JP4832914B2 - Muscle fatigue evaluation device - Google Patents
Muscle fatigue evaluation device Download PDFInfo
- Publication number
- JP4832914B2 JP4832914B2 JP2006031010A JP2006031010A JP4832914B2 JP 4832914 B2 JP4832914 B2 JP 4832914B2 JP 2006031010 A JP2006031010 A JP 2006031010A JP 2006031010 A JP2006031010 A JP 2006031010A JP 4832914 B2 JP4832914 B2 JP 4832914B2
- Authority
- JP
- Japan
- Prior art keywords
- muscle
- slope
- power value
- lyapunov exponent
- fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 206010049565 Muscle fatigue Diseases 0.000 title claims description 49
- 238000011156 evaluation Methods 0.000 title claims description 30
- 210000003205 muscle Anatomy 0.000 claims description 110
- 230000003183 myoelectrical effect Effects 0.000 claims description 55
- 238000012545 processing Methods 0.000 claims description 38
- 238000001228 spectrum Methods 0.000 claims description 27
- 238000005259 measurement Methods 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 12
- 238000012937 correction Methods 0.000 claims description 7
- 230000003387 muscular Effects 0.000 claims description 5
- 238000009499 grossing Methods 0.000 claims description 3
- 238000009532 heart rate measurement Methods 0.000 claims 1
- 230000008859 change Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 15
- 230000002414 glycolytic effect Effects 0.000 description 14
- 210000002027 skeletal muscle Anatomy 0.000 description 10
- 210000001087 myotubule Anatomy 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 230000002459 sustained effect Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000003875 slow muscle fiber Anatomy 0.000 description 4
- 230000000763 evoking effect Effects 0.000 description 3
- 210000004705 lumbosacral region Anatomy 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000037149 energy metabolism Effects 0.000 description 2
- 230000034659 glycolysis Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000001352 masseter muscle Anatomy 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000008035 Back Pain Diseases 0.000 description 1
- 208000008930 Low Back Pain Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000032140 Sleepiness Diseases 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000000852 deltoid muscle Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000037321 sleepiness Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Description
本発明は、筋疲労評価装置に関し、特に、自動車等の運転、事務作業など、着座姿勢等のほぼ同じ姿勢で比較的長時間に亘って行われる蓄積的作業の筋疲労を評価するのに適した筋疲労評価装置に関する。 The present invention relates to a muscular fatigue evaluation apparatus, and is particularly suitable for evaluating muscular fatigue of cumulative work performed for a relatively long time in almost the same posture such as sitting posture, such as driving an automobile or office work. The present invention relates to a muscle fatigue evaluation apparatus.
特許文献1には、自動車の運転作業における快適度を、筋電位を用いて評価する装置が開示されている。この装置は、左右対称に備えられた一対の筋、特に、肩部の三角筋の筋電位を測定し、筋電位の時系列波形から同期的収縮波形を求め、さらに、所定時間毎に、該波形の積分値、あるいは該波形の包絡線の積分値を求めて、その値を用いて快適度を評価する技術が開示されている。また、特許文献2には、顎の開閉を行う左右の咬筋の筋電位を測定することにより、その時系列波形から、咬筋の筋電位の強度情報を求め、運転作業等におけるストレスを評価する装置が開示されている。 Patent Document 1 discloses an apparatus that evaluates the comfort level in driving operation of an automobile using myoelectric potential. This apparatus measures a myoelectric potential of a pair of muscles provided symmetrically, in particular, the deltoid muscle of the shoulder, obtains a synchronous contraction waveform from a time series waveform of myoelectric potential, and further, at predetermined time intervals, A technique is disclosed in which an integrated value of a waveform or an integrated value of an envelope of the waveform is obtained and the comfort level is evaluated using the value. Patent Document 2 discloses an apparatus for measuring the myoelectric potential of the left and right masseters that opens and closes the jaws to obtain the intensity information of the myoelectric potential of the masseter muscles from the time-series waveform and evaluate the stress in driving work and the like. It is disclosed.
ところで、筋電図波形は、筋肉を収縮させて得られる生体信号であるため、上記のような筋電図波形を得るためには、一定の運動を行う箇所の筋について、筋電位を測定する必要がある。一般に、車両運転は、運転条件にもよるが、運動量の少ない作業である。従って、特許文献1では、具体例としては、比較的運動量の多い操舵時の快適度を評価するのに適用することが挙げられているに過ぎない。特許文献2の技術は、顔の側面に位置する咬筋に検出センサを取り付けなければならず、通常の運転中にこれを取り付けることは現実的ではない。 By the way, since the electromyogram waveform is a biological signal obtained by contracting the muscle, in order to obtain the electromyogram waveform as described above, the myoelectric potential is measured for the muscle at the place where a certain exercise is performed. There is a need. In general, vehicle driving is a work with a small amount of exercise, although it depends on driving conditions. Therefore, in Patent Document 1, as a specific example, application to evaluation of the comfort level during steering with a relatively large amount of exercise is merely mentioned. In the technique of Patent Document 2, a detection sensor must be attached to the masseter muscle located on the side of the face, and it is not practical to attach this sensor during normal driving.
これに対し、特許文献3には、被験者が積極的に運動を行わなくても筋疲労を判定可能であると共に、運転中であっても、運転に支障のない位置に取り付け可能な筋疲労判定装置が開示されている。すなわち、脊柱起立筋に検出センサを取り付け、筋疲労を判定する装置である。
車両や路面から入力される振動を要因とする腰痛は、姿勢保持を担う腰背部の筋肉に発生しやすい。この腰背部の筋肉は持続的な張力発生に関与するタイプの筋繊維、特に、遅筋繊維が多い。この筋肉は、それ自身の動きの変化が少ないため、通常検出される筋電図の波形を見るだけでは、該筋肉の動きの変化を捉えにくい。このため、着座姿勢における疲労を検出するに当たっては、かかる着座姿勢を維持する筋活動を直接評価するのではなく、動的な体圧分布や振動伝達特性といった間接的なパラメータを利用して評価するのが一般的である。従って、着座姿勢における筋疲労を直接評価する技術の開発が望まれている。姿勢保持のような低い強度での長時間の筋活動における筋疲労評価は、脊柱起立筋を含む腰背部の筋肉のように、有酸素的エネルギー供給により活動し、解糖能力が少なく、筋肉自体の動きの変化が少ない筋を対象とすることが望ましい。特許文献3に開示の技術は、この点において特許文献1や2に開示された技術と比較して、運転などの蓄積的作業の疲労評価に適していると言える。 Low back pain caused by vibrations input from the vehicle or the road surface is likely to occur in the muscles of the back of the back responsible for maintaining posture. The muscles of the back of the lumbar region are rich in the types of muscle fibers involved in sustained tension generation, particularly slow muscle fibers. Since this muscle has little change in its own movement, it is difficult to detect the change in the movement of the muscle only by looking at the waveform of the electromyogram normally detected. For this reason, when detecting fatigue in a sitting posture, rather than directly evaluating muscle activity to maintain such a sitting posture, it is evaluated using indirect parameters such as dynamic body pressure distribution and vibration transfer characteristics. It is common. Therefore, development of a technique for directly evaluating muscle fatigue in a sitting posture is desired. Muscle fatigue assessment in long-term muscle activity at low strength such as posture maintenance is performed by aerobic energy supply, such as the muscles of the back of the lumbar region including the spine upright muscle, and the glycolytic ability is low, and the muscle itself It is desirable to target muscles with little change in movement. It can be said that the technique disclosed in Patent Document 3 is more suitable for fatigue evaluation of cumulative work such as driving than the techniques disclosed in Patent Documents 1 and 2 in this respect.
しかしながら、解糖能力が少なく、筋肉自体の動きの変化が少ない筋に、単に、検出センサを取り付けただけでは、筋疲労時とそうでないときとにおいて有意差のある筋電位データを得ることはできない。このため、特許文献3においては、脊柱起立筋に電気刺激を付与する刺激付与手段を装着し、電気刺激に対する反応としての筋電位を検出する構成を採用している。すなわち、電気刺激電極から脊柱起立筋にパルス電圧を印加し、誘発筋電位の振幅の平均値と、周波数解析によって誘発筋電位のパワースペクトル分布を求め、その中心周波数を演算し、振幅の平均値及び中心周波数の変化を所定時間毎に比較して筋疲労の発生を検出するものであるが、電気刺激電極を必要とするなど、装置構成が複雑であるという課題がある。 However, simply attaching a detection sensor to muscles with little glycolytic ability and little change in the movement of the muscles themselves cannot obtain myoelectric potential data that has a significant difference between muscle fatigue and other cases. . For this reason, Patent Document 3 employs a configuration in which stimulation applying means for applying electrical stimulation is applied to the erected spine muscle and myoelectric potential as a response to the electrical stimulation is detected. In other words, a pulse voltage is applied from the electrical stimulation electrode to the standing muscle of the spine, the average value of the evoked myoelectric potential and the power spectrum distribution of the evoked myoelectric potential are obtained by frequency analysis, the center frequency is calculated, and the average value of the amplitude In addition, the occurrence of muscle fatigue is detected by comparing changes in the center frequency every predetermined time, but there is a problem that the apparatus configuration is complicated, such as requiring an electrical stimulation electrode.
一方、本出願人は、WO2005/039415A1において、脈波、心拍、呼吸といった生体信号を取得し、その時系列データの所定時間範囲における平均の変化率を求め、該変化率を用いてスライド計算し、得られた結果により人の状態(覚醒状態であるか、睡眠状態であるか、疲労状態であるかなど)を判定するデータ処理手段を提案している。このデータ処理手段によれば、脈波などの微小、微細な変化を強調させ、拡大させることができ、より大域的な時系列波形からなるゆらぎとして捉えることができ、人の肉体的、精神的な時系列の変化を明確化できる。すなわち、従来の技術では、筋肉自体の動きの変化の大きい筋の筋電位、あるいは、刺激を付与することによる誘発筋電位を測定するものであったが、上記のデータ処理手段を用い、大域的な時系列波形からなるゆらぎとしてとらえると、筋肉自体の動きの変化の大きい筋(解糖能力の高い筋で、速筋繊維比率が比較的高い筋)であるか、筋肉自体の動きの変化の小さい筋(解糖能力の高い筋で、遅筋繊維比率が比較的高い筋)であるかを問わず、測定対象の筋の筋電位を基に生体状態を評価できる。 On the other hand, the present applicant acquires biological signals such as pulse waves, heartbeats, and breaths in WO2005 / 039415A1, obtains an average rate of change in a predetermined time range of the time-series data, performs slide calculation using the rate of change, The data processing means which determines a person's state (whether it is an awake state, a sleep state, a fatigue state, etc.) from the obtained result is proposed. According to this data processing means, minute and minute changes such as pulse waves can be emphasized and expanded, and can be perceived as fluctuations consisting of a more global time-series waveform. Can clarify the change of time series. That is, in the conventional technique, the myoelectric potential of a muscle having a large change in the movement of the muscle itself, or the evoked myoelectric potential by applying a stimulus, is measured. When viewed as fluctuations consisting of various time-series waveforms, it is a muscle with a large change in the movement of the muscle itself (a muscle with a high glycolysis ability and a relatively high fast muscle fiber ratio), or a change in the movement of the muscle itself. Regardless of whether the muscle is a small muscle (a muscle having a high glycolytic ability and a relatively high ratio of slow muscle fibers), the biological state can be evaluated based on the myoelectric potential of the muscle to be measured.
換言すると、人の機能には、心拍や不随意筋に代表される中枢系と、指尖容積脈波や骨格筋に代表される末梢系がある。中枢系である心拍などは鈍感である。これは、外界変化に対して敏感に反応していては生命維持に影響するからであり、その代わりに、末梢系がよく動く。末梢系は、いわば、外界変化から中枢系を保護するバリア機能を果たしていると言え、末梢系は中枢系に比べ、外界変化に対して、より大きな変化、より速い反応速度を持つことになる。このため、痛み、疲労あるいは眠気などの生理現象は、末梢系の反応で見る方が、現れる変化が大きく、かつ反応速度も速く、わかりやすい。一方、人が座位姿勢をとる場合、その姿勢を作るために抗重力筋が使われ、立位時に使っていなかった筋肉の負担が増える。立位時に使っていなかった筋肉であって座位姿勢を作るために使われる抗重力筋は、筋肉自体の動きの変化の小さい筋(解糖能力の高い筋で、遅筋繊維比率が比較的高い筋)の占める割合が高くなる。これらのことから、座位姿勢における筋疲労を評価するに当たっては、筋肉自体の動きの変化の小さい筋の筋電位を用いることがふさわしい。 In other words, human functions include a central system represented by heartbeat and involuntary muscles and a peripheral system represented by fingertip volume pulse waves and skeletal muscles. The heartbeat, which is the central system, is insensitive. This is because if it reacts sensitively to changes in the outside world, it affects life support. Instead, the peripheral system moves well. It can be said that the peripheral system functions as a barrier that protects the central system from changes in the external world, and the peripheral system has a greater change and a faster response rate to external changes than the central system. For this reason, physiological phenomena such as pain, fatigue, and sleepiness are easy to understand when viewed by peripheral reactions, with large changes appearing and the reaction speed is fast. On the other hand, when a person takes a sitting posture, anti-gravity muscles are used to make the posture, and the burden on muscles that are not used when standing is increased. Anti-gravity muscles that are not used when standing and are used to create a sitting posture are muscles with small changes in movement of the muscles themselves (muscles with high glycolytic ability and relatively high ratio of slow muscle fibers. The percentage of muscle) increases. From these facts, it is appropriate to use the myoelectric potential of the muscle having a small change in the movement of the muscle itself in evaluating the muscle fatigue in the sitting posture.
そこで、本発明は、上記の大域的なゆらぎ波形を捉える手法を適用することで、簡易な構成で、腰背部の筋肉等のそれ自体の動きの変化の少ない筋の筋電位の評価を可能とし、運転等の蓄積的作業の疲労評価に適する筋疲労評価装置を提供することを課題とする。また、本発明は、腰背部の筋肉等のそれ自体の動きの変化の少ない筋の筋電位の評価を可能とすることにより、測定対象となる筋の種類を問わず、筋電位検出センサを適宜の部位に装着して、疲労が生じている筋の特定を可能とする筋疲労評価装置を提供することを課題とする。 Therefore, the present invention makes it possible to evaluate myoelectric potentials of muscles with little change in their own movements such as the muscles of the lumbar region with a simple configuration by applying the above-described method of capturing the global fluctuation waveform. It is an object of the present invention to provide a muscle fatigue evaluation apparatus suitable for fatigue evaluation of cumulative work such as driving. Further, the present invention enables the evaluation of myoelectric potential of muscles with little change in the movement of itself such as the muscles of the back of the back, so that the myoelectric potential detection sensor can be appropriately used regardless of the type of muscle to be measured. It is an object of the present invention to provide a muscle fatigue evaluation apparatus that can be attached to the above-mentioned site and can identify a muscle in which fatigue occurs.
上記課題を解決するため、請求項1記載の本発明では、筋電位検出センサと、前記筋電位検出センサから得られた信号データを処理するデータ処理・判定手段とを備え、人の筋疲労を評価する筋疲労評価装置であって、
前記データ処理・判定手段は、
前記筋電位検出センサの信号データから、所定時間範囲毎に、平滑化微分法により極大値と極小値を求め、両者の差をパワー値として求めるパワー値算出手段と、
前記パワー値の所定時間範囲における時間軸に対する傾きを、所定のオーバーラップ時間で順次求めるパワー値傾き算出手段と、
前記パワー値傾き算出手段により求めたパワー値傾きの時系列波形を作成し、該時系列波形を出力するパワー値傾き時系列波形作成手段と、
前記パワー値傾き算出手段により得られたパワー値の傾きを周波数分析する周波数分析手段と
を有し、
前記パワー値の傾きの周波数分析手段が、前記パワー値の傾きの時系列波形を周波数分析して得られたパワースペクトラムを、全体重に対し、筋電位測定対象となった筋が負担している質量の割合に比例した値に補正する補正手段を備え、測定対象の筋毎に複数得られるパワースペクトラムのうち、補正手段により得られたパワースペクトラムの値の大きい筋ほど、筋疲労の度合いが大きいと判定する構成であることを特徴とする筋疲労評価装置を提供する。
請求項2記載の本発明では、前記データ処理・判定手段は、さらに、前記筋電位検出センサの信号データをカオス解析して最大リアプノフ指数を算出する最大リアプノフ指数算出手段と、
前記最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定のオーバーラップ時間で順次求める最大リアプノフ指数傾き算出手段と、
前記最大リアプノフ指数傾き算出手段により求めた最大リアプノフ指数傾きの時系列波形を作成し、該時系列波形を出力する最大リアプノフ指数傾き時系列波形作成手段と
を具備することを特徴とする請求項1記載の筋疲労評価装置を提供する。
請求項3記載の本発明では、前記データ処理・判定手段には、さらに、前記最大リアプノフ指数傾き算出手段により得られた最大リアプノフ指数傾きを周波数分析する周波数分析手段を有していることを特徴とする請求項2記載の筋疲労評価装置を提供する。
請求項4記載の本発明では、さらに、指尖容積脈波測定手段を備えると共に、前記データ処理・判定手段は、前記指尖容積脈測定手段から得られた指尖容積脈波の信号データのパワー値傾きとその周波数分析を行う手段を有し、
前記指尖容積脈波のパワースペクトラムと、測定対象の筋毎に複数得られる補正後の筋電位のパワースペクトラムとを比較し、複数の筋電位のパワースペクトラムのうち、指尖容積脈波のパワースペクトラムと傾向が近似しているほど、筋疲労の度合いが大きいと判定することを特徴とする請求項1〜3のいずれか1に記載の筋疲労評価装置を提供する。
請求項5記載の本発明では、前記データ処理・判定手段には、さらに、前記パワー値傾き算出手段により得られたパワー値傾き、又は、最大リアプノフ指数傾き算出手段により得られた最大リアプノフ指数傾きを絶対値処理して、積分値を算出する疲労度算出手段が設定されていることを特徴とする請求項2〜4のいずれか1に記載の筋疲労評価装置を提供する。
In order to solve the above-mentioned problem, the present invention according to claim 1 is provided with a myoelectric potential detection sensor and a data processing / determination means for processing signal data obtained from the myoelectric potential detection sensor, thereby preventing human muscle fatigue. A muscle fatigue evaluation device for evaluating,
The data processing / determination means includes
From the signal data of the myoelectric potential detection sensor, for each predetermined time range, a maximum value and a minimum value are obtained by a smoothing differential method, and a power value calculating means for obtaining a difference between both as a power value;
Power value slope calculating means for sequentially obtaining the slope of the power value with respect to the time axis in a predetermined time range at a predetermined overlap time;
Creating a time series waveform of the power value slope obtained by the power value slope calculating means, and outputting the time series waveform power value slope time series waveform creating means;
Frequency analysis means for frequency analysis of the slope of the power value obtained by the power value slope calculation means;
Have
The power spectrum obtained by the frequency analysis of the power value slope frequency analysis of the time series waveform of the power value slope is borne by the muscle that is the object of myoelectric potential measurement for the total weight. A correction means for correcting to a value proportional to the mass ratio is provided, and among the power spectra obtained for each muscle to be measured, a muscle having a larger power spectrum value obtained by the correction means has a higher degree of muscle fatigue. providing muscle fatigue evaluation device, characterized in that the determined configuration with.
In the second aspect of the present invention, the data processing / determination means further includes maximum Lyapunov exponent calculation means for calculating a maximum Lyapunov exponent by performing chaos analysis on the signal data of the myoelectric potential detection sensor,
A maximum Lyapunov exponent slope calculating means for sequentially obtaining a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range at a predetermined overlap time;
Claim 1, characterized in that said maximum to create a time-series waveform of the maximum Lyapunov exponent slope determined by the Lyapunov exponent inclination calculation means, and a maximum Lyapunov exponent gradient time series waveform generating means for outputting a time series waveform A muscle fatigue evaluation apparatus as described is provided.
According to a third aspect of the present invention, the data processing / judgment means further includes frequency analysis means for performing frequency analysis on the maximum Lyapunov exponent inclination obtained by the maximum Lyapunov exponent slope calculation means. The muscle fatigue evaluation apparatus according to claim 2 is provided.
According to the fourth aspect of the present invention, a fingertip volume pulse wave measuring unit is further provided, and the data processing / determining unit is configured to output the fingertip volume pulse wave signal data obtained from the fingertip volume pulse wave measuring unit. Means to perform power value gradient and frequency analysis,
The power spectrum of the fingertip volume pulse wave is compared with the power spectrum of corrected myoelectric potential obtained for each muscle to be measured. The muscle fatigue evaluation apparatus according to any one of claims 1 to 3, wherein it is determined that the degree of muscle fatigue is larger as the spectrum and the tendency are closer.
In the present invention according to claim 5, the data processing / determination means further includes a power value inclination obtained by the power value inclination calculating means or a maximum Lyapunov exponent inclination obtained by a maximum Lyapunov exponent inclination calculating means. 5. A muscle fatigue evaluation device according to any one of claims 2 to 4 , wherein a fatigue level calculating means for calculating an integral value by performing absolute value processing is set.
本発明では、筋電位検出センサから得られた信号データを処理し、該信号データのゆらぎ波形を生成するデータ処理・判定手段を有している。持続的な張力発生に関与する筋繊維を多く含む動きの少ない筋から、筋疲労時とそうでないときにおいて有意差のある筋電位データを得ることは困難であるが、本発明で用いたデータ処理・判定手段によれば、得られた信号データを強調させたゆらぎ波形を生成するものであるため、持続的な張力発生に関与する筋繊維を多く含む動きの少ない筋の筋疲労の発生を検出することができる。この結果、本発明の筋疲労評価装置は、運転等の蓄積的作業の疲労評価に適する。 The present invention includes data processing / determination means for processing signal data obtained from the myoelectric potential detection sensor and generating a fluctuation waveform of the signal data. Although it is difficult to obtain myoelectric potential data having a significant difference between muscle fatigue and when it is not, it is difficult to obtain from the muscles that contain many muscle fibers involved in sustained tension generation and have little movement, but the data processing used in the present invention -Since the judgment means generates a fluctuation waveform that emphasizes the obtained signal data, it detects the occurrence of muscle fatigue in muscles with little movement that contain many muscle fibers involved in sustained tension generation. can do. As a result, the muscle fatigue evaluation apparatus of the present invention is suitable for fatigue evaluation of cumulative work such as driving.
また、上記データ処理・判定手段で得られるゆらぎ波形を周波数分析し、さらに、その結果を、全体重に対して測定対象の筋が負担する質量の割合に比例した補正を行うことにより、筋疲労の生じている部位を容易に特定することができる。 Further, by analyzing the frequency of the fluctuation waveform obtained by the data processing / determination means, and further correcting the result in proportion to the proportion of the mass borne by the muscle to be measured with respect to the total weight, muscle fatigue It is possible to easily identify the site where the occurrence of the above.
以下、図面に示した実施形態に基づき本発明をさらに詳細に説明する。図1〜図2は、自動車などの乗物用のシート100に、本発明の一の実施形態に係る筋疲労評価装置1を付設した状態の概念図である。筋疲労評価装置1は、筋電位検出センサ10とデータ処理・判定手段20とを備えてなる。
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. FIGS. 1-2 is a conceptual diagram of the state which attached the muscle fatigue evaluation apparatus 1 which concerns on one Embodiment of this invention to the sheet | seat 100 for vehicles, such as a motor vehicle. The muscle fatigue evaluation apparatus 1 includes a myoelectric
筋電位検出センサ10には、筋電電極11が備えられており、この筋電電極11を被験者の皮膚に接するように取り付ける。筋電位を測定できる限り、筋電電極11の皮膚への取り付け方は任意であり、例えば、皮膚に貼り付ける構成とすることもできるし、被験者が着用可能なジャケットの所定位置に埋設しておく構成としてもよい。
The myoelectric
着座姿勢における筋疲労を評価する場合、測定対象となる筋は、持続的な張力発生に関与する筋繊維を多く含む動きの少ない筋を含ませる。上記したように、着座姿勢による運転等は、低い強度で長時間の筋活動を持続して作業であることから、その状態での筋疲労評価は、有酸素的エネルギー供給により活動する解糖能力の少ない筋である、持続的な張力発生に関与する筋繊維を多く含む動きの少ない筋を対象とすることが望ましいからである。このような筋としては、腰腸肋筋や脊柱起立筋などの腰背部の筋肉、下腿の平目筋などである。上記のようにジャケットを着用して測定できること等から、運転状態での測定のしやすさを考慮すると、腰背部の筋肉を対象とすることが好ましい。また、本実施形態によれば、このように、筋肉自体の動きの変化の小さい筋(解糖能力の高い筋で、遅筋繊維比率が比較的高い筋)の筋疲労を評価できるため、当然、筋肉自体の動きの変化の大きい筋(解糖能力の高い筋で、速筋繊維比率が比較的高い筋)の筋疲労も評価できる。すなわち、本実施形態では、筋電位を測定する対象となる筋を選ばず、種々の筋について筋疲労を評価できる。従って、着座姿勢はもとより、いずれの姿勢をとっている場合であっても、筋電位検出センサ10を複数の部位に取り付けることにより、どの筋に疲労が生じているかを容易に特定することができる。
When evaluating muscle fatigue in a sitting posture, muscles to be measured include muscles that contain a large amount of muscle fibers involved in continuous tension generation and that do not move much. As described above, driving with a sitting posture is a work that continues muscle activity for a long time with low strength, so muscle fatigue evaluation in that state is the ability to glycolytically act by supplying aerobic energy This is because it is desirable to target a muscle with a small amount of movement, which contains many muscle fibers involved in continuous tension generation, which is a muscle with a small amount of movement. Examples of such muscles include lumbar and back muscles such as the lumbo-gastrocnemius and spinal column standing muscles, and the flat muscles of the lower leg. Considering the ease of measurement in the driving state, it is preferable to target the muscles of the back of the waist because measurement can be performed while wearing a jacket as described above. In addition, according to the present embodiment, muscle fatigue of a muscle having a small change in movement of the muscle itself (a muscle having a high glycolytic ability and a relatively high slow muscle fiber ratio) can be evaluated. It is also possible to evaluate muscle fatigue of muscles with large changes in the movement of the muscles themselves (muscles with high glycolytic ability and muscles with a relatively high fast muscle fiber ratio). That is, in this embodiment, muscle fatigue can be evaluated for various muscles without selecting a muscle for which myoelectric potential is to be measured. Therefore, it is possible to easily identify which muscle is fatigued by attaching the myoelectric
データ処理・判定手段20は、上記した筋電位検出センサ10と無線又は信号ケーブルを介して接続されており、WO2005/039415A1で開示したようなプログラムが設定されている。すなわち、このプログラムは、図2に示したように、パワー値算出手段21と、パワー値傾き算出手段22と、パワー値傾き時系列波形作成手段23と、最大リアプノフ指数算出手段24と、最大リアプノフ指数傾き算出手段25と、最大リアプノフ指数傾き時系列波形作成手段26とを備えている。
The data processing /
パワー値算出手段21は、まず、筋電位検出センサ10から得られた信号データを平滑化微分し、波形の変動幅に対して所定の閾値で、好ましくは、波形の変動幅の70%を閾値として検出を行い、原波形の各周期の極大値と極小値を求め、次に、予め設定した所定の時間範囲ごと、例えば、5秒(s)ごとに切り分け、その時間範囲の中で極大値と極小値の平均値を求め、それらの差をパワー値として求める。但し、変化量を強調するために、本実施形態では、上記の所定時間範囲における極大値の平均値と極小値の平均値との差を二乗してパワー値とすることが好ましい。
First, the power value calculating means 21 smoothes and differentiates the signal data obtained from the myoelectric
パワー値傾き算出手段22は、パワー値算出手段21により得られたパワー値の所定時間範囲における時間軸に対する傾きを、それぞれ前記所定時間に対して所定のラップ率で所定回数スライド計算して求める。スライド計算は、次のようにして行う。 The power value inclination calculation means 22 obtains the inclination of the power value obtained by the power value calculation means 21 with respect to the time axis in a predetermined time range by performing slide calculation a predetermined number of times at a predetermined lap rate with respect to the predetermined time. The slide calculation is performed as follows.
例えば、T秒(s)間における傾きを、スライドラップ率90%で求める場合には、まず、0(s)〜T(s)間における最大リアプノフ指数のピーク値、及びパワー値の時間軸に対する傾きを、最小二乗近似により求める。次いで、
スライド計算(1):T/10(s)〜T+T/10(s)間、
スライド計算(2):2×T/10(s)〜T+2×T/10(s)間、
スライド計算(n):n×T/10(s)〜T+n×T/10(s)間
における各傾きを最小二乗近似により求めていく。なお、パワー値の時間領域における特徴を大域的に把握するためには、スライド計算を行う際のサンプリング時間間隔(T秒間)は180秒間が最適であり、スライドラップ率は90%が最適である。この根拠は、WO2005/039415A1において開示しているので、詳細は省略するが、数名の被験者について行った睡眠実験より得られたものであり、傾き計算を行う時間間隔を180秒間に設定し、スライドラップ率を90%に設定すると、生体変位信号特有のゆらぐような特徴(ゆらぎ)を顕著に抽出できる。
For example, when the inclination during T seconds (s) is obtained at a slide lap ratio of 90%, first, the peak value of the maximum Lyapunov exponent between 0 (s) and T (s) and the time axis of the power value are plotted. The slope is obtained by least square approximation. Then
Slide calculation (1): Between T / 10 (s) and T + T / 10 (s),
Slide calculation (2): Between 2 × T / 10 (s) and T + 2 × T / 10 (s),
Slide calculation (n): Each slope between n × T / 10 (s) and T + n × T / 10 (s) is obtained by least square approximation. In order to globally grasp the characteristics of the power value in the time domain, the sampling time interval (T seconds) when performing the slide calculation is optimally 180 seconds, and the slide lap ratio is optimally 90%. . The reason for this is disclosed in WO2005 / 039415A1, so although details are omitted, it was obtained from a sleep experiment conducted on several subjects, and the time interval for calculating the slope was set to 180 seconds. When the slide wrap rate is set to 90%, the characteristic (fluctuation) that fluctuates peculiar to the biological displacement signal can be extracted significantly.
パワー値傾き算出手段22により算出された各傾きは、パワー値傾き時系列波形作成手段23により、時間軸上にプロットされ、時系列波形(ゆらぎ波形)が作成される。 Each slope calculated by the power value slope calculating means 22 is plotted on the time axis by the power value slope time series waveform creating means 23 to create a time series waveform (fluctuation waveform).
一方、最大リアプノフ指数は、カオス指標の一つであり、カオスの初期値依存性の程度を指数で示した数値で、カオスアトラクタが描く軌道のうち、近接した2本の軌道間の距離が、時間経過に伴って離れていく度合いを示す量である。具体的には、筋電位検出センサ10により採取した筋電の信号データを、最大リアプノフ指数算出手段24により、まず、時間遅れ法によって筋電の時系列信号を状態空間に再構成し、得られた連続的なデータ計算値に対し、30秒のスライディングウインドウを用いてスライド計算を行い、リアプノフ指数を数値化し、最大リアプノフ指数の値を1秒ごとにプロットし、最大リアプノフ指数の時系列データを得る。次に、上記により計算される最大リアプノフ指数の時系列変化波形の各周期の極大値と極小値を検出する。この手法は、上記パワー値の場合と同様であり、最大リアプノフ指数を、平滑化微分して求める。
On the other hand, the maximum Lyapunov exponent is one of the chaos indicators, and is a numerical value indicating the degree of dependence of the chaos on the initial value as an exponent, and the distance between two adjacent trajectories drawn by the chaos attractor is It is an amount indicating the degree of separation with time. Specifically, the myoelectric signal data collected by the myoelectric
最大リアプノフ指数傾き算出手段25は、上記により得られた最大リアプノフ指数の極大値、極小値の所定時間範囲における時間軸に対する傾きを、上記パワー値の場合と同様に、それぞれ前記所定時間に対して所定のラップ率で所定回数スライド計算して求める。最大リアプノフ指数傾き算出手段25により算出された各傾きは、最大リアプノフ指数傾き時系列波形作成手段26により、時間軸上にプロットされ、時系列波形(ゆらぎ波形)が作成される。 The maximum Lyapunov exponent slope calculating means 25 calculates the slope of the maximum Lyapunov exponent obtained above in the predetermined time range with respect to the time axis in the predetermined time range, as in the case of the power value. It is calculated by sliding a predetermined number of times at a predetermined lap rate. Each slope calculated by the maximum Lyapunov exponent slope calculating means 25 is plotted on the time axis by the maximum Lyapunov exponent slope time series waveform creating means 26 to create a time series waveform (fluctuation waveform).
データ処理・判定手段20には、パワー値傾き時系列波形作成手段23と、最大リアプノフ指数傾き時系列波形作成手段26とにより作成された各時系列波形(ゆらぎ波形)について解析し、蓄積疲労の状態を判定するプログラムとしての疲労判定手段27が設定されている。 The data processing / determination means 20 analyzes each time series waveform (fluctuation waveform) created by the power value slope time series waveform creation means 23 and the maximum Lyapunov exponent slope time series waveform creation means 26, and accumulates fatigue. Fatigue determination means 27 is set as a program for determining the state.
疲労判定手段27は、パワー値傾きと最大リアプノフ指数傾きの時系列波形を比較し、疲労信号の出現を判定する。疲労信号か否かは、WO2005/039415A1において開示しているように、時系列波形の中で、両者が略180度の位相差(逆位相)を安定して示す特徴的な信号群が出現している時点をもって判定するものである。
The
また、データ処理・判定手段20には、さらに、周波数分析手段28を備えていることが好ましい。これは、時系列で出現する上記パワー値の傾きの変化と最大リアプノフ指数の傾きとを周波数分析するものである。パワー値の傾きの周波数分析手段は、パワー値の傾きの時系列波形を周波数分析して得られたパワースペクトラムを、さらに、全体重に対し、筋電位測定対象となった筋が負担している質量の割合に比例した値に補正する補正手段を備えていることが好ましい。かかる補正手段を経て得られたパワースペクトラムは、負担質量に応じた値になっているため、複数箇所の筋について測定したものを直接比較できる。従って、補正手段により得られたパワースペクトラムの絶対値の大きい筋ほど、筋疲労の度合いが大きい(あるいは、筋疲労が生じている)と判定することが可能となる。
The data processing /
一方、指尖容積脈波の信号データを上記筋電位と同様に解析して求められるパワー値傾き及び最大リアプノフ指数傾きの各時系列信号、並びにそれらの周波数分析結果は、WO2005/039415A1において開示しているように、被験者の体全体の疲労などの生体状態を判定するものである。従って、複数部位の筋電位を測定して得られた周波数分析のパワースペクトラムを重畳したものは、指尖容積脈波のパワースペクトラムと大きさがほぼ同じになる。そして、部位別に比較した場合には、指尖容積脈波のパワースペクトラムと傾向が近似しているほど、筋疲労の度合いが大きい(あるいは、筋疲労が生じている)と判定することができる。 On the other hand, time series signals of power value inclination and maximum Lyapunov exponent inclination obtained by analyzing signal data of fingertip volume pulse wave in the same manner as the above myoelectric potential, and frequency analysis results thereof are disclosed in WO2005 / 039415A1. As described above, a biological condition such as fatigue of the entire body of the subject is determined. Therefore, the power spectrum of the frequency analysis obtained by measuring the myoelectric potential at a plurality of sites is almost the same as the power spectrum of the fingertip volume pulse wave. Then, when compared by region, it can be determined that the degree of muscle fatigue is greater (or muscle fatigue has occurred) as the power spectrum and tendency of the fingertip volume pulse wave approximate.
さらに、データ処理・判定手段20には、疲労度算出手段29を設定することが好ましい。これは、パワー値傾き算出手段22により得られたパワー値傾きの時系列信号、並びに、最大リアプノフ指数傾き算出手段25により得られた最大リアプノフ指数傾きの時系列信号を絶対値処理して、積分値を算出することにより、エネルギー代謝量を推定し、該積分値を疲労度(疲労の進行度合い)として算出する構成である。エネルギー代謝量と疲労度とは連動するからである。 Furthermore, it is preferable to set a fatigue degree calculating means 29 in the data processing / determination means 20. This is because the time series signal of the power value slope obtained by the power value slope calculating means 22 and the time series signal of the maximum Lyapunov exponent slope obtained by the maximum Lyapunov exponent slope calculating means 25 are subjected to absolute value processing and integrated. By calculating the value, the amount of energy metabolism is estimated, and the integrated value is calculated as the degree of fatigue (the degree of progress of fatigue). This is because energy metabolism and fatigue are linked.
(試験例1)
被験者(三十代の健康な日本人男性)を、自動車用シートに開眼状態で90分間着座させて疲労を検証した。
(Test Example 1)
A subject (a healthy Japanese man in his thirties) was seated on an automobile seat for 90 minutes with his eyes open, and fatigue was verified.
筋電電極11を、解糖能力の低い筋である左腰腸肋筋及び右腰腸肋筋の表面の皮膚に貼着し、各筋の筋電信号データを得た。また、解糖能力が高く、速筋繊維の比率の高い筋である左足腓腹筋及び右足腓腹筋の表面の皮膚に筋電電極11を貼着し、各筋の筋電信号データを得た。そして、各信号データをデータ処理・判定手段20に設定されたパワー値傾き算出手段22、パワー値傾き時系列波形作成手段23、最大リアプノフ指数算出手段24、最大リアプノフ指数傾き算出手段25、最大リアプノフ指数傾き時系列波形作成手段26により処理した。得られたデータが図3及び図4である。図3(a)は、左腰腸肋筋のデータを、図3(b)は、右腰腸肋筋のデータをそれぞれ示し、図4(a)は、左足腓腹筋のデータを、図4(b)は、右足腓腹筋のデータをそれぞれ示す。
The
図3及び図4に示された波形を、疲労判定手段27が解析して疲労信号の発生を検出する。疲労判定手段27は、パワー値傾きと最大リアプノフ指数傾きの時系列波形の中で、両者が略180度の位相差(逆位相)を安定して示す特徴的な信号群が出現している時点を所定以上の疲労を生じている疲労信号の出現と判定するが、図3(a),(b)からは、63〜68分を中心とした前後5分間程度の範囲(図のAで示した範囲)でかかる疲労信号が出現していることがわかる。また、図3(a)よりも図3(b)の方が、傾きの振幅が大きいことから、この被験者の場合、左腰腸肋筋よりも右腰腸肋筋の方が疲労の蓄積が大きいと判定できる。筋電信号データを用いた疲労状態の判定は、このように、筋疲労の生じている部位を特定して判定できる。 The fatigue determination means 27 analyzes the waveforms shown in FIGS. 3 and 4 to detect the occurrence of a fatigue signal. The fatigue determination means 27 is a point in time when a characteristic signal group that stably shows a phase difference (opposite phase) of approximately 180 degrees appears in the time series waveform of the power value inclination and the maximum Lyapunov exponent inclination. Is determined to be the appearance of a fatigue signal causing fatigue of a predetermined level or more. From FIGS. 3A and 3B, a range of about 5 minutes before and after 63 to 68 minutes (shown by A in the figure). It can be seen that the fatigue signal appears in the range. In addition, since the amplitude of the inclination is larger in FIG. 3B than in FIG. 3A, the accumulation of fatigue is greater in the right lumbar gluteal muscle than in the left lumbar gluteal muscle in this subject. Can be determined to be large. Thus, the determination of the fatigue state using the myoelectric signal data can be determined by specifying the part where the muscle fatigue occurs.
一方、図4(a),(b)の解糖能力の高い左右の腓腹筋に関しては、パワー値の傾き及び最大リアプノフ指数傾きの関係において、63〜68分を中心とした前後5分間程度の範囲では顕著な位相差が見られない。つまり、この時間帯では、腓腹筋には疲労が発生していない。 On the other hand, regarding the left and right gastrocnemius muscles of FIGS. 4 (a) and 4 (b) with high glycolytic ability, the range of about 5 minutes before and after 63-68 minutes is centered on the relationship between the slope of the power value and the slope of the maximum Lyapunov exponent. In, no significant phase difference is observed. That is, fatigue does not occur in the gastrocnemius during this time period.
すなわち、解糖能力の高い腓腹筋について言えば、頻繁なアクセル、ブレーキ操作などがなされると疲労を生じ、その後、安定した走行状態が続けば、疲労が回復し、長時間の着座状態であっても腓腹筋の疲労は少ない。これに対し、解糖能力の低い腰腸肋筋の場合は、安定した着座状態であっても、長時間に及ぶと疲労が生じる。上記したように、従来、かかる腰腸肋筋の筋電信号データを検出しても、疲労状態とそうでない状態との間で有意差のあるデータとして採取することが困難であったが、本発明では、上記のデータ処理を行うことにより、腰腸肋筋の筋電信号データが、いわば増幅され、大域的なゆらぎ波形として見ることができるため、筋疲労を確実に捉えることができる。 That is, for gastrocnemius muscles with high glycolytic ability, fatigue occurs when frequent accelerator and brake operations are performed, and after that, if the stable running state continues, the fatigue recovers and the sitting state is prolonged. But gastrocnemius muscles are less fatigued. On the other hand, in the case of lumbar gluteal muscles with low glycolytic ability, fatigue occurs over a long period of time even in a stable sitting state. As described above, even if such myoelectric signal data of the lumbar gluteal muscle is detected, it has been difficult to collect the data as having a significant difference between the fatigued state and the other state. In the invention, by performing the above-described data processing, the myoelectric signal data of the lumbar gluteal muscle is amplified so to speak and can be viewed as a global fluctuation waveform, so that muscle fatigue can be reliably captured.
図5は、上記試験中に、被験者の指に光学式指尖容積脈波計を装着して指尖容積脈波を測定し、その原波形データを基に、上記実施形態のデータ処理・手段と同様の手段により作成したパワー値傾きと最大リアプノフ指数傾きの時系列波形である。指尖容積脈波は、いわば、体全体の体調変化をみるのに有効であり、45〜60分前後の範囲(図のBで示した範囲)において、パワー値傾きと最大リアプノフ指数傾きの顕著な逆位相が見られ、この時点で疲労信号が発生している。しかしながら、63〜68分を中心とした前後5分間程度の範囲では顕著な180度の位相差は見られない。但し、最大リアプノフ指数傾きの時系列波形において、同時間帯に極端なピーク波形が生じているが、これは、被験者に体動があったことを示すものである。つまり、指尖容積脈波を用いた場合は、解糖能力の高低に拘わらず、あらゆる筋を使った結果である総合指標とも言える体全体の疲労信号が検出でき、かつ、体動などのような筋疲労を一時的に解消する動きの有無も判断できるが、腰腸肋筋といった解糖能力の少ない筋に疲労が蓄積しているか否かまでは判定できない。従って、運転等の着座状態での蓄積的作業の疲労評価、あるいは、長時間着座しても疲労の蓄積の少ないシートであるか否かの直接の評価には、本発明に係る手法を用い、解糖能力の少ない筋、すなわち、持続的な張力発生に関与する筋繊維を多く含む動きの少ない筋を対象とすることが好ましい。 FIG. 5 shows the data processing / means of the above embodiment based on the original waveform data obtained by measuring the fingertip volume pulse wave by wearing an optical fingertip volume pulse wave meter on the subject's finger during the test. Is a time series waveform of the power value gradient and the maximum Lyapunov exponent gradient created by the same means. The fingertip plethysmogram is effective to see the change in the physical condition of the whole body, and the power value gradient and the maximum Lyapunov exponent gradient are prominent in the range of 45 to 60 minutes (the range indicated by B in the figure). A negative phase is observed, and a fatigue signal is generated at this point. However, a remarkable 180-degree phase difference is not observed in the range of about 5 minutes before and after 63 to 68 minutes. However, in the time series waveform of the maximum Lyapunov exponent slope, an extreme peak waveform is generated in the same time zone, which indicates that the subject had body movement. In other words, when fingertip plethysmogram is used, it is possible to detect the fatigue signal of the whole body, which can be said to be a comprehensive index that is the result of using all muscles, regardless of the level of glycolysis, as well as body movement etc. It can also be determined whether there is a movement that temporarily eliminates muscular fatigue, but it cannot be determined whether fatigue has accumulated in muscles with low glycolytic ability, such as the lumbar gluteal muscle. Therefore, for the fatigue evaluation of accumulated work in a seated state such as driving, or the direct evaluation of whether or not the seat has a low accumulation of fatigue even if seated for a long time, the method according to the present invention is used, It is preferable to target muscles with low glycolytic ability, that is, muscles with little movement including many muscle fibers involved in sustained tension generation.
図6〜図11は、周波数分析手段28による、図3〜図5に示した各パワー値傾き及び各最大リアプノフ指数傾きに関する周波数分析結果を示している。図6(a)は、左腰腸肋筋、右腰腸肋筋、左腓腹筋、右腓腹筋、指尖容積脈波に関するパワー値傾きの周波数分析であって、測定時間の0〜90分間のパワースペクトラムを一括で示した図である。但し、図6(a)では、指尖容積脈波以外の、左腰腸肋筋、右腰腸肋筋、左腓腹筋、右腓腹筋のパワースペクトラムは、上記の補正手段により、全体重に対して各筋が負担している質量の割合を乗じた値で示している。ここでは、被験者の体重が60kgであったため、左右の各腰腸肋筋に関しては、それぞれ40/60を乗じ、左右の各腓腹筋に関しては、それぞれ5/60を乗じている。図6(b)は、左腰腸肋筋、右腰腸肋筋、左腓腹筋、右腓腹筋、指尖容積脈波に関する最大リアプノフ指数傾きの周波数分析であって、測定時間の0〜90分間のパワースペクトラムを一括で示した図である。 6 to 11 show frequency analysis results regarding the power value gradients and the maximum Lyapunov exponent gradients shown in FIGS. FIG. 6A is a frequency analysis of power value gradients for the left lumbar gastrocnemius, right lumbar gastrocnemius, left gastrocnemius, right gastrocnemius, and fingertip plethysmogram, and the power for the measurement time of 0 to 90 minutes It is the figure which showed the spectrum collectively. However, in FIG. 6 (a), the power spectrum of the left lumbar gastrocnemius, right lumbar gastrocnemius, left gastrocnemius, and right gastrocnemius other than the fingertip volume pulse wave is applied to the total weight by the correction means described above. It is shown as a value multiplied by the proportion of the mass borne by each muscle. Here, since the weight of the subject was 60 kg, each of the left and right lumbar gastrocnemius was multiplied by 40/60, and each of the left and right gastrocnemius was multiplied by 5/60. FIG. 6 (b) is a frequency analysis of the maximum Lyapunov exponent slope for the left lumbar gastrocnemius, right lumbar gastrocnemius, left gastrocnemius, right gastrocnemius, and fingertip plethysmogram, with a measurement time of 0-90 minutes. It is the figure which showed the power spectrum collectively.
図6(a)から、体全体の疲労度の指標である指尖容積脈波のパワースペクトラムに近似しているのは、右腰腸肋筋のパワースペクトラムであることが明確に判定できる。 From FIG. 6A, it can be clearly determined that the power spectrum of the right lumbar gluteal muscle approximates the power spectrum of the fingertip volume pulse wave, which is an index of the fatigue level of the entire body.
図6(a)のパワー値傾きの周波数分析の結果を測定時間の0〜60分と60〜90分とに分け、左腰腸肋筋、右腰腸肋筋、左腓腹筋、右腓腹筋、指尖容積脈波ごとに示した図が、図7(a)、図8(a)、図9(a)、図10(a)、図11(a)である。これらの図から、パワースペクトラムのピーク値の絶対値が最も大きいのが図8(a)の右腰腸肋筋であることが一目瞭然であり、右腰腸肋筋において筋疲労の度合いが大きいことがわかる。また、これを図11(a)の指尖容積脈波の周波数分析と比較すると、体全体としては、0〜60分の間で疲労を感じていたが、60〜90分の間では、体全体というより、反応の鈍い筋肉である右腰腸肋筋において疲労が蓄積していることがわかる。 The result of the frequency analysis of the power value gradient in FIG. 6A is divided into 0 to 60 minutes and 60 to 90 minutes of the measurement time, and the left lumbar gastrocnemius, right lumbar gastrocnemius, left gastrocnemius, right gastrocnemius, finger FIGS. 7A, 8A, 9A, 10A, and 11A are diagrams shown for each plethysmogram. From these figures, it is obvious that the absolute value of the peak value of the power spectrum is the largest in the right lumbar gastrocnemius in FIG. 8 (a), and the degree of muscle fatigue is large in the right lumbar gastrocnemius. I understand. Moreover, when this was compared with the frequency analysis of the finger plethysmogram in FIG. 11A, the whole body felt fatigue between 0 and 60 minutes, but between 60 and 90 minutes, It can be seen that fatigue has accumulated in the right lumbar gastrocnemius muscle, which is a less responsive muscle.
一方、図6(b)の最大リアプノフ指数傾きの周波数分析の結果を測定時間の0〜60分と60〜90分とに分け、左腰腸肋筋、右腰腸肋筋、左腓腹筋、右腓腹筋、指尖容積脈波ごとに示した図が、図7(b)、図8(b)、図9(b)、図10(b)、図11(b)である。最大リアプノフ指数傾きの周波数分析においては、時間経過に伴ってパワースペクトラムのピーク値が低周波域へ移行すると共に、ピーク値の値が小さくなると、疲労が増し機能低下が生じているかどうかの指標となる。図7(b)の左腰腸肋筋は、ピーク値の周波数はほぼ同じであるが、その値は0〜60分よりも、60〜90分の方が小さくなっている。従って、左腰腸肋筋は、機能低下が生じ始めた段階と判定できる。図8(b)の右腰腸肋筋は、0〜60分よりも、60〜90分の方が、ピーク値が低周波域に移行していると共に、その値も小さくなっている。従って、右腰腸肋筋は、60〜90分において機能低下が生じていたことがわかる。図9(b)及び図10(b)の左右の腓腹筋も、ピーク値が若干低周波域に移行し、その値がほぼ同じかやや小さくなっており、機能低下が生じ始めている。図11(b)の指尖容積脈波も同様であり、体全体において機能低下が生じ始めていることがわかる。このように、周波数分析を行うことにより、疲労の生じている部位、疲労が生じ始めた時間帯などをより確実判定できる。 On the other hand, the result of frequency analysis of the maximum Lyapunov exponent slope in FIG. 6B is divided into 0 to 60 minutes and 60 to 90 minutes of measurement time, and left lumbar gastrocnemius, right lumbar gastrocnemius, left gastrocnemius, right FIGS. 7B, 8B, 9B, 10B, and 11B show the gastrocnemius and fingertip volume pulse waves. In the frequency analysis of the maximum Lyapunov exponent slope, the peak value of the power spectrum shifts to the low frequency region with the passage of time, and when the peak value becomes small, an indicator of whether fatigue has increased and functional deterioration has occurred. Become. The frequency of the peak value of the left lumbar gluteal muscle in FIG. 7B is almost the same, but the value is smaller in 60 to 90 minutes than in 0 to 60 minutes. Therefore, it can be determined that the left lumbar gluteal muscle is at a stage where a decline in function has started. In the right lumbar gluteal muscle of FIG. 8B, the peak value shifts to the low frequency region and the value is smaller at 60 to 90 minutes than at 0 to 60 minutes. Therefore, it can be seen that the functional deterioration of the right lumbar gluteal muscles occurred in 60 to 90 minutes. In the left and right gastrocnemius muscles in FIGS. 9B and 10B, the peak value slightly shifts to the low frequency region, the value is almost the same or slightly smaller, and the function starts to deteriorate. The same applies to the finger plethysmogram in FIG. 11 (b), and it can be seen that functional degradation has started to occur throughout the body. Thus, by performing the frequency analysis, it is possible to more reliably determine a part where fatigue has occurred, a time zone in which fatigue has started to occur, and the like.
図12(a)は、疲労度算出手段29により、パワー値傾きの時系列信号を絶対値処理して算出した積分値を示し、図12(b)は、最大リアプノフ指数傾きの時系列信号を絶対値処理して算出した積分値を示す。図12には、左腰腸肋筋、右腰腸肋筋、左腓腹筋、右腓腹筋及び指尖容積脈波の各データを併せて示している。 FIG. 12A shows an integrated value calculated by performing absolute value processing on the time series signal of the power value inclination by the fatigue degree calculating means 29, and FIG. 12B shows the time series signal of the maximum Lyapunov exponent inclination. Indicates the integral value calculated by absolute value processing. FIG. 12 also shows data of left lumbar gastrocnemius, right lumbar gastrocnemius, left gastrocnemius, right gastrocnemius, and fingertip volume pulse wave.
この図から明らかなように、右腰腸肋筋は、65分前後に勾配が大きく変化し、その時点で急速に筋肉が使われ、その時点以降に疲労感が高まったことがわかる。左腰腸肋筋に関しても、同じ時間帯に若干疲労感が高まったことがわかる。これに対し、左右の腓腹筋では、図12からは大きな変化が見られない。また、指尖容積脈波は、最初の10分前後に勾配の急変化が見られるものの、その後はほぼ線形に一定の割合で変化している。従って、この図から、体全体としては徐々に疲労が高まっているものの、適度な体動が許容されることにより疲労感が軽減され易く、大きな疲労促進を感じさせるようなシートではないことがわかるが、その中でも、65分前後になると、低い強度での長時間の筋活動の持続により、解糖能力の少ない腰腸肋筋の筋疲労が急速に促進されていることがわかる。 As is apparent from this figure, the gradient of the right lumbar gluteal muscle greatly changes around 65 minutes, and the muscle is rapidly used at that time, and the feeling of fatigue has increased after that time. As for the left lumbar gluteal muscle, it can be seen that the feeling of fatigue slightly increased during the same time period. In contrast, the left and right gastrocnemius muscles do not show a significant change from FIG. Further, the fingertip volume pulse wave shows a sudden change in the gradient around the first 10 minutes, but thereafter changes almost linearly at a constant rate. Therefore, it can be seen from this figure that although the fatigue of the whole body is gradually increasing, the feeling of fatigue is easily reduced by allowing an appropriate body movement, and it is not a sheet that feels a great acceleration of fatigue. However, it can be seen that at around 65 minutes, muscular fatigue of the lumbar gluteal muscles with low glycolytic ability is rapidly promoted due to sustained long-term muscle activity at low strength.
1 筋疲労評価装置
10 筋電位検出センサ
11 筋電電極
20 データ処理・判定手段
21 パワー値算出手段
22 パワー値傾き算出手段
23 パワー値傾き時系列波形作成手段
24 最大リアプノフ指数算出手段
25 最大リアプノフ指数傾き算出手段
26 最大リアプノフ指数傾き時系列波形作成手段
27 疲労判定手段
28 疲労状態確認手段
29 疲労度算出手段
DESCRIPTION OF SYMBOLS 1 Muscle
Claims (5)
前記データ処理・判定手段は、
前記筋電位検出センサの信号データから、所定時間範囲毎に、平滑化微分法により極大値と極小値を求め、両者の差をパワー値として求めるパワー値算出手段と、
前記パワー値の所定時間範囲における時間軸に対する傾きを、所定のオーバーラップ時間で順次求めるパワー値傾き算出手段と、
前記パワー値傾き算出手段により求めたパワー値傾きの時系列波形を作成し、該時系列波形を出力するパワー値傾き時系列波形作成手段と、
前記パワー値傾き算出手段により得られたパワー値の傾きを周波数分析する周波数分析手段と
を有し、
前記パワー値の傾きの周波数分析手段が、前記パワー値の傾きの時系列波形を周波数分析して得られたパワースペクトラムを、全体重に対し、筋電位測定対象となった筋が負担している質量の割合に比例した値に補正する補正手段を備え、測定対象の筋毎に複数得られるパワースペクトラムのうち、補正手段により得られたパワースペクトラムの値の大きい筋ほど、筋疲労の度合いが大きいと判定する構成であることを特徴とする筋疲労評価装置。 A muscle fatigue evaluation apparatus comprising a myoelectric potential detection sensor and data processing / determination means for processing signal data obtained from the myoelectric potential detection sensor, and evaluating a person's muscle fatigue,
The data processing / determination means includes
From the signal data of the myoelectric potential detection sensor, for each predetermined time range, a maximum value and a minimum value are obtained by a smoothing differential method, and a power value calculating means for obtaining a difference between both as a power value;
Power value slope calculating means for sequentially obtaining the slope of the power value with respect to the time axis in a predetermined time range at a predetermined overlap time;
Creating a time series waveform of the power value slope obtained by the power value slope calculating means, and outputting the time series waveform power value slope time series waveform creating means;
Frequency analysis means for frequency analysis of the slope of the power value obtained by the power value slope calculation means;
Have
The power spectrum obtained by the frequency analysis of the power value slope frequency analysis of the time series waveform of the power value slope is borne by the muscle that is the object of myoelectric potential measurement for the total weight. A correction means for correcting to a value proportional to the mass ratio is provided, and among the power spectra obtained for each muscle to be measured, a muscle having a larger power spectrum value obtained by the correction means has a higher degree of muscle fatigue. The muscle fatigue evaluation apparatus characterized by the above-mentioned structure .
前記最大リアプノフ指数の所定時間範囲における時間軸に対する傾きを、所定のオーバーラップ時間で順次求める最大リアプノフ指数傾き算出手段と、
前記最大リアプノフ指数傾き算出手段により求めた最大リアプノフ指数傾きの時系列波形を作成し、該時系列波形を出力する最大リアプノフ指数傾き時系列波形作成手段と
を具備することを特徴とする請求項1記載の筋疲労評価装置。 The data processing / determination means further includes maximum Lyapunov exponent calculation means for calculating a maximum Lyapunov exponent by performing chaos analysis on the signal data of the myoelectric potential detection sensor,
A maximum Lyapunov exponent slope calculating means for sequentially obtaining a slope of the maximum Lyapunov exponent with respect to a time axis in a predetermined time range at a predetermined overlap time;
Claim 1, characterized in that said maximum to create a time-series waveform of the maximum Lyapunov exponent slope determined by the Lyapunov exponent inclination calculation means, and a maximum Lyapunov exponent gradient time series waveform generating means for outputting a time series waveform The muscle fatigue evaluation apparatus as described.
前記指尖容積脈波のパワースペクトラムと、測定対象の筋毎に複数得られる補正後の筋電位のパワースペクトラムとを比較し、複数の筋電位のパワースペクトラムのうち、指尖容積脈波のパワースペクトラムと傾向が近似しているほど、筋疲労の度合いが大きいと判定することを特徴とする請求項1〜3のいずれか1に記載の筋疲労評価装置。 Furthermore, a fingertip volume pulse wave measurement unit is provided, and the data processing / determination unit performs a power value inclination and frequency analysis of the fingertip volume pulse wave signal data obtained from the fingertip volume pulse measurement unit. Having means,
The power spectrum of the fingertip volume pulse wave is compared with the power spectrum of corrected myoelectric potential obtained for each muscle to be measured. The muscle fatigue evaluation apparatus according to any one of claims 1 to 3, wherein the degree of muscle fatigue is determined to be greater as the spectrum and the tendency are closer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006031010A JP4832914B2 (en) | 2006-02-08 | 2006-02-08 | Muscle fatigue evaluation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006031010A JP4832914B2 (en) | 2006-02-08 | 2006-02-08 | Muscle fatigue evaluation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007209453A JP2007209453A (en) | 2007-08-23 |
JP4832914B2 true JP4832914B2 (en) | 2011-12-07 |
Family
ID=38488371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006031010A Expired - Fee Related JP4832914B2 (en) | 2006-02-08 | 2006-02-08 | Muscle fatigue evaluation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4832914B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106491127A (en) * | 2016-10-11 | 2017-03-15 | 广州汽车集团股份有限公司 | Drive muscular strain early warning value method of testing and device and drive muscular strain prior-warning device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5086834B2 (en) * | 2008-02-20 | 2012-11-28 | 株式会社デルタツーリング | Fatigue analysis apparatus and computer program |
JP5327584B2 (en) * | 2008-08-20 | 2013-10-30 | 株式会社デルタツーリング | Biological condition analyzer, computer program, and recording medium |
JP6079340B2 (en) | 2013-03-18 | 2017-02-15 | 富士通株式会社 | State determination device, method of operating state determination device, and program |
CN106691447B (en) * | 2017-02-23 | 2023-09-12 | 北京纳通科技集团有限公司 | Muscle training aid device, muscle training evaluation device and method |
EP3593959B1 (en) | 2018-07-10 | 2022-09-28 | Tata Consultancy Services Limited | Method and system for online non-intrusive fatigue- state detection in a robotic co-working environment |
CN114469035A (en) * | 2022-01-05 | 2022-05-13 | 清华大学 | Anti-driving fatigue safety auxiliary system and method |
CN114587387B (en) * | 2022-02-18 | 2024-05-28 | 金华送变电工程有限公司三为金东电力分公司 | Live working insulating operation rod use fatigue evaluation method and device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1685798B1 (en) * | 2003-10-23 | 2011-03-02 | Delta Tooling Co., Ltd. | Fatigue degree measuring device, fatigue detection device, and computer program |
-
2006
- 2006-02-08 JP JP2006031010A patent/JP4832914B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106491127A (en) * | 2016-10-11 | 2017-03-15 | 广州汽车集团股份有限公司 | Drive muscular strain early warning value method of testing and device and drive muscular strain prior-warning device |
CN106491127B (en) * | 2016-10-11 | 2019-10-08 | 广州汽车集团股份有限公司 | It drives muscular strain early warning value test method and device and drives muscular strain prior-warning device |
Also Published As
Publication number | Publication date |
---|---|
JP2007209453A (en) | 2007-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4832914B2 (en) | Muscle fatigue evaluation device | |
US7470231B2 (en) | Fatigue degree measurement device, fatigue detection device and computer program to be used therein | |
KR100624424B1 (en) | Electric stimulus generating device and method, and Health training/monitoring apparatus and method using it | |
Disselhorst-Klug et al. | Surface electromyography and muscle force: Limits in sEMG–force relationship and new approaches for applications | |
Søgaard et al. | Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano-and electromyograms | |
KR102147099B1 (en) | System for the assessment of lower limb activity and the personalized electrical stimulation using surface electromyography and motion signals | |
US7250029B2 (en) | Human condition evaluation system, computer program, and computer-readable record medium | |
JP5086834B2 (en) | Fatigue analysis apparatus and computer program | |
JP2004344613A (en) | Seat system for driver's seat and wakefulness-restoring device | |
JP4754447B2 (en) | Biological analysis apparatus and program | |
JP5022530B2 (en) | Fatigue degree calculation device and computer program | |
JP4636861B2 (en) | Comfort evaluation device | |
KR20140071739A (en) | Method and apparatus for evaluating of rehabilitation using emg signal of upper limb | |
JP2009195260A (en) | Living body mental/physical condition adjusting system and computer-readable recording medium | |
JP2002224072A (en) | Muscular fatigue evaluating device, muscular fatigue evaluating method, computer program for executing this method and storage medium for storing this computer program | |
Puranik et al. | Wearable device for yogic breathing | |
JP2019122652A (en) | Buckle, arousal state determination system, and arousal state determination method | |
JP3048918B2 (en) | Concentration estimation device | |
JP4767405B2 (en) | Health condition judging method and health condition judging device | |
JPH08317919A (en) | Sound oscillation evaluating device | |
Zhou et al. | Analysis of surface electromyography of patients with low back pain based on different movement patterns | |
Kim et al. | 1C5-1 Measurement of Characteristic Change using MyotonPRO in Low Back Muscles during a Long-term Driving; Pilot Study | |
Felici | Applications in exercise physiology | |
JPWO2002094091A1 (en) | Fatigue inspection device and fatigue evaluation method | |
Kiryu | Handling Risk Homeostasis in Biofunctions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110921 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4832914 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |