[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4839212B2 - Anti-glare film - Google Patents

Anti-glare film Download PDF

Info

Publication number
JP4839212B2
JP4839212B2 JP2006519422A JP2006519422A JP4839212B2 JP 4839212 B2 JP4839212 B2 JP 4839212B2 JP 2006519422 A JP2006519422 A JP 2006519422A JP 2006519422 A JP2006519422 A JP 2006519422A JP 4839212 B2 JP4839212 B2 JP 4839212B2
Authority
JP
Japan
Prior art keywords
fine particles
resin fine
bowl
resin
antiglare film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006519422A
Other languages
Japanese (ja)
Other versions
JPWO2005093468A1 (en
Inventor
亮 村田
健策 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2006519422A priority Critical patent/JP4839212B2/en
Publication of JPWO2005093468A1 publication Critical patent/JPWO2005093468A1/en
Application granted granted Critical
Publication of JP4839212B2 publication Critical patent/JP4839212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、各種照明器具や各種ディスプレイの表面部材に適用可能な防眩フィルムに関し、特に、液晶ディスプレイ等において、防眩性、画像のボケ防止、ギラツキ防止および表面散乱による白味防止を並立させた防眩フィルムに関する。  The present invention relates to an antiglare film that can be applied to surface members of various lighting fixtures and various displays, and in particular, in liquid crystal displays and the like, antiglare properties, image blurring prevention, glare prevention, and whiteness prevention due to surface scattering are arranged side by side. It relates to an anti-glare film.

液晶ディスプレイ、プラズマディスプレイ、CRT、EL等に代表される画像表示装置(以下、これらを「ディスプレイ」と称する)は、テレビやコンピュータをはじめとして様々な分野で使用されており、目覚ましい発展を遂げている。特に液晶ディスプレイは、薄く、軽量で、かつ汎用性に富むディスプレイとして、薄型テレビや携帯電話、パーソナルコンピュータ、デジタルカメラ、PDA、その他各種デバイス用の表示媒体として普及が著しい。  Image display devices represented by liquid crystal displays, plasma displays, CRTs, ELs, etc. (hereinafter referred to as “displays”) are used in various fields including televisions and computers, and have made remarkable progress. Yes. In particular, the liquid crystal display is a thin, lightweight, versatile display, and is widely used as a display medium for thin televisions, mobile phones, personal computers, digital cameras, PDAs, and other various devices.

これらディスプレイを屋外や蛍光灯下等の比較的明るい場所で使用する場合、太陽光や蛍光灯等の外部光によるディスプレイへの映りこみが問題となり、これを防止するために防眩処理を施して、ディスプレイ表面に凹凸を形成して映り込む外部光を乱反射させることが一般的となっている。  When these displays are used outdoors or in relatively bright places such as under fluorescent lights, reflections on the display due to external light such as sunlight or fluorescent lights become a problem, and anti-glare treatment is applied to prevent this. In general, external light reflected by forming irregularities on the display surface is irregularly reflected.

この防眩処理は、サンドブラスト等によりディスプレイ表面に対して粗面形成を行ったり、ディスプレイ表面に透明樹脂をコーティングした後、凹凸を有する賦型フィルムで賦型処理を行ったり、樹脂バインダー中に無機または有機の透明微粒子を分散させた塗料をコーティングすることによってディスプレイ表面に防眩層を設けたりする等の処理により行われる。  This anti-glare treatment is performed by forming a rough surface on the display surface by sandblasting or the like, coating a transparent resin on the display surface, and then performing a shaping treatment with a shaping film having irregularities, Alternatively, it is carried out by a process such as providing an antiglare layer on the display surface by coating with a paint in which organic transparent fine particles are dispersed.

これらの技術のうち、最後に挙げた樹脂バインダーと有機透明微粒子を用いる防眩処理が、微粒子によって形成される凹凸や樹脂バインダーと微粒子との屈折率差によって外部光を散乱させることができ、さらに、一般にその機構上から視野角が制限されている液晶ディスプレイに使用した場合には、ディスプレイからの画像情報を広い角度範囲に散乱出射させることにより、視野角の拡大効果も期待できるため、現在最も一般的な方法となっており、例えば、特許文献1〜3等に開示されている。
特許第3314965号明細書 特開平5−162261号公報 特開平7−181306号公報
Among these technologies, the anti-glare treatment using the resin binder and organic transparent fine particles listed at the end can scatter external light due to the unevenness formed by the fine particles and the refractive index difference between the resin binder and the fine particles. In general, when used in a liquid crystal display whose viewing angle is limited due to its mechanism, the image information from the display is scattered and emitted in a wide angle range, so that the viewing angle can be expanded. This is a general method, and is disclosed in, for example, Patent Documents 1 to 3 and the like.
Japanese Patent No. 3314965 Specification JP-A-5-162261 JP-A-7-181306

しかしながら、上記の樹脂バインダーと有機透明微粒子を用いて防眩処理を施したディスプレイでは、表面の映り込みを抑える反面、ディスプレイ内部よりの画像情報も不用意に散乱させるため、画像がボケたりギラツキが発生したりするという問題がある。また、外光によりディスプレイの防眩処理表面が白っぽくなる、いわゆる白味発生という現象も起こる。さらに、ディスプレイが液晶ディスプレイである場合には視野角特性の悪化として、表示される画像を斜めから見るとコントラストが低下して画像が褪色して見える問題もある。  However, in the display with antiglare treatment using the above resin binder and organic transparent fine particles, the reflection of the surface is suppressed, but the image information from the inside of the display is inadvertently scattered, so the image is blurred or glaring. There is a problem that occurs. In addition, a phenomenon of so-called whiteness occurs in which the antiglare surface of the display becomes whitish due to external light. Further, when the display is a liquid crystal display, there is a problem that the viewing angle characteristic is deteriorated, and when the displayed image is viewed from an oblique direction, the contrast is lowered and the image looks fading.

本発明は、従来の技術における上記の問題を解決することを目的としてなされたものであって、その目的は、画像のボケやギラツキの発生や、液晶ディスプレイの視野角特性の悪化を抑えた防眩処理を行うために好適な防眩フィルムを提供することにある。  The present invention has been made for the purpose of solving the above-described problems in the prior art. The purpose of the present invention is to prevent image blurring and glare, and prevention of deterioration of viewing angle characteristics of a liquid crystal display. It is providing the glare-proof film suitable in order to perform a glare process.

本発明者は、以上の問題を解決するために鋭意検討した結果、真球状樹脂微粒子と共に、屈折率が特定の関係にある透明樹脂と椀状樹脂微粒子を用いることにより、上記目的が達成されることを見出し、本発明を完成するに至った。  As a result of intensive studies to solve the above problems, the present inventor achieves the above object by using transparent resin and bowl-shaped resin fine particles having a specific refractive index together with true spherical resin fine particles. As a result, the present invention has been completed.

すなわち、本発明の防眩フィルムは、樹脂微粒子が透明樹脂相中に分散してなる光拡散層を有するものであって、樹脂微粒子が、少なくとも真球状樹脂微粒子および粒子の中央部が凹状に凹んだ椀状樹脂微粒子からなり、透明樹脂相の屈折率nと椀状樹脂微粒子の屈折率nが、下記式(1)の関係を満たすことすことを特徴とする。That is, the antiglare film of the present invention has a light diffusion layer in which resin fine particles are dispersed in a transparent resin phase, and the resin fine particles are concave at least at the central part of the spherical resin fine particles and the particles. it consists bowl-like resin particles, the refractive indices n x and the refractive index n z in a bowl-like resin particles of the transparent resin phase, characterized in that to that satisfies the following formula (1).

−n≧0.03 (1)
本発明の上記防眩フィルムにおいては、真球状樹脂微粒子の屈折率nと椀状樹脂微粒子の屈折率nが、下記式(2)の関係を満たすことが好ましい。
n x -n z ≧ 0.03 (1 )
In the antiglare film of the present invention, the refractive index n z in the refractive index n y and a bowl-like resin particles of spherical resin particles, it is preferable to satisfy a relationship represented by the following formula (2).

<n (2)
また、本発明の上記防眩フィルムにおいては、真球状樹脂微粒子の平均粒径Dと椀状樹脂微粒子の平均粒径Dが、それぞれ0.3μm〜7.0μmであることが好ましく、さらに真球状樹脂微粒子の平均粒径Dと、椀状樹脂微粒子の平均粒径Dが、下記式(3)の関係を満たすことが好ましい。
n z < ny (2)
In the above antiglare film of the present invention, the average particle diameter D y and bowl-shaped resin average particle diameter D z of the fine particles of the spherical resin fine particles is preferably from 0.3μm~7.0μm respectively, further the average particle diameter D y of spherical resin fine particles, the average particle diameter D z of the bowl-shaped resin particles, it is preferable to satisfy a relationship represented by the following formula (3).

0.7D≦D≦1.4D (3)
本発明の防眩フィルムにおいて、上記光拡散層は、透明基体の少なくとも一面に設けられているのが好ましい。
0.7D z ≦ D y ≦ 1.4D z (3)
In the antiglare film of the present invention, the light diffusion layer is preferably provided on at least one surface of the transparent substrate.

また、上記光拡散層は、凹凸表面を有するものであって、その凹凸表面の凸部が真球状樹脂微粒子および椀状樹脂微粒子の凸部によって形成されていることが好ましい。そして、その場合、光拡散層の最薄部の厚さは、前記椀状樹脂微粒子の高さよりも厚いことが好ましい。また、前記真球状樹脂微粒子の平均粒径が、前記椀状樹脂微粒子の高さの110〜300%であることが好ましい。さらに、前記凹凸表面の平均粗さRaは、0.1〜1.0μmであることが好ましい。  The light diffusing layer preferably has a concavo-convex surface, and the convex portions of the concavo-convex surface are preferably formed by convex portions of spherical resin fine particles and bowl-shaped resin fine particles. In that case, the thickness of the thinnest part of the light diffusion layer is preferably thicker than the height of the bowl-shaped resin fine particles. Moreover, it is preferable that the average particle diameter of the spherical resin fine particles is 110 to 300% of the height of the bowl-shaped resin fine particles. Furthermore, the average roughness Ra of the uneven surface is preferably 0.1 to 1.0 μm.

本発明の防眩フィルムは、真球状樹脂微粒子と椀状樹脂微粒子を使用するので、ディスプレイの視野角を広げつつ画像のボケを押さえる効果を生じる。すなわち、椀状樹脂微粒子の特異な形状は、真球状樹脂微粒と比較して光線の散乱を特定方向に限定する効果を持つため、椀状樹脂微粒子の存在によって、ディスプレイの視野角を広げつつ画像のボケを抑える効果を発揮する。  Since the antiglare film of the present invention uses spherical resin fine particles and bowl-shaped resin fine particles, it produces an effect of suppressing blurring of the image while widening the viewing angle of the display. In other words, the unique shape of the cocoon-shaped resin fine particles has the effect of limiting the scattering of light rays to a specific direction compared to the spherical resin fine particles. Therefore, the presence of the cocoon-shaped resin fine particles increases the viewing angle of the display. Demonstrate the effect of reducing blur.

また、一般に、防眩処理を行ったフィルムにおいて、ギラツキは、微粒子によって形成される防眩フィルム表面の凹凸や、それぞれ異なる屈折率を有する透明樹脂相と微粒子との界面がレンズの役割を果たすことにより、防眩フィルム表面に局所的な明るさの強弱が生まれることにより発生するが、本発明の防眩フィルムにおいては、光拡散層に透明樹脂相−真球状樹脂微粒子と透明樹脂相−椀状樹脂微粒子の2種類の界面が形成され、特に後者において上記式(1)に示す屈折率の関係を有することから、それぞれの界面におけるレンズとしての役割を打ち消し、よってギラツキを解消する効果が生じる。また、防眩フィルム表面の凹凸によるギラツキを解消するという効果も生じる。  Also, in general, in a film subjected to antiglare treatment, glare is caused by the irregularities on the surface of the antiglare film formed by fine particles and the interface between the transparent resin phase and the fine particles having different refractive indexes each serving as a lens. However, in the antiglare film of the present invention, the light diffusing layer has a transparent resin phase-spherical resin fine particles and a transparent resin phase-wax-like shape. Two types of interfaces of the resin fine particles are formed, and in particular, the latter has a refractive index relationship represented by the above formula (1), so that the role as a lens at each interface is canceled, and thus the effect of eliminating glare occurs. Moreover, the effect that the glare by the unevenness | corrugation of the anti-glare film surface is eliminated also arises.

また、防眩処理を行ったフィルムでは、微粒子によって形成される防眩フィルム表面の凹凸が大きいと白味が発生し、一方、凹凸が小さいと外部光の映り込みを抑える防眩性が不十分になるという問題があるが、本発明の防眩フィルムにおいては、凹凸表面の凸部が真球状樹脂微粒子のみ、または真球状樹脂微粒子および椀状樹脂微粒子により形成された特異な表面凹凸形状を有するので、白味の発生を抑えつつ適度な防眩性を付与する効果を発揮する。  In addition, in the film that has been subjected to the antiglare treatment, when the unevenness on the surface of the antiglare film formed by the fine particles is large, whiteness is generated, whereas when the unevenness is small, the antiglare property that suppresses reflection of external light is insufficient. However, in the antiglare film of the present invention, the projections on the concavo-convex surface have a unique surface concavo-convex shape formed only by the spherical resin fine particles, or by the spherical resin fine particles and the bowl-shaped resin fine particles. Therefore, it exhibits the effect of imparting an appropriate antiglare property while suppressing the occurrence of whiteness.

したがって、本発明の防眩フィルムは、各種照明器具や各種ディスプレイの表面部材に適用可能であり、特に、液晶ディスプレイ、プラズマディスプレイ、CRT、EL等に代表される画像表示装置に適当に使用することができる。  Therefore, the antiglare film of the present invention can be applied to various lighting fixtures and surface members of various displays, and is particularly suitable for use in image display devices represented by liquid crystal displays, plasma displays, CRTs, ELs and the like. Can do.

[図1]本発明の防眩フィルムの一例の模式的断面図である。
[図2]本発明の防眩フィルムの他の一例の模式的断面図である。
[図3]本発明の防眩フィルムの他の一例の模式的断面図である。
[図4]本発明に使用する椀状樹脂微粒子の上面図である。
[図5]本発明に使用する椀状樹脂微粒子の側断面図である。
FIG. 1 is a schematic cross-sectional view of an example of the antiglare film of the present invention.
FIG. 2 is a schematic cross-sectional view of another example of the antiglare film of the present invention.
FIG. 3 is a schematic cross-sectional view of another example of the antiglare film of the present invention.
FIG. 4 is a top view of cage-like resin fine particles used in the present invention.
FIG. 5 is a side cross-sectional view of cage-like resin fine particles used in the present invention.

符号の説明Explanation of symbols

1…透明樹脂相、2…真球状樹脂微粒子、3…椀状樹脂微粒子、4…光拡散層、5…透明基体、Dz…平均粒径、a…口径、b…厚み、h…高さ。DESCRIPTION OF SYMBOLS 1 ... Transparent resin phase, 2 ... True spherical resin fine particle, 3 ... Saddle-shaped resin fine particle, 4 ... Light-diffusion layer, 5 ... Transparent base | substrate, Dz ... Average particle diameter, a ... Diameter, b ... Thickness, h ... Height.

本発明の防眩フィルムの実施の形態を図面を参酌して説明する。
図1は、本発明の防眩フィルムの一例の模式的断面図である。真球状樹脂微粒子2および椀状樹脂微粒子3が透明樹脂相1に分散された光拡散層4よりなり、真球状樹脂微粒子2によって凹凸表面の凸部が形成されている。また、図2は、本発明の防眩フィルムの他の一例の模式的断面図であって、この図の場合、上記図1で示される光拡散層4が透明基体5の上に塗工層として設けられ、防眩フィルムを形成している。図3は、本発明の防眩フィルムの他の一例の模式的断面図であって、この図の場合、透明基体5の上に設けた光拡散層4において、椀状樹脂微粒子3が透明樹脂相1に不規則な向きに分散され、真球状樹脂微粒子2と椀状樹脂微粒子3によって凹凸表面の凸部が形成されている。
An embodiment of the antiglare film of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of an example of the antiglare film of the present invention. The spherical resin fine particles 2 and the bowl-shaped resin fine particles 3 are composed of a light diffusion layer 4 in which the transparent resin phase 1 is dispersed. FIG. 2 is a schematic cross-sectional view of another example of the antiglare film of the present invention. In this figure, the light diffusion layer 4 shown in FIG. 1 is coated on the transparent substrate 5. It is provided as and forms an antiglare film. FIG. 3 is a schematic cross-sectional view of another example of the antiglare film of the present invention. In this figure, in the light diffusion layer 4 provided on the transparent substrate 5, the cocoon-shaped resin fine particles 3 are transparent resin. Dispersed in the phase 1 in an irregular direction, the spherical resin fine particles 2 and the bowl-shaped resin fine particles 3 form convex portions on the uneven surface.

本発明の防眩フィルムにおいて使用する樹脂微粒子としては、その材質や形状、粒径等様々な樹脂微粒子を使用することができる。このような樹脂微粒子の材料としては、例えばアクリル樹脂、シリコーン樹脂、スチレン樹脂、メラミン樹脂、スチレン・アクリル共重合体樹脂等があげられ、光拡散層として必要な屈折率や、バインダーに対する親和性等により自由に選択することが可能である。また、分散性の向上や屈折率のコントロールを目的として、油脂類、シランカップリング剤、金属酸化物等の有機・無機材料による表面処理を行ってもよい。  As the resin fine particles used in the antiglare film of the present invention, various resin fine particles such as the material, shape and particle diameter thereof can be used. Examples of the resin fine particle material include acrylic resin, silicone resin, styrene resin, melamine resin, styrene / acrylic copolymer resin, and the like. Refractive index necessary for the light diffusion layer, affinity for binder, etc. It is possible to select freely. In addition, for the purpose of improving dispersibility and controlling the refractive index, surface treatment with organic and inorganic materials such as fats and oils, silane coupling agents, and metal oxides may be performed.

本発明において、上記樹脂微粒子の一部は真球状樹脂微粒子であり、また、他の少なくとも一部は、中央部が凹状に凹んだ椀状樹脂微粒子であることが必要である。本発明において、真球状樹脂微粒子とは、その形状が真球または真球に近い球状のものを意味し、例えばモノマーの懸濁重合法、ポリマー溶液の噴霧乾燥法などによって作製されるものを使用することができる。  In the present invention, a part of the resin fine particles is a spherical resin fine particle, and at least a part of the other is required to be a bowl-shaped resin fine particle having a concave central portion. In the present invention, the spherical resin fine particles mean a spherical shape or a spherical shape close to a true sphere, for example, those prepared by a suspension polymerization method of a monomer, a spray drying method of a polymer solution, or the like. can do.

また、椀状樹脂微粒子は、お椀のように凹部を有する形態の樹脂微粒子であれば特に限定されるものではないが、典型的には、図4および図5に示される形状を有するものである。図4は椀状樹脂微粒子の上面図、図5は側断面図であって、本発明においては、図に示されている平均粒径D、口径a、厚みb、および高さhの関係が下記式の関係を満たす形状であることが好ましい。
0<a<D、より好ましくは0.2D<a<0.8D
0<b<0.75D、より好ましくは0.1D<b<0.5D
0.1D<h<D、より好ましくは0.25D<h<0.75D
また、本発明の防眩フィルムにおいては、真球状樹脂微粒子の平均粒径Dと椀状樹脂微粒子の平均粒径Dが共に0.3μm〜7.0μmの範囲にあることが好ましい。これらの平均粒径が0.3μmより小さいと、可視光波長よりも小さくなるために良好な光拡散性が得られず、一方、7.0μmを超えると、防眩フィルム表面に樹脂微粒子の粒状感が現れるので好ましくない。
In addition, the bowl-shaped resin fine particles are not particularly limited as long as they are resin fine particles having a concave shape like a bowl, but typically have the shape shown in FIGS. 4 and 5. . 4 is a top view of the cocoon-shaped resin fine particles, and FIG. 5 is a side sectional view. In the present invention, the relationship among the average particle diameter D z , the diameter a, the thickness b, and the height h shown in the figure. Is preferably a shape satisfying the relationship of the following formula.
0 <a <D z , more preferably 0.2D z <a <0.8D z
0 <b <0.75D z, more preferably 0.1D z <b <0.5D z
0.1D z <h <D z, more preferably 0.25D z <h <0.75D z
In the antiglare film of the present invention, it is preferable that the average particle diameter D y and an average particle diameter D z are both range 0.3μm~7.0μm bowl-like resin particles of spherical resin fine particles. If these average particle sizes are smaller than 0.3 μm, good light diffusibility cannot be obtained because they are smaller than the visible light wavelength. On the other hand, if they exceed 7.0 μm, the fine particles of resin fine particles are formed on the surface of the antiglare film. Since a feeling appears, it is not preferable.

さらに、本発明の防眩フィルムにおいては、真球状樹脂微粒子の平均粒径Dyが椀状樹脂微粒子の高さhの110〜300%であることが好ましい。平均粒径Dが、高さhの300%より大きいと、表面凹凸が大きくなって白味が発生し、一方、110%より小さいと、凹凸が小さくなって外部光の映り込みを抑える防眩性の効果が不十分になる。なお、本発明における上記の粒子形状の値は、電子顕微鏡による形状観察により求められるものである。Furthermore, in the antiglare film of the present invention, it is preferable that the average particle diameter Dy of the spherical resin fine particles is 110 to 300% of the height h of the bowl-shaped resin fine particles. When the average particle diameter Dy is larger than 300% of the height h, the surface unevenness becomes large and whiteness is generated. On the other hand, when the average particle size Dy is smaller than 110%, the unevenness becomes small and the reflection of external light is prevented. The effect of glare is insufficient. In addition, the value of said particle shape in this invention is calculated | required by shape observation with an electron microscope.

また、本発明の防眩フィルムに含有される前記真球状樹脂微粒子と前記椀状樹脂微粒子とを合わせた個数については、使用する微粒子の粒径によっても変動するため、特に限定されるものではないが、好ましくは60000個/mm以下、より好ましくは40000個/mm以下、特に好ましくは20000個/mm以下であって、5000個/mm以上の範囲に設定される。Further, the total number of the spherical resin fine particles and the bowl-shaped resin fine particles contained in the antiglare film of the present invention is not particularly limited because it varies depending on the particle size of the fine particles used. However, it is preferably 60000 pieces / mm 2 or less, more preferably 40000 pieces / mm 2 or less, particularly preferably 20000 pieces / mm 2 or less, and is set in a range of 5000 pieces / mm 2 or more.

さらに、本発明の防眩フィルムに含有される前記真球状樹脂微粒子と前記椀状樹脂微粒子との配合比率についても特に限定されるものではないが、真球状樹脂微粒子の個数/椀状樹脂微粒子の個数=50/50〜1/99の範囲であることが好ましく、40/60〜2/98の範囲であることが特に好ましい。  Furthermore, the blending ratio of the true spherical resin fine particles and the bowl-shaped resin fine particles contained in the antiglare film of the present invention is not particularly limited, but the number of true spherical resin fine particles / the number of bowl-shaped resin fine particles The number is preferably in the range of 50/50 to 1/99, particularly preferably in the range of 40/60 to 2/98.

本発明の防眩フィルムにおいて、上記樹脂微粒子を分散させる透明樹脂相を構成する透明樹脂としては、熱可塑性樹脂、熱硬化性樹脂、放射線硬化型樹脂等を適宜用いることができる。  In the antiglare film of the present invention, a thermoplastic resin, a thermosetting resin, a radiation curable resin, or the like can be appropriately used as the transparent resin constituting the transparent resin phase in which the resin fine particles are dispersed.

熱可塑性樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、シクロオレフィンコポリマー(COC)、含ノルボルネン樹脂、ポリエーテルスルホン等の各種樹脂を使用することができる。  As thermoplastic resins, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polyvinyl alcohol (PVA), polyvinyl chloride Various resins such as (PVC), cycloolefin copolymer (COC), norbornene-containing resin, and polyethersulfone can be used.

放射線硬化型樹脂としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、ビニルエーテル基、オキセタン基等、重合性不飽和結合やそれに類する官能基を有するモノマー、オリゴマー、プレポリマーを適宜混合した組成物を用いたものがあげられる。モノマーの例としては、メチルアクリレート、メチルメタクリレート、メトキシポリエチレンメタクリレート、シクロヘキシルメタクリレート、フェノキシエチルメタクリレート、エチレングリコールジメタクリレート、ジジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリメタクリレート等をあげることができる。オリゴマーおよびプレポリマーとしては、ポリエステルアクリレート、ポリウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、アルキッドアクリレート、メラミンアクリレート、シリコーンアクリレート等のアクリレート化合物、不飽和ポリエステル、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、各種脂環式エポキシ等のエポキシ系化合物、3−エチル−3−ヒドロキシメチルオキセタン、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、ジ[1−エチル(3−オキセタニル)]メチルエーテル等のオキセタン化合物をあげることができる。これらは単独、もしくは複数混合して使用することができる。  Examples of radiation curable resins include monomers, oligomers, and prepolymers having a polymerizable unsaturated bond or a similar functional group such as acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, epoxy group, vinyl ether group, oxetane group, etc. The thing using the composition mixed suitably is mention | raise | lifted. Examples of the monomer include methyl acrylate, methyl methacrylate, methoxypolyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, didipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, and the like. As oligomers and prepolymers, polyester acrylate, polyurethane acrylate, epoxy acrylate, polyether acrylate, alkyd acrylate, melamine acrylate, acrylate compounds such as silicone acrylate, unsaturated polyester, tetramethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, Epoxy compounds such as neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether, various alicyclic epoxies, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis {[(3-ethyl-3-oxetanyl) And oxetane compounds such as methoxy] methyl} benzene and di [1-ethyl (3-oxetanyl)] methyl ether. That. These can be used alone or in combination.

熱硬化型樹脂としては、フェノール樹脂、フラン樹脂、キシレン・ホルムアルデヒド樹脂、ケトン・ホルムアルデヒド樹脂、ユリア樹脂、メラミン樹脂、アニリン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等をあげることができる。これらは単独もしくは複数混合して使用してもよい。  Examples of thermosetting resins include phenol resins, furan resins, xylene / formaldehyde resins, ketone / formaldehyde resins, urea resins, melamine resins, aniline resins, alkyd resins, unsaturated polyester resins, and epoxy resins. These may be used alone or in combination.

本発明の防眩フィルムに使用する透明樹脂は、透明性が高いものほど好ましく、光線透過率(JIS K−7105)としては、80%以上、より好ましくは90%以上のものである。仮に光線透過率が80%未満であっても、本発明にとって問題はないが、ディスプレイ用のフィルムとしては暗くなるため好ましくない。  The transparent resin used for the antiglare film of the present invention has a higher transparency, and the light transmittance (JIS K-7105) is 80% or more, more preferably 90% or more. Even if the light transmittance is less than 80%, there is no problem for the present invention, but it is not preferable because it becomes dark as a film for display.

また、これらの透明樹脂よりなる透明樹脂相には、各種特性を付与する目的で、光拡散に影響を及ぼさないnmサイズの微粒子を改質剤として添加することも可能である。その例として、シリカ、二酸化チタン、シリケートゾル、チタネートゾル、ITO、ATO等があげられる。  In addition, for the purpose of imparting various properties to the transparent resin phase made of these transparent resins, it is also possible to add nm-sized fine particles that do not affect light diffusion as a modifier. Examples thereof include silica, titanium dioxide, silicate sol, titanate sol, ITO, ATO and the like.

本発明の防眩フィルムの光拡散層は、上記の透明樹脂と真球状樹脂微粒子および椀状樹脂微粒子とを適当な溶剤に溶解・分散させ、適当な基体の上に塗布し、乾燥・硬化することによって形成することができる。本発明において、光拡散層は、基体から剥離してもよいが、透明基体上の塗工層の形で設けてもよい。  The light diffusing layer of the antiglare film of the present invention is prepared by dissolving and dispersing the above transparent resin, spherical resin fine particles and cage-like resin fine particles in an appropriate solvent, applying the solution on an appropriate substrate, and drying and curing. Can be formed. In the present invention, the light diffusion layer may be peeled off from the substrate, but may be provided in the form of a coating layer on the transparent substrate.

光拡散層の厚さは0.5〜200μmの範囲が好ましい。また、光拡散層が透明基体上にコーティングされた塗工層の場合、光拡散層は、透明基体により支持されるため、その厚さは0.5〜50μmの範囲であることが好ましく、さらに好ましくは1〜10μmの範囲である。  The thickness of the light diffusion layer is preferably in the range of 0.5 to 200 μm. In the case where the light diffusion layer is a coating layer coated on a transparent substrate, the light diffusion layer is supported by the transparent substrate, and therefore the thickness is preferably in the range of 0.5 to 50 μm. Preferably it is the range of 1-10 micrometers.

本発明の防眩フィルムにおいて、光拡散層が透明基体の上にコーティングされた塗工層の場合、透明基体としては、公知の透明なフィルム、ガラス等を使用することができる。その具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、シクロオレフィンコポリマー(COC)、含ノルボルネン樹脂、ポリエーテルスルホン、セロファン、芳香族ポリアミド等の各種樹脂フィルム、および石英ガラス、ソーダガラス等のガラス基材等を好適に使用することができる。本発明の防眩フィルムをプラズマディスプレイや液晶ディスプレイに用いる場合には、透明基体はPET、TAC、COC、含ノルボルネン樹脂等よりなるものが好ましい。  In the antiglare film of the present invention, when the light diffusion layer is a coating layer coated on a transparent substrate, a known transparent film, glass or the like can be used as the transparent substrate. Specific examples thereof include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), polymethyl methacrylate (PMMA), polycarbonate (PC), polyimide (PI), polyethylene (PE), polypropylene ( PP), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), cycloolefin copolymer (COC), norbornene resin, various resin films such as polyethersulfone, cellophane, aromatic polyamide, quartz glass, soda glass, etc. A glass base material etc. can be used conveniently. When the antiglare film of the present invention is used for a plasma display or a liquid crystal display, the transparent substrate is preferably made of PET, TAC, COC, norbornene resin or the like.

これら透明基体は、透明性が高いもの程好ましく、光線透過率(JIS K−7105)としては80%以上、より好ましくは90%以上のものである。仮に光線透過率が80%未満であっても本発明にとって問題はないが、ディスプレイ用のフィルムとしては暗くなるため好ましくない。  These transparent substrates preferably have higher transparency, and have a light transmittance (JIS K-7105) of 80% or more, more preferably 90% or more. Even if the light transmittance is less than 80%, there is no problem for the present invention, but it is not preferable because it becomes dark as a film for display.

また、これら透明基体の厚さは特に限定されるものではないが、好ましくは5〜600μmであり、その生産性を考慮すると5〜200μmの範囲のものを使用するのが特に好ましい。  The thickness of these transparent substrates is not particularly limited, but is preferably 5 to 600 μm, and it is particularly preferable to use one having a thickness in the range of 5 to 200 μm in view of productivity.

本発明の防眩フィルムにおいては、上記透明樹脂の屈折率nと椀状樹脂微粒子の屈折率nが、前記式(1)の関係を満たす必要がある。すなわち、本発明の防眩フィルムの光拡散層には、透明樹脂相−真球状樹脂微粒子と透明樹脂相−椀状樹脂微粒子の2種類の界面が形成される。そのうち、透明樹脂相−椀状樹脂微粒子の間に前記式(1)の関係を満たすことにより、それぞれのレンズとしての役割を打ち消してギラツキを解消する効果が生じる。屈折率の低い椀状樹脂微粒子と透明樹脂相との屈折率差は、上記のように0.03以上であることが必要であるが、好ましくは0.05以上、特に好ましくは0.07以上である。In the antiglare film of the present invention, the refractive indices n x and the refractive index n z in a bowl-like resin particles of the transparent resin, it is necessary to satisfy the relationship of formula (1). That is, in the light diffusion layer of the antiglare film of the present invention, two types of interfaces of transparent resin phase-true spherical resin fine particles and transparent resin phase-saddle-shaped resin fine particles are formed. Among these, satisfying the relationship of the above formula (1) between the transparent resin phase and the cage-like resin fine particles has an effect of canceling the role as each lens and eliminating the glare. The difference in refractive index between the resin-like fine resin particles having a low refractive index and the transparent resin phase needs to be 0.03 or more as described above, preferably 0.05 or more, particularly preferably 0.07 or more. It is.

また、本発明の防眩フィルムにおいては、真球状樹脂微粒子の屈折率nと椀状樹脂微粒子の屈折率nが、前記式(2)の関係を満たすことが好ましい。その場合、原因の詳細は不明であるが、前記式(2)の関係を満たすことにより、樹脂微粒子の形状と屈折率の関係に起因すると思われる白味、画像のボケ、ギラツキを抑えることができる。In the antiglare film of the present invention, the refractive index n z in the refractive index n y and a bowl-like resin particles of spherical resin particles, it is preferable to satisfy the relationship of formula (2). In that case, the details of the cause are unknown, but by satisfying the relationship of the above formula (2), it is possible to suppress whiteness, blurring of the image, and glare that may be caused by the relationship between the shape of the resin fine particles and the refractive index. it can.

また、本発明の防眩フィルムでは、前記真球状樹脂微粒子の粒径と前記椀状樹脂微粒子の平均粒径にあまり差異がないことがギラツキ防止の点で好ましい。具体的には真球状樹脂微粒子の平均粒径Dと、椀状樹脂微粒子の平均粒径Dが、前記式(3)の関係を満たすことが好ましい。特に
0.8D≦D≦1.2D
の関係を満たすことが好ましい。
In addition, in the antiglare film of the present invention, it is preferable from the viewpoint of preventing glare that there is not much difference between the particle diameter of the true spherical resin fine particles and the average particle diameter of the bowl-shaped resin fine particles. Specifically the average particle diameter D y of spherical resin fine particles, the average particle diameter D z of the bowl-shaped resin particles, it is preferable to satisfy the relation of formula (3). Particularly 0.8D z D y ≦ 1.2D z
It is preferable to satisfy the relationship.

本発明の防眩フィルムにおいて、光拡散層の凹凸表面を有するのが好ましい。凹凸表面の凸部は、真球状樹脂微粒子のみによって形成されてもよいが、真球状微粒子と椀状樹脂微粒子とによって形成されているのが好ましい。なお、凹凸表面の凸部が真球状樹脂微粒子と椀状樹脂微粒子により形成される場合、凸部は、真球状樹脂微粒子と椀状樹脂微粒子の凸部側の部分、すなわち半球状部分と、椀状樹脂微粒子の凹部側の凹部の縁に形成されるリング状の凸部とにより形成されるのであって、凸部の形状と数は、レーザー顕微鏡やSEMにより観察することができる。  The antiglare film of the present invention preferably has an uneven surface of the light diffusion layer. The convex portions on the uneven surface may be formed only by the spherical resin fine particles, but are preferably formed by the spherical spherical fine particles and the bowl-shaped resin fine particles. In the case where the convex portion on the uneven surface is formed by the spherical resin fine particles and the bowl-shaped resin fine particles, the convex portion is a portion on the convex portion side of the true spherical resin fine particles and the bowl-shaped resin fine particles, that is, a hemispherical portion, The ring-shaped resin fine particles are formed by ring-shaped convex portions formed on the edge of the concave portion on the concave portion side, and the shape and number of the convex portions can be observed with a laser microscope or SEM.

そして、凹凸表面の凸部が真球状樹脂微粒子と椀状樹脂微粒子とで形成されている場合には、真球状樹脂微粒子と椀状樹脂微粒子の半球状部分で形成される凸部の合計数が、椀状樹脂微粒子の凹部側のリング状の凸部の数よりも多いことがより好ましい。すなわち、真球状樹脂微粒子と椀状樹脂微粒子の半球状部分で形成される凸部が主体となり、椀状樹脂微粒子の凹部側のリング状の凸部で形成される凸部が適当に混ざった状態の凹凸表面の場合、白味の発生を抑えつつ適度な防眩性を付与する効果を発揮する。なお、椀状樹脂微粒子の凹部側のリング状の凸部で形成される凸部の割合が増加すると、光拡散層表面の凹凸に比較的鋭角な頂角の割合が増加し、防眩性は高まるが、白味は発生しやすくなる。  And when the convex part of the concavo-convex surface is formed by the spherical resin fine particles and the bowl-shaped resin fine particles, the total number of convex parts formed by the hemispherical part of the spherical resin fine particles and the bowl-shaped resin fine particles is More preferably, the number is larger than the number of ring-shaped convex portions on the concave portion side of the bowl-shaped resin fine particles. That is, the convex part formed by the hemispherical part of the spherical resin fine particles and the bowl-shaped resin fine particles is mainly, and the convex part formed by the ring-shaped convex part on the concave side of the bowl-shaped resin fine particles is appropriately mixed. In the case of the uneven surface, the effect of imparting an appropriate antiglare property while suppressing the occurrence of whiteness is exhibited. In addition, when the ratio of the convex part formed by the ring-shaped convex part on the concave part side of the ridge-like resin fine particles increases, the ratio of the apex angle relatively acute to the irregularities on the surface of the light diffusion layer increases, and the antiglare property is Although it increases, whiteness tends to occur.

また、本発明の防眩フィルムにおいて、光拡散層の凹凸表面の平均粗さRaは、0.1〜1.0μmの範囲にあることが好ましく、より好ましい範囲は0.1〜0.5μmの範囲である。平均粗さRaが、0.1μmより小さいと、表面凹凸が小さくなって外部光の映り込みを抑える防眩性の効果が不十分になり、1.0μmより大きいと凹凸が大きくなり、白味が発生するため好ましくない。  In the antiglare film of the present invention, the average roughness Ra of the uneven surface of the light diffusion layer is preferably in the range of 0.1 to 1.0 μm, and more preferably in the range of 0.1 to 0.5 μm. It is a range. If the average roughness Ra is less than 0.1 μm, the surface unevenness becomes small and the effect of anti-glare to suppress the reflection of external light becomes insufficient. Is not preferable.

本発明において、防眩フィルムの光拡散層の最薄部の厚さは、椀状樹脂微粒子の高さ(h)よりも厚いことが望ましい。最薄部の厚さを椀状樹脂微粒子の高さよりも薄くすると、透明樹脂相中に分散されている全ての真球状樹脂微粒子および椀状樹脂微粒子が凹凸表面の凹凸に関与することになり、防眩フィルム表面の凹凸が大きくなって、白味が発生する。また防眩フィルム表面の凹凸形状が複雑になることにより、画像のボケを抑える効果が減じる。  In the present invention, the thickness of the thinnest part of the light diffusion layer of the antiglare film is desirably thicker than the height (h) of the bowl-shaped resin fine particles. When the thickness of the thinnest part is made thinner than the height of the cocoon-like resin fine particles, all the spherical resin fine particles and the cocoon-like resin fine particles dispersed in the transparent resin phase are involved in the irregularities of the concavo-convex surface, Unevenness on the surface of the antiglare film becomes large, and whiteness is generated. Further, since the uneven shape on the surface of the antiglare film becomes complicated, the effect of suppressing blurring of the image is reduced.

以下、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されるものではない。なお、下記の実施例および比較例において、「部」は重量部を意味するものとする。  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In the following examples and comparative examples, “parts” means parts by weight.

透明樹脂として屈折率1.51(n)のジペンタエリスリトールヘキサアクリレート100部に対し、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン3部、樹脂微粒子として屈折率1.59(n)、平均粒径3.0μm(D)のスチレン樹脂製真球状樹脂微粒子6部および屈折率1.42(n)、平均粒径2.4μm(D)、高さ1.7μm(h)、口径1.8μm(a)、厚み0.35μm(b)のシリコーン樹脂製椀状樹脂微粒子4部、溶媒としてメチルイソブチルケトン130部を添加し、サンドミルにて30分間分散することによって塗料を得た。得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥した後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させた。以上のようにして、厚さ3.2μm、平均粗さRa=0.18の光拡散層を有する防眩フィルムを作製した。For 100 parts of dipentaerythritol hexaacrylate having a refractive index of 1.51 (n x ) as a transparent resin, 3 parts of 2-hydroxy-2-methylpropiophenone as a photoinitiator and a refractive index of 1.59 (n y ), 6 parts of spherical resin fine particles made of styrene resin having an average particle diameter of 3.0 μm (D y ), a refractive index of 1.42 (n z ), an average particle diameter of 2.4 μm (D z ), and a height of 1.7 μm. (H) By adding 4 parts of silicone resin cage resin fine particles having a diameter of 1.8 μm (a) and a thickness of 0.35 μm (b) and 130 parts of methyl isobutyl ketone as a solvent, and dispersing in a sand mill for 30 minutes A paint was obtained. The obtained paint was applied on a transparent substrate made of TAC having a film thickness of 80 μm and transmittance of 94% by a reverse coating method, dried at 100 ° C. for 2 minutes, and then one 120 W / cm condensing type high-pressure mercury lamp. UV irradiation was performed (irradiation distance 10 cm, irradiation time 30 seconds) to cure the coating film. As described above, an antiglare film having a light diffusion layer having a thickness of 3.2 μm and an average roughness Ra = 0.18 was produced.

透明樹脂として、屈折率1.67のジルコニウム含有紫外線硬化型(UV)アクリレート樹脂(商品名:Kz7391、固形分濃度42%、JSR製)を100部、屈折率1.51のジペンタエリスリトールヘキサアクリレートを18部混合し、硬化時の屈折率が1.60、(n)固形分濃度51%の透明樹脂溶液を得た。この透明樹脂溶液100部と、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン1部、樹脂微粒子として、屈折率1.59(n)、平均粒径3.0μm(D)のスチレン樹脂製真球状樹脂微粒子3部と、屈折率1.42(n)、平均粒径2.4μm(D)、高さ1.7μm(h)、口径1.8μm(a)、厚み0.35μm(b)のシリコーン樹脂製椀状樹脂微粒子2部と、溶媒としてメチルイソブチルケトン80部を添加し、サンドミルにて30分間分散することによって塗料を得た。得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥した後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させて、防眩フィルムを作製した。この防眩フィルムを電子顕微鏡にて観察したところ、防眩層の厚さは最厚部3.2μm、最薄部2.2μmで、凹凸表面の凸部は真球状樹脂微粒子によって形成されていることを確認した。平均粗さRaは0.37μmであった。As transparent resin, zirconium containing ultraviolet curable (UV) acrylate resin with a refractive index of 1.67 (trade name: Kz 7391, solid concentration 42%, manufactured by JSR), 100 parts, dipentaerythritol hexaacrylate with a refractive index of 1.51 Was mixed to obtain a transparent resin solution having a refractive index of 1.60 upon curing and a (n x ) solid content concentration of 51%. 100 parts of this transparent resin solution, 1 part of 2-hydroxy-2-methylpropiophenone as a photoinitiator, and resin fine particles having a refractive index of 1.59 (n y ) and an average particle diameter of 3.0 μm (D y ) 3 parts of spherical resin fine particles made of styrene resin, refractive index 1.42 (n z ), average particle size 2.4 μm (D z ), height 1.7 μm (h), aperture 1.8 μm (a), thickness A coating material was obtained by adding 2 parts of 0.35 μm (b) silicone resin cage resin fine particles and 80 parts of methyl isobutyl ketone as a solvent and dispersing in a sand mill for 30 minutes. The obtained paint was applied on a transparent substrate made of TAC having a film thickness of 80 μm and transmittance of 94% by a reverse coating method, dried at 100 ° C. for 2 minutes, and then one 120 W / cm condensing type high-pressure mercury lamp. Were irradiated with ultraviolet rays (irradiation distance 10 cm, irradiation time 30 seconds), and the coating film was cured to produce an antiglare film. When this anti-glare film was observed with an electron microscope, the thickness of the anti-glare layer was 3.2 μm at the thickest part and 2.2 μm at the thinnest part, and the convex part of the irregular surface was formed by spherical resin fine particles. It was confirmed. The average roughness Ra was 0.37 μm.

透明樹脂として屈折率1.51(n)のジペンタエリスリトールヘキサアクリレート100部に対し、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン3部、樹脂微粒子として、屈折率1.49(n)、平均粒径3.0μm(D)のPMMA樹脂製真球状樹脂微粒子6部および屈折率1.42(n)、平均粒径2.4μm(D)、高さ1.7μm(h)、口径1.8μm(a)、厚み0.35μm()のシリコーン樹脂製椀状樹脂微粒子4部、溶媒としてメチルイソブチルケトン130部を添加し、サンドミルにて30分間分散することによって塗料を得た。得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥した後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させた。以上のようにして、厚さ3.2μm、平均粗さRa=0.12の光拡散層を有する防眩フィルムを作製した。 For 100 parts of dipentaerythritol hexaacrylate having a refractive index of 1.51 (n x ) as a transparent resin, 3 parts of 2-hydroxy-2-methylpropiophenone as a photoinitiator and a refractive index of 1.49 (as resin fine particles) n y ), 6 parts of PMMA resin spherical particles with an average particle size of 3.0 μm (D y ), a refractive index of 1.42 (n z ), an average particle size of 2.4 μm (D z ), and a height of 1. Add 4 parts of cocoon resin fine particles made of silicone resin having a diameter of 7 μm (h), a diameter of 1.8 μm (a) and a thickness of 0.35 μm ( b ), and 130 parts of methyl isobutyl ketone as a solvent, and disperse in a sand mill for 30 minutes. A paint was obtained. The obtained paint was applied on a transparent substrate made of TAC having a film thickness of 80 μm and transmittance of 94% by a reverse coating method, dried at 100 ° C. for 2 minutes, and then one 120 W / cm condensing type high-pressure mercury lamp. UV irradiation was performed (irradiation distance 10 cm, irradiation time 30 seconds) to cure the coating film. As described above, an antiglare film having a light diffusion layer having a thickness of 3.2 μm and an average roughness Ra = 0.12 was produced.

<比較例1>
透明樹脂として屈折率1.51(n)のジペンタエリスリトールヘキサアクリレート100部に対し、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン3部、樹脂微粒子として屈折率1.59(n)、平均粒径3.0μm(D)のスチレン樹脂製真球状樹脂微粒子6部と、屈折率1.53(n)、平均粒径2.5μm(D)、高さ0.6μm(h)、口径0.5μm(a)、厚み0.40μm()のスチレン−アクリル樹脂製椀状樹脂微粒子4部、溶媒としてメチルイソブチルケトン200部を添加し、サンドミルにて30分間分散することによって得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させた。以上のようにして、厚さ3.2μm、平均粗さRa=0.20の光拡散層を有する比較用の防眩フィルムを作製した。
<Comparative Example 1>
For 100 parts of dipentaerythritol hexaacrylate having a refractive index of 1.51 (n x ) as a transparent resin, 3 parts of 2-hydroxy-2-methylpropiophenone as a photoinitiator and a refractive index of 1.59 (n y ), 6 parts of spherical resin fine particles made of styrene resin having an average particle size of 3.0 μm (D y ), a refractive index of 1.53 (n z ), an average particle size of 2.5 μm (D z ), and a height of 0.8. Add 4 parts of styrene-acrylic resin cage resin fine particles having a diameter of 6 μm (h), a diameter of 0.5 μm (a) and a thickness of 0.40 μm ( b ), and 200 parts of methyl isobutyl ketone as a solvent, and disperse in a sand mill for 30 minutes. The coating material obtained in this way was applied by a reverse coating method onto a transparent substrate made of TAC having a film thickness of 80 μm and a transmittance of 94%, dried at 100 ° C. for 2 minutes, and then 120 W / c. Irradiated with ultraviolet rays by a condenser-type high pressure mercury lamp 1 lamp (irradiation distance 10 cm, irradiation time 30 seconds) to cure the coating film. As described above, a comparative antiglare film having a light diffusion layer having a thickness of 3.2 μm and an average roughness Ra = 0.20 was produced.

<比較例2>
透明樹脂として屈折率1.51(n)のジペンタエリスリトールヘキサアクリレート100部に対し、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン3部、樹脂微粒子として屈折率1.59(n)、平均粒径3.0μm(D)のスチレン樹脂製真球状樹脂微粒子4部および屈折率1.49(n)、平均粒径2.4μm(D)、高さ0.6μm(h)、口径0.5μm(a)、厚み0.35μm()のアクリル樹脂製椀状樹脂微粒子4部、溶媒としてメチルイソブチルケトン200部を添加し、サンドミルにて30分間分散することによって塗料を得た。得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥した後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させた。以上のようにして、厚さ3.5μm、平均粗さRa=0.09の光拡散層を有する比較用の防眩フィルムを作製した。
<Comparative example 2>
For 100 parts of dipentaerythritol hexaacrylate having a refractive index of 1.51 (n x ) as a transparent resin, 3 parts of 2-hydroxy-2-methylpropiophenone as a photoinitiator and a refractive index of 1.59 (n y ), 4 parts of spherical resin fine particles made of styrene resin having an average particle size of 3.0 μm (D y ), a refractive index of 1.49 ( nz ), an average particle size of 2.4 μm (D z ), and a height of 0.6 μm (H) By adding 4 parts of candy resin fine particles made of acrylic resin having a diameter of 0.5 μm (a) and a thickness of 0.35 μm ( b ) and 200 parts of methyl isobutyl ketone as a solvent, and dispersing in a sand mill for 30 minutes A paint was obtained. The obtained paint was applied on a transparent substrate made of TAC having a film thickness of 80 μm and transmittance of 94% by a reverse coating method, dried at 100 ° C. for 2 minutes, and then one 120 W / cm condensing type high-pressure mercury lamp. UV irradiation was performed (irradiation distance 10 cm, irradiation time 30 seconds) to cure the coating film. As described above, a comparative antiglare film having a light diffusion layer having a thickness of 3.5 μm and an average roughness Ra = 0.09 was produced.

<比較例3>
透明樹脂として屈折率1.51(n)のジペンタエリスリトールヘキサアクリレート100部に対し、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン3部、樹脂微粒子として屈折率1.59(n)、平均粒径3.0μm(D)のスチレン樹脂製真球状樹脂微粒子6部および屈折率1.42、(n)平均粒径2.4μm(D)のシリコーン樹脂製真球状樹脂微粒子4部、溶媒としてメチルイソブチルケトン130部を添加し、サンドミルにて30分間分散することによって塗料を得た。得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥した後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させた。以上のようにして、厚さ3.2μm、平均粗さRa=0.24の光拡散層を有する比較用の防眩フィルムを作製した。
<Comparative Example 3>
For 100 parts of dipentaerythritol hexaacrylate having a refractive index of 1.51 (n x ) as a transparent resin, 3 parts of 2-hydroxy-2-methylpropiophenone as a photoinitiator and a refractive index of 1.59 (n y ), 6 parts of spherical resin fine particles made of styrene resin having an average particle diameter of 3.0 μm (D y ) and true spherical parts made of silicone resin having a refractive index of 1.42, ( nz ) and an average particle diameter of 2.4 μm (D z ) 4 parts of resin fine particles and 130 parts of methyl isobutyl ketone as a solvent were added and dispersed in a sand mill for 30 minutes to obtain a paint. The obtained paint was applied on a transparent substrate made of TAC having a film thickness of 80 μm and transmittance of 94% by a reverse coating method, dried at 100 ° C. for 2 minutes, and then one 120 W / cm condensing type high-pressure mercury lamp. UV irradiation was performed (irradiation distance 10 cm, irradiation time 30 seconds) to cure the coating film. As described above, a comparative antiglare film having a light diffusion layer having a thickness of 3.2 μm and an average roughness Ra = 0.24 was produced.

<比較例4>
透明樹脂として屈折率1.51(n)のジペンタエリスリトールヘキサアクリレート100部に対し、光開始剤として2−ヒドロキシ−2−メチルプロピオフェノン3部、樹脂微粒子として屈折率1.42(n)、平均粒径3.0μm(D)のシリコーン樹脂製真球状樹脂微粒子6部および屈折率1.49(n)、平均粒径2.5μm(D)のアクリル樹脂製椀状樹脂微粒子4部、溶媒としてメチルイソブチルケトン130部を添加し、サンドミルにて30分間分散することによって塗料を得た。得られた塗料を、膜厚80μm、透過率94%のTACからなる透明基体上に、リバースコーティング方式にて塗布し、100℃で2分間乾燥した後、120W/cm集光型高圧水銀灯1灯で紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化させた。以上のようにして、厚さ3.2μm、平均粗さRa=0.18の光拡散層を有する比較用の光拡散媒体を作製した。
<Comparative example 4>
100 parts of dipentaerythritol hexaacrylate having a refractive index of 1.51 (n x ) as a transparent resin, 3 parts of 2-hydroxy-2-methylpropiophenone as a photoinitiator, and a refractive index of 1.42 (n y ), 6 parts of spherical resin fine particles made of silicone resin having an average particle size of 3.0 μm (D y ), and a cage shape made of acrylic resin having a refractive index of 1.49 ( nz ) and an average particle size of 2.5 μm (D z ) 4 parts of resin fine particles and 130 parts of methyl isobutyl ketone as a solvent were added and dispersed in a sand mill for 30 minutes to obtain a paint. The obtained paint was applied on a transparent substrate made of TAC having a film thickness of 80 μm and transmittance of 94% by a reverse coating method, dried at 100 ° C. for 2 minutes, and then one 120 W / cm condensing type high-pressure mercury lamp. UV irradiation was performed (irradiation distance 10 cm, irradiation time 30 seconds) to cure the coating film. As described above, a comparative light diffusion medium having a light diffusion layer having a thickness of 3.2 μm and an average roughness Ra = 0.18 was produced.

次に、上記実施例および比較例の評価を、以下の方法より行った。
(目視評価)
市販の高精細タイプの液晶モニター(アイオーデータ機器:LCD−A15UR、画面サイズ:15インチ、解像度:UXGA、ピクセルピッチ:133PPI)の全面偏光板を防眩フィルムなしのものに貼り替え、その表面に実施例及び比較例の防眩フィルムを貼り付けた。初めに画像を表示しない状態で外部光の映り込みと白味を観察し、次に静止画像を表示させ、画像のボケ、ギラツキと視野角特性を観察した。
Next, the above examples and comparative examples were evaluated by the following methods.
(Visual evaluation)
A commercially available high-definition type LCD monitor (Iodata equipment: LCD-A15UR, screen size: 15 inches, resolution: UXGA, pixel pitch: 133 PPI) is replaced with a non-glare-free film on its surface. The anti-glare film of an Example and a comparative example was affixed. First, reflection of external light and whiteness were observed without displaying an image, and then a still image was displayed to observe blurring, glare, and viewing angle characteristics of the image.

防眩性は、正面から蛍光灯を映り込ませ、その輪郭が写り込む具合を観察した。
白味は、蛍光灯を写り込ませずに正面から観察し、防眩フィルムの黒さ具合を観察した。
The anti-glare property was observed by reflecting a fluorescent lamp from the front and reflecting its outline.
The white taste was observed from the front without reflecting a fluorescent lamp, and the blackness of the antiglare film was observed.

画像のボケは、マイクロソフト社のソフト(Microsoft Windows(登録商標))を用い、MS明朝体、フォントサイズ11ポイントの数字を表示させ、画面から50cmの距離で数字の表示にボケが確認できるか観察した。Use Microsoft software (Microsoft Windows (registered trademark)) to blur the image, display the MS Mincho font, 11-point font size, and check the blur display on the display at a distance of 50 cm from the screen. Observed.

画像のギラツキは、画面から50cmの距離でギラツキが確認できるか観察した。
視野角特性は、所定のカラー写真画像を正面から見た際のコントラストが、見る角度を45°に傾けたときに低下する程度を観察した。
It was observed whether the glare in the image could be confirmed at a distance of 50 cm from the screen.
The viewing angle characteristics were observed such that the contrast when a predetermined color photographic image was viewed from the front was lowered when the viewing angle was tilted to 45 °.

表1にその評価結果を示す。なお、表1中の評価基準は次の通りである。
防眩性について、A:映り込みが認められない、C:映り込みが認められる。
白味について、A:白味が認められない、B:白味がやや認められるが実用上問題ない、C:白味がはっきりと認められる。
画像のボケについて、A:ボケが認められず鮮明、C:ボケが認められる。
ギラツキについて、A:ギラツキが認められない、B:ギラツキがやや認められるが実用上問題ない、C:ギラツキがはっきり認められる。
視野角特性について、A:コントラスト低下がほとんど認められない、C:コントラスト低下が明らかに認められる。

Figure 0004839212
Table 1 shows the evaluation results. The evaluation criteria in Table 1 are as follows.
Regarding the antiglare property, A: no reflection is observed, and C: reflection is recognized.
Regarding whiteness, A: whiteness is not recognized, B: whiteness is slightly recognized, but there is no practical problem, and C: whiteness is clearly recognized.
Regarding the blur of the image, A: no blur is observed, and C: blur is recognized.
As for glare, A: no glare is observed, B: glare is slightly recognized, but there is no practical problem, and C: glare is clearly recognized.
Regarding viewing angle characteristics, A: almost no decrease in contrast is observed, and C: a decrease in contrast is clearly recognized.
Figure 0004839212

表1より明らかなように、透明樹脂と椀状樹脂微粒子の屈折率の関係が上記式(1)の関係を満たす実施例1、実施例2および実施例3の本発明の防眩フィルムは、白味、画像のボケ、ギラツキおよび視野角特性に対して良好な結果を示したのに対し、比較例1の防眩フィルムは、ギラツキを抑えることができず、視野角特性も悪かった。また、比較例2の防眩フィルムは、防眩性、ギラツキ、視野角特性でそれぞれ特性が悪く、比較例4の防眩フィルムは、白味、画像のボケ、ギラツキを抑えることができない。また、真球状樹脂微粒子のみ使用した比較例3の防眩フィルムは、白味と画像のボケを抑えることができない。 As is clear from Table 1, the antiglare films of the present invention of Examples 1, 2 and 3 in which the relationship between the refractive indexes of the transparent resin and the bowl-shaped resin fine particles satisfies the relationship of the above formula (1) are as follows. whitened, image blur, contrast showed good results with respect to glare and viewing angle characteristics, the antiglare film of Comparative example 1 can not suppress the glare, viewing angle characteristics was not bad. Further, the antiglare film of Comparative Example 2 has poor properties in terms of antiglare properties, glare, and viewing angle characteristics, and the antiglare film of Comparative Example 4 cannot suppress whiteness, image blur, and glare. Further, the antiglare film of Comparative Example 3 using only the spherical resin fine particles cannot suppress whiteness and blurring of the image.

Claims (9)

樹脂微粒子が透明樹脂相中に分散してなる光拡散層を有する防眩フィルムにおいて、該樹脂微粒子が、少なくとも真球状樹脂微粒子および粒子の中央部が凹状に凹んだ椀状樹脂微粒子からなり、透明樹脂相の屈折率nと椀状樹脂微粒子の屈折率nが、下記式(1)の関係を満たすことを特徴とする防眩フィルム。
−n≧0.03 (1)
In an antiglare film having a light diffusing layer in which resin fine particles are dispersed in a transparent resin phase, the resin fine particles are composed of at least spherical resin fine particles and bowl-shaped resin fine particles in which the central portion of the particles is recessed in a transparent shape. antiglare film refractive indices n x and the refractive index n z in a bowl-like resin particles of the resin phase, characterized by the Mitasuko a relationship represented by the following formula (1).
n x -n z ≧ 0.03 (1 )
前記真球状樹脂微粒子の屈折率nと前記椀状樹脂微粒子の屈折率nが、下記式(2)の関係を満たすことを特徴とする請求項1記載の防眩フィルム。
<n (2)
The refractive index n z in the refractive index n y the bowl-shaped resin particles of spherical resin particles, antiglare film according to claim 1, wherein a satisfies the relationship of formula (2).
n z < ny (2)
前記真球状樹脂微粒子の平均粒径Dと前記椀状樹脂微粒子の平均粒径Dが、それぞれ0.3μm〜7.0μmであることを特徴とする請求項1に記載の防眩フィルム。2. The antiglare film according to claim 1, wherein an average particle diameter D y of the spherical resin fine particles and an average particle diameter D z of the bowl-shaped resin fine particles are respectively 0.3 μm to 7.0 μm. 前記真球状樹脂微粒子の平均粒径Dと、前記椀状樹脂微粒子の平均粒径Dが、下記式(3)の関係を満たすことを特徴とする請求項1または3に記載の防眩フィルム。
0.7D≦D≦1.4D (3)
4. The antiglare layer according to claim 1, wherein an average particle diameter D y of the spherical resin fine particles and an average particle diameter D z of the bowl-shaped resin fine particles satisfy the relationship of the following formula (3): the film.
0.7D z ≦ D y ≦ 1.4D z (3)
光拡散層が、透明基体の少なくとも一面に設けられたことを特徴とする請求項1記載の防眩フィルム。2. The antiglare film according to claim 1, wherein the light diffusion layer is provided on at least one surface of the transparent substrate. 光拡散層が凹凸表面を有し、該凹凸表面の凸部が真球状樹脂微粒子のみ、または真球状微粒子と椀状樹脂微粒子とによって形成されていることを特徴とする請求項1に記載の防眩フィルム。2. The prevention according to claim 1, wherein the light diffusion layer has an uneven surface, and the convex portions of the uneven surface are formed of only spherical resin fine particles, or true spherical fine particles and bowl-shaped resin fine particles. Dazzle film. 前記光拡散層の最薄部の厚さが、前記椀状樹脂微粒子の高さよりも厚いことを特徴とする請求項6に記載の防眩フィルム。The antiglare film according to claim 6, wherein the thinnest portion of the light diffusion layer is thicker than the height of the bowl-shaped resin fine particles. 前記真球状樹脂微粒子の平均粒径が、前記椀状樹脂微粒子の高さの110〜300%であることを特徴とする請求項6に記載の防眩フィルム。The antiglare film according to claim 6, wherein an average particle diameter of the spherical resin fine particles is 110 to 300% of a height of the bowl-shaped resin fine particles. 前記凹凸表面の平均粗さRaが、0.1〜1.0μmであることを特徴とする請求項6に記載の防眩フィルム。The anti-glare film according to claim 6, wherein an average roughness Ra of the uneven surface is 0.1 to 1.0 µm.
JP2006519422A 2004-03-29 2005-03-16 Anti-glare film Expired - Fee Related JP4839212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006519422A JP4839212B2 (en) 2004-03-29 2005-03-16 Anti-glare film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004094560 2004-03-29
JP2004094561 2004-03-29
JP2004094561 2004-03-29
JP2004094560 2004-03-29
PCT/JP2005/004613 WO2005093468A1 (en) 2004-03-29 2005-03-16 Antiglare film
JP2006519422A JP4839212B2 (en) 2004-03-29 2005-03-16 Anti-glare film

Publications (2)

Publication Number Publication Date
JPWO2005093468A1 JPWO2005093468A1 (en) 2008-02-14
JP4839212B2 true JP4839212B2 (en) 2011-12-21

Family

ID=35056322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006519422A Expired - Fee Related JP4839212B2 (en) 2004-03-29 2005-03-16 Anti-glare film

Country Status (5)

Country Link
US (1) US7283304B2 (en)
JP (1) JP4839212B2 (en)
KR (1) KR100711483B1 (en)
TW (1) TWI260424B (en)
WO (1) WO2005093468A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078710A (en) * 2004-09-09 2006-03-23 Tomoegawa Paper Co Ltd Antiglare film
TWI319095B (en) * 2005-09-29 2010-01-01 Skc Haas Display Films Llc Light diffusive sheet for backlight unit and preparation thereof
US20070139781A1 (en) * 2005-12-15 2007-06-21 Fujifilm Corporation Optical film, and polarizing plate, image display device and liquid crystal display device including the same
US7848021B2 (en) * 2006-02-17 2010-12-07 Fujifilm Corporation Optical film, antireflection film, polarizing plate and image display device
CN101449183A (en) * 2006-03-16 2009-06-03 大赛璐化学工业株式会社 Anti-dazzling film
WO2008018339A1 (en) * 2006-08-09 2008-02-14 Kimoto Co., Ltd. Anti-dazzling member, and display device and screen using the same
US8399101B2 (en) * 2006-09-19 2013-03-19 E I Du Pont De Nemours And Company Toughened poly(hydroxyalkanoic acid) compositions
JP2008122832A (en) * 2006-11-15 2008-05-29 Toppan Printing Co Ltd Antiglare light diffusing member
JP4155338B1 (en) * 2007-03-14 2008-09-24 ソニー株式会社 Method for producing antiglare film
US8047662B2 (en) * 2007-03-27 2011-11-01 Fujifilm Corporation Antiglare film, polarizing plate and image display device
CN101679825B (en) * 2007-05-16 2012-11-07 Lg化学株式会社 Composition for anti-glare film and anti-glare film prepared using the same
TW200921139A (en) * 2007-11-15 2009-05-16 Daxon Technology Inc Antiglare film and coating composition for antiglare films
KR100963674B1 (en) * 2007-12-05 2010-06-15 제일모직주식회사 Light diffusion film with uniform surface roughness and low retardation value and method for manufacturing the same
TWI365999B (en) * 2008-07-31 2012-06-11 Benq Materials Corp Antiglare film and method of forming the same
JP5196352B2 (en) * 2009-06-09 2013-05-15 住友化学株式会社 Method for producing antiglare film, method for producing antiglare film and mold
EP2565719B1 (en) * 2010-04-30 2018-11-14 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic device
DE102014201683B4 (en) * 2014-01-30 2017-07-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. High performance radiation system with radiation modifier
JP6647761B2 (en) * 2015-12-07 2020-02-14 恵和株式会社 Top light diffusion sheet and backlight unit
WO2018180541A1 (en) 2017-03-31 2018-10-04 株式会社巴川製紙所 Anti-glare film and display device
JP7323986B2 (en) * 2018-03-19 2023-08-09 株式会社きもと antiglare film

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314965B2 (en) 1991-11-25 2002-08-19 大日本印刷株式会社 Scratch-resistant antiglare film, polarizing plate and method for producing the same
JP2530537B2 (en) * 1991-12-13 1996-09-04 日本製紙株式会社 Hard coat film
JP3229011B2 (en) * 1992-05-20 2001-11-12 松本油脂製薬株式会社 Bow-shaped fine particles and their manufacturing method
JPH07181306A (en) * 1993-12-21 1995-07-21 Nitto Denko Corp Non-glare layer and its sheet, polarizing plate and elliptic polarizing plate
US6184300B1 (en) * 1997-02-07 2001-02-06 Nippon Zeon Co., Ltd. Bowl-shaped polymer particles, aqueous dispersion of polymer particles, processes for producing these, and thermal recording material
JP3478973B2 (en) * 1998-07-21 2003-12-15 積水化成品工業株式会社 Light diffusion sheet
JP3515401B2 (en) * 1998-12-18 2004-04-05 大日本印刷株式会社 Anti-glare film, polarizing plate and transmission type display device
KR100673796B1 (en) * 1999-09-09 2007-01-24 키모토 컴파니 리미티드 Transparent hard coat film
KR100622792B1 (en) 2000-03-21 2006-09-13 세키스이가세이힝코교가부시키가이샤 Resin particle and process for producing the same
JP3982741B2 (en) 2001-04-17 2007-09-26 積水化成品工業株式会社 Composition for coating, coated material, light diffusion sheet and liquid crystal display
JP2003090906A (en) 2001-09-18 2003-03-28 Daicel Chem Ind Ltd Anisotropic diffusing film and device using the same
JP4187139B2 (en) * 2002-03-13 2008-11-26 富士フイルム株式会社 Light diffusing film, antireflection film, polarizing plate and image display device
JP3822102B2 (en) * 2001-12-27 2006-09-13 富士写真フイルム株式会社 Light diffusing film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP2003302506A (en) * 2002-02-08 2003-10-24 Dainippon Printing Co Ltd Antiglare film and image display device
TW557363B (en) * 2002-10-15 2003-10-11 Optimax Tech Corp Anti-glare film
JP2005189258A (en) * 2003-12-24 2005-07-14 Tomoegawa Paper Co Ltd Light diffusion medium and its manufacturing method
JP2006078710A (en) * 2004-09-09 2006-03-23 Tomoegawa Paper Co Ltd Antiglare film

Also Published As

Publication number Publication date
TW200604562A (en) 2006-02-01
WO2005093468A1 (en) 2005-10-06
US20070076298A1 (en) 2007-04-05
TWI260424B (en) 2006-08-21
JPWO2005093468A1 (en) 2008-02-14
KR20060014432A (en) 2006-02-15
KR100711483B1 (en) 2007-04-24
US7283304B2 (en) 2007-10-16

Similar Documents

Publication Publication Date Title
JP4839212B2 (en) Anti-glare film
JP6717317B2 (en) Optical sheet, polarizing plate, method of selecting optical sheet, method of manufacturing optical sheet, and display device
KR101418946B1 (en) Anti-dazzling optical laminate
TWI409169B (en) Anti-glare optical laminate
JP4155337B1 (en) Anti-glare film, method for producing the same, and display device
TW201544833A (en) Method for producing laminate, laminate, polarizing plate, image display device, and method for improving readability of image display device
WO2011065446A1 (en) Optical laminate and method for producing optical laminate
KR20130127984A (en) Anti-glare film, polarizing plate, and image display device
TWI454725B (en) Optical laminate film
JP6414173B2 (en) Antiglare antireflection hard coat film, image display device, and method for producing antiglare antireflection hard coat film
JP2006116754A (en) Reflection decreasing material, and electronic image displaying device using it
JP2006078710A (en) Antiglare film
KR20110037838A (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
KR20150106345A (en) Touch panel, display device, optical sheet, method for selecting optical sheet, and method for manufacturing optical sheet
JPH11286083A (en) Glare-proof film
JP2009128393A (en) Antidazzle material
TWI702414B (en) Optical film and display device with touch panel
JP6492683B2 (en) Anti-glare film and image display device using the same
JP6515377B2 (en) Touch panel, display device, optical sheet, method of sorting optical sheet, and method of manufacturing optical sheet
JP2010078888A (en) Optical film
JP2009122371A (en) Anti-glare film and image display device
JP2009036910A (en) Optical film
JP6565096B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method
CN100353187C (en) Antiglare film
JP2012063504A (en) Anti-glare film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4839212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees