0.7部を溶解した水溶液200部を添加し、製造例1と同様にして安定な予備混合オルガノシロキサンラテックスを得た。次いで、製造例1と同様にして中和ラテックスを得た。このラテックスの固形分は、29.3%であった。また、Sゴムの数平均粒子径は104nm、質量平均粒子径は214nmであり、10nm以上250nm未満の粒子の割合は40体積%、250nm以上2000nm未満の粒子の割合は60体積%であった。
(Production Example 2) Production of S rubber latex (L-2) 200 parts of an aqueous solution in which 0.7 part of sodium alkylbenzene sulfonate and 0.7 part of alkylbenzene sulfonic acid were dissolved in 100 parts of the same siloxane-based mixture as in Production Example 1 In the same manner as in Production Example 1, a stable premixed organosiloxane latex was obtained. Next, a neutralized latex was obtained in the same manner as in Production Example 1. The latex had a solid content of 29.3%. The number average particle size of the S rubber was 104 nm, the mass average particle size was 214 nm, the proportion of particles of 10 nm or more and less than 250 nm was 40% by volume, and the proportion of particles of 250 nm or more and less than 2000 nm was 60% by volume.

(製造例3)グラフト共重合体粒子(B−1)の製造
製造例1のSゴムラテックス(L−1)33.56部(固形分として10.0部)をセパラブルフラスコに取り、蒸留水200部を添加混合したのち、ブチルアクリレート58.8部、アリルメタクリレート1.2部、キュメンヒドロパーオキサイド0.3部の混合物を添加した。
このセパラブルフラスコに窒素気流を通じてフラスコ内雰囲気の窒素置換を行い、50℃まで昇温した。液温が50℃となった時点で硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.24部を蒸留水10部に溶解させた水溶液を添加し、ラジカル重合を実施した。重合を完結させるため、更に1時間この状態を維持し、SゴムとAゴムとの複合ゴムのラテックスを得た。
(Production Example 3) Production of Graft Copolymer Particles (B-1) 33.56 parts of S rubber latex (L-1) of Production Example 1 (10.0 parts as a solid content) were placed in a separable flask and distilled. After adding 200 parts of water and mixing, a mixture of 58.8 parts of butyl acrylate, 1.2 parts of allyl methacrylate, and 0.3 parts of cumene hydroperoxide was added.
This separable flask was purged with nitrogen in the atmosphere through a nitrogen stream and heated to 50 ° C. When the liquid temperature reached 50 ° C., an aqueous solution in which 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of distilled water was added, and radicals were added. Polymerization was performed. In order to complete the polymerization, this state was maintained for an additional hour to obtain a latex of a composite rubber of S rubber and A rubber.

このラテックスの液温が65℃に低下した後、メチルメタクリレート28部、ブチルアクリレート2部、キュメンヒドロパーオキサイド0.20部の混合液を1時間にわたって滴下し重合した。滴下終了後、温度60℃以上の状態を1時間保った後冷却し、複合ゴムにメチルメタクリレート・ブチルアクリレート共重合体がグラフト結合されたグラフト共重合体のラテックスを得た。   After the liquid temperature of the latex dropped to 65 ° C., a mixed solution of 28 parts of methyl methacrylate, 2 parts of butyl acrylate and 0.20 part of cumene hydroperoxide was added dropwise over 1 hour for polymerization. After completion of the dropping, the temperature was kept at 60 ° C. or higher for 1 hour, followed by cooling to obtain a graft copolymer latex in which a methyl methacrylate / butyl acrylate copolymer was grafted to the composite rubber.

次いで酢酸カルシウムを7.5質量%の割合で溶解した水溶液500部を60℃に加熱し攪拌した状態で、これにグラフト共重合体のラテックス340部を徐々に滴下して凝固した。分離、水洗したのち乾燥し、グラフト共重合体粒子(B−1)を得た。得られた粒子の粒子径分布測定結果を表1に示す。   Next, 500 parts of an aqueous solution in which calcium acetate was dissolved at a ratio of 7.5% by mass was heated to 60 ° C. and stirred, and 340 parts of a graft copolymer latex was gradually added dropwise thereto to solidify. After separation, washing with water and drying, graft copolymer particles (B-1) were obtained. Table 1 shows the particle size distribution measurement results of the obtained particles.

(製造例4及び5)グラフト共重合体粒子(B−2)及び(B−3)の製造
表1に示す組成に変更したこと以外は製造例3と同様に重合を行い、グラフト共重合体粒子(B−2)及び(B−3)を得た。得られた粒子の粒子径分布測定結果を表1に示す。
(Production Examples 4 and 5) Production of Graft Copolymer Particles (B-2) and (B-3) Polymerization was conducted in the same manner as in Production Example 3 except that the composition was changed to the composition shown in Table 1, and the graft copolymer was produced. Particles (B-2) and (B-3) were obtained. Table 1 shows the particle size distribution measurement results of the obtained particles.

Figure 0004942352
Figure 0004942352

(実施例1〜4並びに比較例1及び2)
製造例3〜5で得られたグラフト共重合体粒子(B−1)〜(B−3)を使用し、表2及び表3に示す配合にてヘンシェルミキサーで4分間混合した後、配合物1〜4を製造した。これらを、ロール温度:200℃、混練時間:巻き付き後3分、プレス温度:200℃、成形時間:予熱5分、加圧5分、成形圧力:7.5MPaの条件で、縦18mm×横18mm×厚さ3mmの板状試験片を得た。
(Examples 1-4 and Comparative Examples 1 and 2)
Using the graft copolymer particles (B-1) to (B-3) obtained in Production Examples 3 to 5, the mixture shown in Table 2 and Table 3 was mixed for 4 minutes with a Henschel mixer, and then the mixture 1-4 were produced. These were roll temperature: 200 ° C., kneading time: 3 minutes after winding, press temperature: 200 ° C., molding time: preheating 5 minutes, pressurization 5 minutes, molding pressure: 7.5 MPa, length 18 mm × width 18 mm X A plate-shaped test piece having a thickness of 3 mm was obtained.

上記試片を下記評価法に応じて切断して評価を実施し、得られた結果を合わせて表4及び表5に示す。
尚、評価において、各項目の測定基準、判断は以下のように行った。
The above specimen is cut according to the following evaluation method and evaluated, and the results obtained are shown in Table 4 and Table 5.
In the evaluation, the measurement criteria and judgment of each item were performed as follows.

(1)加工性(ゲル化時間)
ブラベンダー社製プラストミルを使用して、ミキサータイプのW−50E型アタッチメントを170℃に加熱し、配合物56gを投入後3分間保持し、ローター回転数30rpmで混練から、最大トルクを示す点までに要する時間をゲル化時間とした。
(1) Workability (gelation time)
Using a Brabender plast mill, heat the mixer type W-50E attachment to 170 ° C., hold the mixture for 56 minutes, and knead at a rotor speed of 30 rpm until the point showing maximum torque The time required for this was defined as the gel time.

(2)加工性(巻き付までの時間)
配合物をロールバンク部に投入し終わった時点を開始時間とし、前後ロール間隔0.3mmで混練を行い、配合物が溶融してロールに巻き付くまでの時間で判断した。
(2) Workability (time to wrap)
The time when the blend was completely charged into the roll bank part was taken as the start time, kneading was carried out with a front-rear roll spacing of 0.3 mm, and the time until the blend melted and wound around the roll was judged.

(3)アイゾット衝撃強度
ASTM D258の方法に準拠した。(試験片:縦63.5mm×横12.7mm×厚み3mm、−10℃にて測定。)
(3) Izod impact strength Conforms to the method of ASTM D258. (Test piece: Measured at a length of 63.5 mm × width of 12.7 mm × thickness of 3 mm at −10 ° C.)

(4)発色性
ロール、プレスで得られた成型品を10cm角の板状に切り出し、その漆黒性を、(株)村上色彩技術研究所製の測定機CMS−1500型を用いて、L*値として測定、評価した。
(4) Coloring property A molded product obtained by a roll and a press is cut into a 10 cm square plate, and the jet blackness is measured using a measuring machine CMS-1500 manufactured by Murakami Color Research Laboratory Co., Ltd. It was measured and evaluated as a value.

Figure 0004942352
Figure 0004942352
Figure 0004942352
Figure 0004942352
Figure 0004942352
Figure 0004942352
Figure 0004942352
Figure 0004942352

Claims (1)

塩化ビニル系樹脂、塩素化度が50〜70質量%である塩素化塩化ビニル系樹脂及び塩素化ポリエチレンから選ばれる少なくとも1種の塩素含有樹脂(A)100質量部並びにポリオルガノシロキサンゴム及びポリアルキル(メタ)アクリレートゴムを含む複合ゴムに一種以上のビニル系単量体単位がグラフト結合され、数平均粒子径が00〜2000nmで、且つ全粒子中に占める粒子径300nm以下の粒子の割合が20体積%以下であるシリコーン/アクリル複合ゴム系グラフト共重合体粒子(B)0.1〜30質量部を含有する塩素含有熱可塑性樹脂組成物。 100 parts by mass of vinyl chloride resin, at least one chlorine-containing resin (A) selected from chlorinated vinyl chloride resin having a chlorination degree of 50 to 70% by mass and chlorinated polyethylene, and polyorganosiloxane rubber and polyalkyl A composite rubber containing (meth) acrylate rubber is grafted with one or more vinyl monomer units, the number average particle diameter is 400 to 2000 nm, and the ratio of particles having a particle diameter of 300 nm or less in all particles is A chlorine-containing thermoplastic resin composition containing 0.1 to 30 parts by mass of silicone / acrylic composite rubber-based graft copolymer particles (B) that is 20% by volume or less.
JP2006024467A 2006-02-01 2006-02-01 Chlorine-containing thermoplastic resin composition Active JP4942352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024467A JP4942352B2 (en) 2006-02-01 2006-02-01 Chlorine-containing thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024467A JP4942352B2 (en) 2006-02-01 2006-02-01 Chlorine-containing thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2007204587A JP2007204587A (en) 2007-08-16
JP4942352B2 true JP4942352B2 (en) 2012-05-30

Family

ID=38484329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024467A Active JP4942352B2 (en) 2006-02-01 2006-02-01 Chlorine-containing thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4942352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625349B (en) * 2011-02-09 2018-06-01 Umg Abs股份有限公司 Polyorganosiloxane latex,graft copolymer using the same, thermoplastic resin composition and molded article
JP5837842B2 (en) * 2011-03-02 2015-12-24 積水化学工業株式会社 Vinyl chloride resin composition, method for producing vinyl chloride resin composition and method for producing molded article
US9862791B2 (en) 2013-03-15 2018-01-09 Mitsubishi Chemical Corporation Impact strength modifier for chlorine-containing resin, chlorine-containing resin composition and molded body of chlorine-containing resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186105A (en) * 1998-12-22 2000-07-04 Kanegafuchi Chem Ind Co Ltd Composite rubber, composite rubber-containing graft polymer particle and thermoplastic resin composition
JP2000212231A (en) * 1999-01-21 2000-08-02 Kanegafuchi Chem Ind Co Ltd Silicone-modified acrylic rubber particle, silicone- modified acrylic rubber type graft copolymer particle, and thermoplastic resin composition
JP2001106863A (en) * 1999-10-06 2001-04-17 Kanegafuchi Chem Ind Co Ltd Graft copolymer composition
JP2001278927A (en) * 2000-03-29 2001-10-10 Kanegafuchi Chem Ind Co Ltd Fine particle of graft copolymer and thermoplastic resin composition
JP2001335669A (en) * 2000-05-30 2001-12-04 Mitsubishi Rayon Co Ltd Polyvinyl chloride resin-based resin composition
JP4112421B2 (en) * 2003-05-01 2008-07-02 三菱レイヨン株式会社 Graft copolymer and thermoplastic resin composition using the same
JP2005089605A (en) * 2003-09-17 2005-04-07 Mitsubishi Rayon Co Ltd Thermoplastic resin composition

Also Published As

Publication number Publication date
JP2007204587A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4702998B2 (en) Rubber-modified resin and thermoplastic resin composition containing the same
JP5884727B2 (en) Graft copolymer and method for producing the same, resin composition, and molded article
JP4942352B2 (en) Chlorine-containing thermoplastic resin composition
JP2004359889A (en) Silicone/acrylic composite rubber-based graft copolymer, and thermoplastic resin composition
JP5522436B2 (en) Graft copolymer and production method thereof, flame retardant, thermoplastic resin composition, and molded article
JP2000226420A (en) Flame retardant, preparation thereof and flame- retarded resin composition containing the same
JP4112421B2 (en) Graft copolymer and thermoplastic resin composition using the same
JP2002020443A (en) Graft copolymer, thermoplastic resin composition containing the same, and molded item thereof
JPWO2019168007A1 (en) Polyorganosiloxane-containing graft copolymer powder, a resin composition using the same, and a molded product comprising the same.
JP5473496B2 (en) Graft copolymer and production method thereof, thermoplastic resin composition, and molded article
JP5672476B2 (en) Polyorganosiloxane-based resin modifier and method for producing the same, thermoplastic resin composition, and molded article
JP3945861B2 (en) Thermoplastic resin composition
JP3218195B2 (en) Thermoplastic resin composition
JP2926378B2 (en) Graft copolymer and resin composition
JP4124863B2 (en) Thermoplastic resin composition
JP4087622B2 (en) Acrylic rubber-based graft copolymer, impact strength modifier, thermoplastic resin composition, and method for producing acrylic rubber-based graft copolymer
WO2021251496A1 (en) Polyorganosiloxane-containing polymer particle group, composition, resin composition, and molded body
JP5896246B2 (en) Graft copolymer and production method thereof, flame retardant, thermoplastic resin composition, and molded article
JP3142686B2 (en) Vinyl chloride resin composition
JP2005263996A (en) Noncrystalline polyester resin composition and molded product thereof
JP2009096913A (en) Coating resin composition and laminated molded product
EP4317229A1 (en) Polyorganosiloxane-containing polymer, composition, and molded article
JP2004189983A (en) Thermoplastic resin composition for member to be bonded
EP4317325A1 (en) Resin composition and molded body
JP2005264060A (en) Noncrystalline polyester resin composition and molded product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110818

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R151 Written notification of patent or utility model registration

Ref document number: 4942352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250