JP4832856B2 - Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet - Google Patents
Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet Download PDFInfo
- Publication number
- JP4832856B2 JP4832856B2 JP2005316551A JP2005316551A JP4832856B2 JP 4832856 B2 JP4832856 B2 JP 4832856B2 JP 2005316551 A JP2005316551 A JP 2005316551A JP 2005316551 A JP2005316551 A JP 2005316551A JP 4832856 B2 JP4832856 B2 JP 4832856B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- rtb
- alloy
- based alloy
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 174
- 239000000956 alloy Substances 0.000 title claims description 174
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 31
- 239000000843 powder Substances 0.000 title claims description 26
- 150000002910 rare earth metals Chemical class 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000005266 casting Methods 0.000 claims description 75
- 238000000034 method Methods 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 27
- 229910000521 B alloy Inorganic materials 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 11
- 238000007711 solidification Methods 0.000 claims description 11
- 230000008023 solidification Effects 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical group 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 199
- 230000005291 magnetic effect Effects 0.000 description 35
- 239000000203 mixture Substances 0.000 description 23
- 239000013078 crystal Substances 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 20
- 238000005245 sintering Methods 0.000 description 19
- 229910000859 α-Fe Inorganic materials 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 230000008018 melting Effects 0.000 description 13
- 238000002844 melting Methods 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000000700 radioactive tracer Substances 0.000 description 5
- 238000004781 supercooling Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000008034 disappearance Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- -1 ferroboron Chemical compound 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/044—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Continuous Casting (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、R−T−B系合金及びR−T−B系合金薄片の製造方法、R−T−B系希土類永久磁石用微粉、R−T−B系希土類永久磁石に係り、特にストリップキャスト法により製造されるR−T−B系合金薄片に関するものである。 The present invention relates to a method for producing an R-T-B alloy and a R-T-B alloy flake, a fine powder for a R-T-B rare earth permanent magnet, and a R-T-B rare earth permanent magnet, and in particular, a strip. The present invention relates to an R-T-B type alloy flake produced by a casting method.
永久磁石の中で最大の磁気エネルギー積を有するR−T−B系磁石は、その高特性からHD(ハードディスク)、MRI(磁気共鳴映像法)、各種モーター等に使用されている。近年、R−T−B系磁石の耐熱性向上に加え、省エネルギーへの要望が高まっていることから、自動車を含めたモーター用途の比率が上昇している。
R−T−B系磁石は、主成分がNd、Fe、Bである事からNd−Fe−B系、あるいはR−T−B系磁石と総称されている。R−T−B系磁石のRは、Ndの一部をPr、Dy、Tb等の他の希土類元素で置換したものが主であり、Yを含む希土類元素のうち少なくとも1種である。TはFeの一部をCo、Ni等の他の遷移金属で置換したものである。Bは硼素であり、一部をCまたはNで置換できる。また、R−T−B系磁石には、添加元素としてCu、Al、Ti、V、Cr、Ga、Mn、Nb、Ta、Mo、W、Ca、Sn、Zr、Hfなどを1種または複数組み合わせて添加してもよい。
An R-T-B magnet having the maximum magnetic energy product among permanent magnets is used for HD (hard disk), MRI (magnetic resonance imaging), various motors and the like because of its high characteristics. In recent years, in addition to the improvement in heat resistance of R-T-B magnets, the demand for energy saving has increased, so the ratio of motor applications including automobiles has increased.
R-T-B magnets are generically called Nd-Fe-B magnets or R-T-B magnets because their main components are Nd, Fe, and B. R of the R-T-B magnet is mainly obtained by substituting a part of Nd with other rare earth elements such as Pr, Dy, Tb, etc., and is at least one kind of rare earth elements including Y. T is obtained by substituting a part of Fe with another transition metal such as Co or Ni. B is boron, and a part thereof can be substituted with C or N. In addition, the RTB-based magnet includes one or more of Cu, Al, Ti, V, Cr, Ga, Mn, Nb, Ta, Mo, W, Ca, Sn, Zr, and Hf as additive elements. You may add in combination.
R−T−B系磁石となるR−T−B系合金は、磁化作用に寄与する強磁性相であるR2T14B相を主相とし、非磁性で希土類元素の濃縮した低融点のRリッチ相が共存する合金で、活性な金属であることから一般に真空又は不活性ガス中で溶解や鋳造が行われる。また、鋳造されたR−T−B系合金塊から粉末冶金法によって焼結磁石を作製するには、合金塊を3μm(FSSS:フィッシャーサブシーブサイザーでの測定)程度に粉砕して合金粉末にした後、磁場中でプレス成形し、焼結炉で約1000〜1100℃の高温にて焼結し、その後必要に応じ熱処理、機械加工し、さらに耐食性を向上するためにメッキを施し、焼結磁石とするのが普通である。 An R-T-B-based alloy, which is an R-T-B based magnet, has a low melting point that is non-magnetic and concentrated with rare earth elements, with the main phase being the R 2 T 14 B phase, which is a ferromagnetic phase that contributes to magnetization. Since it is an alloy in which an R-rich phase coexists and is an active metal, it is generally melted or cast in a vacuum or an inert gas. Moreover, in order to produce a sintered magnet from a cast R-T-B type alloy lump by powder metallurgy, the alloy lump is pulverized to about 3 μm (FSSS: measured with a Fischer sub-sieve sizer) to obtain an alloy powder. After that, it is press-molded in a magnetic field, sintered at a high temperature of about 1000 to 1100 ° C. in a sintering furnace, then heat-treated and machined as necessary, and further plated to improve corrosion resistance and sintered. It is common to use a magnet.
R−T−B系焼結磁石において、Rリッチ相は、以下のような重要な役割を担っている。
1)融点が低く、焼結時に液相となり、磁石の高密度化、従って磁化の向上に寄与する。
2)粒界の凹凸を無くし、逆磁区のニュークリエーションサイトを減少させ保磁力を高める。
3)主相を磁気的に絶縁し保磁力を増加する。
従って、成形した磁石中のRリッチ相の分散状態が悪いと局部的な焼結不良、磁性の低下をまねくため、成形した磁石中にRリッチ相が均一に分散していることが重要となる。ここでRリッチ相の分布は、原料であるのR−T−B系合金の組織に大きく影響される。
In the R-T-B based sintered magnet, the R-rich phase plays an important role as follows.
1) The melting point is low and it becomes a liquid phase at the time of sintering, which contributes to increasing the density of the magnet and thus improving the magnetization.
2) Eliminate grain boundary irregularities, reduce reverse domain nucleation sites and increase coercivity.
3) The main phase is magnetically insulated to increase the coercive force.
Therefore, if the dispersion state of the R-rich phase in the molded magnet is poor, local sintering failure and decrease in magnetism will occur. Therefore, it is important that the R-rich phase is uniformly dispersed in the molded magnet. . Here, the distribution of the R-rich phase is greatly influenced by the structure of the R-T-B alloy as the raw material.
また、R−T−B系合金の鋳造において生じるもう一つの問題は、鋳造された合金中にα−Feが生成することである。α−Feは、変形能を有し、粉砕されずに粉砕機中に残存するため、合金を粉砕する際の粉砕効率を低下させるだけでなく、粉砕前後での組成変動、粒度分布にも影響を及ぼす。さらに、α−Feが、焼結後も磁石中に残存すれば、磁石の磁気特性の低下をもたらす。そのため、α−Feは、原料合金からは極力排除されるべきものとして扱われてきた。そこで従来の合金では、必要に応じ高温で長時間にわたる均質化処理を行い、α―Feの消去を行っていた。原料合金中の少量のα−Feであれば、均質化熱処理によって除去することが出来る。しかし、α−Feは包晶核として存在するため、その消去には長時間の固相拡散が必要であり、厚さ数cmのインゴットで希土類量が33%以下となると、α−Feの消去は事実上不可能であった。 Another problem that occurs in the casting of RTB-based alloys is that α-Fe is produced in the cast alloy. Since α-Fe has deformability and remains in the pulverizer without being pulverized, it not only reduces the pulverization efficiency when pulverizing the alloy, but also affects the composition variation and particle size distribution before and after pulverization. Effect. Furthermore, if α-Fe remains in the magnet after sintering, the magnetic properties of the magnet are lowered. For this reason, α-Fe has been treated as a material alloy that should be excluded as much as possible. Therefore, conventional alloys have been subjected to homogenization treatment for a long time at a high temperature as necessary to eliminate α-Fe. A small amount of α-Fe in the raw material alloy can be removed by homogenization heat treatment. However, since α-Fe exists as peritectic nuclei, long-term solid phase diffusion is required for its erasure, and when the amount of rare earth is 33% or less in an ingot having a thickness of several centimeters, α-Fe is erased. Was virtually impossible.
このR−T−B系合金中にα−Feが生成する問題を解決するため、より速い冷却速度で合金塊を鋳造するストリップキャスト法(SC法と略す。)が開発され実際の工程に使用されている。
SC法は、内部が水冷された銅ロール上に溶湯を流して0.1〜1mm程度の薄片を鋳造することにより、合金を急冷凝固させる方法である。SC法では、溶湯を主相R2T14B相の生成温度以下まで過冷却するため、合金溶湯から直接R2T14B相を生成することが可能であり、α‐Feの析出を抑制することができる。さらに、SC法を行なうことにより合金の結晶組織が微細化するため、Rリッチ相が微細に分散した組織を有する合金を生成することが可能となる。Rリッチ相は水素雰囲気中で水素と反応、膨張し脆い水素化物となる。この性質を利用すると、Rリッチ相の分散程度に見合った、微細なクラックが導入される。この水素化工程を経てから微粉砕すると、水素化で生成した多量の微細クラックをきっかけに合金が壊れるため、粉砕性が極めて良好となる。このように、SC法で鋳造された合金は、内部のRリッチ相が微細に分散しているため、粉砕、焼結後の磁石中のRリッチ相の分散性も良好となり、磁石の磁気特性の向上に成功している(例えば、特許文献1参照)。
In order to solve the problem of α-Fe formation in this RTB-based alloy, a strip cast method (abbreviated as SC method) for casting an alloy ingot at a higher cooling rate was developed and used in an actual process. Has been.
The SC method is a method of rapidly solidifying an alloy by casting a thin piece of about 0.1 to 1 mm by pouring a molten metal on a copper roll whose inside is water-cooled. In the SC method, since the molten metal is supercooled to a temperature below the formation temperature of the main phase R 2 T 14 B phase, it is possible to generate the R 2 T 14 B phase directly from the molten alloy and to suppress the precipitation of α-Fe. can do. Furthermore, since the crystal structure of the alloy is refined by performing the SC method, an alloy having a structure in which the R-rich phase is finely dispersed can be generated. The R-rich phase reacts with hydrogen in a hydrogen atmosphere and expands into a brittle hydride. When this property is used, fine cracks are introduced in accordance with the degree of dispersion of the R-rich phase. When finely pulverized after this hydrogenation step, the alloy is broken by the large number of fine cracks generated by hydrogenation, so that the pulverizability becomes very good. In this way, the alloy cast by the SC method has a fine dispersion of the R-rich phase inside, so the dispersibility of the R-rich phase in the magnet after pulverization and sintering is also good, and the magnetic properties of the magnet (See, for example, Patent Document 1).
またSC法により鋳造された合金薄片は、組織の均質性も優れている。組織の均質性は、結晶粒径やRリッチ相の分散状態で比較することが出来る。SC法で作製した合金薄片では、合金薄片の鋳造用ロール側(以降、鋳型面側とする)にチル晶が発生することもあるが、全体として急冷凝固でもたらされる適度に微細で均質な組織を得ることが出来る。 Also, the alloy flakes cast by the SC method are excellent in the homogeneity of the structure. The homogeneity of the structure can be compared with the crystal grain size and the dispersion state of the R-rich phase. In alloy flakes produced by the SC method, chill crystals may occur on the casting roll side of the alloy flakes (hereinafter referred to as the mold surface side), but as a whole, a moderately fine and homogeneous structure brought about by rapid solidification Can be obtained.
以上のように、SC法で鋳造したR−T−B系合金は、Rリッチ相が微細に分散し、α−Feの生成も抑制されているため、焼結磁石を作製する場合には、最終的な磁石中のRリッチ相の均質性が高まり、またα−Feに起因する粉砕、磁性への弊害を防止することができる。このように、SC法で鋳造したR−T−B系合金塊は、焼結磁石を作製するための優れた組織を有している。しかし、磁石の特性が向上するにつれて、ますます原料合金の組織、特にRリッチ相の存在状態の高度な制御が求められるようになってきている。 As described above, the RTB-based alloy cast by the SC method has an R-rich phase finely dispersed and the production of α-Fe is suppressed, so when producing a sintered magnet, The homogeneity of the R-rich phase in the final magnet is increased, and the adverse effects on pulverization and magnetism due to α-Fe can be prevented. Thus, the RTB-based alloy ingot cast by the SC method has an excellent structure for producing a sintered magnet. However, as the properties of the magnet improve, higher control of the structure of the raw material alloy, particularly the existence state of the R-rich phase, is increasingly required.
先に本発明者らは、鋳造されたR−T−B系合金の組織と、水素解砕や微粉砕の際の挙動との関係を研究した結果、焼結磁石用の合金粉末の粒度を制御するためには、Rリッチ相の分散状態を制御することが重要であることを見出した(例えば、特許文献2参照)。そして、合金中の鋳型面側に生成されるRリッチ相の分散状態が極端に細かな領域(微細Rリッチ相領域)は微粉化しやすく、合金の粉砕安定性を低下させると共に、粉末の粒度分布をブロードにすることを見出し、微細Rリッチ相領域を減少させることが磁石特性を向上させるために必要であることを確認した。
しかしながら、上記の特許文献2に示すR−T−B系合金においても、より一層、磁気特性を向上させることが要求されている。
本発明は、上記事情に鑑みてなされたもので、優れた磁気特性を有する希土類系永久磁石の原料であるR−T−B系合金を提供することを目的とする。
However, the R-T-B alloy shown in
The present invention has been made in view of the above circumstances, and an object thereof is to provide an RTB-based alloy which is a raw material for a rare earth-based permanent magnet having excellent magnetic properties.
本発明者らは、様々な条件で鋳造凝固させた合金薄片の断面組織を詳細に観察し、2−17相の析出状態と磁気特性に関係があることを見出した。そして、本発明者は、合金中に微細な2−17相(R2T17相)を析出させることで、磁気特性向上をもたらす事が可能であるという知見を得た。
また、本発明者らは、微細なR2T17相が存在する合金、あるいはSC法における鋳造ロール上での冷却速度や鋳造ロールを離脱する温度を制御した合金から作製した焼結磁石の保磁力が安定して増加し、優れた磁気特性が得られる事実を確認し、本発明に至った。
The present inventors have observed in detail the cross-sectional structure of the alloy flakes cast and solidified under various conditions, and have found that there is a relationship between the precipitation state of the 2-17 phase and the magnetic properties. Then, the present inventors, by precipitating fine 2-17 phase in the alloy of the (R 2 T 17 phase), to obtain a finding that it is possible to bring the magnetic properties improved.
In addition, the inventors of the present invention maintain a sintered magnet made of an alloy in which a fine R 2 T 17 phase is present, or an alloy in which the cooling rate on the casting roll in the SC method and the temperature at which the casting roll is released are controlled. The fact that the magnetic force was stably increased and excellent magnetic properties were obtained was confirmed, and the present invention was achieved.
すなわち本発明は、下記の各発明を提供するものである。
(1)希土類系永久磁石に用いられる原料であるR−T−B系(但し、RはYを含む希土類元素のうち少なくとも1種、TはFeを必須とする遷移金属、Bは硼素である。)合金であって、短軸方向の平均粒径が3μm以下のR2T17相を含む領域の体積率が0.5〜10%であることを特徴とするR−T−B系合金。
(2)短軸方向の平均粒径が3μm以下のR2T17相と、短軸方向の平均粒径が3μm以下のRリッチ相とが共存している領域の体積率が0.5〜10%であることを特徴とする(1)記載のR−T−B系合金。
(3)短軸方向の平均粒径が10μm以上のR2T17相を含む領域の体積率が10%以下であることを特徴とする(1)または(2)に記載のR−T−B系合金。
(4)短軸方向の平均粒径が5μm以上のR2T17相を含む領域の体積率が10%以下であることを特徴とする(1)ないし(3)のいずれかに記載のR−T−B系合金。
(5)R2T17相は非平衡相であることを特徴とする(1)ないし(4)のいずれかに記載のR−T−B系合金。
(6)ストリップキャスト法で製造された平均厚さ0.1〜1mmの薄片であることを特徴とする(1)ないし(5)のいずれかに記載のR−T−B系合金。
(7)ストリップキャスト法によるR−T−B系合金薄片の製造方法であって、
平均厚さを0.1〜1mmとするとともに、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒10g以上とし、前記鋳造ロールを離脱するR−T−B系合金の平均温度が、前記R−T−B系合金のR 2 T 14 B相の平衡状態での凝固温度よりも100〜400℃低いことを特徴とするR−T−B系合金薄片の製造方法。
(8)前記鋳造ロール上でのR−T−B系合金の平均冷却速度が、毎秒500〜3000℃であることを特徴とする(7)に記載のR−T−B系合金薄片の製造方法。
(9)(7)または(8)に記載のR−T−B系合金薄片の製造方法により作製されたR−T−B系合金。
(10)(1)ないし(6)または(9)のいずれかに記載のR−T−B系合金から作製したR−T−B系希土類永久磁石用微粉。
(11)(10)に記載のR−T−B系希土類永久磁石用微粉から作製されたR−T−B系希土類永久磁石。
That is, the present invention provides the following inventions.
(1) R-T-B system which is a raw material used for rare earth permanent magnets (where R is at least one of rare earth elements including Y, T is a transition metal in which Fe is essential, and B is boron) .) An R-T-B alloy having a volume ratio of 0.5 to 10% in a region containing an R 2 T 17 phase having an average grain size in the minor axis direction of 3 μm or less. .
(2) The volume ratio of the region where the R 2 T 17 phase having an average particle size in the minor axis direction of 3 μm or less and the R rich phase having an average particle size in the minor axis direction of 3 μm or less coexist is 0.5 to The RTB-based alloy according to (1), which is 10%.
(3) R-T- described in (1) or (2), wherein the volume ratio of the region containing R 2 T 17 phase having an average particle size in the minor axis direction of 10 μm or more is 10% or less B-based alloy.
(4) The R according to any one of (1) to (3), wherein the volume ratio of the region containing the R 2 T 17 phase having an average particle size in the minor axis direction of 5 μm or more is 10% or less. -TB type alloy.
(5) The R-T-B alloy according to any one of (1) to (4), wherein the R 2 T 17 phase is a non-equilibrium phase.
(6) The RTB-based alloy according to any one of (1) to (5), which is a thin piece having an average thickness of 0.1 to 1 mm manufactured by a strip cast method.
(7) A method for producing an RTB-based alloy flake by a strip casting method,
The average thickness is 0.1 to 1 mm, the average molten metal supply speed to the casting roll is 10 g / sec or more per 1 cm width, and the average temperature of the R-T-B system alloy that separates the casting roll is method for producing an R-T-B type alloy flake, wherein the lower 100 to 400 ° C. than the freezing temperature at equilibrium of R 2 T 14 B phase of the R-T-B type alloy.
(8) The RTB-based alloy flake according to (7), wherein an average cooling rate of the RTB-based alloy on the casting roll is 500 to 3000 ° C per second. Method.
(9) An RTB-based alloy produced by the method for producing an RTB-based alloy flake according to (7) or (8) .
(10) Fine powder for RTB system rare earth permanent magnet produced from the RTB system alloy according to any one of (1) to (6) or (9) .
(11) An RTB-based rare earth permanent magnet produced from the fine powder for RTB-based rare earth permanent magnet according to (10) .
本発明のR−T−B系合金は、短軸方向の平均粒径が3μm以下のR2T17相を含む領域の体積率が0.5〜10%であるので、保磁力の高い磁気特性に優れた希土類永久磁石を実現できる。
また、R−T−B系合金薄片の製造方法では、SC法によって製造し、平均厚さを0.1〜1mmとするとともに、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒10g以上とすることで、保磁力の高いR−T−B系合金が得られる。
In the R-T-B alloy of the present invention, the volume ratio of the region including the R 2 T 17 phase having an average grain size in the minor axis direction of 3 μm or less is 0.5 to 10%. A rare earth permanent magnet with excellent characteristics can be realized.
Moreover, in the manufacturing method of a R-T-B type alloy flake, while manufacturing by SC method, while making average thickness into 0.1-1 mm, the average molten metal supply speed to a casting roll is 10 g / sec or more per 1 cm width | variety By doing so, an RTB-based alloy having a high coercive force can be obtained.
図1は、本発明のR−T−B系合金の一例を示した写真であり、R−T−B系合金の薄片の断面を走査型電子顕微鏡(SEM)により観察したときの写真である。
図1に示すR−T−B系合金は、SC法で製造されたものである。このR−T−B系合金の組成は、重量比でNd22%、Dy9%、B0.95%、Co1%、Al0.3%、Cu0.1%、残部Feであり、過冷却の大きい通常のSC法では、R2T17相は析出せず、常温の平衡状態においてもR2T14B相の融点である1170℃以下の温度ではR2T17相は安定に存在しない組成である。図1において、Rリッチ相は白色で示され、R2T17相は主相R2T14B相よりも若干暗い色で示されている。
FIG. 1 is a photograph showing an example of an RTB-based alloy of the present invention, and is a photograph of a cross section of a thin piece of RTB-based alloy observed with a scanning electron microscope (SEM). .
The RTB-based alloy shown in FIG. 1 is manufactured by the SC method. The composition of this R-T-B alloy is Nd22%, Dy9%, B0.95%, Co1%, Al0.3%, Cu0.1% and the balance Fe in a weight ratio, and a normal supercooled large amount. the SC method, R 2 T 17 phase is not precipitated at 1170 ° C. temperature below the melting point of the R 2 T 14 B phase is also in the
図1に示すように、R−T−B系合金は、全体的にR2T14B相の柱状晶とその長軸方向に伸張したRリッチ相とから構成されている。R2T14B相は、主に柱状晶、一部等軸晶からなり、その短軸方向の平均結晶粒径は10〜50μmである。R2T14B相の粒界と粒内には、柱状晶の長軸方向に沿って線状のRリッチ相、あるいは一部が途切れるか粒状となったRリッチ相が存在する。R2T14B相の粒界と粒内に存在するRリッチ相の平均間隔は3〜10μmである。また、図1に示すように、R−T−B系合金には、非常に微細なR2T17相とRリッチ相とが共存している領域が、それぞれ面積比率(体積率)で3%程度存在している。 As shown in FIG. 1, the RTB-based alloy is generally composed of R 2 T 14 B phase columnar crystals and an R rich phase extending in the major axis direction. The R 2 T 14 B phase mainly consists of columnar crystals and partially equiaxed crystals, and the average crystal grain size in the minor axis direction is 10 to 50 μm. At the grain boundaries and within the grains of the R 2 T 14 B phase, there are linear R-rich phases along the major axis direction of the columnar crystals, or R-rich phases that are partly interrupted or granular. The average interval between the R 2 T 14 B phase grain boundary and the R rich phase present in the grains is 3 to 10 μm. In addition, as shown in FIG. 1, in the R-T-B type alloy, regions where very fine R 2 T 17 phase and R rich phase coexist are each 3 in area ratio (volume ratio). About% exists.
(1)R2T17相
図1に示すR−T−B系合金において、R2T17相は、希土類−鉄系の2元状態図に常温から高温域まで安定に存在する組成幅を有しない金属間化合物である。常温では面内異方性の軟磁性相であり、R−T−B系焼結磁石中に存在すれば、逆磁区のニュークリエイションサイトとして機能し保磁力の低下をもたらす。しかし、原料合金中に少量のR2T17相が存在したとしても、焼結過程で消滅して無害化される場合が多い。また、R2T17相は展延性を有しない金属間化合物であるため、磁石作成工程での粉砕挙動に対する影響は殆ど無い。
(1) R 2 T 17 phase In the RTB-based alloy shown in FIG. 1, the R 2 T 17 phase has a composition width that stably exists in the rare earth-iron binary phase diagram from room temperature to a high temperature range. It is an intermetallic compound that does not have. At room temperature, it is an in-plane anisotropic soft magnetic phase, and if present in an RTB-based sintered magnet, it functions as a nucleation site for the reverse magnetic domain and causes a reduction in coercive force. However, even if a small amount of R 2 T 17 phase is present in the raw material alloy, it often disappears and becomes harmless in the sintering process. In addition, since the R 2 T 17 phase is an intermetallic compound that does not have spreadability, there is almost no influence on the crushing behavior in the magnet making process.
また、R2T17相はDy、Tbなどの重希土類の比率が多くなると、α−Feに代わって初晶として析出する。磁気的にソフトであるが、上記のとおりα−Feのような粉砕挙動への影響は少なく、SC法では大きな過冷却によってα−Fe同様に生成を防止することができる。 The R 2 T 17 phase precipitates as primary crystals instead of α-Fe when the ratio of heavy rare earths such as Dy and Tb increases. Although it is magnetically soft, as described above, it has little influence on the pulverization behavior as in α-Fe, and the SC method can prevent generation similarly to α-Fe by large supercooling.
(2)R2T17相の結晶粒径
図2は、図1に示した写真の拡大写真であり、図1において白線で囲んだ領域およびその周辺領域の写真である。図2において白線で囲んだ領域は、R2T17相の析出した領域を示している。
R−T−B系合金のR2T17相の短軸方向の平均結晶粒径は細かいほどよく、図1に示すR−T−B系合金では1〜2μm程度である。上記したようにR2T17相の結晶粒径が大きくなると、焼結時に消滅しにくくなり、焼結体に残存すると磁気特性の低下を招く。焼結温度の上昇、焼結時間の増加で消滅は可能であるが、主相結晶粒も粗大化するため、保磁力低下の原因となる。R2T17相の短軸方向の平均結晶粒径を3μm以下とすることで、本発明の効果をもたらすことが可能となる。
粗大なR2T17相の弊害は、焼結体への残存可能性、焼結温度上昇、時間増大によってもたらされる保磁力あるいは角型性の低下のほかに、配向率の低下となって現れる。配向率低下の原因は2つ考えられる。一つ目は、R2T17相が面内異方性であり、R2T14B相とは磁化も異なるために磁場中成型中のR2T14B相配向挙動に影響する可能性があること。2つ目は、焼結温度で小さなR2T17相は隣接するR2T14B相に合体するか、液相となるものと考えられる。しかし、R2T17相が主相R2T14B相の粒度程度まで大きくなると、消滅までに時間がかかり、消滅するまでの間に近傍のBリッチ相等と反応して、R2T14B相の核を生成、成長することが考えられる。ここで新規に核生成、成長したR2T14B相の結晶方位はランダムとなるため、全体としての配向率の低下をもたらす。
(2) Crystal grain size of R 2 T 17 phase FIG. 2 is an enlarged photograph of the photograph shown in FIG. 1, and is a photograph of a region surrounded by a white line in FIG. 1 and its peripheral region. In FIG. 2, a region surrounded by a white line indicates a region where the R 2 T 17 phase is precipitated.
The average crystal grain size in the minor axis direction of the R 2 T 17 phase of the R-T-B type alloy is better, and is about 1 to 2 μm in the R-T-B type alloy shown in FIG. As described above, when the crystal grain size of the R 2 T 17 phase is increased, it is difficult to disappear during sintering, and if it remains in the sintered body, the magnetic properties are deteriorated. Although extinction is possible by increasing the sintering temperature and increasing the sintering time, the main phase crystal grains are also coarsened, which causes a decrease in coercive force. By setting the average crystal grain size in the minor axis direction of the R 2 T 17 phase to 3 μm or less, the effects of the present invention can be brought about.
The adverse effects of the coarse R 2 T 17 phase appear as a decrease in orientation rate in addition to the possibility of remaining in the sintered body, an increase in sintering temperature, and a decrease in coercivity or squareness caused by an increase in time. . There are two possible causes for the decrease in the orientation rate. First, the R 2 T 17 phase is in-plane anisotropy, and the magnetization of the R 2 T 14 B phase is different from that of the R 2 T 14 B phase, which may affect the R 2 T 14 B phase orientation behavior during molding in a magnetic field. That there is. Second, it is considered that the small R 2 T 17 phase at the sintering temperature merges with the adjacent R 2 T 14 B phase or becomes a liquid phase. However, when R 2 T 17 phase is increased to a particle size of about of the main phase R 2 T 14 B phase, it takes time until extinction, reacts with the vicinity of the B-rich phase etc. until extinguished, R 2 T 14 It is conceivable to generate and grow B phase nuclei. Here, since the crystal orientation of the newly nucleated and grown R 2 T 14 B phase is random, the overall orientation ratio is lowered.
(3)R2T17相を含む領域の体積率
本発明では、図2に示すようにR2T17相が析出している領域を「R2T17相を含む領域」と定義する。この領域は、周囲の主に柱状晶の主相と、その長軸方向に伸長したRリッチ相からなる合金組織部分からは容易に区別することが出来る。
特にR2T17相の短軸方向の平均粒径が3μm以下の場合、上記した焼結性改善と磁気特性の向上の効果が認められ、その好ましい体積率は0.5〜10%である。短軸方向の平均粒径が3μm以下のR2T17相の体積率が0.5%よりも少ないと焼結性改善と磁気特性の向上の効果が少なくなる。また、短軸方向の平均粒径が3μm以下のR2T17相の体積率が10%よりも多いと粉砕時の組成、粒度変動が大きくなり、磁気特性の変動が大きくなるし、配向率低下による磁化減少も発生する。短軸方向の平均粒径が3μm以下のR2T17相のより好ましい体積率は1〜5%である。ただし、R2T17相の短軸方向の平均結晶粒径が5μmを超えるとR2T17相析出の効果は乏しくなり、そのようなR2T17相を含む領域の体積率が10%を超えると磁気特性の変動が大きくなる。また、R2T17相の短軸方向の平均粒径が10μm以上となりその体積率が10%以上となると磁気特性が明らかに低下する。また、短軸方向の平均粒径が10μm以上のR2T17相を含む領域のより好ましい体積率は5%以下である。
(3) Volume ratio of region including R 2 T 17 phase In the present invention, a region where R 2 T 17 phase is precipitated is defined as “region including R 2 T 17 phase” as shown in FIG. This region can be easily distinguished from an alloy structure portion composed of a surrounding main phase of mainly columnar crystals and an R-rich phase extending in the major axis direction.
In particular, when the average particle size in the minor axis direction of the R 2 T 17 phase is 3 μm or less, the above-described effects of improving the sinterability and improving the magnetic properties are recognized, and the preferred volume ratio is 0.5 to 10%. . When the volume ratio of the R 2 T 17 phase having an average particle size in the minor axis direction of 3 μm or less is less than 0.5%, the effects of improving the sinterability and improving the magnetic properties are reduced. Further, if the volume ratio of the R 2 T 17 phase having an average particle size in the minor axis direction of 3 μm or less is more than 10%, the composition and particle size fluctuations during pulverization increase, the magnetic characteristics fluctuate greatly, and the orientation ratio Magnetization decreases due to the decrease. A more preferable volume ratio of the R 2 T 17 phase having a minor axis direction average particle diameter of 3 μm or less is 1 to 5%. However, the effect of the average grain diameter in the short axis direction of the R 2 T 17 phase exceeds 5 [mu]
(4)R2T17相の安定性
本発明の好ましい実施態様におけるR−T−B系合金に存在するR2T17相は非平衡相(準安定相)として存在することを特徴とする。準安定相として存在する析出物は、本発明のR−T−B系合金を構成するR2T17相に限らず、エネルギー的に高い状態にあるため、拡散が十分機能する高温域、例えばその化合物の絶対温度で示される分解温度の1/2程度で消滅する。非平衡相として存在するR2T17相の消滅に要する時間は温度、R2T17相の大きさなどに依存するが、平衡状態で存在するR2T17相と比較して消滅は容易であり、磁石作製工程では数時間以内の一般的な焼結時間内で消滅する。
(4) R 2 T 17 phase present in the R-T-B-based alloy in the preferred embodiment of the Stability present invention R 2 T 17 phase is characterized by the presence as a non-equilibrium phase (metastable phase) . Precipitates present as a metastable phase are not limited to the R 2 T 17 phase constituting the R—T—B based alloy of the present invention, and are in a high energy state. It disappears at about 1/2 the decomposition temperature indicated by the absolute temperature of the compound. Although the time required for the disappearance of the R 2 T 17 phase existing as a non-equilibrium phase depends on the temperature, the size of the R 2 T 17 phase, etc., the disappearance is easier than the R 2 T 17 phase existing in the equilibrium state. In the magnet manufacturing process, it disappears within a general sintering time within several hours.
(5)Rリッチ相
本発明の好ましい実施態様におけるR−T−B系合金では、図2に示すようにR2T17相析出部位にRリッチ相が同程度の大きさで共存している。Rリッチ相は微粉砕前の水素解砕工程で水素を吸蔵、膨張、脆化し、微細なクラックの起点となる。R2T17相を含む領域は、Rリッチ相が共存していることにより、R2T14B相よりも細かく粉砕され、微細なR2T17相の効果がさらに高められる。また、Rリッチ相の分散性が良くなることで焼結性もさらに改善される。しかし、Rリッチ相の短軸方向の平均粒径が10μm程度に大きくなると、Rリッチ相だけからなる微粉が増加し、成型体中での均質性が低下し、焼結性の悪化をもたらす。また、焼結体中のRリッチ相の均質性も低下するため、保磁力が低下する。さらに、水素化されたRリッチ相は主相よりも脆いため、粉砕初期に短時間で微粉化され、粉砕時の組成、粒度変動を増大させ、特性変動の原因となる。したがって、Rリッチ相の短軸方向の平均粒径は、3μm以下とされることが望ましい。
(5) R-rich phase In the RTB-based alloy in a preferred embodiment of the present invention, as shown in FIG. 2, the R-rich phase coexists with the same size at the R 2 T 17 phase precipitation site. . The R-rich phase occludes, expands, and embrittles hydrogen in the hydrogen crushing step before pulverization, and becomes a starting point for fine cracks. The region containing the R 2 T 17 phase is pulverized more finely than the R 2 T 14 B phase due to the coexistence of the R rich phase, and the effect of the fine R 2 T 17 phase is further enhanced. In addition, the sinterability is further improved by improving the dispersibility of the R-rich phase. However, when the average particle size in the minor axis direction of the R-rich phase is increased to about 10 μm, fine powder composed only of the R-rich phase is increased, the homogeneity in the molded body is lowered, and the sinterability is deteriorated. Moreover, since the homogeneity of the R-rich phase in the sintered body is also lowered, the coercive force is lowered. Furthermore, since the hydrogenated R-rich phase is more fragile than the main phase, it is pulverized in a short time in the initial stage of pulverization, increasing the composition and particle size fluctuations during pulverization and causing characteristic fluctuations. Therefore, the average particle size in the minor axis direction of the R-rich phase is desirably 3 μm or less.
(6)ストリップキャスト法(SC法)
図1に示す本発明のR−T−B系合金は、ストリップキャスト法で製造された薄片である。本発明のR−T−B系合金は、例えば、以下に示すSC法によって鋳造することができる。
図3は、SC法によって鋳造するための装置を示した模式図である。通常、R−T−B系合金は、その活性な性質のため真空または不活性ガス雰囲気中で、耐火物ルツボ1を用いて溶解される。溶解されたR−T−B系合金の溶湯は1300〜1500℃で所定の時間保持された後、必要に応じて整流機構、スラグ除去機構を設けたタンディッシュ2を介して、内部を水冷された鋳造用回転ロール3(鋳造ロール)に供給される。溶湯の供給速度と鋳造ロールの回転数は、求める合金の厚さに応じて制御される。一般に鋳造ロールの回転数は、周速度にして0.5〜3m/s程度である。鋳造ロールの材質は、熱伝導性がよく入手が容易である点から銅、或いは銅合金が適当である。鋳造ロールの材質や鋳造ロールの表面状態によっては、鋳造ロールの表面にメタルが付着しやすいため、必要に応じて清掃装置を設置すると、鋳造されるR−T−B系合金の品質が安定する。鋳造ロール上で凝固した合金4はタンディッシュの反対側でロールから離脱し、捕集コンテナ5で回収される。捕集コンテナに加熱、冷却機構を設けることでRリッチ相の組織の状態を制御できることは、特開平10‐36949に記載されている。また、本発明において、ロール離脱後の冷却、保温は、Rリッチ相の分散状態を制御するために、幾つかの工程に分解して制御してもよい。具体的には例えば、最終的に捕集コンテナで収集する以前に加熱冷却機構を設けて、合金の加熱、保温、冷却を実施することで、合金の組織の大きさと均質性、粉砕後の微粉の粒度分布、金型への供給性、嵩密度、焼結時の縮率の調整、磁気特性の改善が可能である。
(6) Strip cast method (SC method)
The RTB-based alloy of the present invention shown in FIG. 1 is a flake produced by a strip cast method. The RTB-based alloy of the present invention can be cast, for example, by the SC method shown below.
FIG. 3 is a schematic view showing an apparatus for casting by the SC method. Usually, the RTB-based alloy is melted with the refractory crucible 1 in a vacuum or an inert gas atmosphere because of its active properties. The molten RTB-based alloy melt is maintained at 1300-1500 ° C. for a predetermined time, and then the interior is cooled with water through a
(7)合金の厚さ
本発明のR−T−B系合金は、平均厚さ0.1mm以上1mm以下の薄片とするのが好ましい。薄片の平均厚さが0.1mmより薄いと凝固速度が過度に増加し、Rリッチ相の分散が細かくなりすぎる。また、薄片の平均厚さが1mmより厚いと凝固速度低下によるRリッチ相の分散性の低下、α−Feの析出、R2T17相の粗大化などを招く。
(7) Thickness of alloy The RTB-based alloy of the present invention is preferably a flake having an average thickness of 0.1 mm to 1 mm. If the average thickness of the flakes is less than 0.1 mm, the solidification rate increases excessively and the dispersion of the R-rich phase becomes too fine. On the other hand, when the average thickness of the flakes is greater than 1 mm, the R-rich phase dispersibility is lowered due to a decrease in the solidification rate, α-Fe is precipitated, and the R 2 T 17 phase is coarsened.
(8)鋳造ロールへの平均溶湯供給速度
鋳造ロールへの平均溶湯供給速度は、幅1cmあたり毎秒10g以上とすることができ、幅1cmあたり毎秒20g以上とすることが好ましく、幅1cmあたり毎秒25g以上とすることがさらに好ましく、さらに好ましくは毎秒100g以下とする。溶湯の供給速度が毎秒10gよりも低下すると、溶湯自身粘性、鋳造ロール表面との濡れ性のため、溶湯がロール上に薄く濡れ広がらず、収縮し、合金品質の変動をもたらす。また、鋳造ロールへの平均溶湯供給速度が幅1cmあたり毎秒100gを越えると、鋳造ロール上での冷却が不十分となり、組織の粗大化、α−Feの析出などが発生する。タンディッシュに整流機構を設けることである程度制御することができる。
本発明では、ロール表面で溶湯が安定して薄く濡れ広がるために必要な最低の溶湯供給速度よりも供給速度を高めた方が目的とするR2T17相を含む領域を有する合金を容易に生成できることを確認している。
(8) Average molten metal supply speed to the casting roll The average molten metal supply speed to the casting roll can be 10 g or more per 1 cm width, preferably 20 g or more per 1 cm width, and 25 g per 1 cm width. More preferably, it is 100 g or less per second. When the supply rate of the molten metal is lower than 10 g per second, the molten metal does not spread thinly and spread on the roll due to its own viscosity and wettability with the casting roll surface, resulting in fluctuations in alloy quality. On the other hand, if the average molten metal supply speed to the casting roll exceeds 100 g per 1 cm width, cooling on the casting roll becomes insufficient, resulting in coarsening of the structure, precipitation of α-Fe, and the like. It can be controlled to some extent by providing a rectifying mechanism in the tundish.
In the present invention, an alloy having a region including the R 2 T 17 phase, which is intended to be higher than the minimum melt supply rate necessary for the molten metal to stably spread thinly on the roll surface, is easily obtained. It is confirmed that it can be generated.
(9)鋳造ロール上でのR−T−B系合金の平均冷却速度
溶湯の鋳造ロール接触直前の温度と鋳造ロール離脱時の温度との差を、鋳造ロール上に接触している時間で除した値である。鋳造ロール上でのR−T−B系合金の平均冷却速度は、毎秒500〜3000℃とすることが望ましく、毎秒500℃未満では、冷却速度不足でα−Feの析出、Rリッチ相、R2T17相などの組織の粗大化をもたらす。一方、毎秒3000℃よりも大きくなると、過冷却が大きくなりすぎて本発明の特徴であるR2T17相を含む領域の生成量が低下する。
(9) Average cooling rate of the RTB-based alloy on the casting roll The difference between the temperature immediately before the molten metal touches the casting roll and the temperature when the casting roll leaves is divided by the time of contact with the casting roll. It is the value. The average cooling rate of the R-T-B system alloy on the casting roll is desirably 500 to 3000 ° C. per second. If the cooling rate is less than 500 ° C. per second, α-Fe precipitates, R rich phase, R due to insufficient cooling rate. It causes coarsening of the structure such as 2 T 17 phase. On the other hand, when the temperature is higher than 3000 ° C. per second, the supercooling becomes excessively large, and the generation amount of the region including the R 2 T 17 phase, which is a feature of the present invention, decreases.
(10)鋳造ロールを離脱するR−T−B系合金の平均温度
鋳造ロールを離脱する際のR−T−B系合金の平均温度は、鋳造ロールとの接触程度の微妙な相違、厚さのゆらぎなどにより微妙に変化する。合金が鋳造ロールを離脱する平均温度は、例えば鋳造開始時から終了時まで放射温度計で合金表面を幅方向に走査して測定し、得られた測定値を平均化することで得られる。
合金が鋳造ロールを離脱する平均温度は、溶湯のR−T−B系合金のR2T14B相の平衡状態での凝固温度よりも100〜400℃低いことが好ましく、100〜300℃低いことがより好ましい。R2T14B相の溶解温度は、Nd−Fe−Bの3元系では1150℃とされているが、Ndの他の希土類元素への置換、Feの他の遷移元素への置換、その他の添加元素の種類、添加量に応じて変化する。鋳造ロールを離脱するR−T−B系合金の平均温度と、R−T−B系合金のR2T14B相の平衡状態での凝固温度との差が、100℃未満である場合は、冷却速度不足に相当する。一方、その差が400℃を超える場合は、冷却速度が速すぎるため、溶湯の過冷却が大きくなりすぎる。溶湯の過冷却の程度は合金内で一様ではなく、鋳造ロールとの接触程度、鋳造ロールとの接触部からの距離に応じて変化する。
(10) Average temperature of R-T-B system alloy leaving the casting roll The average temperature of the R-T-B system alloy when releasing the casting roll is a slight difference in the degree of contact with the casting roll, the thickness It changes slightly due to fluctuations. The average temperature at which the alloy leaves the casting roll can be obtained by, for example, scanning the surface of the alloy in the width direction with a radiation thermometer from the start to the end of casting, and averaging the obtained measurement values.
The average temperature at which the alloy leaves the casting roll is preferably 100 to 400 ° C lower than the solidification temperature in the R 2 T 14 B phase equilibrium state of the R-T-B alloy of the molten metal, and is 100 to 300 ° C lower. It is more preferable. The melting temperature of the R 2 T 14 B phase is 1150 ° C. in the Nd—Fe—B ternary system, but substitution of Nd with other rare earth elements, substitution of Fe with other transition elements, etc. Varies depending on the type and amount of additive element added. When the difference between the average temperature of the R-T-B type alloy leaving the casting roll and the solidification temperature in the equilibrium state of the R 2 T 14 B phase of the R-T-B type alloy is less than 100 ° C. Corresponds to insufficient cooling rate. On the other hand, when the difference exceeds 400 ° C., the cooling rate is too high, so that the supercooling of the molten metal becomes too large. The degree of supercooling of the molten metal is not uniform within the alloy, and varies depending on the degree of contact with the casting roll and the distance from the contact portion with the casting roll.
鋳造ロール離脱時の合金温度は、上述したように、同一鋳造工程(タップ)内でも変動するが、その変化幅が大きいと、組織、品質の変動をもたらす。そのため、タップ内での温度変化幅は、200℃よりも小さいことが適当であり、好ましくは100℃以下、さらに好ましくは50℃であり、さらにより好ましくは20℃である。 As described above, the alloy temperature at the time of detachment from the casting roll fluctuates even within the same casting process (tap). Therefore, it is appropriate that the temperature change width in the tap is smaller than 200 ° C., preferably 100 ° C. or less, more preferably 50 ° C., and still more preferably 20 ° C.
また、鋳造ロールを離脱するR−T−B系合金の平均温度が、溶湯の合金組成でのR2T14B相の平衡状態における凝固温度よりも300℃以上低くなると、微細なR2T17相の析出量が減少し、磁気特性改善効果が乏しくなる。したがって、R2T17相の析出が過冷度の比較的小さな部分で発生しているものと推定できる。また、希土類中の重希土類が占める割合が低下すると、R2T17相の析出量も低下し、存在を確認できなくなるが、磁気特性向上の効果は持続する。これは、凝固速度が適度に遅くなることでR2T14B相の結晶欠陥が減少し、安定性が向上したためと推定している。
従来、ストリップキャスト法では、結晶粒が過度に微細化されない範囲内であれば、冷却速度が大きくても問題ないものと解釈されてきた。例えば特開平08−269643では、ロール上の冷却を一次冷却と称して、2×103℃/sec〜7×103℃/sec冷却速度にて鋳片温度700℃〜1000℃まで冷却することが好ましいとしている。
Further, when the average temperature of the R-T-B type alloy that leaves the casting roll becomes 300 ° C. or more lower than the solidification temperature in the equilibrium state of the R 2 T 14 B phase in the alloy composition of the molten metal, the fine R 2 T The amount of precipitated 17 phase is reduced, and the effect of improving magnetic properties becomes poor. Therefore, it can be presumed that the precipitation of the R 2 T 17 phase occurs in a portion with a relatively small degree of supercooling. Further, when the ratio of heavy rare earth in the rare earth decreases, the precipitation amount of the R 2 T 17 phase also decreases, and the presence cannot be confirmed, but the effect of improving the magnetic characteristics continues. This is presumed to be because the crystal defects in the R 2 T 14 B phase are reduced and the stability is improved by appropriately slowing the solidification rate.
Conventionally, in the strip casting method, it has been interpreted that there is no problem even if the cooling rate is high as long as the crystal grains are not excessively refined. For example, in Japanese Patent Laid-Open No. 08-269643, the cooling on the roll is referred to as primary cooling, and the slab temperature is cooled to 700 ° C. to 1000 ° C. at a cooling rate of 2 × 10 3 ° C./sec to 7 × 10 3 ° C./sec. Is preferred.
(11)R−T−B系希土類永久磁石
本発明のR−T−B系希土類永久磁石を作製するには、まず、本発明のR−T−B系合金からR−T−B系希土類永久磁石用微粉を作製する。本発明のR−T−B系希土類永久磁石用微粉は、例えば、本発明のR−T−B系合金からなる薄片を水素解砕したのち、ジェットミルなどの粉砕機を用いて微粉砕する方法によって得られる。ここでの水素解砕は、例えば、所定の圧力の水素雰囲気中に保持する水素吸蔵工程をあらかじめ行なうことが望ましい。
次に、得られたR−T−B系希土類永久磁石用微粉を、例えば、横磁場中成型機などを用いてプレス成型して、焼結させることによりR−T−B系希土類永久磁石が得られる。
(11) R-T-B Rare Earth Permanent Magnet To produce the R-T-B rare earth permanent magnet of the present invention, first, the R-T-B rare earth is produced from the R-T-B alloy of the present invention. A permanent magnet fine powder is prepared. The fine powder for R-T-B system rare earth permanent magnet of the present invention is, for example, pulverized by using a pulverizer such as a jet mill after hydrogen crushing a flake made of the R-T-B system alloy of the present invention. Obtained by the method. In the hydrogen crushing here, for example, it is desirable to perform in advance a hydrogen occlusion process for holding in a hydrogen atmosphere at a predetermined pressure.
Next, the obtained RTB-based rare earth permanent magnet fine powder is press-molded using, for example, a transverse magnetic field molding machine and sintered to obtain an RTB-based rare earth permanent magnet. can get.
本発明のR−T−B系合金では、微細なR2T17相や、R2T17相と共存する微細なRリッチ相が、焼結時に速やかに液相となり、焼結性、Rリッチ相の分散性向上に寄与するので、保磁力の高い磁気特性に優れた希土類永久磁石を実現できる。 In the RTB-based alloy of the present invention, the fine R 2 T 17 phase and the fine R-rich phase coexisting with the R 2 T 17 phase quickly become a liquid phase during sintering, and the sinterability, R Since it contributes to the improvement of the dispersibility of the rich phase, a rare earth permanent magnet having a high coercive force and excellent magnetic properties can be realized.
R2T17相を含む合金としては、例えば、R2T14B相を主相とするSC法による合金粉末に、R2T17相を含むSC法による合金粉末を混合してR2T14B相の体積率を増加したものがある(例えば、特開平7−45413参照)。しかし、特開平7−45413に記載のR2T17相を含む合金が、B量を減少して平衡状態でR2T17相を析出する組成としていることは、請求項、実施例の記載から明らかである。この場合、合金中のR2T17相の体積率が増加し、合金中のR2T17相の結晶粒径も大きくなる。したがって、焼結時にR2T17相を消滅させるために、R2T17相を含む合金粉末の粒度を細かくする必要がある。粒度を細かくしないと、R2T17相の消滅に要する十分な拡散を得るために、焼結温度の上昇、焼結時間の延長が必要となり、焼結体組織を粗大化させるので、保磁力低下の原因となる。また、特開平7−45413に記載のR2T17相は、常温からその分解温度まで安定に存在することは組成的に容易に類推できる。さらに、特開平7−45413では、R2T17相の添加が液相の増加をもたらすとしているが、液相となるまでの速度論的な議論には触れていない。
これに対し、本発明のR−T−B系合金を構成するR2T17相は、上述したように非平衡相として析出している。非平衡相として存在するR2T17相は、平衡状態で存在するR2T17相と比較して容易に消滅するので、磁石作製工程では一般的である数時間の焼結時間で消滅する。
As an alloy containing R 2 T 17 phase, for example, the alloy powder by the SC method that the main phase of R 2 T 14 B phase, a mixture of alloy powder by the SC method comprising R 2 T 17 phase R 2 T 14 Some have increased the volume fraction of the B phase (see, for example, JP-A-7-45413). However, the alloy containing the R 2 T 17 phase described in JP-A-7-45413 has a composition in which the B amount is reduced and the R 2 T 17 phase is precipitated in an equilibrium state. It is clear from In this case, the volume fraction of the R 2 T 17 phase in the alloy increases, and the crystal grain size of the R 2 T 17 phase in the alloy also increases. Therefore, in order to eliminate the R 2 T 17 phase during sintering, it is necessary to make the particle size of the alloy powder containing the R 2 T 17 phase fine. If the particle size is not made fine, in order to obtain sufficient diffusion required for the disappearance of the R 2 T 17 phase, it is necessary to increase the sintering temperature and extend the sintering time, and the sintered body structure is coarsened. Causes a drop. Further, it can be easily estimated in terms of composition that the R 2 T 17 phase described in JP-A-7-45413 exists stably from room temperature to its decomposition temperature. Further, in JP-A-7-45413, the addition of the R 2 T 17 phase causes an increase in the liquid phase, but it does not touch on the kinetic discussion until the liquid phase is reached.
On the other hand, the R 2 T 17 phase constituting the RTB-based alloy of the present invention is precipitated as a non-equilibrium phase as described above. The R 2 T 17 phase that exists as a non-equilibrium phase disappears more easily than the R 2 T 17 phase that exists in an equilibrium state, and thus disappears in a sintering time of several hours, which is common in magnet manufacturing processes. .
また、上述した実施例においては、R2T17相が析出する組成のR−T−B系合金を製造する方法について説明したが、本発明のR−T−B系合金薄片の製造方法は、R2T17相が析出する組成のR−T−B系合金を製造する方法に限定されるものではなく、本発明のR−T−B系合金薄片の製造方法によりR2T17相が析出しない組成のR−T−B系合金を製造してもよい。
この場合においても上述したR−T−B系合金薄片の製造方法によりR−T−B系合金を製造することで、後述する実施例に示すように、保磁力の大きいR−T−B系合金が得られる。
この原因は、上述したR−T−B系合金薄片の製造方法により作製した場合、結晶欠陥が少ないものとなることが一因ではないかと推定している。
Further, in the above embodiment has been described a method for producing an R-T-B type alloy of the composition R 2 T 17 phase is precipitated, method for producing R-T-B type alloy flake of the present invention , it is not limited to a method of producing an R-T-B type alloy of the composition R 2 T 17 phase is precipitated, by the manufacturing method of the R-T-B type alloy flake of the
Even in this case, the RTB system having a large coercive force is produced by manufacturing the RTB system alloy by the above-described manufacturing method of the RTB system alloy flakes, as shown in the examples described later. An alloy is obtained.
This is presumed to be caused by the fact that, when produced by the above-described method for producing an RTB-based alloy flake, the number of crystal defects is small.
(実施例1)
合金組成が重量比で、Nd22%、Dy9%、B0.95%、Co1%、Al0.3%、Cu0.1%、残部Feになるように、金属ネオジウム、金属ディスプロシウム、フェロボロン、コバルト、アルミニウム、銅、鉄を配合した原料を、アルミナ坩堝を使用して、アルゴンガスで1気圧の雰囲気中で、高周波溶解炉で溶解し、溶湯をSC法にて鋳造して、合金薄片を作製した。
Example 1
Metal neodymium, metal dysprosium, ferroboron, cobalt, so that the alloy composition is Nd22%, Dy9%, B0.95%, Co1%, Al0.3%, Cu0.1%, balance Fe. Raw materials containing aluminum, copper, and iron were melted in a high-frequency melting furnace in an atmosphere of 1 atm with argon gas using an alumina crucible, and the molten metal was cast by the SC method to produce alloy flakes. .
鋳造用回転ロールの直径は600mm、材質は銅に微量のCr、Zrを混合した合金であり、内部は水冷されており、鋳造時のロールの周速度は1.3m/sで、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒28g、合金が鋳造ロールを離脱する平均温度は放射温度計で測定したところ890℃であった。その測定値の最高温度と最低温度との相違は35℃であった。本合金のR2T14B相の融点が約1170℃であることから、平均離脱温度との差は280℃である。また、鋳造ロール上でのR−T−B系合金の平均冷却速度は、980℃/秒であり、平均厚さは0.29mmであった。また、ロールを離脱した合金薄片を収容する回収コンテナ内は、冷却用Arガスを流通させた仕切り板を有する。合金薄片の製造条件を表1に示す。 The diameter of the casting roll is 600 mm, the material is an alloy in which a small amount of Cr and Zr is mixed with copper, the inside is water-cooled, and the peripheral speed of the roll during casting is 1.3 m / s. The average molten metal feed rate was 28 g per second per 1 cm width, and the average temperature at which the alloy separated from the casting roll was 890 ° C. as measured by a radiation thermometer. The difference between the maximum temperature and the minimum temperature of the measured value was 35 ° C. Since the melting point of the R 2 T 14 B phase of this alloy is about 1170 ° C., the difference from the average desorption temperature is 280 ° C. Moreover, the average cooling rate of the R-T-B type alloy on the casting roll was 980 ° C./second, and the average thickness was 0.29 mm. Moreover, the inside of the collection container that accommodates the alloy flakes from which the roll has been separated has a partition plate through which cooling Ar gas is circulated. The production conditions for the alloy flakes are shown in Table 1.
なお、表1において「供給速度」とは、鋳造ロールへの平均溶湯供給速度であり、幅1cm、1秒あたりの供給量のことであり、「冷却速度」とは、鋳造ロール上でのR−T−B系合金の平均冷却速度のことであり、「凝固温度」とは、R−T−B系合金のR2T14B相の平衡状態での凝固温度(融点)のことであり、「平均温度差」とは、「凝固温度」と鋳造ロールを離脱するR−T−B系合金の平均温度との温度差のことであり、「平均厚さ」とは、ストリップキャスト法で製造された薄片の平均厚さのことである。 In Table 1, “feed rate” is an average molten metal feed rate to the casting roll, which is a feed rate per 1 cm width and 1 second, and “cooling rate” is R on the casting roll. and that the average cooling rate -T-B based alloy, a "solidification temperature" refers to a solidification temperature at equilibrium of R 2 T 14 B phase of the R-T-B type alloy (melting point) The "average temperature difference" is the temperature difference between the "solidification temperature" and the average temperature of the R-T-B system alloy that leaves the casting roll, and the "average thickness" is the strip casting method. It is the average thickness of the manufactured flakes.
「合金薄片の評価」
得られた合金薄片を10枚埋め込み、研摩した後、走査型電子顕微鏡(SEM)で各合金薄片について反射電子線像(BEI)を倍率350倍で撮影した。撮影した写真のR2T17相を含む領域およびRリッチ相を含む領域中のR2T17相とRリッチ相それぞれの短軸方向の平均結晶粒径を画像解析装置で解析した。また、撮影した写真のR2T17相を含む領域およびRリッチ相を含む領域の写真を切断し重量比から体積率を算出した。ここで、R2T17相を含む領域の体積率については、その領域中のR2T17相の平均粒径が3μm以下、平均粒径が5μm以上のものについてそれぞれ算出した。合金薄片の各組織の平均粒径および体積率を表1に示す。
"Evaluation of alloy flakes"
After ten of the obtained alloy flakes were embedded and polished, a backscattered electron beam image (BEI) of each alloy flake was taken at a magnification of 350 times with a scanning electron microscope (SEM). The average crystal grain size of the R 2 T 17 phase and the R-rich phase, respectively in the minor axis direction in the region including the region and R-rich phase containing the photos taken of R 2 T 17 phase was analyzed with an image analyzer. Moreover, to calculate the volume ratio from cutting the photograph region including the region and R-rich phase containing the R 2 T 17 phase pictures taken by weight. Here, the volume ratio of the region including the R 2 T 17 phase, the average grain size of R 2 T 17 phase in regions 3μm or less, average particle size was calculated respectively for more than 5 [mu] m. Table 1 shows the average particle diameter and volume ratio of each structure of the alloy flakes.
なお、表1において、平均粒径1および体積率1とは、短軸方向の平均粒径が3μm以下のR2T17相の平均粒径およびそのR2T17相を含む領域の体積率を示し、平均粒径2および体積率2とは、短軸方向の平均粒径が5μm以上のR2T17相を含む領域の平均粒径およびそのR2T17相を含む領域の体積率を示し、平均粒径3および体積率3とは、短軸方向の平均粒径が3μm以下のR2T17相を含む領域中に存在する短軸方向の平均粒径が3μm以下のRリッチ相の平均粒径およびその領域の体積率を示す。
In Table 1, the average particle diameter 1 and the volume ratio 1 mean the average particle diameter of the R 2 T 17 phase whose minor axis direction average particle diameter is 3 μm or less and the volume ratio of the region including the R 2 T 17 phase. The
さらに、得られた合金薄片を1000℃で2時間熱処理した後、走査型電子顕微鏡(SEM)で各合金薄片について反射電子線像(BEI)を倍率350倍で撮影した。その結果、R2T17相は完全に消滅していた。このことから熱処理前の合金薄片中のR2T17相は準安定相であったと言える。なお、実施例1の合金組成ではR2T17相がR2T14B相の融点である1170℃以下では安定に存在しないことは、組成的にも明らかである。 Furthermore, after heat-treating the obtained alloy flakes at 1000 ° C. for 2 hours, a reflected electron beam image (BEI) of each alloy flake was photographed at a magnification of 350 times with a scanning electron microscope (SEM). As a result, the R 2 T 17 phase was completely disappeared. From this, it can be said that the R 2 T 17 phase in the alloy flakes before the heat treatment was a metastable phase. In the alloy composition of Example 1, the R 2 T 17 phase does not exist stably at 1170 ° C. or lower, which is the melting point of the R 2 T 14 B phase.
(比較例1)
実施例1と同様の組成に原料を配合し、実施例1と同様にして溶解およびSC法による鋳造を実施した。但し、鋳造時のロールの周速度は0.8m/sで、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒13.0g、合金が鋳造ロールを離脱する平均温度は放射温度計で測定したところ630℃であった。その測定値の最高温度と最低温度との相違は160℃であった。本合金のR2T14B相の融点が約1170℃であることから、平均離脱温度との差は540℃である。また、鋳造ロール上でのR−T−B系合金の平均冷却速度は、920℃/秒であり、平均厚さは0.23mmであった。
得られた合金薄片を実施例1と同様に評価した結果を表1に示す。なお、比較例1では、R2T17相を含む領域は確認できなかった。
(Comparative Example 1)
Raw materials were blended in the same composition as in Example 1, and dissolution and casting by the SC method were performed in the same manner as in Example 1. However, the peripheral speed of the roll during casting was 0.8 m / s, the average molten metal supply speed to the cast roll was 13.0 g per second per 1 cm width, and the average temperature at which the alloy separated from the cast roll was measured with a radiation thermometer. However, it was 630 ° C. The difference between the maximum temperature and the minimum temperature of the measured value was 160 ° C. Since the melting point of the R 2 T 14 B phase of this alloy is about 1170 ° C., the difference from the average desorption temperature is 540 ° C. Moreover, the average cooling rate of the R-T-B type alloy on the casting roll was 920 ° C./second, and the average thickness was 0.23 mm.
Table 1 shows the results of evaluating the obtained alloy flakes in the same manner as in Example 1. In Comparative Example 1, a region containing the R 2 T 17 phase could not be confirmed.
(実施例2)
合金組成が重量比で、Nd26.0%、Pr5.0%、B0.95%、Co1.0%、Al0.3%、Cu0.1%、残部Feになるように、金属ネオジウム、金属プラセオジム、フェロボロン、コバルト、アルミニウム、銅、鉄を配合し、実施例1と同様にして溶解およびSC法による鋳造を実施した。但し、鋳造時のロールの周速度は1.3m/sで、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒28g、合金が鋳造ロールを離脱する平均温度は放射温度計で測定したところ850℃であった。その測定値の最高温度と最低温度との相違は20℃であった。本合金のR2T14B相の融点が約1140℃であることから、平均離脱温度との差は290℃である。また、鋳造ロール上でのR−T−B系合金の平均冷却速度は、1060℃/秒であり、平均厚さは0.29mmであった。
得られた合金薄片を実施例1と同様に評価した結果を表1に示す。なお、実施例2のR−T−B系合金の組成は、R2T17相が析出しない組成であり、実施例2では、R2T17相を含む領域は確認できなかった。
(Example 2)
Metal neodymium, metal praseodymium, so that the alloy composition is Nd 26.0%, Pr 5.0%, B 0.95%, Co 1.0%, Al 0.3%, Cu 0.1%, balance Fe Ferroboron, cobalt, aluminum, copper, and iron were blended, and dissolution and casting by the SC method were performed in the same manner as in Example 1. However, the peripheral speed of the roll during casting was 1.3 m / s, the average molten metal supply speed to the cast roll was 28 g per second per 1 cm width, and the average temperature at which the alloy separated from the cast roll was measured with a radiation thermometer 850. ° C. The difference between the maximum temperature and the minimum temperature of the measured value was 20 ° C. Since the melting point of the R 2 T 14 B phase of this alloy is about 1140 ° C., the difference from the average desorption temperature is 290 ° C. Moreover, the average cooling rate of the RTB-based alloy on the casting roll was 1060 ° C./second, and the average thickness was 0.29 mm.
Table 1 shows the results of evaluating the obtained alloy flakes in the same manner as in Example 1. In addition, the composition of the RTB-based alloy of Example 2 is a composition in which the R 2 T 17 phase does not precipitate, and in Example 2, a region including the R 2 T 17 phase could not be confirmed.
(比較例2)
実施例2と同様の組成に原料を配合し、実施例1と同様にして溶解およびSC法による鋳造を実施した。但し、鋳造時のロールの周速度は0.8m/sで、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒13.0g、合金が鋳造ロールを離脱する平均温度は放射温度計で測定したところ620℃であった。その測定値の最高温度と最低温度との相違は180℃であった。本合金のR2T14B相の融点が約1140℃であることから、平均離脱温度との差は520℃である。また、鋳造ロール上でのR−T−B系合金の平均冷却速度は、930℃/秒であり、平均厚さは0.23mmであった。
得られた合金薄片を実施例1と同様に評価した結果を表1に示す。なお、比較例2では、R2T17相を含む領域は確認できなかった。
(Comparative Example 2)
Raw materials were blended in the same composition as in Example 2, and dissolution and casting by the SC method were performed in the same manner as in Example 1. However, the peripheral speed of the roll during casting was 0.8 m / s, the average molten metal supply speed to the cast roll was 13.0 g per second per 1 cm width, and the average temperature at which the alloy separated from the cast roll was measured with a radiation thermometer. However, it was 620 ° C. The difference between the maximum temperature and the minimum temperature of the measured value was 180 ° C. Since the melting point of the R 2 T 14 B phase of this alloy is about 1140 ° C., the difference from the average desorption temperature is 520 ° C. Moreover, the average cooling rate of the R-T-B type alloy on the casting roll was 930 ° C./second, and the average thickness was 0.23 mm.
Table 1 shows the results of evaluating the obtained alloy flakes in the same manner as in Example 1. In Comparative Example 2, a region containing the R 2 T 17 phase could not be confirmed.
(比較例3)
実施例1と同様の組成に原料を配合し、実施例1と同様にして溶解およびSC法による鋳造を実施した。但し、鋳造時のロールの周速度は0.8m/sで、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒70g、合金が鋳造ロールを離脱する平均温度は放射温度計で測定したところ1000℃であった。その測定値の最高温度と最低温度との相違は250℃であった。本合金のR2T14B相の融点が約1170℃であることから、平均離脱温度との差は170℃である。また、鋳造ロール上でのR−T−B系合金の平均冷却速度は、290℃/秒であり、平均厚さは1.2mmであった。
得られた合金薄片を実施例1と同様に評価した結果を表1に示す。また、比較例3では、実施例1と同様に1000℃で2時間熱処理した後でも若干量のR2T17相を含む領域の存在が確認された。この原因は、熱処理前に存在するR2T17相の粒径が大きいために、消滅するのに必要な時間が長いためと言える。なお、比較例3は、実験例1と同様、R2T14B相の融点である1170℃以下の温度では、R2T17相が安定に存在しない組成である。
(Comparative Example 3)
Raw materials were blended in the same composition as in Example 1, and dissolution and casting by the SC method were performed in the same manner as in Example 1. However, the peripheral speed of the roll during casting was 0.8 m / s, the average molten metal supply speed to the casting roll was 70 g per second per 1 cm width, and the average temperature at which the alloy separated from the casting roll was measured with a radiation thermometer. ° C. The difference between the maximum temperature and the minimum temperature of the measured value was 250 ° C. Since the melting point of the R 2 T 14 B phase of this alloy is about 1170 ° C., the difference from the average desorption temperature is 170 ° C. Moreover, the average cooling rate of the RTB-based alloy on the casting roll was 290 ° C./second, and the average thickness was 1.2 mm.
Table 1 shows the results of evaluating the obtained alloy flakes in the same manner as in Example 1. In Comparative Example 3, the presence of a region containing a slight amount of R 2 T 17 phase was confirmed even after heat treatment at 1000 ° C. for 2 hours, as in Example 1. This is because the R 2 T 17 phase existing before the heat treatment has a large particle size, and thus it takes a long time to disappear. As in Experimental Example 1, Comparative Example 3 has a composition in which the R 2 T 17 phase does not exist stably at a temperature of 1170 ° C. or lower, which is the melting point of the R 2 T 14 B phase.
次に焼結磁石を作製した実施例を説明する。
(実施例3)
実施例1で得られた合金薄片を水素解砕し、ジェットミルで微粉砕した。水素解砕工程の前工程である水素吸蔵工程の条件は、100%水素雰囲気、2気圧で1時間保持とした。水素吸蔵反応開始時の金属片の温度は25℃であった。また後工程である脱水素工程の条件は、0.133hPaの真空中で、500℃で1時間保持とした。この粉末に、ステアリン酸亜鉛粉末を0.07質量%添加し、100%窒素雰囲気中でV型ブレンダーで十分混合した後、ジェットミル装置で微粉砕した。粉砕時の雰囲気は、4000ppmの酸素を混合した窒素雰囲気中とした。その後、再度、100%窒素雰囲気中でV型ブレンダーで十分混合した。得られた粉体の酸素濃度は2500ppmで、粉体の炭素濃度の分析から、粉体に混合されているステアリン酸亜鉛粉末は0.05質量%であると計算された。
Next, an example in which a sintered magnet was produced will be described.
(Example 3)
The alloy flakes obtained in Example 1 were cracked with hydrogen and pulverized with a jet mill. The conditions of the hydrogen occlusion process, which is the previous process of the hydrogen crushing process, were maintained at 100% hydrogen atmosphere and 2 atm for 1 hour. The temperature of the metal piece at the start of the hydrogen storage reaction was 25 ° C. The conditions for the dehydrogenation process, which is a subsequent process, were maintained at 500 ° C. for 1 hour in a vacuum of 0.133 hPa. To this powder, 0.07% by mass of zinc stearate powder was added, thoroughly mixed with a V-type blender in a 100% nitrogen atmosphere, and then finely pulverized with a jet mill apparatus. The atmosphere during pulverization was a nitrogen atmosphere mixed with 4000 ppm of oxygen. Thereafter, the mixture was sufficiently mixed again with a V-type blender in a 100% nitrogen atmosphere. The oxygen concentration of the obtained powder was 2500 ppm, and it was calculated from the analysis of the carbon concentration of the powder that the zinc stearate powder mixed in the powder was 0.05% by mass.
次に、得られた粉体を100%窒素雰囲気中で横磁場中成型機でプレス成型した。成型圧は0.8t/cm2であり、金型のキャビティ内の磁界は15kOeとした。得られた成型体を、1.33×10-5hPaの真空中、500℃で1時間保持し、次いで1.33×10-5hPaの真空中、800℃で2時間保持した後、さらに1.33×10-5hPaの真空中、1030℃で2時間保持して焼結させた。焼結密度は7.7g/cm3以上であり十分な大きさの密度となった。さらに、この焼結体をアルゴン雰囲気中、530℃で1時間熱処理し、焼結磁石を作製した。 Next, the obtained powder was press-molded in a transverse magnetic field molding machine in a 100% nitrogen atmosphere. The molding pressure was 0.8 t / cm 2 and the magnetic field in the mold cavity was 15 kOe. The resulting molded body in a vacuum of 1.33 × 10 -5 hPa, and held 1 hour at 500 ° C., and then in a vacuum of 1.33 × 10 -5 hPa, after maintaining for 2 hours at 800 ° C., further Sintering was performed in a vacuum of 1.33 × 10 −5 hPa at 1030 ° C. for 2 hours. The sintered density was 7.7 g / cm 3 or more, which was a sufficiently large density. Furthermore, this sintered body was heat-treated at 530 ° C. for 1 hour in an argon atmosphere to produce a sintered magnet.
得られた実施例3の焼結磁石の磁気特性を直流BHカーブトレーサーで測定した。その結果を表2に示す。 The magnetic characteristics of the obtained sintered magnet of Example 3 were measured with a direct current BH curve tracer. The results are shown in Table 2.
なお、表2において「Br」とは、残留磁束密度であり、「iHc」とは、保持力であり、「(BH)max」とは、最大磁気エネルギー積であり、「SQ」とは、角型性であり、磁化が飽和磁化の90%となる外部磁場の値をiHcで割った値を%表示したものである。 In Table 2, “Br” is the residual magnetic flux density, “iHc” is the coercive force, “(BH) max” is the maximum magnetic energy product, and “SQ” A value obtained by dividing the value of the external magnetic field at which the magnetization is 90% of the saturation magnetization by iHc is displayed in%.
(比較例4)
比較例1で得られた合金薄片を、実施例3と同様の方法で焼結磁石を作製した。そして、得られた比較例4の焼結磁石の磁気特性を直流BHカーブトレーサーで測定した。その結果を表2に示す。
(Comparative Example 4)
A sintered magnet was produced from the alloy flakes obtained in Comparative Example 1 in the same manner as in Example 3. And the magnetic characteristic of the obtained sintered magnet of the comparative example 4 was measured with the direct-current BH curve tracer. The results are shown in Table 2.
(実施例4)
実施例2で得られた合金薄片を、実施例3と同様の方法で焼結磁石を作製した。そして、得られた実施例4の焼結磁石の磁気特性を直流BHカーブトレーサーで測定した。その結果を表2に示す。
Example 4
A sintered magnet was produced from the alloy flakes obtained in Example 2 in the same manner as in Example 3. And the magnetic characteristic of the obtained sintered magnet of Example 4 was measured with the direct-current BH curve tracer. The results are shown in Table 2.
(比較例5)
比較例2で得られた合金薄片を、実施例3と同様の方法で粉砕して微粉を得た。そして、得られた比較例5の焼結磁石の磁気特性を直流BHカーブトレーサーで測定した。その結果を表2に示す。
(Comparative Example 5)
The alloy flakes obtained in Comparative Example 2 were pulverized in the same manner as in Example 3 to obtain fine powder. And the magnetic characteristic of the obtained sintered magnet of the comparative example 5 was measured with the direct-current BH curve tracer. The results are shown in Table 2.
(比較例6)
比較例3で得られた合金薄片を、実施例3と同様の方法で粉砕して微粉を得た。そして、得られた比較例6の焼結磁石の磁気特性を直流BHカーブトレーサーで測定した。その結果を表2に示す。
(Comparative Example 6)
The alloy flakes obtained in Comparative Example 3 were pulverized in the same manner as in Example 3 to obtain fine powder. And the magnetic characteristic of the obtained sintered magnet of the comparative example 6 was measured with the direct-current BH curve tracer. The results are shown in Table 2.
R2T17相を含む領域が確認されず、平均温度差が300℃を越える比較例4では、表2に示すように、本発明のR−T−B系合金薄片の製造方法により製造された実施例3と比較して保磁力(iHc)が低い。この原因は、実施例1の合金中のR2T17相を含む領域が焼結性を改善したためと推定できる。
また、R2T17相の粒径や体積率の大きい比較例3の合金を使用した比較例6では、実施例3と比較して保磁力(iHc)および最大磁気エネルギー積((BH)max)が低くなることが分かった。
さらに、重希土類を含まず、R2T17相の析出しない組成であって、本発明のR−T−B系合金薄片の製造方法により製造された実施例2の合金を使用した実施例4も、平均温度差が300℃を越える比較例5と比較して保磁力が大きい。この原因は未だ調査中ではあるが、実施例2の合金の方が、凝固速度が低いために結晶欠陥が少ないことが一因ではないかと推定している。
In Comparative Example 4 in which the region containing the R 2 T 17 phase was not confirmed and the average temperature difference exceeded 300 ° C., as shown in Table 2, it was produced by the method for producing an RTB-based alloy flake of the present invention. Compared with Example 3, the coercive force (iHc) is low. This can be presumed to be because the region containing the R 2 T 17 phase in the alloy of Example 1 improved the sinterability.
Further, in Comparative Example 6 using the alloy of Comparative Example 3 having a large particle size and volume ratio of the R 2 T 17 phase, compared with Example 3, the coercive force (iHc) and the maximum magnetic energy product ((BH) max ) Was found to be low.
Further, Example 4 using the alloy of Example 2 which does not contain heavy rare earth and does not precipitate the R 2 T 17 phase and which is manufactured by the method of manufacturing the R—T—B type alloy flakes of the present invention. However, the coercive force is large as compared with Comparative Example 5 in which the average temperature difference exceeds 300 ° C. Although the cause of this is still under investigation, it is estimated that the alloy of Example 2 may be caused by a small number of crystal defects due to a lower solidification rate.
1 耐火物ルツボ
2 タンディッシュ
3 鋳造ロール
4 合金
5 捕集コンテナ
1
Claims (11)
短軸方向の平均粒径が3μm以下のR2T17相を含む領域の体積率が0.5〜10%であることを特徴とするR−T−B系合金。 R-T-B type alloy (provided that R is at least one of rare earth elements including Y, T is a transition metal in which Fe is essential, and B is boron), which is a raw material used for rare earth permanent magnets. Because
An R-T-B alloy having a volume ratio of 0.5 to 10% in a region including an R 2 T 17 phase having a minor axis direction average particle size of 3 μm or less.
平均厚さを0.1〜1mmとするとともに、鋳造ロールへの平均溶湯供給速度を幅1cmあたり毎秒10g以上とし、
前記鋳造ロールを離脱するR−T−B系合金の平均温度が、前記R−T−B系合金のR 2 T 14 B相の平衡状態での凝固温度よりも100〜400℃低いことを特徴とするR−T−B系合金薄片の製造方法。 A method for producing an RTB-based alloy flake by a strip casting method,
The average thickness is 0.1 to 1 mm, the average molten metal supply speed to the casting roll is 10 g / sec or more per 1 cm width ,
The average temperature of the R-T-B type alloy that leaves the casting roll is 100 to 400 ° C. lower than the solidification temperature in the equilibrium state of the R 2 T 14 B phase of the R-T-B type alloy. The manufacturing method of the R-T-B type alloy flakes.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005316551A JP4832856B2 (en) | 2005-10-31 | 2005-10-31 | Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet |
EP06020850A EP1780736B1 (en) | 2005-10-31 | 2006-10-04 | R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet |
US11/589,818 US7846273B2 (en) | 2005-10-31 | 2006-10-31 | R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet |
CN2006101431062A CN1958824B (en) | 2005-10-31 | 2006-10-31 | R-T-B type alloy, production method of r-t-b type alloy flake, permanent magnet, and fine powder for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005316551A JP4832856B2 (en) | 2005-10-31 | 2005-10-31 | Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007119882A JP2007119882A (en) | 2007-05-17 |
JP4832856B2 true JP4832856B2 (en) | 2011-12-07 |
Family
ID=37672311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005316551A Active JP4832856B2 (en) | 2005-10-31 | 2005-10-31 | Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1780736B1 (en) |
JP (1) | JP4832856B2 (en) |
CN (1) | CN1958824B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10262779B2 (en) | 2013-03-29 | 2019-04-16 | Santoku Corporation | R-T-B-based magnet material alloy and method for producing the same |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090035170A1 (en) * | 2007-02-05 | 2009-02-05 | Showa Denko K.K. | R-t-b type alloy and production method thereof, fine powder for r-t-b type rare earth permanent magnet, and r-t-b type rare earth permanent magnet |
JP5274781B2 (en) * | 2007-03-22 | 2013-08-28 | 昭和電工株式会社 | R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet |
JP2011199069A (en) * | 2010-03-19 | 2011-10-06 | Tdk Corp | Method for manufacturing rare earth sintered magnet, and material for the rare earth sintered magnet |
JP5572673B2 (en) * | 2011-07-08 | 2014-08-13 | 昭和電工株式会社 | R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor |
JP5744286B2 (en) * | 2011-07-08 | 2015-07-08 | 昭和電工株式会社 | R-T-B Rare Earth Sintered Magnet Alloy and R-T-B Rare Earth Sintered Magnet Alloy Manufacturing Method |
US20150010426A1 (en) * | 2012-02-02 | 2015-01-08 | Chuo Denki Kogyo Co., Ltd. | R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD OF PRODUCING THE SAME |
JP6238444B2 (en) * | 2013-01-07 | 2017-11-29 | 昭和電工株式会社 | R-T-B rare earth sintered magnet, R-T-B rare earth sintered magnet alloy and method for producing the same |
JP2016017203A (en) | 2014-07-08 | 2016-02-01 | 昭和電工株式会社 | Production method for r-t-b-based rear earth sintered magnetic alloy and production method for r-t-b-based rear earth sintered magnet |
JP6578916B2 (en) | 2015-12-03 | 2019-09-25 | Tdk株式会社 | Method for manufacturing alloy for RTB-based rare earth sintered magnet and method for manufacturing RTB-based rare earth sintered magnet |
JP6652011B2 (en) * | 2016-08-05 | 2020-02-19 | Tdk株式会社 | RTB based sintered magnet |
JP6614084B2 (en) * | 2016-09-26 | 2019-12-04 | 信越化学工業株式会社 | Method for producing R-Fe-B sintered magnet |
CN106298138B (en) * | 2016-11-10 | 2018-05-15 | 包头天和磁材技术有限责任公司 | The manufacture method of rare-earth permanent magnet |
CN109909465B (en) * | 2018-12-28 | 2020-10-27 | 北京航空航天大学 | Method for inhibiting high-temperature ordering of high-iron-concentration samarium-cobalt alloy |
JP2020155763A (en) * | 2019-03-15 | 2020-09-24 | 日立金属株式会社 | Method for manufacturing r-t-b based sintered magnet |
CN111696777A (en) * | 2019-03-15 | 2020-09-22 | 日立金属株式会社 | Method for producing R-T-B sintered magnet |
CN110976796B (en) * | 2019-12-24 | 2021-03-16 | 江苏集萃安泰创明先进能源材料研究院有限公司 | Preparation method of amorphous alloy thin strip capable of reducing residual thermal stress |
CN111014600B (en) * | 2019-12-24 | 2021-05-18 | 江苏集萃安泰创明先进能源材料研究院有限公司 | Process method for reducing difference between casting temperature and solidification temperature of amorphous alloy melt |
CN111029075B (en) * | 2019-12-31 | 2020-12-29 | 烟台首钢磁性材料股份有限公司 | Preparation method of neodymium iron boron magnetic powder |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2639609B2 (en) * | 1992-02-15 | 1997-08-13 | 三徳金属工業株式会社 | Alloy ingot for permanent magnet and method for producing the same |
US6444048B1 (en) * | 1998-08-28 | 2002-09-03 | Showa Denko K.K. | Alloy for use in preparation of R-T-B-based sintered magnet and process for preparing R-T-B-based sintered magnet |
JP4479944B2 (en) * | 2001-12-18 | 2010-06-09 | 昭和電工株式会社 | Alloy flake for rare earth magnet and method for producing the same |
JP2004043921A (en) * | 2002-07-15 | 2004-02-12 | Showa Denko Kk | Rare-earth-containing alloy flake, its manufacturing process, rare-earth sintered magnet, alloy powder for this, bond magnet and alloy powder for this |
AU2002358316A1 (en) * | 2001-12-18 | 2003-06-30 | Showa Denko K.K. | Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet |
US20050098239A1 (en) * | 2003-10-15 | 2005-05-12 | Neomax Co., Ltd. | R-T-B based permanent magnet material alloy and R-T-B based permanent magnet |
-
2005
- 2005-10-31 JP JP2005316551A patent/JP4832856B2/en active Active
-
2006
- 2006-10-04 EP EP06020850A patent/EP1780736B1/en active Active
- 2006-10-31 CN CN2006101431062A patent/CN1958824B/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10262779B2 (en) | 2013-03-29 | 2019-04-16 | Santoku Corporation | R-T-B-based magnet material alloy and method for producing the same |
US11145443B2 (en) | 2013-03-29 | 2021-10-12 | Santoku Corporation | R-T-B-based magnet material alloy and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
CN1958824A (en) | 2007-05-09 |
JP2007119882A (en) | 2007-05-17 |
CN1958824B (en) | 2011-12-28 |
EP1780736A1 (en) | 2007-05-02 |
EP1780736B1 (en) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1780736B1 (en) | R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet | |
JP5274781B2 (en) | R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet | |
JPWO2009075351A1 (en) | R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet | |
EP2513917B1 (en) | Rare earth magnet and manufacturing method therefor | |
JP3267133B2 (en) | Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet | |
JP4389427B2 (en) | Sintered magnet using alloy powder for rare earth-iron-boron magnet | |
US7846273B2 (en) | R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet | |
TWI738932B (en) | R-Fe-B series sintered magnet and its manufacturing method | |
JP3449166B2 (en) | Alloy for rare earth magnet and method for producing the same | |
JP4687662B2 (en) | Iron-based rare earth alloy magnet | |
JP2010010665A (en) | HIGH COERCIVE FIELD NdFeB MAGNET AND CONSTRUCTION METHOD THEREFOR | |
JP4479944B2 (en) | Alloy flake for rare earth magnet and method for producing the same | |
JP4366360B2 (en) | Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet | |
JP4879503B2 (en) | Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet | |
JP4318204B2 (en) | Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet | |
JP3721831B2 (en) | Rare earth magnet alloy and method for producing the same | |
JP4853629B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2002266006A (en) | Method for controlling structure of rare-earth- containing alloy, and powder of the alloy and magnet using the same | |
WO2009125671A1 (en) | R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet | |
WO2019220950A1 (en) | Cast alloy flakes for r-t-b rare earth sintered magnet | |
JP4955217B2 (en) | Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet | |
JP2006245534A (en) | Iron-based rare earth alloy nanocomposite magnet and method of manufacturing the same | |
JP2005288493A (en) | Method and apparatus for producing alloy strip, and method for producing alloy powder | |
JP3536943B2 (en) | Alloy for rare earth magnet and method for producing the same | |
JP4650218B2 (en) | Method for producing rare earth magnet powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110913 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4832856 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |