JP4835207B2 - Temperature transmitter - Google Patents
Temperature transmitter Download PDFInfo
- Publication number
- JP4835207B2 JP4835207B2 JP2006060513A JP2006060513A JP4835207B2 JP 4835207 B2 JP4835207 B2 JP 4835207B2 JP 2006060513 A JP2006060513 A JP 2006060513A JP 2006060513 A JP2006060513 A JP 2006060513A JP 4835207 B2 JP4835207 B2 JP 4835207B2
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- wiring resistance
- wiring
- value
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
本発明は、測温抵抗体を用いて温度計測を行って温度出力として伝送する温度伝送器に係り、特に測温抵抗体と温度伝送器を結ぶ配線抵抗線の断線、または断線に至る不具合を検知して温度計測の信頼性を確保出来るように改良された温度伝送器に関する。 The present invention relates to a temperature transmitter that performs temperature measurement using a resistance temperature detector and transmits the temperature output as a temperature output, and in particular, a failure of a wiring resistance wire that connects the resistance temperature detector and the temperature transmitter, or a problem that leads to disconnection. The present invention relates to an improved temperature transmitter that can detect and ensure the reliability of temperature measurement.
図4は従来から一般に使用されている2本の計測配線を持つ2線式の温度伝送器である。温度伝送器10は測温抵抗体11の一方が計測配線12により温度伝送器10の主入力端子13に接続され、測温抵抗体11の他方は計測配線14により温度伝送器10のセンサグラウンド端子15に接続されている。以上の構成において、測温抵抗体11において温度が測温抵抗体11の抵抗変化として測定され、温度伝送器10はこの抵抗変化を温度換算して温度出力する。
FIG. 4 shows a two-wire temperature transmitter having two measurement wires generally used in the past. In the temperature transmitter 10, one end of the resistance temperature detector 11 is connected to the
図5は従来から一般に使用されている2本の計測配線の他に1本の配線抵抗線を持つ3線式の温度伝送器である。温度伝送器20は測温抵抗体11の一方が計測配線12により温度伝送器20の主入力端子13に接続され、測温抵抗体11の他方は計測配線14により温度伝送器20のセンサグラウンド端子15に接続されると共に、配線抵抗線21により温度伝送器20の配線抵抗入力端子22に接続されている。
FIG. 5 shows a three-wire temperature transmitter having one wiring resistance wire in addition to two measurement wires generally used conventionally. In the temperature transmitter 20, one end of the resistance temperature detector 11 is connected to the
以上の構成において、測温抵抗体11において温度が測温抵抗体11の抵抗変化として測定され、温度伝送器20はこの抵抗変化を温度換算して温度出力するが、3線式では、配線抵抗入力端子22を利用して計測配線の影響を補正して測定精度の向上が図られている。
In the above configuration, the temperature is measured by the resistance temperature detector 11 as a resistance change of the resistance temperature detector 11, and the temperature transmitter 20 converts the resistance change into a temperature and outputs a temperature. The measurement accuracy is improved by correcting the influence of the measurement wiring by using the
図6は従来から一般に使用されている2本の計測配線の他に2本の配線抵抗線を持つ4線式の温度伝送器である。温度伝送器30は測温抵抗体11の一方が計測配線12により温度伝送器30の主入力端子13に接続されると共に、配線抵抗線31により温度伝送器30の配線抵抗入力端子32に接続されている。また、温抵抗体11の他方は計測配線14により温度伝送器30のセンサグラウンド端子15に接続されると共に、配線抵抗線21により温度伝送器30の配線抵抗入力端子22に接続されている。
FIG. 6 shows a four-wire temperature transmitter having two wiring resistance wires in addition to two measurement wires generally used conventionally. In the temperature transmitter 30, one of the resistance temperature detectors 11 is connected to the
以上の構成において、測温抵抗体11において温度が測温抵抗体11の抵抗変化として測定され、温度伝送器30はこの抵抗変化を温度換算して温度出力するが、4線式では、配線抵抗入力端子22、32を利用して計測配線の影響を補正して更なる測定精度の向上が図られている。
In the above configuration, the temperature is measured by the resistance temperature detector 11 as a resistance change of the resistance temperature detector 11, and the temperature transmitter 30 converts the resistance change into a temperature and outputs a temperature. The measurement accuracy is further improved by correcting the influence of the measurement wiring using the
下記特許文献1には、測温抵抗体を用いた3線あるいは4線の配線を持つ温度計測器が開示され、一般的にこれらの配線が断線したかどうかを診断し断線していれば配線切替回路によりこれらの配線を切り替える温度計測器が開示されている。 The following Patent Document 1 discloses a temperature measuring instrument having a three-wire or four-wire wiring using a resistance temperature detector, and generally diagnoses whether or not these wirings are disconnected, and wiring is performed if they are disconnected. A temperature measuring instrument that switches these wirings by a switching circuit is disclosed.
以上のように測温抵抗体11を用いた温度計測には2線式、3線式および4線式など各種の方式あるが、どの方式においても配線のうち1つの配線が断線した場合は正しい計測が出来なくなる。 As described above, there are various methods such as 2-wire, 3-wire, and 4-wire methods for temperature measurement using the resistance temperature detector 11, but any method is correct when one of the wires is disconnected. Measurement cannot be performed.
測温抵抗体11に電流を流す計測配線12,14が断線した場合は、主入力端子が高い電位に直ちに上昇するので、断線検知が可能であるが、配線抵抗線21,31が断線した場合は、断線検知が出来ない。 When the measurement wirings 12 and 14 for passing current to the resistance temperature detector 11 are disconnected, the main input terminal immediately rises to a high potential, so that the disconnection can be detected, but the wiring resistance lines 21 and 31 are disconnected. Cannot detect disconnection.
配線抵抗線21,31が断線した場合は、この配線抵抗線21,31の電位を計測する温度伝送器30、40内のA/D変換器の入力が開放電位となり、中途半端にふらついた電位がA/D変換される。 When the wiring resistance lines 21 and 31 are disconnected, the input of the A / D converter in the temperature transmitters 30 and 40 for measuring the potential of the wiring resistance lines 21 and 31 becomes an open potential, and the potential fluctuates halfway. Are A / D converted.
従って、この電位をパラメータとして演算された温度値は全く信用のない値となってしまう。この開放電位のふらつきが大きなものであれば温度演算値が大幅に変化するので異常を検知出来る可能性があるが、開放電位は不定となるので温度演算値も不定となる。 Therefore, the temperature value calculated using this potential as a parameter is a value that is not reliable at all. If the fluctuation of the open-circuit potential is large, the temperature calculation value changes significantly, so that an abnormality can be detected. However, since the open-circuit potential is indefinite, the temperature calculation value is also undefined.
そこで、本発明は測温抵抗体を用いた温度計測において、配線抵抗線の断線を正確に検知出来るように改良し、温度計測の信頼性を向上させることを目的とする。 In view of the above, an object of the present invention is to improve the reliability of temperature measurement by improving the temperature measurement using a resistance temperature detector so that the disconnection of the wiring resistance wire can be accurately detected.
このような課題を達成するために、本発明のうち請求項1記載の発明は、
電源と主入力端子とセンサグラウンド端子と配線抵抗入力端子と演算処理手段を備え、
抵抗値Rptを有する測温抵抗体の一方が配線抵抗R0を有する一方の計測配線を介して前記主入力端子に接続され、測温抵抗体の他方が配線抵抗R0を有する他方の計測配線を介して前記センサグラウンド端子に接続されると共に配線抵抗R0を有する配線抵抗線を介して前記配線抵抗入力端子に接続され、前記センサグラウンド端子は抵抗Rを介して共通電位点に接続され、
前記演算処理手段は、前記電源の電流Iが前記主入力端子に入力されて前記一方の計測配線と前記測温抵抗体と前記他方の計測配線と前記センサグラウンド端子と前記抵抗Rよりなる経路を経て前記共通電位点に流れることにより前記主入力端子に発生する主入力電圧V1と前記センサグラウンド端子に発生するセンサグラウンド電圧V0と前記配線抵抗入力端子に発生する配線抵抗電圧V2の測定値を取り込み、
Rpt=(V0+V1−2V2)/I
の演算を行うことにより前記測温抵抗体の抵抗値Rptを算出し、
R0=(V2−V0)/I
の演算を行うことにより前記配線抵抗線の抵抗値R0を算出するように構成された温度伝送器において、
前記演算処理手段は、前記配線抵抗線の初期配線抵抗値R00を算出してメモリに格納した後、所定のタイミングで前記配線抵抗線の配線抵抗現在値RXを算出して、
Rd=RX−R00
の演算を行うことによりこれら初期配線抵抗値R00と現在配線抵抗値RXとの差抵抗値Rdを算出し、算出された差抵抗値Rdが所定の設定閾値を超えたか否かにより前記配線抵抗線の断線検知を行うことを特徴とする。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
Power supply, main input terminal, sensor ground terminal, wiring resistance input terminal, and arithmetic processing means,
One of the resistance temperature detectors having a resistance value Rpt is connected to the main input terminal via one measurement wiring having a wiring resistance R0, and the other temperature measurement resistor is connected to the other measurement wiring having a wiring resistance R0. Connected to the sensor ground terminal and connected to the wiring resistance input terminal via a wiring resistance line having a wiring resistance R0, and the sensor ground terminal is connected to a common potential point via a resistor R,
The arithmetic processing means inputs a current I of the power source to the main input terminal, and makes a path formed by the one measurement wiring, the temperature measuring resistor, the other measurement wiring, the sensor ground terminal, and the resistance R. Then, the measured values of the main input voltage V1 generated at the main input terminal, the sensor ground voltage V0 generated at the sensor ground terminal, and the wiring resistance voltage V2 generated at the wiring resistance input terminal are captured by flowing to the common potential point. ,
Rpt = (V0 + V1-2V2) / I
By calculating the resistance value Rpt of the resistance temperature detector,
R0 = (V2-V0) / I
In the temperature transmitter configured to calculate the resistance value R0 of the wiring resistance line by performing the calculation of
The arithmetic processing means calculates an initial wiring resistance value R00 of the wiring resistance line and stores it in a memory, and then calculates a wiring resistance current value RX of the wiring resistance line at a predetermined timing,
Rd = RX-R00
By calculating the difference resistance value Rd between the initial wiring resistance value R00 and the current wiring resistance value RX, the wiring resistance line is determined depending on whether or not the calculated difference resistance value Rd exceeds a predetermined set threshold value. It is characterized by detecting disconnection.
請求項2記載の発明は、請求項1記載の発明において、
前記配線抵抗の現在値を読込む所定のタイミングは、一定値、または一定間隔、または入力手段からのユーザ設定値であることを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The predetermined timing for reading the current value of the wiring resistance is a fixed value, a fixed interval, or a user set value from an input means.
請求項3記載の発明は、請求項1記載の発明において、
前記差抵抗値Rdが前記設定閾値を超えた場合に、前記配線抵抗線の断線、または断線に至る不具合を検知して警報することを特徴とする。
The invention according to claim 3 is the invention according to claim 1 ,
When the differential resistance value Rd exceeds the set threshold value, a disconnection of the wiring resistance line or a malfunction that leads to a disconnection is detected and an alarm is given.
請求項4記載の発明は、請求項1記載の発明において、
前記差抵抗値Rdが前記設定閾値を超えた場合に、前記配線抵抗線の伝送構成を変更してバックアップするバックアップ手段を具備することを特徴とする。
The invention according to claim 4 is the invention according to claim 1 ,
When the differential resistance value Rd exceeds the set threshold value, backup means is provided for backing up by changing the transmission configuration of the wiring resistance line.
以上説明したことから明らかなように、本発明によれば次のような効果がある。
請求項1に記載した発明によれば、演算処理手段により測温抵抗体から2本の計測配線と共に配線抵抗線を介して入力された電圧信号を用いて先の配線抵抗線の断線検知をするようにしたので、この電圧信号の電圧変化を用いて断線検知をする場合だけでなく、この電圧信号を演算して断線検知をすることもでき、多様な形で配線抵抗線の断線検知をすることができ、温度計測の信頼性を向上させることができる。
さらに、配線抵抗線の配線抵抗の初期値と現在値との差抵抗値が設定閾値を超えたか否かにより断線検知を行うようにしたので、配線抵抗線の断線だけでなく、断線に至る経過も知ることができ、正確に断線検出が出来る効果がある。
As is apparent from the above description, the present invention has the following effects.
According to the first aspect of the invention, the disconnection of the previous wiring resistance line is detected by the arithmetic processing means using the voltage signal input from the resistance temperature detector through the wiring resistance line together with the two measurement wirings. As a result, it is possible not only to detect disconnection using the voltage change of this voltage signal, but also to detect disconnection by computing this voltage signal, and detect disconnection of wiring resistance lines in various forms. And the reliability of temperature measurement can be improved.
Furthermore, since the disconnection detection is performed based on whether the difference resistance value between the initial value and the current value of the wiring resistance line exceeds the set threshold, not only the disconnection of the wiring resistance line but also the process leading to the disconnection There is an effect that disconnection can be accurately detected.
請求項2に記載した発明によれば、配線抵抗の現在値の読込みタイミングを、一定値、または一定間隔、または入力手段からのユーザ設定値で行うようにしたので、断線の場合だけでなく定期的に診断することで配線抵抗が徐々に増加するような不具合について検知が可能になる効果がある。 According to the second aspect of the present invention, since the reading timing of the current value of the wiring resistance is performed at a constant value, a constant interval, or a user set value from the input means, not only in the case of disconnection, but also periodically By performing the diagnosis, it is possible to detect a malfunction in which the wiring resistance gradually increases.
また、測定した配線抵抗値を時系列で保存しそのトレンドをとることで抵抗値が次第に増加してきた等の断線予測をすることが出来る効果もある。さらに、入力手段によりユーザが読込みタイミングを任意に設定出来るので、現場の状況に応じて配線抵抗値を計測することが出来る。 In addition, there is an effect that it is possible to predict the disconnection such as the resistance value gradually increasing by storing the measured wiring resistance value in time series and taking the trend. Furthermore, since the user can arbitrarily set the read timing by the input means, the wiring resistance value can be measured according to the situation at the site.
請求項3に記載した発明によれば、差抵抗値が設定閾値を超えた場合に、配線抵抗線の断線、または断線に至る不具合を検知して外部に警報することにより、異常状態を外部に速やかに知らせることができ、早期のトラブル処理が可能になる。 According to the third aspect of the present invention, when the differential resistance value exceeds the set threshold value, an abnormal state can be externally detected by detecting a disconnection of the wiring resistance line or a failure leading to the disconnection. Notification can be made promptly and early troubleshooting can be performed.
請求項4に記載した発明によれば、バックアップ手段により、差抵抗値が設定閾値を超えた場合に、配線抵抗線の数を減らして精度の低下を最小限にしながらも温度計測を確保することができる効果がある。
According to the fourth aspect of the present invention, when the differential resistance value exceeds the set threshold value, the backup unit can ensure temperature measurement while reducing the number of wiring resistance lines and minimizing a decrease in accuracy. There is an effect that can.
以下、本発明について図面を用いて詳細に説明する。図2は本発明に係る温度伝送器の1実施例を示すブロック図である。図1はこの温度伝送器で演算実行する配線抵抗線の断線検知をする断線検知手段の手順を示すフローチャート図である。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 2 is a block diagram showing an embodiment of a temperature transmitter according to the present invention. FIG. 1 is a flow chart showing the procedure of a disconnection detecting means for detecting disconnection of a wiring resistance wire that is executed by the temperature transmitter.
先ず、図2を用いて本発明に係る温度伝送器40の構成について説明する。ここでは、温度伝送器40として3線式の場合の実施例を示している。なお、以下の説明においては、従来の温度伝送器に示す構成要素と同一の機能を持つ構成要素については同一の符号を付して適宜にその説明を省略する。 First, the structure of the temperature transmitter 40 according to the present invention will be described with reference to FIG. Here, an example in which the temperature transmitter 40 is a three-wire type is shown. In the following description, components having the same functions as those shown in the conventional temperature transmitter are denoted by the same reference numerals, and description thereof is omitted as appropriate.
温度伝送器40の入力端側には、主入力端子13、センサグラウンド端子15、配線抵抗入力端子22が設けられている。主入力端子13は測温抵抗体11の一端に計測配線12で接続され、センサグラウンド端子15は測温抵抗体11の他端に計測配線14で接続されている。さらに、配線抵抗入力端子22は測温抵抗体11の他端に配線抵抗線21で接続されている。
On the input end side of the temperature transmitter 40, a
そして、測温抵抗体11は抵抗値Rptを、計測配線12、14,および配線抵抗線21はいずれも等しい配線抵抗R0を有している。温度伝送器40の電源VDDからは、電流Iが主入力端子13、計測配線12、測温抵抗体11、計測配線14、センサグラウンド端子15、抵抗Rを順次に介して共通電位点COMに流されている。
The resistance temperature detector 11 is the resistance value R pt, measurement lines 12, 14, and the wiring resistance wire 21 has a wire resistance R0 both equal. From the power supply VDD of the temperature transmitter 40, the current I flows to the common potential point COM through the
その結果として、主入力端子13には主入力電圧V1が、センサグラウンド端子15にはセンサグラウンド電圧V0が、配線抵抗線21には配線抵抗電圧V2が発生している。これらの主入力電圧V1、センサグラウンド電圧V0、および配線抵抗電圧V2は温度伝送器40内のA/D変換器41に入力され、ここでこれらの電圧はデジタルデータDDに変換される。
As a result, the main input voltage V1 is generated at the
各電圧のデジタルデータDDは、演算処理手段42に入力され、ここでROM(Read-Only Memory)等のメモリ43を用いながらCPU( Central Processing Unit )により温度演算、配線抵抗線の断線検知等の演算がなされる。さらに、キーボードなどの入力手段46から入力されたデータも加味して断線検知等の演算処理がなされる。そして、これらの演算結果は温度出力44、警報出力45として外部に出力される。
The digital data DD of each voltage is input to the arithmetic processing means 42. Here, the CPU (Central Processing Unit) performs temperature calculation, detection of disconnection of the wiring resistance line, etc. using a
次に、本発明が温度伝送器40で演算実行する配線抵抗線の断線検知をする断線検知手段47について図1に示すフローチャート図を用いてその手順を説明する。 Next, the procedure of the disconnection detecting means 47 for detecting disconnection of the wiring resistance wire, which is executed by the temperature transmitter 40 according to the present invention, will be described with reference to the flowchart shown in FIG.
ステップ1は、配線抵抗断線検知ONとして、正常に配線抵抗線の断線検知が出来ると共に温度計測も行える初期状態にする。 Step 1 sets the wiring resistance disconnection detection ON to an initial state in which the disconnection of the wiring resistance line can be normally detected and the temperature can also be measured.
次に、ステップ2に移行して、配線抵抗値R0を測定して、配線抵抗の初期値R00を算出する。この後、ステップ3で測定した配線抵抗の初期値R00をメモリ43に格納する。
Then control proceeds to step 2, by measuring the wiring resistance value R0, calculated by the wiring resistance of the initial value R 00. Thereafter, the initial value R 00 of the wiring resistance measured in step 3 is stored in the
ステップ4では、温度計測を行なう。温度計測に当たっては、先ず、測温抵抗体11の抵抗値Rptの演算を、測温抵抗体11に電流Iを流して生じる主入力電圧V1、センサグラウンド電圧V0、配線抵抗電圧V2を用いて下式(1)に基づいて行う。
Rpt=(V0+V1−2V2)/I (1)
この後、温度伝送器40に内蔵された国際規格等で定められた抵抗値−温度変換表に基づいて温度が演算され、ステップ5で温度出力44として出力される。
In step 4, temperature measurement is performed. In the temperature measurement, first, the resistance value Rpt of the resistance temperature detector 11 is calculated using the main input voltage V1, the sensor ground voltage V0, and the wiring resistance voltage V2 generated by passing the current I through the resistance temperature detector 11. This is performed based on equation (1).
Rpt = (V0 + V1-2V2) / I (1)
Thereafter, the temperature is calculated based on a resistance value-temperature conversion table defined by an international standard or the like built in the temperature transmitter 40, and is output as a
この後、ステップ6に移行する。通常は、配線抵抗R0は抵抗値演算に現れないが、配線抵抗R0は下式(2)に基づいて測定される。
R0=(V2−V0)/I (2)
Thereafter, the process proceeds to step 6. Normally, the wiring resistance R0 does not appear in the resistance value calculation, but the wiring resistance R0 is measured based on the following equation (2).
R0 = (V2-V0) / I (2)
そこで、現在配線抵抗値RXを(2)式に基づいて適当なタイミングで測定する。この配線抵抗の現在値の読込みタイミングは、例えば1時間などの一定値としても良いし、30分毎等の一定間隔として定期的に行っても良いし、ユーザが入力手段46で設定出来るようにしても良い。更に、入力手段46によりユーザが読込みタイミングを設定する場合は、現場の状況に合わせて配線抵抗値を計測することが出来る。 Therefore, it measured at an appropriate timing based on the current wiring resistance R X (2) expression. The reading timing of the current value of the wiring resistance may be a constant value such as 1 hour, or may be periodically performed at regular intervals such as every 30 minutes, or may be set by the user through the input means 46. May be. Furthermore, when the user sets the read timing by the input means 46, the wiring resistance value can be measured according to the situation at the site.
次に、ステップ7に移行する。ステップ7では、初期配線抵抗値R00と現在の現在配線抵抗値RXの差である差抵抗値Rd(=RX−R00)を所定の演算プログラムにより演算処理手段42が演算する。 Next, the process proceeds to step 7. In step 7, the arithmetic processing means 42 calculates a difference resistance value Rd (= R X −R 00 ), which is a difference between the initial wiring resistance value R 00 and the current current wiring resistance value R X , using a predetermined calculation program.
ステップ8では、差抵抗値Rdが予め決められた設定閾値SSを超えたかどうかの判断を所定の演算プログラムにより演算処理手段42が判断する。差抵抗値Rdが設定閾値SSを超えた場合(Yes)は、ステップ9に移行して配線抵抗線が断線したものして断線検知を行いステップ10で断線警報出力を出す。ステップ8で差抵抗値Rdが設定閾値SSを超えない場合(No)は、ステップ4に戻りステップ6〜8を繰り返す。 In step 8, the arithmetic processing means 42 determines whether or not the differential resistance value Rd has exceeded a predetermined threshold value SS by using a predetermined arithmetic program. When the differential resistance value Rd exceeds the set threshold value SS (Yes), the process proceeds to step 9 where the wiring resistance line is disconnected and disconnection is detected, and a disconnection alarm output is output at step 10. When the differential resistance value Rd does not exceed the set threshold value SS in step 8 (No), the process returns to step 4 and steps 6 to 8 are repeated.
この設定閾値SSについては、例えば0.1℃の精度の場合は、40mΩ程度の抵抗測定精度があるので、設定閾値SSを1Ωとした場合は、配線抵抗値が1Ω以上に増加した場合に断線を検知することになる。 With regard to the set threshold SS, for example, when the accuracy is 0.1 ° C., there is a resistance measurement accuracy of about 40 mΩ. Therefore, when the set threshold SS is set to 1Ω, disconnection occurs when the wiring resistance value increases to 1Ω or more. Will be detected.
また、この設定閾値SSは、例えば1Ω等の固定値としても良いし、ユーザが入力手段44で設定出来るようにしても良い。ただし、配線材料は周囲温度により抵抗値が変化するので、長距離配線をする場合には配線材による配線抵抗値の変化を考慮する必要がある。
The setting threshold SS may be a fixed value such as 1Ω or may be set by the user using the
図1のフローチャート図に示す配線抵抗線の断線検知は、配線抵抗線の抵抗測定値の変化により検出するものであるが、これを配線抵抗電圧V2の変化に置き換えて検出させることも出来る。 The disconnection detection of the wiring resistance line shown in the flowchart of FIG. 1 is detected by a change in the resistance measurement value of the wiring resistance line, but it can be detected by replacing this with a change in the wiring resistance voltage V2.
また、断線の場合だけでなく、定期的に診断することにより配線抵抗が徐々に増加する不具合について検知が可能になる。この場合は、測定した配線抵抗値を時系列で保存しトレンドをとることで、抵抗値が次第に増えてきた等の検出が可能になる。 Further, not only in the case of disconnection, but also by detecting periodically, it is possible to detect a problem that the wiring resistance gradually increases. In this case, it is possible to detect that the resistance value has gradually increased by storing the measured wiring resistance value in time series and taking a trend.
図3は本発明の他の実施例の要部構成説明図であり、4線式の温度伝送器の例である。この場合の温度伝送器50は、測温抵抗体11と温度伝送器50の間に配線切替回路51が配置され、温度伝送器50からの配線切替信号STにより配線抵抗線が断線を検知したときに配線抵抗線21,31が切り替えられる。 FIG. 3 is an explanatory view of the main part configuration of another embodiment of the present invention, and is an example of a four-wire temperature transmitter. In the temperature transmitter 50 in this case, when the wiring switching circuit 51 is disposed between the resistance temperature detector 11 and the temperature transmitter 50 and the wiring resistance wire detects the disconnection by the wiring switching signal ST from the temperature transmitter 50. The wiring resistance lines 21 and 31 are switched to each other.
このように4線式で配線抵抗線21,31が断線した場合は、3線式に切り替えて、バックアップ計測を行うことにより、温度計測の中断が防止でき、温度計測の信頼性が向上する。また、図示していないが、同様にして、3線式で配線抵抗線21が断線した場合は、2線式に切り替えて同様にバックアップして温度計測の信頼性を向上させることができる。 Thus, when the wiring resistance lines 21 and 31 are disconnected in the 4-wire system, the temperature measurement can be prevented from being interrupted by switching to the 3-wire system and performing the backup measurement, and the reliability of the temperature measurement is improved. Although not shown in the figure, similarly, when the wiring resistance wire 21 is disconnected in a three-wire system, it is possible to improve the reliability of temperature measurement by switching to the two-wire system and backing up in the same manner.
10、20、30、40 温度変換器
11 測温抵抗体
12、14 計測配線
13 主入力端子
15 センサグランド端子
21、31 配線抵抗線
22、32 配線入力端子
41 A/D変換器
42 演算処理手段
43 メモリ
44 温度出力
45 警報出力
46 入力手段
47 断線検知手段
R0 配線抵抗
RX 現在配線抵抗値
R00 初期配線抵抗値
Rd 差抵抗値
SS 設定閾値
V1 主入力電圧
V2 配線抵抗電圧
V0 センサグラウンド電圧
DESCRIPTION OF SYMBOLS 10, 20, 30, 40 Temperature converter 11 Resistance thermometer 12, 14
Claims (4)
抵抗値Rptを有する測温抵抗体の一方が配線抵抗R0を有する一方の計測配線を介して前記主入力端子に接続され、測温抵抗体の他方が配線抵抗R0を有する他方の計測配線を介して前記センサグラウンド端子に接続されると共に配線抵抗R0を有する配線抵抗線を介して前記配線抵抗入力端子に接続され、前記センサグラウンド端子は抵抗Rを介して共通電位点に接続され、
前記演算処理手段は、前記電源の電流Iが前記主入力端子に入力されて前記一方の計測配線と前記測温抵抗体と前記他方の計測配線と前記センサグラウンド端子と前記抵抗Rよりなる経路を経て前記共通電位点に流れることにより前記主入力端子に発生する主入力電圧V1と前記センサグラウンド端子に発生するセンサグラウンド電圧V0と前記配線抵抗入力端子に発生する配線抵抗電圧V2の測定値を取り込み、
Rpt=(V0+V1−2V2)/I
の演算を行うことにより前記測温抵抗体の抵抗値Rptを算出し、
R0=(V2−V0)/I
の演算を行うことにより前記配線抵抗線の抵抗値R0を算出するように構成された温度伝送器において、
前記演算処理手段は、前記配線抵抗線の初期配線抵抗値R00を算出してメモリに格納した後、所定のタイミングで前記配線抵抗線の配線抵抗現在値RXを算出して、
Rd=RX−R00
の演算を行うことによりこれら初期配線抵抗値R00と現在配線抵抗値RXとの差抵抗値Rdを算出し、算出された差抵抗値Rdが所定の設定閾値を超えたか否かにより前記配線抵抗線の断線検知を行うことを特徴とする温度伝送器。 Power supply, main input terminal, sensor ground terminal, wiring resistance input terminal, and arithmetic processing means,
One of the resistance temperature detectors having a resistance value Rpt is connected to the main input terminal via one measurement wiring having a wiring resistance R0, and the other temperature measurement resistor is connected to the other measurement wiring having a wiring resistance R0. Connected to the sensor ground terminal and connected to the wiring resistance input terminal via a wiring resistance line having a wiring resistance R0, and the sensor ground terminal is connected to a common potential point via a resistor R,
The arithmetic processing means inputs a current I of the power source to the main input terminal, and makes a path formed by the one measurement wiring, the temperature measuring resistor, the other measurement wiring, the sensor ground terminal, and the resistance R. Then, the measured values of the main input voltage V1 generated at the main input terminal, the sensor ground voltage V0 generated at the sensor ground terminal, and the wiring resistance voltage V2 generated at the wiring resistance input terminal are captured by flowing to the common potential point. ,
Rpt = (V0 + V1-2V2) / I
By calculating the resistance value Rpt of the resistance temperature detector,
R0 = (V2-V0) / I
In the temperature transmitter configured to calculate the resistance value R0 of the wiring resistance line by performing the calculation of
The arithmetic processing means calculates an initial wiring resistance value R00 of the wiring resistance line and stores it in a memory, and then calculates a wiring resistance current value RX of the wiring resistance line at a predetermined timing,
Rd = RX-R00
By calculating the difference resistance value Rd between the initial wiring resistance value R00 and the current wiring resistance value RX, the wiring resistance line is determined depending on whether or not the calculated difference resistance value Rd exceeds a predetermined set threshold value. A temperature transmitter characterized by detecting disconnection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006060513A JP4835207B2 (en) | 2006-03-07 | 2006-03-07 | Temperature transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006060513A JP4835207B2 (en) | 2006-03-07 | 2006-03-07 | Temperature transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007240230A JP2007240230A (en) | 2007-09-20 |
JP4835207B2 true JP4835207B2 (en) | 2011-12-14 |
Family
ID=38585919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006060513A Active JP4835207B2 (en) | 2006-03-07 | 2006-03-07 | Temperature transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4835207B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008002777A1 (en) * | 2008-02-21 | 2009-11-12 | Eab Elektro Anlagen Bau Gmbh | Measuring method and arrangement, in particular for resistance temperature sensors |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250629A (en) * | 1985-08-30 | 1987-03-05 | Mitsubishi Electric Corp | Detecting circuit for input disconnection of resistance bulb |
JPH0614082B2 (en) * | 1987-05-08 | 1994-02-23 | 山武ハネウエル株式会社 | Temperature measuring device |
JPH0236365A (en) * | 1988-07-27 | 1990-02-06 | Hitachi Ltd | Burn-out circuit for four-wire type resistance body to be measured |
JPH03225233A (en) * | 1990-01-31 | 1991-10-04 | Hitachi Ltd | Burn-out circuit for three-wire type resistor to be measured |
JP2569878B2 (en) * | 1990-03-19 | 1997-01-08 | 富士電機株式会社 | Temperature sensor circuit disconnection detection method |
JPH0810167B2 (en) * | 1990-04-13 | 1996-01-31 | 山武ハネウエル株式会社 | Method for detecting wire breakage in RTD input processor |
JPH08247857A (en) * | 1995-03-13 | 1996-09-27 | Toshiba Corp | Input device for temperature detecting resistor |
JPH0989685A (en) * | 1995-09-25 | 1997-04-04 | Hitachi Ltd | Temperature conversion circuit |
JP2004163286A (en) * | 2002-11-13 | 2004-06-10 | Mitsubishi Electric Corp | Temperature measuring resistor input device |
JP2005233737A (en) * | 2004-02-19 | 2005-09-02 | Yokogawa Electric Corp | Three-wire or four-wire temperature measurement device |
-
2006
- 2006-03-07 JP JP2006060513A patent/JP4835207B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007240230A (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5735484B2 (en) | Thermocouple assembly and cold junction compensation using the same | |
JP5575986B2 (en) | Process fluid temperature measuring instrument | |
US6473710B1 (en) | Low power two-wire self validating temperature transmitter | |
JP4703643B2 (en) | Analog-to-digital converter with range error detection | |
JP2015522160A (en) | Industrial process temperature transmitter with sensor stress diagnosis | |
KR20070121720A (en) | Sensor system | |
JP5053421B2 (en) | Signal judgment system and temperature judgment system | |
JP2005233737A (en) | Three-wire or four-wire temperature measurement device | |
JP4835207B2 (en) | Temperature transmitter | |
JP5382362B2 (en) | RTD circuit | |
JP2014529790A (en) | 2-wire process control loop current diagnostic apparatus and method | |
US9574925B2 (en) | Fluid measurement device having a circuit for precise flow measurement | |
JP5074307B2 (en) | Field equipment | |
JP4999789B2 (en) | Field equipment | |
JP5040719B2 (en) | 2-wire field device and fieldbus system | |
JPWO2016111128A1 (en) | Failure detection device | |
JP6756935B1 (en) | How to change the configuration of the temperature measurement system, temperature measurement sensor unit and temperature measurement system | |
JP5812276B2 (en) | 2-wire transmitter | |
US10564768B2 (en) | Touch panels and methods of examining touch panels | |
US11676477B2 (en) | Fire alarm system | |
JP4321167B2 (en) | Burnout detection circuit | |
JP2012185136A (en) | Temperature measurement device | |
KR100275568B1 (en) | Snap detecting method for temperature measurement sensor | |
JP2023058832A (en) | temperature measuring device | |
JP2008304203A (en) | Analog input module and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4835207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |