JP4839271B2 - Mixed powder for powder metallurgy and sintered iron powder - Google Patents
Mixed powder for powder metallurgy and sintered iron powder Download PDFInfo
- Publication number
- JP4839271B2 JP4839271B2 JP2007165533A JP2007165533A JP4839271B2 JP 4839271 B2 JP4839271 B2 JP 4839271B2 JP 2007165533 A JP2007165533 A JP 2007165533A JP 2007165533 A JP2007165533 A JP 2007165533A JP 4839271 B2 JP4839271 B2 JP 4839271B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- mass
- mixed
- strength
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、粉末冶金用混合粉末および鉄粉焼結体に係り、特に、自動車用の高強度焼結部材として好適な鉄粉焼結体を得ることのできる粉末冶金用混合粉末および鉄粉焼結体に関するものである。 The present invention relates to a mixed powder for powder metallurgy and an iron powder sintered body, and in particular, a mixed powder for powder metallurgy and an iron powder sintered body capable of obtaining an iron powder sintered body suitable as a high-strength sintered member for automobiles. Concerning union.
現在、粉末冶金法によって製造されている焼結体は、自動車用部品として用いられるものが大半であり、とりわけ鉄系焼結部材が汎用されている。この様な鉄系焼結部材については様々なものが知られており、例えば、強度、耐候性、耐摩耗性等の向上を図るという目的の下に、主成分となる鉄粉に対し、黒鉛や銅等の微粉末を混合して焼結したものが知られている。また、焼結部材の適用範囲の拡大という観点から、焼結部材には、より優れた強度が要求されるようになり、これらを達成する手段として、NiやMo等の合金元素を添加して合金化する方法も知られている。 At present, most sintered bodies manufactured by powder metallurgy are used as automotive parts, and iron-based sintered members are widely used. Various types of such iron-based sintered members are known. For example, for the purpose of improving strength, weather resistance, wear resistance, etc., the main component of iron powder is graphite. A mixture of fine powders such as copper and copper is known. In addition, from the viewpoint of expanding the application range of the sintered member, the sintered member is required to have higher strength, and as a means for achieving these, an alloying element such as Ni or Mo is added. Methods for alloying are also known.
例えば、特許文献1、2には、合金成分を1.5〜4.5質量%の範囲で含むプレアロイ型鋼粉を母粉とし、この母粉に合金化微粉末やNi粉末を混合した粉末冶金用混合粉末、および混合粉末に黒鉛粉末を混合したのち圧粉成形し、この圧粉成形体を1050〜1250℃で焼結した鉄系焼結体が開示されている。
For example,
特許文献3には、NiおよびMoを部分合金化した合金鋼粉に、Ni粉、Cu粉および黒鉛粉(グラファイト)を混合した混合粉であって、該混合粉は、部分合金化したNi:0.5〜4質量%およびMo:0.5〜5質量%、Ni粉:1〜5質量%、Cu粉:0.5〜4質量%および黒鉛粉:0.2〜0.9質量%並びに残部がFeおよび不可避的不純物からなることを特徴とする高強度焼結部品用混合粉が開示されている。 Patent Document 3 discloses a mixed powder in which Ni powder, Cu powder, and graphite powder (graphite) are mixed with alloy steel powder in which Ni and Mo are partially alloyed, and the mixed powder is partially alloyed Ni: 0.5-4 mass% and Mo: 0.5-5 mass%, Ni powder: 1-5 mass%, Cu powder: 0.5-4 mass% and graphite powder: 0.2-0.9 mass% And the mixed powder for high intensity | strength sintered parts characterized by the remainder consisting of Fe and an unavoidable impurity is disclosed.
特許文献4には、Ni:3〜5質量%、Mo:0.4〜0.7質量%、残部がFeからなる組成の合金粉末に、銅粉を1〜2質量%、Ni粉を1〜3質量%、黒鉛を焼結後のC量が0.2〜0.7質量%になるように配合した混合粉末を、金型内で圧縮成形し、圧粉体の焼結を非酸化性雰囲気中で1130〜1230℃の範囲で行い、焼結炉中で5℃/分以上、20℃/分以下の速度で冷却することを特徴とする鉄系焼結合金の製造方法が開示されている。
しかしながら、従来の粉末冶金用混合粉末および鉄粉焼結体には、以下に示す問題があった。
従来の粉末冶金用混合粉末および鉄粉焼結体は、焼結部材の高強度化を主に目的としたものであり、高強度化に注視しすぎて、衝撃値特性(靭性)が低下しやすいという問題があった。また、母粉を高合金化することにより、母粉が高硬度化して成形密度(圧粉体密度)が高まらないため、成形性や機械的特性が低下するという問題があった。さらに、合金組成によっては、高価な金属(Mo、Ni、Cr等)を多量に使用するため、コスト高になるという問題があった。
However, the conventional mixed powder for powder metallurgy and the iron powder sintered body have the following problems.
Conventional mixed powders for powder metallurgy and iron powder sintered bodies are mainly intended to increase the strength of sintered parts, and the impact value characteristics (toughness) are reduced due to excessive attention to the increase in strength. There was a problem that it was easy. In addition, by making the mother powder highly alloyed, the mother powder has a higher hardness and the molding density (green compact density) does not increase, so that there is a problem that moldability and mechanical properties are lowered. Furthermore, depending on the alloy composition, a large amount of expensive metal (Mo, Ni, Cr, etc.) is used, resulting in a high cost.
本発明は前記事情に鑑みてなされたものであって、その目的は、強度に優れると共に、衝撃値特性に優れた鉄粉焼結体を得ることのできる粉末冶金用混合粉末および鉄粉焼結体を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a mixed powder for powder metallurgy and iron powder sintering that can obtain an iron powder sintered body having excellent strength and impact value characteristics. To provide a body.
請求項1に係る粉末冶金用混合粉末は、プレアロイ型鋼粉でなる母粉と、合金粉末とを混合した粉末冶金用混合粉末であって、前記母粉は、Mn:0.2〜1.5質量%を含有したFeで、残部が不可避的不純物からなり、前記合金粉末は、前記母粉と合わせた全混合粉末中の配合質量%として、Cu:0.5〜3.5質量%、グラファイト(Gr):0.4〜1.5質量%、Ni:1.0〜6.0質量%を含有することを特徴とする。なお、合金粉末としてのCuはCuPと同等な役割となる。
The mixed powder for powder metallurgy according to
このように構成すれば、母粉の合金成分として、Mnを所定量含有することにより、固溶強化で強度等の機械的特性が向上する。また、合金粉末が、Cuを所定量含有することにより、焼結性や、焼結体の強度および疲労特性が向上し、グラファイトを所定量含有することにより、固溶強化によって、強度が向上する。さらに、合金粉末が、Niを所定量含有することにより、強度が向上すると共に、衝撃値特性(靭性)が向上する。 If comprised in this way, mechanical characteristics, such as intensity | strength, improve by solid solution strengthening by containing Mn as a predetermined amount as an alloy component of mother powder. Further, when the alloy powder contains a predetermined amount of Cu, the sinterability and the strength and fatigue characteristics of the sintered body are improved, and when a predetermined amount of graphite is contained, the strength is improved by solid solution strengthening. . Further, when the alloy powder contains a predetermined amount of Ni, strength is improved and impact value characteristics (toughness) are improved.
請求項2に係る粉末冶金用混合粉末は、前記合金粉末が、さらに、Mo:0.3〜3.5質量%を含有することを特徴とする。
The mixed powder for powder metallurgy according to
このように構成すれば、合金粉末が、Moを所定量含有することにより、焼入れ性が向上して、強度が向上する。 If comprised in this way, when alloy powder contains Mo in a predetermined amount, hardenability will improve and intensity | strength will improve.
請求項3に係る鉄粉焼結体は、請求項1または請求項2に記載の粉末冶金用混合粉末の圧粉体を焼結することにより得られることを特徴とする。
このように構成すれば、本発明の鉄粉焼結体は、前記した粉末冶金用混合粉末の圧粉体を焼結することにより得られるため、強度、衝撃値特性(靭性)、疲労特性、耐摩耗性等の機械的特性に優れる。
The iron powder sintered body according to claim 3 is obtained by sintering a green compact of the mixed powder for powder metallurgy according to
If comprised in this way, since the iron powder sintered compact of this invention is obtained by sintering the green compact of the above-mentioned mixed powder for powder metallurgy, strength, impact value characteristics (toughness), fatigue characteristics, Excellent mechanical properties such as wear resistance.
本発明の請求項1に係る粉末冶金用混合粉末によれば、強度を向上させると共に、衝撃値特性(靭性)を向上させることができ、また、疲労特性、耐摩耗性等の機械的特性に優れる鉄粉焼結体を得ることができる。さらに、必要以上に母粉を高合金化することがないため、鉄粉焼結体の成形性や機械的特性を低下させず、また、経済性の向上を図ることができる。
According to the mixed powder for powder metallurgy according to
本発明の請求項2に係る粉末冶金用混合粉末によれば、鉄粉焼結体の強度や耐摩耗性がさらに向上する。なお、粉末冶金用混合粉末は、潤滑剤としての有機物を含有することにより成形時の流動性が向上する。
According to the mixed powder for powder metallurgy according to
本発明の請求項3に係る鉄粉焼結体によれば、焼結体の強度を向上させると共に、衝撃値特性(靭性)を向上させることができ、また、疲労特性、耐摩耗性等の機械的特性を向上させることができる。さらに、必要以上に母粉を高合金化することがないため、成形性や機械的特性を低下させず、また、経済性の向上を図ることができる。 According to the iron powder sintered body according to claim 3 of the present invention, the strength of the sintered body can be improved, the impact value characteristics (toughness) can be improved, and fatigue characteristics, wear resistance, etc. can be improved. Mechanical properties can be improved. Furthermore, since the mother powder is not made higher in alloy than necessary, the moldability and mechanical properties are not deteriorated, and the economic efficiency can be improved.
以下、本発明に係る粉末冶金用混合粉末(以下、適宜、混合粉末ともいう)および鉄粉焼結体(以下、適宜、焼結体ともいう)について、詳細に説明する。
≪粉末冶金用混合粉末≫
粉末冶金用混合粉末は、プレアロイ型鋼粉でなる母粉と、合金粉末とを混合したものである。以下、各構成について説明する。
Hereinafter, the mixed powder for powder metallurgy according to the present invention (hereinafter also referred to as a mixed powder as appropriate) and an iron powder sintered body (hereinafter also referred to as a sintered body as appropriate) will be described in detail.
≪Mixed powder for powder metallurgy≫
The mixed powder for powder metallurgy is a mixture of a mother powder made of prealloyed steel powder and an alloy powder. Each configuration will be described below.
<母粉>
母粉は、Mnを0.2〜1.5質量%を含有したFeと、残部が不可避的不純物とからなるものである。
本発明においては、母粉として、圧縮性を低下しない程度の所定量以下の合金成分を予め合金化したプレアロイ型鋼粉を用いる。合金成分の含有量が所定量を超えると、圧縮性が低下して、十分な焼結密度が得られず、強度、衝撃値特性(靭性)等の機械的特性が低下する。プレアロイ型鋼粉とは、Mn等の合金成分を予め鉄中に固溶(合金化)させた合金化鋼粉のことである。プレアロイ型鋼粉を用いることにより、焼結体中の合金成分を高めることができる。
<Mother powder>
The mother powder is composed of Fe containing 0.2 to 1.5% by mass of Mn and the remainder being inevitable impurities.
In the present invention, prealloyed steel powder obtained by prealloying a predetermined amount or less of an alloy component that does not deteriorate compressibility is used as the mother powder. When the content of the alloy component exceeds a predetermined amount, the compressibility is lowered, a sufficient sintered density cannot be obtained, and mechanical properties such as strength and impact value properties (toughness) are lowered. The pre-alloyed steel powder is alloyed steel powder in which an alloy component such as Mn is previously dissolved (alloyed) in iron. By using the pre-alloyed steel powder, the alloy components in the sintered body can be increased.
また、焼結体の強度等の機械的特性を向上させるためには、母粉の基地を強くする必要があるが、そのためには、合金成分の含有量を所定量以上とする必要がある。合金成分の含有量が所定量未満では、母粉中に合金成分を予め添加しておくことによって焼結体中の合金成分をできるだけ高めるという効果が発揮されなくなる。なお、合金成分を全く含有しない場合には、強度は、低下する{合金成分をまったく含有しないと、強度は、低下するが、靱性は向上する。そのため、後記するように、母粉にMnを所定量の範囲で添加(硬質化して靱性低下)し、全体混合粉末としてNiを所定量添加することにより靭性の向上をさせている}。そのため、このプレアロイ型鋼粉に含まれる合金成分の割合は、所定量の範囲に規定する必要がある。
ここで、本発明においては、母粉として用いるプレアロイ型鋼粉中の合金成分として具体的に使用しているのは、Mnである。
Further, in order to improve mechanical properties such as strength of the sintered body, it is necessary to strengthen the base of the mother powder, and for that purpose, the content of the alloy component needs to be a predetermined amount or more. When the content of the alloy component is less than a predetermined amount, the effect of increasing the alloy component in the sintered body as much as possible by not adding the alloy component to the mother powder in advance is not exhibited. In addition, when the alloy component is not contained at all, the strength is lowered. {If no alloy component is contained, the strength is lowered, but the toughness is improved. Therefore, as will be described later, Mn is added to the mother powder in a predetermined amount range (hardening to reduce toughness), and a predetermined amount of Ni is added as a whole mixed powder to improve toughness}. Therefore, the ratio of the alloy component contained in this prealloy type steel powder needs to be prescribed in a predetermined amount range.
Here, in the present invention, Mn is specifically used as an alloy component in the prealloy type steel powder used as the mother powder.
[Mn:0.2〜1.5質量%]
Mnは、固溶強化で強度等の機械的特性を向上させる効果を発揮する元素である。こうした効果を発揮させるためには、0.2質量%以上添加する必要がある。しかしながら、Mnは、鋼粉中に多く添加させると、鋼粉を硬くして圧縮性を低下させる。また、Mnは、還元性の乏しい元素であるので、鋼粉の製造時に酸化皮膜の除去が困難になるため、1.5質量%を上限とする。なお、Mnの含有量は、好ましくは0.6〜1.2質量%である。
[Mn: 0.2 to 1.5% by mass]
Mn is an element that exhibits the effect of improving mechanical properties such as strength by solid solution strengthening. In order to exert such an effect, it is necessary to add 0.2% by mass or more. However, if much Mn is added to the steel powder, the steel powder is hardened and the compressibility is lowered. Moreover, since Mn is an element with poor reducibility, it is difficult to remove the oxide film during the production of steel powder, so the upper limit is 1.5% by mass. In addition, content of Mn becomes like this. Preferably it is 0.6-1.2 mass%.
[残部:不可避的不純物]
本発明で用いる母粉の基本的な合金成分は前記の通りであり、残部はFeおよび不可避的不純物からなるものである。ここで、該不可避的不純物中のO、C、Si等は以下の含有量に抑制することが望ましい。
[Balance: inevitable impurities]
The basic alloy components of the mother powder used in the present invention are as described above, and the balance consists of Fe and inevitable impurities. Here, it is desirable to suppress O, C, Si, etc. in the inevitable impurities to the following contents.
[O:0.3質量%以下]
Oの含有量が多くなると、圧縮性を低下させるので好ましくない。また、Oの含有量が多くなると、焼結時に黒鉛粉(グラファイト)と反応してCの歩留りを悪くし、焼結体中のC量のばらつきを大きくすると共に、添加する黒鉛粉量を多くする必要があり、コスト高となる。こうした観点から、Oの含有量は、0.3質量%以下に抑制することが望ましい。なお、Oの含有量のさらに望ましい範囲は、0.15質量%以下である。
[O: 0.3% by mass or less]
An increase in the O content is not preferable because the compressibility is lowered. Further, when the content of O increases, it reacts with graphite powder (graphite) at the time of sintering to deteriorate the yield of C, increase the variation in the amount of C in the sintered body, and increase the amount of graphite powder to be added. Need to be expensive. From such a viewpoint, the O content is desirably suppressed to 0.3% by mass or less. A more desirable range of the O content is 0.15% by mass or less.
[C:0.02質量%以下]
Cは、Oと同様に、鋼に対して侵入型の元素であり、フェライトを硬化させる作用を有する。しかし、混合粉末を圧縮成形する場合には、フェライト素地の硬さが柔らかい方が圧粉体密度を高めることができるので、Cの含有量はできるだけ低く抑える方が良い。また、圧粉体密度を上げると、成形体強度が改善されて、成形体のハンドリング性が良好になる。こうした観点から、Cの含有量は、0.02質量%以下に抑制することが望ましい。
[C: 0.02 mass% or less]
C, like O, is an interstitial element for steel and has the effect of hardening ferrite. However, when the mixed powder is compression-molded, the softer the ferrite base, the higher the green compact density, so it is better to keep the C content as low as possible. Further, when the green compact density is increased, the strength of the molded body is improved and the handleability of the molded body is improved. From such a viewpoint, the C content is desirably suppressed to 0.02% by mass or less.
[Si:0.1質量%以下]
Siは、酸素との結合力が高いので、溶鋼をアトマイズするときに鋼粉表面に酸化物を形成する。この酸化物は、還元工程で還元することが困難になる。また、Siは、フェライトを硬化させる作用が大きくて、混合粉末の圧縮性を損ねることになる。こうした観点から、Siの量は、0.1質量%以下に抑制することが望ましい。
[Si: 0.1% by mass or less]
Since Si has a high binding force with oxygen, an oxide is formed on the surface of the steel powder when the molten steel is atomized. This oxide becomes difficult to reduce in the reduction step. Moreover, Si has a large effect of hardening the ferrite and impairs the compressibility of the mixed powder. From such a viewpoint, it is desirable to suppress the amount of Si to 0.1% by mass or less.
<合金粉末>
合金粉末は、Cu:0.5〜3.5質量%、グラファイト(Gr):0.4〜1.5質量%、Ni:1.0〜6.0質量%からなるものである。
<Alloy powder>
The alloy powder is composed of Cu: 0.5 to 3.5% by mass, graphite (Gr): 0.4 to 1.5% by mass, and Ni: 1.0 to 6.0% by mass.
[Cu:0.5〜3.5質量%]
Cuは、焼結性の向上ひいては焼結体の強度および疲労特性の向上に有効に寄与するが、そのためには少なくとも0.5質量%の添加を必要とする。一方、3.5質量%を超えて添加すると、強度および疲労特性の低下を招く。したがって、Cuの含有量は、0.5〜3.5質量%とする。なお、Cuの含有量は、好ましくは、1.0〜2.5%である。さらに、このCuは、CuPとして含有させても同等の役割となる。
[Cu: 0.5 to 3.5% by mass]
Cu contributes effectively to the improvement of the sinterability and, consequently, the strength and fatigue characteristics of the sintered body. However, at least 0.5% by mass is required for this purpose. On the other hand, when it exceeds 3.5 mass%, strength and fatigue characteristics are lowered. Therefore, the Cu content is set to 0.5 to 3.5% by mass. The Cu content is preferably 1.0 to 2.5%. Furthermore, even if Cu is contained as CuP, it has an equivalent role.
[グラファイト(Gr):0.4〜1.5質量%]
Gr(黒鉛粉)は、焼結時に母粉(プレアロイ型鋼粉)中に容易に拡散し、固溶強化により強度を高くする元素である。Grの含有量が0.4質量%未満では、強度を向上させる効果が十分ではなく、一方、1.5質量%を超えると、初析セメンタイトの影響で強度が低下する。したがって、Grの含有量は、0.4〜1.5質量%とする。なお、Grの含有量は、好ましくは0.6〜1.2%である。
[Graphite (Gr): 0.4 to 1.5% by mass]
Gr (graphite powder) is an element that easily diffuses into the mother powder (pre-alloyed steel powder) during sintering and increases the strength by solid solution strengthening. If the content of Gr is less than 0.4% by mass, the effect of improving the strength is not sufficient. On the other hand, if the content of Gr exceeds 1.5% by mass, the strength decreases due to the influence of proeutectoid cementite. Therefore, the content of Gr is set to 0.4 to 1.5% by mass. Note that the content of Gr is preferably 0.6 to 1.2%.
[Ni:1.0〜6.0質量%]
Niは、合金化されることによって焼入れ性を向上させると共に、衝撃値特性(靭性)を高める元素であり、焼結体の強度を向上させる上で必要な元素である。こうした効果を発揮させるためには、1.0質量%以上含有させる必要がある。しかしながら、多すぎるとコスト高になるので、6.0質量%を上限とする。なお、Niの含有量は、好ましくは2〜5%である。
[Ni: 1.0 to 6.0% by mass]
Ni is an element that improves hardenability and improves impact value characteristics (toughness) by being alloyed, and is an element necessary for improving the strength of the sintered body. In order to exert such an effect, it is necessary to contain 1.0% by mass or more. However, if the amount is too large, the cost increases, so 6.0 mass% is the upper limit. The Ni content is preferably 2 to 5%.
また、合金粉末は、前記成分の他、さらに、Mo:0.3〜3.5質量%を含有することが望ましい。以下各成分の限定理由について説明する。 In addition to the above components, the alloy powder preferably further contains Mo: 0.3 to 3.5% by mass. Hereinafter, the reason for limitation of each component is demonstrated.
[Mo:0.3〜3.5質量%]
Moは、焼入れ性を向上させて強度を増大させる作用を有する元素である。この作用を発揮させるためには、Moの添加量は、0.3質量%以上とするのが望ましい。しかしながら、Moを過剰に添加してもその改善効果が飽和し、且つ、コストアップを招くことから、3.5質量%を上限とする。
[Mo: 0.3 to 3.5% by mass]
Mo is an element that has the effect of improving the hardenability and increasing the strength. In order to exhibit this effect, the amount of Mo added is desirably 0.3% by mass or more. However, even if Mo is added excessively, the improvement effect is saturated and the cost is increased, so 3.5 mass% is made the upper limit.
また、合金粉末は、前記した母粉および合金粉末以外にも潤滑剤である有機物を成形用として混合する構成としても構わない。有機物としては、例えば、ステアリン酸亜鉛、エチレンビスステアリルアミドなどである。また、潤滑剤としての有機物を添加する場合には、0.5〜1.2質量%の範囲であることが好ましい。0.5%の下限値を下回ると、潤滑剤としての機能を発揮できず、また、1.2%の上限値を超えると、密度低下の原因となってしまう。 Further, the alloy powder may have a configuration in which an organic substance as a lubricant is mixed for molding other than the above-described mother powder and alloy powder. Examples of the organic substance include zinc stearate and ethylene bisstearyl amide. Moreover, when adding the organic substance as a lubrication agent, it is preferable that it is the range of 0.5-1.2 mass%. If the lower limit value of 0.5% is not reached, the function as a lubricant cannot be exhibited, and if the upper limit value of 1.2% is exceeded, the density decreases.
<混合方法>
次に、合金粉末の母粉への混合方法について説明する。
合金粉末の混合方法としては、プレミックス法と拡散付着法とが知られており、いずれの手法を用いても良い。プレミックス法とは、母粉と、他の金属粉または合金成分を予め合金化した合金粉末とを均一に混合し、これを圧粉成形した後加熱焼結する方法である。この方法は、成形加工が比較的簡単であるという利点を有している。拡散付着法は、圧縮性を殆ど下げることなく、且つ、偏析による強度や寸法精度の不均一の問題もある程度防止される。即ち、拡散付着法は、母粉にCu、Gr、Ni等を加えて均一に混合した後、拡散処理して鉄粉表面に添加粉末を拡散付着させるものであり、一旦拡散付着したものについては偏析を生じることはない。
なお、潤滑剤としてステアリン酸亜鉛など添加する場合に、母粉と合金粉末とを混合するときに併せて混合している。
<Mixing method>
Next, a method for mixing the alloy powder into the mother powder will be described.
As a method for mixing the alloy powder, a premix method and a diffusion adhesion method are known, and either method may be used. The premix method is a method in which a mother powder and an alloy powder obtained by pre-alloying another metal powder or an alloy component are uniformly mixed, compacted, and then heated and sintered. This method has the advantage that the molding process is relatively simple. The diffusion adhesion method hardly reduces the compressibility and also prevents the problem of uneven strength and dimensional accuracy due to segregation to some extent. That is, in the diffusion adhesion method, Cu, Gr, Ni or the like is added to the mother powder and mixed uniformly, and then diffusion treatment is performed to diffuse and adhere the additive powder to the iron powder surface. Segregation does not occur.
In addition, when adding zinc stearate as a lubricant, the mother powder and the alloy powder are mixed together.
次に、本発明に係る鉄粉焼結体について、詳細に説明する。
≪鉄粉焼結体≫
鉄粉焼結体は、前記説明した粉末冶金用混合粉末の圧粉体を焼結することにより得られるものである。
Next, the iron powder sintered body according to the present invention will be described in detail.
≪Sintered iron powder≫
The iron powder sintered body is obtained by sintering the green compact of the mixed powder for powder metallurgy described above.
鉄粉焼結体の製造方法の一例としては、まず、混合機等を用い、前記した母粉と、合金粉末とを混合し、粉末冶金用混合粉末とする。混合の際には、潤滑剤として、ステアリン酸亜鉛0.75質量%を加えてもよい。次に、この粉末冶金用混合粉末を、例えば、5t/cm2の成形圧で成形し、圧粉体とする。そして、この圧粉体を、弱酸化性であるRXガス、N2ガス、AXガス等の雰囲気中で、温度:1100〜1250℃、時間:15〜60分の条件で焼結することにより、鉄粉焼結体を得ることができる。 As an example of a method for producing an iron powder sintered body, first, the above-described mother powder and alloy powder are mixed using a mixer or the like to obtain a mixed powder for powder metallurgy. In mixing, 0.75% by mass of zinc stearate may be added as a lubricant. Next, this mixed powder for powder metallurgy is molded at a molding pressure of, for example, 5 t / cm 2 to obtain a green compact. Then, the green compact, RX gas is a weak oxidizing, N 2 gas, in an atmosphere such as AX gas, temperature: 1100 to 1250 ° C., time: by sintering at 15-60 minutes of conditions, An iron powder sintered body can be obtained.
以上説明したように、本発明に係る粉末冶金用混合粉末によれば、自動車用の高強度焼結部材として好適な、強度、衝撃値特性(靭性)、疲労特性、耐摩耗性等の機械的特性や成形性に優れる鉄粉焼結体を得ることができる。また、経済性の向上を図ることができる。
本発明に係る鉄粉焼結体によれば、前記合金成分を有する粉末冶金用混合粉末の圧粉体を焼結することにより、焼結体の強度、衝撃値特性(靭性)、疲労特性、耐摩耗性等の機械的特性や成形性を向上させることができる。
なお、潤滑剤を添加した場合には、鉄粉焼結体を型から抜き出すときに、容易に取り出すことができる。
As described above, according to the mixed powder for powder metallurgy according to the present invention, mechanical properties such as strength, impact value characteristics (toughness), fatigue characteristics, wear resistance, etc., suitable as a high-strength sintered member for automobiles. An iron powder sintered body having excellent characteristics and moldability can be obtained. In addition, economic efficiency can be improved.
According to the iron powder sintered body according to the present invention, by sintering the green compact of the powder metallurgy mixed powder having the alloy component, the strength, impact value characteristics (toughness), fatigue characteristics, Mechanical properties such as wear resistance and moldability can be improved.
In addition, when a lubricant is added, the iron powder sintered body can be easily taken out from the mold.
以下、本発明に係る粉末冶金用混合粉末および鉄粉焼結体の実施例について、その比較例と比較して具体的に説明する。 Hereinafter, examples of the mixed powder for powder metallurgy and the iron powder sintered body according to the present invention will be specifically described in comparison with the comparative examples.
表1に示す成分組成の母粉および合金粉末に、潤滑剤としてステアリン酸亜鉛0.75質量%を加え、60分間、V型混合機で混合し、粉末冶金用混合粉末とした。次に、この粉末冶金用混合粉末を、5t/cm2の成形圧で、断面の縦横長さ□10×55mmで、奥行L10mm(10mm×10mm×55mm)の金型成形をして圧粉体とし、この圧粉体を10%の水素を含む窒素雰囲気中で、1120℃・30分の焼結を行った。このようにして得られた鉄粉焼結体の焼結密度を測定すると共に、衝撃値、強度を調べた。 0.75% by mass of zinc stearate as a lubricant was added to the mother powder and alloy powder having the composition shown in Table 1 and mixed for 60 minutes with a V-type mixer to obtain a mixed powder for powder metallurgy. Next, this mixed powder for powder metallurgy is molded with a molding pressure of 5 t / cm 2 , a cross-sectional length of 10 × 55 mm, and a depth of L10 mm (10 mm × 10 mm × 55 mm). The green compact was sintered at 1120 ° C. for 30 minutes in a nitrogen atmosphere containing 10% hydrogen. The sintered density of the iron powder sintered body thus obtained was measured, and the impact value and strength were examined.
≪焼結密度≫
焼結密度の測定は、寸法、重量を測定し、計算により算出した。
≪Sintering density≫
The sintered density was measured by measuring the dimensions and weight and calculating.
≪衝撃値≫
シャルピー衝撃値は、衝撃試験により、MPIF STANDARD 40に準じ、試験機のハンマー荷重:5kg、試験温度:室温にて、シャルピー吸収エネルギーを測定した。ただし、ノッチはなしとした。
衝撃値の判断基準は、シャルピー吸収エネルギーが15.0J/cm2以上のものを合格とした。
≪Shock value≫
For Charpy impact value, Charpy absorbed energy was measured by an impact test according to MPIF STANDARD 40 at a hammer load of a testing machine of 5 kg and a test temperature of room temperature. However, there was no notch.
As the criteria for judging the impact value, those having Charpy absorbed energy of 15.0 J / cm 2 or more were accepted.
≪強度≫
引張試験は、MPIF STANDARD 10に準じ行った。
強度の判断基準は、引張強度が500MPa以上のものを合格とした。
これらの試験結果を、表1に示す。
≪Strength≫
The tensile test was performed according to MPIF STANDARD 10.
As a criterion for judging strength, those having a tensile strength of 500 MPa or more were accepted.
The test results are shown in Table 1.
以上の結果について、母粉における合金成分の含有量と、衝撃値の関係を図1に、また、母粉の衝撃値含と、引張強度(TS)の関係を図2に、さらに、母粉における合金成分の含有量と、引張強度(TS)の関係を図3に示す。
表1に示すように、実施例1〜13は、本発明の範囲を満たすため、強度に優れると共に、衝撃値特性にも優れていた。
Regarding the above results, the relationship between the content of the alloy component in the mother powder and the impact value is shown in FIG. 1, the relationship between the impact value of the mother powder and the tensile strength (TS) is shown in FIG. FIG. 3 shows the relationship between the alloy component content and the tensile strength (TS).
As shown in Table 1, Examples 1 to 13 were excellent in strength and impact value characteristics in order to satisfy the scope of the present invention.
一方、表1と合わせて図2および図3に示すように、比較例1は、母粉にMnが含有されていないため、引張強度および衝撃値が劣った。比較例2は、母粉のMnの含有量が下限値未満のため、引張強度が劣った。比較例3は、母粉のMnの含有量が上限値を超えるため、焼結密度が低下し、衝撃値が劣った。比較例4は、母粉の合金成分を複合添加(Mn、Ni)したため、焼結密度が低下し、衝撃値が劣った。 On the other hand, as shown in FIG. 2 and FIG. 3 together with Table 1, Comparative Example 1 was inferior in tensile strength and impact value because Mn was not contained in the mother powder. In Comparative Example 2, the tensile strength was inferior because the content of Mn in the mother powder was less than the lower limit. In Comparative Example 3, since the content of Mn in the mother powder exceeded the upper limit, the sintered density was lowered and the impact value was inferior. In Comparative Example 4, since the alloy component of the mother powder was added in combination (Mn, Ni), the sintered density was lowered and the impact value was inferior.
表1と合わせて、図1および図2に示すように、合金成分としてMnを0.2〜1.5質量%含有する母粉に合金添加した供試材は、衝撃値が15.0J/cm2以上と高く、Mnを1.5質量%超とすると、衝撃値が低下している。また、母粉に合金成分を複合添加(Mn、Ni)した場合も、衝撃値は低下している。なお、Mnを含有させない場合、Mnを0.1質量%含有する場合については、強度が劣るため、ここでは記載を省略する。
なお、図1ないし図3で示す、各点において、Mn単独とは、粉末冶金用混合粉末の母粉にMnを所定の質量%で添加したものを示し、また、合金とは、粉末冶金用混合粉末の合金粉としてMoを所定質量%で添加したものを示し、さらに、複合とは、粉末冶金用混合粉末の母粉として、Fe−0.9Mn−0.6Niを添加したものを示している。
In combination with Table 1, as shown in FIG. 1 and FIG. 2, the test material in which the alloy powder is added to the mother powder containing 0.2 to 1.5 mass% of Mn as the alloy component has an impact value of 15.0 J / If it is as high as cm 2 or more and Mn exceeds 1.5 mass%, the impact value is lowered. In addition, when the alloy component is added to the mother powder (Mn, Ni), the impact value is also lowered. In addition, when not containing Mn, since the intensity | strength is inferior about the case where 0.1 mass% of Mn is contained, description is abbreviate | omitted here.
In addition, in each point shown in FIG. 1 thru | or FIG. 3, Mn independent means the thing which added Mn by predetermined mass% to the mother powder of the mixed powder for powder metallurgy, and an alloy is for powder metallurgy As an alloy powder of the mixed powder, Mo is added at a predetermined mass%. Furthermore, the composite indicates a mixture of Fe-0.9Mn-0.6Ni as a mother powder of the mixed powder for powder metallurgy. Yes.
以上、本発明に係る粉末冶金用混合粉末および鉄粉焼結体について最良の実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されるものではない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。 As described above, the mixed powder for powder metallurgy and the iron powder sintered body according to the present invention have been described in detail by showing the best mode and examples, but the gist of the present invention is not limited to the above-described contents. . Needless to say, the contents of the present invention can be widely modified and changed based on the above description.
Claims (3)
前記母粉は、Mn:0.2〜1.5質量%を含有したFeで、残部が不可避的不純物からなり、
前記合金粉末は、前記母粉と合わせた全混合粉末中の配合質量%として、Cu:0.5〜3.5質量%、グラファイト(Gr):0.4〜1.5質量%、Ni:1.0〜6.0質量%を含有することを特徴とする粉末冶金用混合粉末。 A mixed powder for powder metallurgy in which a mother powder composed of prealloyed steel powder and an alloy powder are mixed,
The mother powder is Fe containing Mn: 0.2 to 1.5% by mass, and the balance consists of inevitable impurities,
As for the alloy powder, Cu: 0.5 to 3.5 mass%, graphite (Gr): 0.4 to 1.5 mass%, Ni: A mixed powder for powder metallurgy, characterized by containing 1.0 to 6.0% by mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007165533A JP4839271B2 (en) | 2007-06-22 | 2007-06-22 | Mixed powder for powder metallurgy and sintered iron powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007165533A JP4839271B2 (en) | 2007-06-22 | 2007-06-22 | Mixed powder for powder metallurgy and sintered iron powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009001882A JP2009001882A (en) | 2009-01-08 |
JP4839271B2 true JP4839271B2 (en) | 2011-12-21 |
Family
ID=40318583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007165533A Expired - Fee Related JP4839271B2 (en) | 2007-06-22 | 2007-06-22 | Mixed powder for powder metallurgy and sintered iron powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4839271B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102876949B (en) * | 2012-09-27 | 2014-06-04 | 安徽华东光电技术研究所 | Method for manufacturing molybdenum-copper-nickel alloy with high thermal conductivity |
JP6627856B2 (en) * | 2017-02-02 | 2020-01-08 | Jfeスチール株式会社 | Method for producing powder mixture for powder metallurgy and sintered body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3675299B2 (en) * | 2000-05-11 | 2005-07-27 | 三菱マテリアル株式会社 | Connecting rod made of Fe-based sintered alloy with high strength and toughness |
JP3784276B2 (en) * | 2001-05-14 | 2006-06-07 | 日立粉末冶金株式会社 | Free-cutting sintered member and manufacturing method thereof |
-
2007
- 2007-06-22 JP JP2007165533A patent/JP4839271B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009001882A (en) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308123B2 (en) | High-strength composition iron powder and sintered parts using it | |
JP6146548B1 (en) | Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body | |
JP6227903B2 (en) | Alloy steel powder for powder metallurgy and method for producing iron-based sintered body | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
JP2010090470A (en) | Iron-based sintered alloy and method for producing the same | |
EP1513640A1 (en) | Prealloyed iron-based powder, a method of producing sintered components and a component | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
CN101111617A (en) | Iron-based powder combination | |
JP4839271B2 (en) | Mixed powder for powder metallurgy and sintered iron powder | |
CN110267754B (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
WO1988000505A1 (en) | Alloy steel powder for powder metallurgy | |
US6652618B1 (en) | Iron based mixed power high strength sintered parts | |
US9248500B2 (en) | Method for protecting powder metallurgy alloy elements from oxidation and/or hydrolization during sintering | |
JP4367133B2 (en) | Iron-based powder mixture for high-strength sintered parts | |
JP5119006B2 (en) | Mixed powder for powder metallurgy and sintered iron powder | |
CN110234448B (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP4704949B2 (en) | Mixed powder for producing iron-based sintered body and iron-based sintered body | |
WO2018143088A1 (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP4151654B2 (en) | Mixed powder for high strength sintered parts | |
WO2023157386A1 (en) | Iron-based mixed powder for powder metallurgy, and iron-based sintered body | |
JP2010255082A (en) | Iron-based sintered alloy and method for producing the same | |
James et al. | Sintered Steels I-Composition: Lean Hybrid Low-Alloy PM Molybdenum Steels | |
JP2021042463A (en) | Iron base pre-alloyed powder, iron based diffusion bonded powder, and powder metallurgical alloy powder using the same | |
JPH1072649A (en) | High strength ferrous sintered alloy excellent in wear resistance and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111003 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4839271 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |